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It is well known that in many particular systems, the upper bound on a certain time-varying delay that
preserves the stability may be higher than the corresponding bound for the constant delay. Moreover,
sometimes oscillating delays improve the performance (Michiels, W., Van Assche, V. & Niculescu, S.
(2005) Stabilization of time-delay systems with a controlled time-varying delays and applications.
IEEE Trans. Automat. Control, 50, 493–504). Sawtooth delaysτ with τ̇ = 1 (almost everywhere)
can posses this property (Louisell, J. (1999) New examples of quenching in delay differential equa-
tions having time-varying delay.Proceedigns of the 5th ECC, Karlsruhe, Germany). In this paper, we
show that general sawtooth delay, whereτ̇ 6= 0 is constant (almost everywhere), also can posses this
property. By the existing Lyapunov-based methods, the stability analysis of such systems can be per-
formed in the framework of systems with bounded fast-varying delays. Our objective is to develop
‘qualitatively new methods’ that can guarantee the stability for sawtooth delay which may be not less
than the analytical upper bound on the constant delay that preserves the stability. We suggest two
methods. One method develops a novel input–output approach via a Wirtinger-type inequality. By this
method, we recover the result by Mirkin (2007, Some remarks on the use of time-varying delay to
model sample-and-hold circuits.IEEE Trans. Automat. Control, 52, 1109–1112) foṙτ = 1 and we
show that for any integeṙτ , the same maximum bound that preserves the stability is achieved. An-
other method extends piecewise continuous (in time) Lyapunov functionals that have been recently
suggested for the case ofτ̇ = 1 in Fridman (2010, A refined input delay approach to sampled-data
control.Automatica, 46, 421–427) to the general sawtooth delay. The time-dependent terms of the func-
tionals improve the results for all values ofτ̇ , though the most essential improvement corresponds
to τ̇ = 1.

Keywords: time-varying delay; Lyapunov-based methods; LMI.

1. Introduction

Over the past decades, much effort has been invested in the analysis and design of uncertain systems
with time-varying delays (see, e.g.Kolmanovskii & Myshkis, 1999;Niculescu,2001;Kharitonov &
Niculescu,2002;Fridman & Shaked, 2003;Richard,2003;Gu et al., 2003;He et al., 2007;Park &
Ko, 2007). The delay under consideration has been either differentiable with a known upper bound
0 6 τ̇ 6 d < 1 or piecewise continuous without any constraints on the delay derivative (fast-varying
delay) (Fridman & Shaked, 2003). In the existing Lyapunov-based methods, the maximum delay bound
that preserves the stability corresponds tod = 0 and this bound is usually a decreasing function
of d. However, it is well known (see examples inLouisell, 1999 and discussions on ‘quenching’ in
Papachristodoulouet al., 2007as well as Example 1 below) that in many particular systems, the upper
bound on a certain time-varying delay that preserves the stability may be higher than the corresponding
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bound for the constant delay. Moreover, sometimes oscillating delays improve the performance
(Michielset al.,2005).

Recently, a discontinuous Lyapunov function method was introduced to sampled-data control sys-
tems (corresponds to the sawtooth delay withτ̇ = 1 (almost everywhere)) inNaghshtabriziet al.
(2008). This method improved the existing Lyapunov-based results and it inspired a piecewise con-
tinuous (in time) Lyapunov–Krasovskii functional (LKF) approach to sampled-data systems (Fridman,
2010). The LKFs in the latter paper are time dependent and they do not grow after the sampling times.
The introduced novel discontinuous terms of Lyapunov functionals inFridman(2010) lead to qualita-
tively new results, allowing a superior performance under the sampling, than the one under the con-
stant delay. The input delay approach to sampled-data control was also recently revised by using the
scaled small gain theorem and a tighter upper bound on theL2-inducednorm of the uncertain term
(Mirkin, 2007).

In the present paper, stability of systems with bounded sawtooth delayτ is analysed, wherėτ 6= 0
is piecewise constant. By the existing Lyapunov-based methods, the stability analysis of such systems
can be performed in the framework of systems with bounded fast-varying delays. Our objective is to
develop ‘qualitatively new methods’ that can guarantee the stability for sawtooth delay which may be
not less than the analytical upper bound on the constant delay that preserves the stability. We sug-
gest two methods. One method develops a novel input–output (I–O) approach via a Wirtinger-type
inequality. By this method, we recover the result byMirkin (2007) for τ̇ = 1 and we show that for
any integerτ̇ , the same maximum bound that preserves the stability is achieved. Another method ex-
tends direct Lyapunov approach to systems with a general form of sawtooth delay. By constructing
appropriate discontinuous LKFs, we obtain sufficient delay-dependent conditions that guarantee the ex-
ponential stability of systems in terms of linear matrix inequalities (LMIs). The time-dependent terms
of LKFs improve the results for all values ofτ̇ , though the most essential improvement corresponds
to τ̇ = 1. A conference version of discontinuous LKF approach was presented inLiu & Fridman
(2009).

Notations.Throughout the paper, the superscript ‘>’ stands for matrix transposition,Rn denotesthe
n-dimensional Euclidean space with vector norm‖ ∙ ‖, Rn×m is the set of alln × m real matrices and
the notationP > 0, for P ∈ Rn×n meansthat P is symmetric and positive definite. The symmetric
elements of the symmetric matrix will be denoted by∗. L2 is the space of square integrable functions
v: [0, ∞) → Rn with the norm‖v‖L2 = [

∫∞
0 ‖v(t)‖2 dt]1/2. The space of functionsφ: [a, b] → Rn,

which are absolutely continuous on [a, b), have a finite limθ→b− φ(θ) and have square integrable first-
order derivatives is denoted byWn[a, b) with the norm

‖φ‖Wn[a,b) = max
θ∈[a,b]

|φ(θ)| +
[∫ b

a
|φ̇(s)|2 ds

] 1
2

.

