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SUMMARY

This paper focuses on the robust stability analysis of a class of linear systems including multiple delays
subjected to constant or time-varying perturbations. The approach considered makes use of appropriate
stability radius concepts (dynamic, static) and relies on a feedback interconnection interpretation of the
uncertain system. Various computable bounds on stability radii are obtained that exploit the structure of
the problem. Systems including perturbations on both system matrices and delays are also dealt with.
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1. INTRODUCTION

It is well known that the characterization of stability regions of time-delay systems in the delay
parameter space is a difficult problem (see, e.g. [1, 2] and the references therein). Stability radii
are well known in the context of matrix distance problems, see [3] and the references therein.
Recently, such concepts have been used to assess or optimize the robustness of stability of linear
time-delay systems subjected to structured uncertainty on the corresponding system matrices in
[4–7]. In this context, stability radii correspond to the size of the smallest perturbations that render
the system unstable.

The aim of this paper is to adopt the concept of stability radii to linear systems including
multiple delays subject to constant or time-varying perturbations on the delay parameters and to
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derive computable expressions. The case of constant perturbations for a class of quasi-polynomials
including two delays was addressed in a geometrical setting in [8], where the authors introduced
the notion of delay deviation. The idea can be resumed in computing the distance between the
‘nominal’ point in the delay parameter space and the ‘closest’ curve for which there exists at least
one characteristic root on the imaginary axis. Such a delay deviation characterization is nothing
else than a characterization of a stability radius in the delay parameter space.

The approach considered in this paper is quite different from the one mentioned above. First,
we introduce two appropriate notions of stability radii: static and dynamic, in order to characterize
constant and time-varying perturbations on the nominal system’s parameters. These stability radii
are scalar robustness measures based on a a priori chosen weighting of the perturbations of delays
and system parameters, as we shall discuss at the end. Secondly, we will employ a feedback
interconnection point of view of the uncertain system in order to derive estimates for the stability
radii. Note that a similar point of view was taken in [9, Chapter 3; 10–13] (L2 gain analysis
applied to systems with time-varying delay perturbations), [14] (� analysis applied to systems
with constant delay perturbations) and [4, 15] (pseudospectra and stability radii for nonlinear
eigenvalue problems), and some of the references therein. In the present paper, the robust stability
characterizations in these references are combined and further developed in a unifying framework,
and the results are formulated in terms of appropriately defined stability radii. Finally, in [16] and
the references therein, the IQC approach is applied to deal with time-varying delays, leading to
easy-to-check stability conditions expressed as linear matrix inequalities, under the assumption
that the corresponding delay-free system is asymptotically stable. Such an assumption will not be
made in this paper. In [17] frequency sweeping tests are presented to assess the effect on stability
of coefficient perturbations of quasi-polynomials, but in the context of delay-independent stability.
Finally, in [18] a L2 gain analysis approach is employed to analyze the stability of nonlinear
time-delay systems with parametric uncertainty; however, it is assumed that the uncertainty does
not affect the delay parameters.

Although in the case of uncertainty on the delays, the feedback interconnection point of view
and the adopted tools from robust control will typically lead to expressions for lower bounds
on stability radii (corresponding to sufficient yet not necessary robust stability conditions), they
offer several advantages. Explicit computable expressions for bounds are namely obtained that
impose no limitations on the number of delays and the dimension of the problem. In addition,
time-varying perturbations and combined perturbation on delays and system matrices (matrix-
valued perturbations) can be easily dealt with, as we shall demonstrate. Finally, the interconnection
framework is appropriate for solving associated synthesis problems. The latter issue will however
not be further addressed in this paper.

The paper adopts a step-by-step approach by imposing more conditions on the perturbations
and exploiting this information accordingly. More precisely, first time-varying perturbations are
considered in a L2 analysis framework. Next, it is shown how the derived explicit bounds on
the stability can be improved for the special case of constant perturbations, where besides the
inherent increase of the stability radii (due to the restriction of the allowable perturbations), the
structure of the interconnection can be better exploited by using frequency domain techniques.
Finally, implicit expressions are given, which rely on exploiting all structure of the problem and
leave conservatism only in the fact that the phase information is not fully exploited in the feedback
loop (inherent to the adopted approach). For reasons of simplicity and clarity of the presentation,
the cases of uncertainty on delays only and of uncertainty on both delays and system matrices are
treated separately.
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2. UNCERTAINTY ON THE DELAYS

2.1. Concept

We address the uncertain system as

ẋ(t) = A0x(t)+
m∑
i=1

Ai x(t−�i −wi��i (t))

x(�) = �(�), −����0, �∈C([−�,0],Rn)

(1)

where x(t)∈Rn , �>0, Ai ∈Rn×n and �i�0. The uncertainty on the delays is modeled by uniformly
bounded scalar functions [0,∞]� t→��i (t) and scalar weights wi>0, which are such that

wi��i (t)�−�i ∀t�0 ∀i ∈{1, . . .,m} (2)

We assume that the zero solution of the corresponding unperturbed system

ẋ(t) = A0x(t)+
m∑
i=1

Ai x(t−�i )

x(�) = �(�), −����0

(3)

is asymptotically stable.
The dynamic stability radius rds of the system (3) w.r.t. the delays is defined as

rds := sup

{
��0 : the zero solution of (1) is asymptotically stable for all functions

�s(t)= (��1(t), . . .,��m(t)) satisfying (2) and ess sup
t�0

|��i (t)|��, i =1, . . .,m

}
(4)

Note that, although rds explicitly depends on the weights wi , this dependence is suppressed in the
notation for reasons of simplicity.