We also denoteW = Wn[−h, 0) andxt (θ) = x(t + θ)(θ ∈ [−h, 0]).

2. Problem formulation

Consider the system
{

ẋ(t) = Ax(t) + A1x(t − τ(t)),

x(t) = φ(t), t ∈ [−h, 0],
(2.1)
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FIG. 1. Case A1.

FIG. 2. Case A2.

wherex(t) ∈ Rn is the state vector,A andA1 denote the constant matrices,φ(t) is the initial function,
τ(t) ∈ [0, h] is the time-varying delay. It is assumed that the delay function has the form of sawtooth
(see Figs1 and2), satisfying either A1 or A2 below:

A1: τ(t) = d(t − tk), t ∈ [tk, tk+1), k = 0,1,2 . . . , (2.2)

A2: τ(t) = d(tk+1 − t), t ∈ [tk, tk+1), k = 0,1,2 . . . , (2.3)

whered > 0 andtk = kh
d .

It is clear that under A1, we havėτ = d > 0 and under A2, we havėτ = −d < 0. Both cases can be
analysed by using time-independent Lyapunov functionals corresponding to systems with fast-varying
delays. Our objective is to derive delay-dependent stability criteria for system (2.1) that improve the
recent results for fast-varying delays (see, e.g.Park & Ko, 2007).

3. I–O approach via Wirtinger-type inequality

We recall the following Wirtinger-type inequality (Hardy et al., 1934): letz ∈ W1[a, b) be a scalar
function withz(a) = 0. Then,

∫ b

a
z2(ξ)dξ 6

4(b − a)2

π2

∫ b

a
ż2(ξ)dξ. (3.1)

This inequality is trivially extended to the vector case.

LEMMA 3.1 Letz ∈ Wn[a, b). Assume thatz(a) = 0. Then, for anyn × n-matrix R > 0, the following
inequality holds:

∫ b

a
z>(ξ)Rz(ξ)dξ 6

4(b − a)2

π2

∫ b

a
ż>(ξ)Rż(ξ)dξ. (3.2)
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Proof. We have

∫ b

a
z>(ξ)Rz(ξ)dξ 6

4(b − a)2

π2

∫ b

a

[
d

dξ

√
z>(ξ)Rz(ξ)

]2

dξ

=
4(b − a)2

π2

∫ b

a

(
ż>(ξ)Rz(ξ)
√

z>(ξ)Rz(ξ)

)2

dξ 6
4(b − a)2

π2

∫ b

a
ż>(ξ)Rż(ξ)dξ. (3.3)

�
System (2.1) can be rewritten as follows:

ẋ(t) = (A + A1)x(t) − A1

∫ t

t−τ(t)
ẋ(s)ds. (3.4)

We present the latter as the following forward system:

{
ẋ = (A + A1)x(t) + A1u(t)

y(t) = ẋ(t),
(3.5)

with the feedback

u(t) = −
∫ t

t−τ(t)
y(s)ds. (3.6)

Assumethat A + A1 is Hurwitz andy(t) = 0 for t 6 0.

LEMMA 3.2 Assume that the time delay is given by (2.2), whered ∈ N. Then the following holds:

‖u‖L2 6
2h

π
‖y‖L2. (3.7)

Proof. Defining

us(t) = −
∫ t

tk
y(s)ds, ust (t) = −

∫ tk

t−τ
y(s)ds, t ∈ [tk, tk+1),

wenote thatu(t) = us(t) + ust (t). We will prove next the following bounds:

‖us‖L2 6
2h

πd
‖y‖L2, (3.8)

‖ust‖L2 6 (d − 1)
2h

πd
‖y‖L2, (3.9)

which imply (3.7) since

‖u‖L2 6 ‖us‖L2 + ‖ust‖L2 6
2h

π
‖y‖L2.

 at T
E

L A
V

IV
 U

N
IV

E
R

S
IT

Y
 on N

ovem
ber 14, 2010

im
am

ci.oxfordjournals.org
D

ow
nloaded from

 

http://imamci.oxfordjournals.org/


GENERALSAWTOOTH DELAY 5 of 18

By using (3.3), we obtain

‖us‖
2
L2

=
∞∑

k=0

∫ tk+1

tk
(x(tk) − x(t))>(x(tk) − x(t))dt 6

∞∑

k=0

4(tk+1 − tk)2

π2

∫ tk+1

tk

d

dt
(x(tk)

− x(t))>
d

dt
(x(tk) − x(t))dt 6

4h2

π2d2

∞∑

k=0

∫ tk+1

tk
ẋT(t)ẋ(t)dt =

4h2

π2d2
‖ẋ‖2

L2
. (3.10)

Similarly, we have

‖ust‖
2
L2

=
∞∑

k=0

∫ tk+1

tk
(x(t − d(t − tk)) − x(tk))

>(x(t − d(t − tk)) − x(tk))dt

6 (d − 1)2
∞∑

k=0

4(tk+1 − tk)2

π2

∫ tk+1

tk
ẋT(t − d(t − tk))ẋ(t − d(t − tk))dt.

Usingthe following change of variables

s = t − d(t − tk) ds = (1 − d)dt, d = 2,3, . . .
〈

t = tk
s = tk

∣
∣
∣
∣
∣

t = tk+1

s = (1 − d)tk+1 + dtk

〉

,

wearrive to

‖ust‖
2
L2
6 (d − 1)

∞∑

k=0

4(tk+1 − tk)2

π2

∫ tk

(1−d)tk+1+dtk
ẋ>(s)ẋ(s)ds

6 (d − 1)
4h2

π2d2

∞∑

k=0

∫ kh

(k+1)h−dh
ẋT(s)ẋ(s)ds = (d − 1)2

4h2

π2d2
‖ẋ‖2

L2
.

�

REMARK 3.1For d = 1, the bound of Lemma3.2 coincides with the bound ofMirkin (2007), where
sampled-data control with variable samplingtk+1 − tk 6 h was analysed by using the lifting technique.
We note that the bounds in (3.10) are valid also fortk+1 − tk 6 h, i.e. for d = 1, we recover result of
Mirkin (2007). Moreover, Lemma3.2 strengthens the result ofMirkin (2007), showing that the same
bound holds for anyd ∈ N if tk+1 − tk = h.

It follows that stability of (3.5) can be verified by using the small gain theorem (Guet al., 2003).
Namely, (3.5) is stable if

there exists non-singularM ∈ Rn×n suchthat‖MGM−1‖∞ < 1, (3.11)

where

G(s) = s[sI − (A + A1)]
−1 ∙

2h

π
A1. (3.12)
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We can verify the condition (3.11) via the following LMI:





P(A + A1) + (A + A1)
> P 2h

π PA1 (A + A1)
>R

∗ −R 2h
π A>

1 R

∗ ∗ −R




 < 0 (3.13)

for P > 0, R > 0.

THEOREM 3.1 For d ∈ N, (3.5)–(3.6) is I–O stable (and, thus, (2.1)–(2.2) is asymptotically stable) if
one of the following conditions is satisfied:

• Condition (3.11) holds, whereG is given by (3.12).

• There exist positiven × n-matricesP, R such that LMI (3.13) is feasible.

4. Lyapunov–Krasovskii approach

4.1 Lyapunov-based exponential stability

DEFINITION 4.1 The system (2.1) is said to be exponentially stable if there exists constantsμ > 0 and
δ > 0 such that‖x(t)‖ 6 μ e−δ(t−t0)‖φ‖W for t > t0.

LEMMA 4.1 (Fridman,2010). Let there exist positive numbersβ, δ and a functionalV : R × W ×
L2[−h, 0] → R suchthat

β|φ(0)|2 6 V(t, φ, φ̇) 6 δ‖φ‖2
W. (4.1)

Let the functionV̄(t) = V(t, xt , ẋt ) is continuous from the right forx(t) satisfying (2.1) absolutely
continuous fort 6= tk andsatisfies

lim
t→t−k

V̄(t) > V̄(tk). (4.2)

Givenα > 0, if along (2.1)

˙̄V(t) + 2αV̄(t) 6 0, almost for allt, (4.3)

then (2.1) is exponentially stable with the decay rateα.

4.2 Exponential stability: Case A1

We start with the case, whereτ satisfiesτ̇ = d > 0. We consider separately 0< d 6 1 andd > 1.
(i) When 0< d 6 1, we are looking for the functional of the form

V(t, xt , ẋt ) = V̄(t) = V0(xt , ẋt ) +
2∑

i =1
Vi (t, xt , ẋt ) + V3(xt ), (4.4)

where

V0(xt , ẋt ) = x>(t)Px(t) +
∫ t

t−h
e2α(s−t)x>(s)Sx(s)ds+

1

h

∫ 0

−h

∫ t

t+θ
e2α(s−t) ẋ>(s)Rẋ(s)dsdθ,

(4.5)
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V1(t, xt , ẋt ) =
h − τ

h
ξ>

1 (t)

[
X+X>

2 −X + X1

∗ −X1 − X>
1 + X+X>

2

]
ξ1(t), (4.6)

V2(t, xt , ẋt ) =
h − τ

h

∫ t

t−τ
e2α(s−t) ẋ>(s)U ẋ(s)ds, (4.7)

V3(xt ) =
∫ t

t−τ
e2α(s−t)x>(s)Qx(s)ds, (4.8)

with ξ1(t) = col{x(t), x(t − τ)}, α > 0, P > 0, S > 0, R > 0,U > 0, Q > 0.
The above functional coincides with the one introduced inFridman(2010) forS = R = Q = 0,

whereτ̇ = 1 was considered. The positive terms, depending onS, R, Q, guarantee that the results will
be not worse than for the case of time-varying delays, where the above functional withU = X = X1
canbe applied. We note that the termV3 is non-negative before the jumps att = tk andit becomes zero
just after the jumps (becauset|t=tk = (t − τ)|t=tk ). The time-dependent termsV1 andV2 vanish before
the jumps (becauseτ = h) and after the jumps (becauseτ = 0 and thusx(t − τ) = x(t)). Thus,V̄ does
not increase after the jumps and the condition limt→t−k

V̄(t) > V̄(tk) holds.
To guarantee thatV > 0 in the sense thatV satisfies (4.1), we assume that

[
P + X+X>

2 X1 − X

∗ −X1 − X>
1 + X+X>

2

]

> 0. (4.9)

DifferentiatingV̄ , we find along (2.1)

˙̄V(t) + 2αV̄(t) 6 2x>(t)Pẋ(t) + ẋ>(t)

[
R +

h − τ

h
U

]
ẋ(t) + 2α[x>(t)Px(t)]

−
1

h
e−2αh

∫ t

t−h
ẋ>(s)Rẋ(s)ds−

d

h
e−2αh

∫ t

t−τ
ẋ>(s)U ẋ(s)ds

+ x>(t)[S+ Q]x(t) − x>(t − h)e−2αhSx(t − h) − (1 − d)ẋ>(t − τ)

×
h − τ

h
U e−2αhẋ(t − τ) − (1 − d)x>(t − τ)e−2αhQx(t − τ)

−
d − 2α(h − τ )

h
ξ>

1 (t)




X+X>

2 −X + X1

∗ −X1 − X>
1 + X+X>

2



 ξ1(t)

+
h − τ

h

[
ẋ>(t)(X + X>)x(t) + 2ẋ>(t)(−X + X1)x(t − τ)

+2(1 − d)x>(t)(−X + X1)ẋ(t − τ)

+2(1 − d)ẋ>(t − τ)

(
−X1 − X>

1 +
X + X>

2

)
x(t − τ)

]
.