Similarly, if the uncertainty on the delay is assumed as time invariant, then the static stability
radius w.r.t. the delays is defined as

r ss := sup{��0 : the zero solution of (1) is asymptotically stable for all constant

�s= (��1, . . .,��m) satisfying wi��i�−�i and |��i |��, i =1, . . .,m} (5)

Remark 1
The weights wi are useful because in practical problems the time delays may have a large variation
in size and the amount of uncertainty may differ from one delay parameter to another [5]. A special
choice is given by wi =�i ,1�i�m, where the stability radii correspond to the maximal relative
error on the delays such that stability is preserved. If there is no uncertainty at all on some delay
parameters, then one can incorporate this information by setting the corresponding weights to zero.

Remark 2
It may happen that a stability radius is larger than the nominal delay values. For example, r ss>�,�>0,
means that the stability of the system with delays s guarantees the stability of the system with
delays m�0 whenever |�i −	i |�wi�,1�i�m. In the special case, where �i −wi r ss<0 for some
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i ∈{1, . . .,m} a stability notion in terms of the maximum allowable delay deviation could be more
accurate that the generally accepted term ‘stability radius’.

In the remainder of this section several lower bounds on the above stability radii are derived.
Such lower bounds correspond to robust stability conditions.

2.2. Feedback interconnection point of view

We factorize

Ai = BiCi , Bi ∈Rn×ni , Ci ∈Rni×n, i =1, . . .,m (6)

where all Bi have full column rank, all Ci have full row rank, and we let n̂=∑m
i=1 ni .

For u∈L2([0,∞],Rn̂), y=Gu be defined by

ẋ(t)= A0x(t)+
m∑
i=1

Ai x(t−�i )+
m∑
i=1

[B1 · · ·Bm]u(t), x(�)=0, ��0

y(t)=[w1C
T
1 · · ·wmC

T
m]T ẋ(t)

Clearly, y∈L2([0,∞],Rn̂). By the asymptotic stability of the unperturbed system and Parseval’s
theorem the L2-induced norm of G satisfies

‖G‖L2 =‖G(
)‖H∞ =max
��0

�1(G(j�))

where

G(
)=


⎡
⎢⎢⎢⎣

w1C1

...

wmCm

⎤
⎥⎥⎥⎦
(


I −A0−
m∑
i=1

Aie
−
�i

)−1

[B1 · · ·Bm] (7)

Next, we let

S	
i :L2([0,∞),R	)→L2([0,∞),R	)

(S	
i )(t)= 1

wi

∫ t−�i

t−�i−wi��i (t)
̃(s)ds, t�0

where 	∈N, i ∈{1, . . .,m} and ̃∈L2(R,R	) satisfies

̃(t)=
{

(t), t�0

0, t<0
(8)

By defining

D : L2([0,∞),Rn̂)→L2([0,∞),Rn̂)

(D)(t)=diag((Sn1
1 1)(t), . . ., (S

nm
m m)(t))

(9)
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where (t)=[T1 (t) · · ·Tm(t)]T, with i (t)∈Rni , i =1, . . .,m, we can interpret the system (1) as a
feedback interconnection of G and D.

Remark 3
If some of the matrices Ai , i =1, . . .,m, have low rank, then G and D have n̂<nm inputs and
outputs. This is due to the factorization (6).

2.3. Time-varying perturbations

As a first step we characterize the induced L2 gain of D. We need the following result:

Lemma 1
Assume that �i +wi��i (t)�0 and that |��i (t)|��i for all t�0. Then, the induced L2 norm of S	

i
is bounded by

√
7/4�i .

Proof
This result corresponds to Lemma 2 of [13], to which we refer for a detailed proof. To make
the paper self contained we outline the main steps, which are as follows. First, one extends the
operator S	

i to an operator Ŝ
	
i on L2(R,R	), defined by:

Ŝ
	
i :L2(R,R	)→L2(R,R	)

(Ŝ
	
i )(t)= 1

wi

∫ t−�i

t−�i−wi��i (t)
(s)ds, t ∈R

Clearly, we have ‖Ŝ	
i ‖L2 =‖S	

i ‖L2 . Next, one estimates ‖Ŝ	∗
i ‖L2 , where Ŝ

	∗
i is the adjoint of

Ŝ
	
i , using the definition of the induced L2 norm and a geometric interpretation of the integrals.