FollowingHeet al. (2007), we employ the representation

−
∫ t

t−h
ẋ>(s)Rẋ(s)ds = −

∫ t−τ

t−h
ẋ>(s)Rẋ(s)ds−

∫ t

t−τ
ẋ>(s)Rẋ(s)ds. (4.10)
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We apply the Jensen’s inequality (Guet al., 2003)
∫ t

t−τ
ẋ>(s)[R + U ] ẋ(s)ds>

1

τ

∫ t

t−τ
ẋ>(s)ds[R + U ]

∫ t

t−τ
ẋ(s)ds,

∫ t−τ

t−h
ẋ>(s)Rẋ(s)ds>

1

h − τ

∫ t−τ

t−h
ẋ>(s)dsR

∫ t−τ

t−h
ẋ(s)ds. (4.11)

Here,for τ = 0, we understand by

1

τ

∫ t

t−τ
ẋ(s)ds = lim

τ→0

1

τ

∫ t

t−τ
ẋ(s)ds = ẋ(t).

For h − τ = 0, the vector 1
h−τ

∫ t−τ
t−h ẋ(s)ds is defined similarly aṡx(t − h). Then, denoting

v11 =
1

τ

∫ t

t−τ
ẋ(s)ds, v12 =

1

h − τ

∫ t−τ

t−h
ẋ(s)ds,

weobtain

˙̄V(t) + 2αV̄(t) 6 2x>(t)Pẋ(t) + ẋ>(t)

[
R +

h − τ

h
U

]
ẋ(t) + 2α[x>(t)Px(t)]

− e−2αh τ

h
v>

11[R + dU ]v11 − e−2αh h − τ

h
v>

12Rv12 + x>(t)[S+ Q]x(t)

− x>(t − h)e−2αhSx(t − h) − (1 − d)ẋ>(t − τ)
h − τ

h
U e−2αhẋ(t − τ)

− (1 − d)x>(t − τ)e−2αhQx(t − τ)

−
d − 2α(h − τ )

h
ξ>

1 (t)

[
X+X>

2 −X + X1

∗ −X1 − X>
1 + X+X>

2

]

ξ1(t)

+
h − τ

h

[
ẋ>(t)(X + X>)x(t) + 2ẋ>(t)(−X + X1)x(t − τ)

+2(1 − d)x>(t)(−X + X1)ẋ(t − τ)

+2(1 − d)ẋ>(t − τ)

(
−X1 − X>

1 +
X + X>

2

)
x(t − τ)

]
. (4.12)

Following He et al. (2004), we insert free-weightingn × n-matrices by adding the following

expressions tȱV :

0 = 2[x>(t)Y>
1 + ẋ>(t)Y>

2 + x>(t − τ)T>][−x(t) + x(t − τ) + τv11],

0 = 2[x>(t)Z>
1 + ẋ>(t)Z>

2 ][−x(t − τ) + x(t − h) + (h − τ)v12]. (4.13)

We use further the descriptor method (Fridman,2001), where the right-hand side (RHS) of the expres-
sion

0 = 2[x>(t)P>
2 + ẋ>(t)P>

3 ][ Ax(t) + A1x(t − τ) − ẋ(t)], (4.14)

with somen × n-matrices,P2, P3 is added into the RHS of (4.12).
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Setting

η1(t) = col{x(t), ẋ(t), x(t − h), v11, v12, x(t − τ), ẋ(t − τ)},

we obtain that
˙̄V(t) + 2αV̄(t) 6 η>

1 (t)Ψ1η1(t) < 0, (4.15)

if the following inequality

Ψ1 =












Φ11 − d−2α(h−τ )
2h (X + X>) Φ12 + h−τ

2h (X + X>) Z>
1 τY>

1 (h − τ)Z>
1 Φ16 Φ17

∗ Φ22 + h−τ
h U Z>

2 τY>
2 (h − τ)Z>

2 Φ26 0

∗ ∗ −Se−2αh 0 0 0 0

∗ ∗ ∗ − τ
h [R + dU ] e−2αh 0 τT 0

∗ ∗ ∗ ∗ − h−τ
h Re−2αh 0 0

∗ ∗ ∗ ∗ ∗ Φ66 Φ67

∗ ∗ ∗ ∗ ∗ ∗ Φ77












< 0

(4.16)
holds,where

Φ11 = A> P2 + P>
2 A + 2αP + S+ Q − Y1 − Y>

1 ,

Φ12 = P − P>
2 + A> P3 − Y2,

Φ16 = Y>
1 − Z>

1 + P>
2 A1 − T +

d − 2α(h − τ )

h
(X − X1),

Φ17 = (1 − d)
h − τ

h
(−X + X1),

Φ22 = −P3 − P>
3 + R,

Φ26 = Y>
2 − Z>

2 + P>
3 A1 −

h − τ

h
(X − X1),

Φ66 = −(1 − d)Q e−2αh + T + T> − [d − 2α(h − τ)]
X + X> − 2X1 − 2X>

1

2h
,

Φ67 = (1 − d)
h − τ

2h
(X + X> − 2X1 − 2X>

1 ),

Φ77 = −(1 − d)
h − τ

h
U e−2αh.