This leads to

‖Ŝ	∗
i ‖L2�

√
7/4�i

Finally, the assertion follows from:

‖Ŝ	∗
i ‖L2 =‖Ŝ	

i ‖L2 =‖S	
i ‖L2 �

Lemma 2
Assume that �i +wi��i (t)�0 and that |��i (t)|��i , for all t�0 and 1�i�m. Then

‖D‖L2�
√
7/4‖l‖∞ (10)

Proof
Expression (10) follows from:

‖D‖L2 = max
1�i�m

‖Snii ‖L2

and Lemma 1. �
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By combining the above lemmas we arrive at the following result:

Proposition 1
We have the following estimate:

rds�
1√
7/4

(‖G(
)‖H∞)−1 (11)

Proof
From the small gain theorem we have that if

‖G‖L2‖D‖L2 =‖G(
)‖H∞‖D‖L2<1 (12)

then the feedback interconnection of G and D is L2 stable, which induces the asymptotic stability
of the zero solution of (1). Under the assumptions of Lemma 2 the condition (12) is fulfilled if√

7/4‖G(
)‖H∞‖l‖∞<1 (13)

The assertion of the proposition follows: �

Proposition 1 can be strengthened by an appropriate scaling in the feedback loop. More precisely,
with the set T defined as

T :={diag(T1, . . .,Tm) :Ti ∈Cni×ni ,detTi 	=0, i =1, . . .,m} (14)

we get:

Proposition 2
We have the following estimate:

rds�
1√
7/4

(
min
T∈T‖TG(
)T−1‖H∞

)−1

(15)

Remark 4
The optimization problem

min
T∈T

‖TG(
)T−1‖H∞

can be reformulated as

min
U,�

�

s.t. �>0, U ∈T, U =U∗>0

G(j�)∗UG(j�)−�2U<0 ∀��0

(16)

where T can be computed from U=T ∗T . If � is fixed, then the resulting feasibility problem is
convex.

Remark 5
If the delay perturbations are such that the functions

t 
→ t−�i −wi��i (t), i =1, . . .,m

Copyright q 2008 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control (2008)
DOI: 10.1002/rnc



ROBUSTNESS ASSESSMENT VIA STABILITY RADII IN DELAY PARAMETERS

are non-decreasing, then the factor
√
7/4 in (11) and (15) can be replaced with 1. This follows

from the fact that in such case ‖S	
i ‖L2��i if |��i (t)|��i , for all t�0, see [12].

For improvements of Lemma 1 for the case where the delays are differential functions with a
given upper bound on their derivatives, we refer to [13].

2.4. Time-invariant perturbations

We reconsider the estimates for the stability radii under the additional assumption of constant delay
perturbations. Then, improvements can be made by decoupling signals in the frequency domain,
and by further exploiting the structure of the problem under consideration.

Let the entire functions si be defined as

si (
;�) :=

⎧⎪⎨
⎪⎩
e−
�i 1−e−
(wi�)

wi

, 
 	=0,

1, 
=0,

i =1, . . .,m

As they satisfy

|si (j�;��i )|�
∣∣∣∣∣1−e−j�(wi��i )

wi�

∣∣∣∣∣�
∣∣∣∣∣∣∣
sin

wi��i
2

�

wi

2
�

∣∣∣∣∣∣∣���i ∀��0 ∀i ∈{1, . . .,m} (17)

we obtain

‖S	
i ‖L2 =‖si(j�;��i )I	‖H∞���i (18)

This result can also be derived in the time domain, see [12]. Denote with
D(
;�s) :=diag(s1(
;��1)In1 , . . .,sm(
;��m)Inm )

the transfer function associated with the operator D, defined in (9). From (17) it follows that

‖D(j�;�s)‖H∞�‖�s‖∞

The characteristic equation of (1) can be written on the imaginary axis as

det

(
j�I−A0−

m∑
i=1

Aie
−j��i

)
det(I −G(j�)D( j�;�s))=0 (19)

where the first factor is non-zero for all ��0 because the unperturbed system is assumed to be
asymptotically stable. The perturbed system is asymptotically stable if the perturbations cannot
shift characteristic roots to the imaginary axis, that is, if (19) has no solutions. Based on this
observation we have the following result, which makes use of structured singular values (see the
appendix for a short introduction):

Proposition 3
Define the uncertainty set

D :={diag(d1 In1 , . . .,dm Inm ) :di ∈C,1�i�m} (20)
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We have:

r ss�
(
sup
��0

�DG( j�)

)−1

(21)

where �D(·) is the structured singular value with respect to (20).