(4.17)

Thelatter inequality forτ → 0 andτ → h leads to the following LMIs:

Ψ11 =










Φ11 − d−2αh
2h (X + X>) Φ12 + X+X>

2 Z>
1 hZ>

1 Φ16|τ=0 Φ17|τ=0

∗ Φ22 + U Z>
2 hZ>

2 Φ26|τ=0 0

∗ ∗ −Se−2αh 0 0 0

∗ ∗ ∗ −Re−2αh 0 0

∗ ∗ ∗ ∗ Φ66|τ=0 Φ67|τ=0

∗ ∗ ∗ ∗ ∗ Φ77|τ=0










< 0, (4.18)

Ψ12 =








Φ11 − d
2h (X + X>) Φ12 Z>

1 hY>
1 Φ16|τ=h

∗ Φ22 Z>
2 hY>

2 Φ26|τ=h

∗ ∗ −Se−2αh 0 0

∗ ∗ ∗ −[R + dU] e−2αh hT

∗ ∗ ∗ ∗ Φ66|τ=h








< 0. (4.19)
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Denoting:η1i (t) = col{x(t), ẋ(t), x(t − h), v1i , x(t − τ), ẋ(t − τ)}(i = 1,2), the latter two LMIs
imply (4.16) because

h − τ

h
η>

12(t)Ψ11η12(t) +
τ

h
η>

11(t)Ψ12η11(t) = η>
1 (t)Ψ1η1(t) < 0,

andΨ1 is thus convex inτ ∈ [0, h].
(ii) For d > 1, we consider the following LKF:

V(t, xt , ẋt ) = V̄(t) = V0(xt , ẋt ) +
2∑

i =1
Vi (t, xt , ẋt ), (4.20)

whereV0 is given by (4.5) and

V1(t, xt , ẋt ) =
h − τ

h
ξ>

2 (t)

[
X+X>

2 −X + X1

∗ −X1 − X>
1 + X+X>

2

]

ξ2(t), (4.21)

V2(t, xt , ẋt ) =
h − τ

h

∫ t

t− τ
d

e2α(s−t) ẋ>(s)U ẋ(s)ds, (4.22)

with ξ2(t) = col
{
x(t), x

(
t − τ

d

)}
, α > 0,U > 0. To guarantee thatV > 0, we assume (4.9). Since

t|t=tk =
(
t − τ

d

)
|t=tk

, we see that̄V does not grow after the jumps.

DifferentiatingV̄ , we have along (2.1)

˙̄V(t) + 2αV̄(t) 6 2x>(t)Pẋ(t) + ẋ>(t)

[
R +

h − τ

h
U

]
ẋ(t) + 2α[x>(t)Px(t)]

−
1

h
e−2αh

∫ t

t−h
ẋ>(s)Rẋ(s)ds−

d

h
e− 2αh

d

∫ t

t− τ
d

ẋ>(s)U ẋ(s)ds

+ x>(t)Sx(t) − x>(t − h)e−2αhSx(t − h)

−
d − 2α(h − τ )

h
ξ>

2 (t)

[
X+X>

2 −X + X1

∗ −X1 − X>
1 + X+X>

2

]

ξ2(t)

+
h − τ

h

[
ẋ>(t)(X + X>)x(t) + 2ẋ>(t)(−X + X1)x

(
t −

τ

d

)]
.

We employ the representation

−
∫ t

t−h
ẋ>(s)Rẋ(s)ds = −

∫ t−τ

t−h
ẋ>(s)Rẋ(s)ds−

∫ t− τ
d

t−τ
ẋ>(s)Rẋ(s)ds−

∫ t

t− τ
d

ẋ>(s)Rẋ(s)ds.

Similar to (4.11), applying the Jensen’s inequality and then denoting

v21 =
d

τ

∫ t

t− τ
d

ẋ(s)ds, v22 =
1

h − τ

∫ t−τ

t−h
ẋ(s)ds, v23 =

d

h(d − 1)

∫ t− τ
d

t−τ
ẋ(s)ds,
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we obtain

˙̄V(t) + 2αV̄(t)6 2x>(t)Pẋ(t) + ẋ>(t)

[
R +

h − τ

h
U

]
ẋ(t) + 2α[x>(t)Px(t)]

−
τ

h
v>

21

[
R

d
e−2αh + U e− 2αh

d

]
v21 − e−2αh h−τ

h v>
22Rv22 − e−2αh d−1

d v>
23Rv23

+x>(t)Sx(t) − x>(t − h)e−2αhSx(t − h)

−
d − 2α(h − τ )

h
ξ>

2 (t)

[
X+X>

2 −X + X1

∗ −X1 − X>
1 + X+X>

2

]

ξ2(t)

+
h − τ

h

[
ẋ>(t)(X + X>)x(t) + 2ẋ>(t)(−X + X1)x

(
t − τ

d

)]
.

Similar to (4.13), we insert free-weightingn×n-matrices by adding the following expressions to˙̄V :

0 = 2
[
x>(t)Y>

1 + ẋ>(t)Y>
2 + x>

(
t −

τ

d

)
T>

1

] [
− x(t) + x

(
t −

τ

d

)
+

τ

d
v21

]
,

0 = 2[x>(t)Z>
1 + ẋ>(t)Z>

2 + x>(t − τ)T>
2 ][−x(t − τ) + x(t − h) + (h − τ)v22],

0 = 2[x>(t)M>
1 + ẋ>(t)M>

2 ]
[

− x
(
t −

τ

d

)
+ x(t − τ) +

h(d − 1)

d
v23

]
.