Proof
From (19) and the fact that D(j�;�s)∈D for all ��0, a sufficient stability condition is given by

‖D(j�;�s)‖2<(�D(G(j�)))−1 ∀��0

This condition is satisfied if

‖d�‖∞<(�D(G( j�)))−1 ∀��0

which leads to the statement of the proposition. �

Because the exact computation of the structured singular of a complex n̂× n̂ matrix M with
respect to the uncertainty structure (20) is a hard problem if m is large [19], the available numerical
algorithms typically compute lower and upper bounds, see the appendix. We have for instance

�D(M)� min
T∈T

�1(TMT−1) (22)

where T is given by (14) and �1(·) :=‖·‖2. The computation of the upper bound in (22) can be
formulated as a convex optimization problem, using the arguments spelled out in Remark 4.

From Proposition 3 and the estimate (22) we obtain:

r ss�
(
sup
��0

min
T∈T

‖T−1G( j�)T‖2
)−1

(23)

It is instructive to compare expressions (23) and (15), the latter corresponding to

rds�
(√

7/4 min
T∈T

sup
��0

‖T−1G(j�)T ‖2
)−1

Besides the factor
√
7/4 (due to the better estimate of ‖S	

i ‖L2 in the time-invariant case), the
outer and inner optimization have been interchanged, that is, the scaling has become frequency
dependent in (23).

Further improvements of the estimate (21) can be obtained by, instead of (17), using the
smallest possible upper bound on |si ( j�;��i )|, given the bound �i on |��i |. The price to be paid
is that the expression for the stability radius is no longer explicit. The following result generalizes
Theorem 3 of [14]:
Proposition 4
Let s :R+ →R+

� 
→ s(�) :=

⎧⎪⎨
⎪⎩
sin(�), ���

2

1, ���

2

(24)

Copyright q 2008 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control (2008)
DOI: 10.1002/rnc



ROBUSTNESS ASSESSMENT VIA STABILITY RADII IN DELAY PARAMETERS

Furthermore, let F :R+\{0}→R+,� 
→ F(�), where

F(�) := sup
��0

�D

⎛
⎜⎜⎜⎜⎜⎝

⎡
⎢⎢⎢⎢⎢⎣

2s
(w1��

2

)
C1

...

2s
(wm��

2

)
Cm

⎤
⎥⎥⎥⎥⎥⎦
(
j�I −A0−

m∑
i=1

Aie
−j��i

)−1

[B1 . . .Bm]

⎞
⎟⎟⎟⎟⎟⎠

and �D(·) is the structured singular value with respect to the uncertainty set (20). Then, we have
the following estimate:

r ss�sup{�>0 : F(�)<1} (25)

Proof
The proof is based on an additional scaling within the feedback loop. Equation (19) is equiva-
lent with

det(I −�−1(�;�)G( j�)D( j�;�s)�(�;�))=0

where

�(�;�) :=diag

⎛
⎜⎝ j�w1

2s
(w1��

2

) In1 , . . ., j�wm

2s
(w1��

2

) Inm
⎞
⎟⎠

By construction, we have

F(�)= sup
��0

�D(�
−1(�;�)G(j�))

Furthermore, the structure of D( j�;�s) is not affected by the post-multiplication with �(�;�).
Hence, under the assumption F(�)<1, the system is stable if

‖�(�;�)D( j�;�s)‖2<1 ∀��0⇔

∣∣∣∣∣∣∣
1−e−j�wi��i

2s
(wi��

2

)
∣∣∣∣∣∣∣<1 ∀��0, i =1, . . .,m

⇔

∣∣∣∣∣∣∣∣
sin

(
wi��i�

2

)

s
(wi��

2

)
∣∣∣∣∣∣∣∣
<1 ∀��0, i =1, . . .,m

⇔ |��i |<�, i =1, . . .,m

The following implication can be concluded:

F(�)<1⇒r ss��

and the assertion of the proposition follows. �
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Remark 6
Since for all ��1 and i =1, . . .,m, we have

sup
|��i |<�

∣∣∣∣∣∣∣∣
sin

(
wi��i�

2

)

s
(wi��

2

)
∣∣∣∣∣∣∣∣
=1 ∀��0

a further improvement of the estimate (25) can only be achieved by exploiting phase information
in the feedback loop, which is not possible with the adopted � approach.

Remark 7
Using (22) we can relax (25) to the slightly more conservative, but computationally more tractable
expression

r ss�sup{�>0 : F̃(�)<1} (26)

where

F̃(�) := sup
��0

min
T∈T

�1

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩
T−1

⎛
⎜⎜⎜⎜⎜⎝

⎡
⎢⎢⎢⎢⎢⎣

2s
(w1��

2

)
C1

...

2s
(wm��

2

)
Cm

⎤
⎥⎥⎥⎥⎥⎦

×
(
j�I −A0−

m∑
i=1

Aie
−j��i

)−1

[B1 · · ·Bm]

⎞
⎟⎟⎟⎟⎟⎠T

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(27)

and T is defined in (14).