Similar to (4.14), the same expression is added into the RHS of (4.2).
Settingη2(t) = col

{
x(t), ẋ(t), x(t − h), v21, v22, v23, x

(
t − τ

d

)
, x(t − τ)

}
, we obtain that

˙̄V(t) + 2αV̄(t) 6 η>
2 (t)Ψ2η2(t) < 0, (4.23)

if the inequality

Ψ2 =










Ω11 − d−2α(h−τ )
2h (X + X>) Φ12 + h−τ

2h (X + X>) Z>
1

τ
d Y>

1 (h − τ)Z>
1

h(d−1)
d M>

1 Ω17 Ω18

∗ Φ22 + h−τ
h U Z>

2
τ
d Y>

2 (h − τ)Z>
2

h(d−1)
d M>

2 Ω27 Ω28
∗ ∗ −Se−2αh 0 0 0 0 T2
∗ ∗ ∗ Ω44 0 0 τ

d T1 0

∗ ∗ ∗ ∗ − h−τ
h Re−2αh 0 0 (h − τ)T2

∗ ∗ ∗ ∗ ∗ − d−1
d Re−2αh 0 0

∗ ∗ ∗ ∗ ∗ ∗ Ω77 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ T2 + T>

2











< 0

(4.24)
holds,where

Ω11 = A> P2 + P>
2 A + 2αP + S− Y1 − Y>

1 ,

Ω17 = Y>
1 − M>

1 − T1 +
d − 2α(h − τ )

h
(X − X1),

Ω18 = M>
1 − Z>

1 + P>
2 A1,

Ω27 = Y>
2 − M>

2 −
h − τ

h
(X − X1),

Ω28 = M>
2 − Z>

2 + P>
3 A1,

Ω44 = −
τ

h

[
R

d
e−2αh + U e− 2αh

d

]
,

Ω77 = T1 + T>
1 − [d − 2α(h − τ)]

X + X> − 2X1 − 2X>
1

2h
.

(4.25)
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Thelatter inequality forτ → 0 andτ → h leads to the following LMIs:

Ψ21 =













Ω11 − d−2αh
2h (X + X>) Φ12 + X+X>

2 Z>
1 hZ>

1
h(d−1)

d M>
1 Ω17|τ=0 Ω18

∗ Φ22 + U Z>
2 hZ>

2
h(d−1)

d M>
2 Ω27|τ=0 Ω28

∗ ∗ −Se−2αh 0 0 0 T2

∗ ∗ ∗ −Re−2αh 0 0 hT2

∗ ∗ ∗ ∗ − d−1
d Re−2αh 0 0

∗ ∗ ∗ ∗ ∗ Ω77|τ=0 0

∗ ∗ ∗ ∗ ∗ ∗ T2 + T>
2













< 0and

(4.26)

Ψ22 =












Ω11 − d
2h (X + X>) Φ12 Z>

1
h
d Y>

1
h(d−1)

d M>
1 Ω17|τ=h Ω18

∗ Φ22 Z>
2

h
d Y>

2
h(d−1)

d M>
2 Ω27|τ=h Ω28

∗ ∗ −Se−2αh 0 0 0 T2

∗ ∗ ∗ Ω44|τ=h 0 h
d T1 0

∗ ∗ ∗ ∗ − d−1
d Re−2αh 0 0

∗ ∗ ∗ ∗ ∗ Ω77|τ=h 0

∗ ∗ ∗ ∗ ∗ ∗ T2 + T>
2












< 0. (4.27)

Similarly, we can obtain thatΨ2 is also convex inτ ∈ [0, h].
We summarize the results in the following theorem.

THEOREM 4.2 (i) Given α > 0, 0 < d 6 1, let there existn × n-matricesP > 0, R > 0,U >
0, S > 0, Q > 0, X, X1, T, P2, P3, Yi and Zi (i = 1,2) suchthat the LMIs (4.9), (4.18), (4.19) with
notations given in (4.17) are feasible. Then, (2.1) is exponentially stable with the decay rateα for all
delays 06 τ 6 h satisfying A1.

(ii) Given α > 0, d > 1, let there existn× n-matricesP > 0, R > 0,U > 0, S > 0, X, X1, P2, P3,
Ti , Yi , Zi and Mi (i = 1,2) suchthat the LMIs (4.9), (4.26), (4.27) with notations given in (4.25) are
feasible. Then, (2.1) is exponentially stable with the decay rateα for all delays 06 τ 6 h satisfying A1.

REMARK 4.1LMIs of Theorem4.2 with X = X1 = U = 0 give sufficient conditions for exponential
stability of (2.1) withτ(t) ∈ [0, h]: (i) for all slowly varying delays and (ii) for fast-varying delays. In
the numerical examples, these conditions lead to the same results as the results ofPark & Ko (2007),
however, they posses a fewer number of slack matrices.

4.3 Exponential stability: Case A2

For τ̇ = −d < 0, we also differ between 0< d 6 1 andd > 1.
(i) When 0< d 6 1, we are looking for the functional of the form:

V(t, xt , ẋt ) = V̄(t) = V0(xt , ẋt ) +
2∑

i =1
Vi (t, xt , ẋt ) + V3(xt ), (4.28)

whereV0 is given by (4.5) and

V1(t, xt , ẋt ) =
τ

h
ξ>

3 (t)

[
X+X>

2 −X + X1

∗ −X1 − X>
1 + X+X>

2

]

ξ3(t),
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V2(t, xt , ẋt ) =
τ

h

∫ t

t−(h−τ)
e2α(s−t) ẋ>(s)U ẋ(s)ds,

V3(xt ) =
∫ t

t−(h−τ)
e2α(s−t)x>(s)Qx(s)ds,

with ξ3(t) = col{x(t), x(t − (h − τ))}, α > 0,U > 0, Q > 0 and (4.9) also satisfied to guarantee that
V > 0.

We note thatV3 is non-negative before the jump att = tk andit becomes zero just after the jump
(becauset|t=tk = (t − (h − τ))|t=tk ). The time-dependent termsV1 and V2 vanish before the jumps
(becauseτ = 0) and after the jumps (becauseτ = h and thusx(t − (h − τ)) = x(t)). Hence, the
condition limt→t−k

V̄(t) > V̄(tk) holds.
(ii) For d > 1, the discontinuous Lyapunov functional is modified as follows:

V(t, xt , ẋt ) = V̄(t) = V0(xt , ẋt ) +
2∑

i =1
Vi (t, xt , ẋt ), (4.29)

whereV0 is also given by (4.5) and

V1(t, xt , ẋt ) =
τ

h
ξ>

4 (t)

[
X+X>

2 −X + X1

∗ −X1 − X>
1 + X+X>

2

]

ξ4(t),

V2(t, xt , ẋt ) =
τ

h

∫ t

t− h−τ
d

e2α(s−t) ẋ>(s)U ẋ(s)ds,

with ξ4(t) = col
{
x(t), x

(
t − h−τ

d

)}
, α > 0,U > 0 and (4.9) also satisfied to guarantee thatV > 0.