3. UNCERTAINTY IN COEFFICIENT MATRICES AND DELAYS

We consider the uncertain system

ẋ(t)= (A0+D0�A0(t)E0)x(t)+
m∑
i=1

(Ai +Di�Ai (t)Ei)x(t−�i −wi��i (t)) (28)

under appropriate initial conditions. The uncertainty is expressed by the piece-wise continuous
functions as

�Ai ∈ L∞([0,∞),Rni×ni ), i =0, . . .,m

��i ∈ L∞([0,∞), [−�i ,∞)), i =1, . . .,m
(29)

while Di ∈Rn×ni and Ei ∈Rni×n are weight matrices, and wi>0 are scalar weights.
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The dynamic stability radius of the unperturbed system (3) w.r.t. the combined uncertainty in
(28) is defined as

rdc =: sup
{

��0 : the zero solution of (28) is asymptotically stable for all functions

�Ai (t) and �s(t) satisfying esssup
t�0

‖�Ai (t)‖2��, i =0, . . .,m,

min
t�0

�i +wi��i (t)�0 and ess sup
t�0

|��i (t)|��, i =1, . . .,m

}
(30)

The corresponding static stability radius r sc is defined in a similar way by assuming time-invariant
perturbations.

Remark 8
The weights wi and the weight matrices are not only useful to express the amount of uncertainty
on the different delays and matrices relative to each other. In addition, the weight matrices Di
and Ei allow to introduce additional structure on the perturbations of the system matrix Ai , which
appears for instance if only one element or a particular block is uncertain.

From an analysis point of view the main difference with respect to the case discussed in the
previous section is the nonlinear dependence of the right-hand side of (28) on the uncertainty,
in particular, on the products of �Ai and x(t−�i −wi��i ). Inspired by [12], this problem can be
overcome by introducing additional inputs and outputs. First, let Bi ,Ci , Ãi , D̃i , Ẽi be such that

Ai +Di�Ai (t)Ei = Bi( Ãi + D̃i�Ai (t)Ẽi)Ci , i =1, . . .,m

where each Ci ∈Rñi×n has full row rank. A trivial choice is given by

Bi =Ci = I, Ãi = Ai , D̃i =Di , Ẽi = Ei, i =1, . . .,m

yet it is beneficial if a decomposition can be chosen where rank(Ci )= ñi<n (as this leads to smaller
block sizes in the uncertainty structure). Next, we interpret (28) as the feedback interconnection of

ẋ(t)= A0x(t)+
m∑
i=1

Ai x(t−�i )+D0ũ0(t)+
m∑
i=1

Bi D̃i ũi (t)+
m∑
i=1

Bi Ãi ui (t)

ỹ0(t)= E0x(t)

ỹi (t)= ẼiCi x(t−�i )+ Ẽi ui , i =1, . . .,m

yi (t)=−�wiCi ẋ(t), i =1, . . .,m

. (31)

and

ũi (t)=�Ai (t)ỹi(t), i =0, . . .,m

ui (t)= 1

�
(S

ñi
I yi )(t), i =1, . . .,m

(32)

where �>0 is a parameter.
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Using this feedback interconnection point of view, lower bounds on the stability radii can be
derived analogously as in the case where only the delays are uncertain, which we have discussed
in the previous section. In what follows, we therefore restrict ourselves to formulating the main
results.

3.1. Time-varying perturbations

Let G be the transfer function of (31), that is,

G(
;�) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

E0

e−
�1 Ẽ1C1

...

e−
�m ẼmCm

−�w1
C1

...

−�wm
Cm

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

[

I −A0−

m∑
i=1

Aie
−
�i

]−1

×[D0 B1 D̃1 . . .Bm D̃m B1 Ã1 . . .Bm Ãm ]+

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 . . . 0 0

0 Ẽ1

. . .

Ẽm

0 0

...
...

0 · · · 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(33)

Proposition 5
We have the following estimate:

rdc�(‖G(
;√7/4)‖H∞)−1

This proposition can again be strengthened by an appropriate scaling in the feedback loop. With
the set T defined as

T= {diag(t0 In0 , . . ., tm Inm ,T1, . . .,Tm) : ti>0, i =0, . . .,m, Ti ∈Cñi×ñi ,

detTi 	=0, i =1, . . .,m} (34)

we obtain:

rdc�
(
min
T∈T

‖T−1G(
;√7/4)T‖H∞

)−1
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3.2. Time-invariant perturbations

Taking into account the structure of the feedback path (32) and the estimate (18), we arrive at:

Proposition 6
Define the uncertainty set as

D :={diag(�0, . . .,�m,d1 Iñ1 , . . .,dm Iñm ) :�i ∈Cni×ni ,d j ∈C, i =0, . . .,m, 1� j�m} (35)

Then

r sc�
(
sup
��0

�D(G( j�; 1))

)−1

Using the scaling-based upper bound on the structured singular value described in the appendix,
we arrive at:

r sc�
(
sup
��0

min
T∈T

‖T−1G( j�;1)T‖2
)−1

where T is given by (34). An improvement of the estimate (18) finally leads to:

Proposition 7
Let the function s :R+ →R+ be given by (24). Define F :R+\{0}→R+,

� 
→ F(�) := sup
��0

�D(G2( j�;�)) (36)

where

G2(
;�) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

�E0

e−
�1�Ẽ1C1

...

e−
�m�ẼmCm

−2s
(w1��

2

)
C1

...

−2s
(wm��

2

)
Cm

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

[

I −A0−

m∑
i=1

Aie
−
�i

]−1

×[D0 B1 D̃1 · · ·Bm D̃m B1 Ã1 · · ·Bm Ãm ]+

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 · · · 0 0

0 �Ẽ1

. . .

�Ẽm

0 0
...

...

0 · · · 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(37)
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Then, we have the following estimate:

r sc�sup{�>0 : F(�)<1} (38)

4. EXAMPLES

4.1. Third-order system with two delays

We consider the following system from [20]:
ẋ(t)= A0x(t)+A1x(t−�1)+A2x(t−�2) (39)

where

A0=
⎡
⎢⎣

−1 13.5 −1

−3 −1 −2

−2 −1 −4

⎤
⎥⎦ , A1=

⎡
⎢⎣

−5.9 0 0

2 0 0

2 0 0

⎤
⎥⎦ , A2=

⎡
⎢⎣
0 7.1 −70.3

0 −1 5

0 0 6

⎤
⎥⎦ (40)

For the delay parameters

(�1,�2)= (0.05,0.2) (41)

the zero solution is asymptotically stable with the spectral abscissa equal to −6.10646E-6. Next,
we assume perturbations on the nominal delay parameters (41), which are weighted according to

(w1,w2)= (1,2)

When factorizing Ai = BiCi , i =1,2, with

B1=
⎡
⎢⎣

−5.9

2

2

⎤
⎥⎦ , C1=[1 0 0], B2=

⎡
⎢⎣
7.1 −70.3

−1 5

0 6

⎤
⎥⎦ , C2=

[
0 1 0

0 0 1

]

an application of the results of the previous sections yields the following lower bounds on stability
radii in the delay parameters:

dynamic (rds ) static (r ss)

Estimate (11) (15) (23) (26)
Lower bound 3.09920E−3 7.35772E−3 9.73349E−3 9.79730E−3

Because there are only two delays in this example an exact characterization of stability regions
of the zero solution in the delay parameter space can be made, under the assumption that the
delays are time invariant, and the static stability radius r ss can be computed subsequently. The
results are shown in Figure 1. The nominal delay values (41) are indicated with the plus symbol.
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0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
0

0.05

0.1

0.15

0.2

0.25

0.3
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0.4

τ
1

τ 2

2

20

Figure 1. Stability regions of (39)–(40) in the (�1,�2)-parameter space. For the delay values corresponding
to the crosses solutions are shown in Figure 2.

The numbers correspond to the number of characteristic roots in the open right half plane. The
full curves bound the stability region, and the dashed lines bound the set as

max

(∣∣∣∣�1−0.05

1

∣∣∣∣ ,
∣∣∣∣�2−0.2

2

∣∣∣∣
)

�9.79730E−3

that is, the set of delays for which the stability is guaranteed by the criterion (26). The dotted box
corresponds to the region

max

(∣∣∣∣�1−0.05

1

∣∣∣∣ ,
∣∣∣∣�2−0.2

2

∣∣∣∣
)

=r ss=2.45769E−2

In Figure 2 we show some solutions of (39)–(40) for the delay values given in Table I, which
correspond to the crosses in Figure 1. The initial conditions are

x(t)=[x1(t) x2(t) x3(t)]T=[1 1 1]T ∀t ∈[−�2, 0] (42)

Note that the behavior of the solutions is consistent with the stability region shown in Figure 1.

4.2. Multiple integrator with delayed output feedback

As a second example, we consider the function as

p(
;s) :=
4+0.24719e−
�1 −0.7.2479e−
�2 +0.70852e−
�3 −0.23091e−
�4 (43)

This quasi-polynomial is stable for the nominal parameter values

s= (1,2,3,4)

with rightmost zeros equal to −1.45364E−2± j2.96287E−2. It can be interpreted as the charac-
teristic function of a quadruple integrator controlled with delayed output feedback. It is constructed
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Figure 2. Solutions of (39)–(40) for the delay values shown in Table I. The initial conditions are given
by (42). The full curve corresponds to x1(t), the dash-dotted curve to x2(t) and the dashed one to x3(t).

Table I. Parameter values corresponding the simulations shown in Figure 2.