Also in this case,̄V does not grow after the jumps.
Similar to Theorem4.2, we obtain the following theorem.

THEOREM 4.3 (i) Givenα > 0, 0 < d 6 1, let there existn × n-matricesP > 0, R > 0,U > 0, S >
0, Q > 0, X, X1, P21, P31, P22, P32, Yi j , Mi j , Zi j andTi j (i, j = 1,2) suchthat (4.9) and the following
four LMIs: (4.30), forτ → 0 andτ → h

2, and (4.31), forτ → h
2 andτ → h,


















Θ11 Θ12 + τ
2h (X + X>) M>

11 τY>
11 (h − 2τ)Z>

11 τ M>
11 Θ17 Θ18 + Z>

11 − M>
11 Θ19

∗ Θ22 + τ
h U M>

12 τY>
12 (h − 2τ)Z>

12 τ M>
12 Θ27 Θ28 + Z>

12 − M>
12 0

∗ ∗ −Se−2αh 0 0 0 0 0 0

∗ ∗ ∗ − τ
h [R + dU ]e−2αh 0 0 τT11 0 0

∗ ∗ ∗ ∗ Θ55 0 0 (h − 2τ)T12 0

∗ ∗ ∗ ∗ ∗ − τ
h Re−2αh 0 0 0

∗ ∗ ∗ ∗ ∗ ∗ T11 + T>
11 −T12 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ Θ88 + T12 + T>
12 Θ89

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ Θ99


















< 0,

(4.30)
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














Ξ11 Ξ12 + τ
2h (X + X>) Y>

21 (h − τ)Y>
21 (2τ − h)Z>

21 (h − τ)M>
21 Ξ17 Θ18 + M>

21 − Z>
21 Θ19

∗ Ξ22 + τ
h U Y>

22 (h − τ)Y>
22 (2τ − h)Z>

22 (h − τ)M>
22 Ξ27 Θ28 + M>

22 − Z>
22 0

∗ ∗ −Se−2αh 0 0 0 T21 0 0

∗ ∗ ∗ − h−τ
h Re−2αh 0 0 (h − τ)T21 0 0

∗ ∗ ∗ ∗ − 2τ−h
h Re−2αh 0 0 (2τ − h)T22 0

∗ ∗ ∗ ∗ ∗ Ξ66 0 0 0

∗ ∗ ∗ ∗ ∗ ∗ −T21 − T>
21 T22 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ Θ88 − T22 − T>
22 Θ89

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ Θ99
















< 0,

(4.31)

where

Θ11 = A> P21 + P>
21A + 2αP + S+ Q − Y11 − Y>

11 −
d − 2ατ

2h
(X + X>),

Θ12 = P − P>
21 + A> P31 − Y12,

Θ17 = Y>
11 − Z>

11 − T11 + P>
21A1,

Θ18 =
d − 2ατ

h
(X − X1),

Θ19 = (1 − d)
τ

h
(−X + X1),

Θ22 = −P31 − P>
31 + R,

Θ27 = Y>
12 − Z>

12 + P>
31A1,

Θ28 = −
τ

h
(X − X1),

Θ55 = −
h − 2τ

h
[R + dU ]e−2αh,

Θ88 = −(1 − d)Q e−2αh − (d − 2ατ)
X + X> − 2X1 − 2X>

1

2h
,

Θ89 = (1 − d)
τ

2h
(X + X> − 2X1 − 2X>

1 ),

Θ99 = −(1 − d)
τ

h
U e−2αh,

Ξ11 = A> P22 + P>
22A + 2αP + S+ Q − M21 − M>

21 −
d − 2ατ

2h
(X + X>),

Ξ12 = P − P>
22 + A> P32 − M22,

Ξ17 = Z>
21 − Y>

21 + P>
22A1,

Ξ22 = −P32 − P>
32 + R,

Ξ27 = Z>
22 − Y>

22 + P>
32A1,

Ξ66 = −
h − τ

h
[R + dU ]e−2αh,

arefeasible. Then (2.1) is exponentially stable with the decay rateα for all delays 06 τ 6 h satisfying
A2.

(ii) Given α > 0, d > 1, let there existn × n-matricesP > 0, R > 0,U > 0, S > 0, X, X1, P21,
P31, P22, P32, Yi j , Mi j , Zi j andTi j (i, j = 1,2) suchthat (4.9) and the following four LMIs: (4.32), for
τ → 0 andτ → h

1+d , and (4.33), forτ → h
1+d andτ → h,
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












Σ11 Θ12 + τ
2h (X + X>) M>

11 τY>
11

h−(1+d)τ
d Z>

11 (h − h−τ
d )M>

11 Θ17 Θ18+Z>
11−M>

11

∗ Θ22 + τ
h U M>

12 τY>
12

h−(1+d)τ
d Z>

12 (h − h−τ
d )M>

12 Θ27 Θ28+Z>
12−M>

12

∗ ∗ −Se−2αh 0 0 0 0 0

∗ ∗ ∗ Σ44 0 0 τT11 0

∗ ∗ ∗ ∗ Σ55 0 0 h−(1+d)τ
d T12

∗ ∗ ∗ ∗ ∗ Σ66 0 0

∗ ∗ ∗ ∗ ∗ ∗ T11 + T>
11 −T12

∗ ∗ ∗ ∗ ∗ ∗ ∗ Σ88+T12+T>
12














< 0, (4.32)