�1 �2

(a) 0.0536 0.207
(b) 0.0633 0.226
(c) 0.0718 0.243
(d) 0.0791 0.258

by using the algorithm of Theorem 1 of [21], which leads to the following important properties:

1. for s= (0,0,0,0) the function p is unstable, with two zeros confined to the open right half
plane;

2. the stability of p is extremely sensitive to parametric uncertainty. This is a consequence of
ill-conditioned zeros, which is due to the fact that p(
;�) is a perturbation of the polynomial

4, exhibiting a zero with multiplicity four. This sensitivity is illustrated with the following
(exact) stability margins, which consider the effect of a time-invariant perturbation on one
delay parameter, while keeping the other delay parameters fixed to the nominal values:

i 1 2 3 4

max |��i | 1.3684E−3 4.7114E−4 4.8683E−4 1.5092E−3
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These margins correspond to the static stability radii for weight vectors (w1, . . .,w4) equal
to one of the four unit vectors.

In order to assess the effect on stability of combined perturbations on the four delays, we apply
the results of Section 2. If we assume that all weights wi are unity, then an application of formula
(26), respectively (15), yields:

r ss�1.6098E−4, rds�1.2169E−4 (44)

As a further illustration of the sensitivity of the problem we have used the package DDE-
BIFTOOL [22] to compute the stability region in the (�1,�2) parameter space for (�3,�4)= (3,4),
under the assumption of time-invariant delays. The result are shown in Figure 3. The nominal
delays are indicated with the plus sign The dashed box bounds the region as

max(|�1−0.05|, |�2−0.2|)�1.6098E−4

Here, it is important to note that the actual conservatism of the estimates (44) is much less than
the distance from the dashed box to the stability boundary suggests. The bounds (44) namely
concern combined perturbations on all four delays, while the figure shows stability margins in
the parameters (�1,�2) for particular fixed values of (�3,�4). Finally, for the delay values given in
Table II and indicated with crosses in Figure 3, we show in Figure 4 the solutions of the following
state-space realization of (43) as:

ẋ1(t) = x2(t)

ẋ2(t) = x3(t)

ẋ3(t) = x4(t)

ẋ4(t) = −0.24719 x1(t−�1)+0.7.2479 x1(t−�2)−0.70852 x1(t−�3)

+0.23091 x1(t−�4)

(45)
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Figure 3. Stability regions of the quasi-polynomial (43) in the (�1,�2) parameter space for (�3,�4)= (3,4)
on two different scales. The numbers refer to the number of zeros in the open right half plane. For

parameter values corresponding to the crosses, some solutions of (45) are shown in Figure 4.
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Table II. Parameter values corresponding to the simulations shown in Figure 4.

�1 �2 �3 �4

(a) 1.000114 1.9999062 3 4
(b) 1.000352 1.9995744 3 4
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Figure 4. Solutions of (45), for initial conditions (46) and delay parameters given in Table II.

with initial conditions

x(t)=[x1(t)T . . . x4(t)
T]T=0.001 [1 1 1 1]T ∀t ∈[−�4,0] (46)

Note that one component of x, x1, dominates the others. This is a consequence of the slow peaking
phenomenon inherent to the control of integrator chains with low gain feedback [23].

5. CONCLUDING REMARKS

Stability radii of linear systems with uncertain delays were defined and lower bounds were derived
using a feedback interconnection point of view. The main advantage of the approach is that explicit,
easy-to-check expressions are derived, which are generally applicable in the following sense. First,
there are no restrictions or assumptions on the system’s dimensions and on the number of delays.
Second, perturbations on the delays and the system matrices can be dealt with at the same time,
with the perturbations on the system matrices being vector valued and possibly structured. Third,
both constant and time-varying perturbations can be considered. Finally, in the analysis the stability
of the corresponding delay-free system is not required. Inherent to the robust control approach is
that the bounds may be conservative [5, 24]. It should be noted that conservatism does not occur
when using direct methods based on an explicit characterization or computation of stability regions
in parameter spaces (e.g. the � or D-subdivision method [5] or special methods for computing
stability regions in delay spaces [20, 25]). These methods are however only applicable to special
situations, where all uncertainty is time invariant and only concerns a very small number of scalar
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parameters, and from a computational point of view more information than necessary is computed
(partition of parameter space in regions featuring the same number of characteristic roots instead
of the distance to instability).

Finally, we note that if information on the delays’ variation and/or derivatives is available, then
the derived estimates for the dynamic stability radii may be further improved, as we indicated in
Remark 5.

APPENDIX A: THE STRUCTURED SINGULAR VALUE

We introduce the concept of structured singular values of matrices and outline the main principles
behind the standard computational schemes. A more elaborate introduction can be found in the
review paper [26], Chapter 11 of [24] and Chapter 4 of [3].

A classical result from linear algebra and robust control theory, which lays the basis for the
celebrated small gain theorem, relates the largest singular value of a matrix G∈CN×M to the
solutions of the equation

det(I+G�)=0 (A1)

in the following way:

�1(G)=
{
0 if det(I +G�) 	=0 ∀�∈CM×N

m−1
u otherwise

(A2)

where

mu :=min{�1(�) :�∈CM×N and det(I +G�)=0}
We refer to � as the ‘uncertainty’ as in a robust control framework, (A1) typically originates from
a feedback interconnection of a nominal transfer function and an uncertainty block.

Next, we reconsider the solutions of equation (A1), where � is restricted to having a particular
structure by imposing �∈D, with D a closed subset of CM×N . In analogy with (A2) one defines
the structured singular value of the matrix G with respect to the uncertainty set D as

�D(G) :=
{
0 if det(I +G�) 	=0 ∀�∈D
m−1

s otherwise
(A3)

where

ms :=min{�1(�) :�∈D and det(I +G�)=0}
It directly follows from the definition that:

�D(G)��1(G) (A4)

Furthermore, if CD=D, then
�D(G)= max

�∈D,�1(�)=1
r�(G�) (A5)
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with r�(·) the spectral radius.
In what follows we restrict ourselves for simplicity to an uncertainty set D of the form as

D :={diag(�0, . . .,� f ,d0 Im0 , . . .,ds Ims ) :�i ∈Cki×li ,d j ∈C, 0�i� f, 0� j�s} (A6)

where
∑ f

i=0 ki +
∑s

i=0mi =M and
∑ f

i=0 li +
∑s

i=0mi =N . Such a set satisfies CD=D. Further-
more, based on a slight generalization of [26, Lemma 6.3] to non-square block diagonal pertur-
bations, the search space of the optimization in the right-hand side of (A5) can be restricted. This
results in

�D(G)=max
U∈U

r�(GU) (A7)

where U⊆D is defined as

U := {diag(U0, . . .,U f ,u0 Im0 , . . .,us Ims ) :Ui ∈Cki×li , u j ∈C, �k(Ui )=1,

1�k�min(ki , li), |u j |=1, 0�i� f, 0� j�s} (A8)

Note that the elements of U are unitary matrices if the uncertainty structure only involves square
blocks, that is, ki = li , i =1, . . ., f .

Next, the following invariance property can easily be checked:

�D(G)=�D(D2GD−1
1 ) ∀(D1,D2)∈D (A9)

where

D := {(D1,D2) :D1=diag(a0 Ik1 , . . .,a f Ik f ,D0, . . .,Ds),

D2=diag(a0 Il1 , . . .,a f Il f ,D0, . . .,Ds) :ai>0,Di ∈Cmi×mi ,D∗
i =Di>0}

From (A7) and the combination of (A9) and (A4) we finally obtain

max
U∈U

r�(GU)=�D(G)� min
(D1,D2)∈D

�1(D2GD−1
1 ) (A10)

Therefore, optimization algorithms are typically used to compute estimates for �D(G). The function
U ∈U→r�(GU) may have several local maxima and, for this, a local search for a maximum is
not guaranteed to lead to �D(G), but to lower bounds. An appropriate formulation of the optimality
condition enables algorithms, which resemble power algorithms for computing eigenvalues and
singular values, see Reference [27] for an example. Although the convergence of such algorithms
to �D(G) is not guaranteed either and they may converge to values corresponding to lower bounds
on �D(G), they have proven their effectiveness in practise. The computation of the upper bound
in (A10) can be recast into a standard convex optimization problem. However, in general �D(G) is
not equal to the upper bound. An exception to this holds if the number of blocks in the matrices
belonging to the uncertainty set D satisfies f +2s�3 and, in addition, all blocks are square, that
is, ki = li , i =0, . . ., f .
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NOTATION

C set of complex numbers
C−,C+ open left half plane, open right half plane
C(I,Rp), I ⊆R space of continuous functions from I to Rp

diag(M1, . . .,Mr ) block diagonal matrix with diagonal blocks
M1, . . .,Mr

Ē closure of the set E
H∞ space of functions G, analytic in C+ and

satisfying sup
∈C+ �1(G(
))<∞
Ip, p∈N identity matrix in Cp×p

j imaginary unit
L2(I,Rr ),I⊆R { f :I→Rr |(∫I ‖ f (s)‖22)1/2 ds<∞}
L∞(I,Rr ),I⊆R { f :I→Rr |ess sups∈I ‖ f (s)‖2<∞}
N set of natural numbers, includes zero
R set of real numbers
R+ {r ∈R : r�0}
r∈Rm short notation for (r1, . . .,rm)

r�0,r∈Rm short notation for ri�0,1�i�m
r�(A) spectral radius of matrix or operator A
�1(A)��2(A)� · · · singular values of matrix A
‖x‖p, x ∈Cn, p∈R+\{0}∪{∞} Hölder p norm of x
‖G‖L2,G :L2(I1,Rr1)→L2(I2,Rr2) induced L2 norm of G
‖G(
)‖H∞ ,G∈H∞ H-infinity norm of G,

‖G(
)‖H∞ = sup
∈C+ �1(G(
))
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