Υ11 Ξ12 + τ
2h (X + X>) Y>

21 (h − τ)Y>
21

(1+d)τ−h
d Z>

21
h−τ
d M>

21 Ξ17 Θ18+M>
21−Z>

21

∗ Ξ22 + τ
h U Y>

22 (h − τ)Y>
22

(1+d)τ−h
d Z>

22
h−τ
d M>

22 Ξ27 Θ28+M>
22−Z>

22

∗ ∗ −Se−2αh 0 0 0 T21 0

∗ ∗ ∗ − h−τ
h Re−2αh 0 0 (h − τ)T21 0

∗ ∗ ∗ ∗ − 1
h

(1+d)τ−h
d Re−2αh 0 0 (1+d)τ−h

d T22

∗ ∗ ∗ ∗ ∗ Υ66 0 0

∗ ∗ ∗ ∗ ∗ ∗ −T21−T>
21 T22

∗ ∗ ∗ ∗ ∗ ∗ ∗ Σ88−T22−T>
22














< 0,

(4.33)
where

Σ11 = A> P21 + P>
21A + 2αP + S− Y11 − Y>

11 −
d − 2ατ

2h
(X + X>),

Σ44 = −
τ

h

[
Re−2αh + dUe− 2αh

d
]
,

Σ55 = −
1

h

h − (1 + d)τ

d

[
Re−2αh + dUe− 2αh

d
]
,

Σ66 = −
1

h

(
h −

h − τ

d

)
Re−2αh,

Σ88 = −(d − 2ατ)
X + X> − 2X1 − 2X>

1

2h
,

Υ11 = A> P22 + P>
22A + 2αP + S− M21 − M>

21 −
d − 2ατ

2h
(X + X>),

Υ66 = −
1

h

h − τ

d

[
Re−2αh + dU e− 2αh

d
]
,

arefeasible. Then (2.1) is exponentially stable with the decay rateα for all delays 06 τ 6 h satisfying
A2.

5. Examples

EXAMPLE 5.1 Consider the system fromYueet al. (2005)

ẋ(t) =

[
0 1

0 −0.1

]

x(t) +

[
0

0.1

]

K x(t − τ(t)),

K = −[3.75 11.5].

The stability of this system was studied by many authors (seeNaghshtabriziet al.,2008and the refer-
ences therein). For the constant sampling, it was found inNaghshtabriziet al. (2008) that the system

 at T
E

L A
V

IV
 U

N
IV

E
R

S
IT

Y
 on N

ovem
ber 14, 2010

im
am

ci.oxfordjournals.org
D

ow
nloaded from

 

http://imamci.oxfordjournals.org/


16of 18 K. LIU ET AL.

remainsstable for all constant samplings<1.7 and becomes unstable for samplings>1.7. Moreover,
the above system with constant delayτ is asymptotically stable forτ 6 1.16 and becomes unstable for
τ > 1.17. The latter means that all the existing methods, that are based on time-independent Lyapunov
functionals, corresponding to stability analysis of systems with fast-varying delays, cannot guarantee the
stability for the samplings with the upper bound>1.17. InNaghshtabriziet al. (2008), the upper bound
on the constant sampling interval that preserves the stability is found to beh = 1.3277, improving all
the existing LMI-based results.

For differentτ̇ , by applying Lyapunov–Krasovskii(L–K) approach withα = 0 and I–O approach
via Wirtinger-type inequality, we obtain the maximum value ofh given in Table1. Our results for
X = X1=U =0 coincide with the ones ofPark & Ko (2007). We see that discontinuous terms of LKFs
improve the performance. Moreover, the I–O approach via Wirtinger-type inequality improves the result
for d > 1,d ∈ N compared to time-dependent L–K approach.

EXAMPLE 5.2 We consider the following simple and much-studied problem (Papachristodoulouet al.,
2007;Fridman,2010):

ẋ(t) = −x(t − τ(t)). (5.1)

It is well known that the equatioṅx(t) = −x(t − τ) with constant delayτ is asymptotically stable for
τ < π/2 and unstable forτ > π/2, whereas for the fast-varying delay, it is stable forτ < 1.5 and there
exists a destabilizing delay with an upper bound>1.5. The latter means that all the existing methods,
that are based on time-independent Lyapunov functionals, corresponding to stability analysis of systems
with fast-varying delays, cannot guarantee the stability for the samplings, which may be>1.5.

It is easy to check, that the system remains stable for all constant samplings<2 and becomes unstable
for samplings>2. Conditions ofNaghshtabriziet al.(2008) and ofMirkin (2007) guarantee asymptotic
stability for all variable samplings up to 1.28 and 1.57, respectively. For differenṫτ , by applying our
methods, we obtain the maximum value ofh given in Table2.We can also see that discontinuous terms
of LKFs improve the performance and the I–O approach via Wirtinger-type inequality improves the
result ford > 1,d ∈ N compared to time-dependent L–K approach.

EXAMPLE 5.3 Consider the system (De Souza & Li,1999)

ẋ(t) =

[
−2 0

0 −0.9

]

x(t) +

[
−1 0

−1 −1

]

x(t − τ(t)).

TABLE 1 Example1: maximum value of h for differentτ̇

h\τ̇ −1.2 −1 −0.9 0.5 0.9 1 1.1 h\τ̇ τ̇ ∈ N
L–K approach 1.14 1.14 1.11 1.24 1.61 1.69 1.34 I–O approach 1.3659
X = X1 = U = 0 1.04 1.04 1.04 1.04 1.04 1.04 1.04

TABLE 2 Example2: maximum value of h for differentτ̇

h\τ̇ −1.2 −1 −0.9 0.5 0.9 1 1.1 1.2 h\τ̇ τ̇ ∈ N
L–K approach 1.41 1.41 1.36 1.47 1.89 1.99 1.61 1.54 I–O approach 1.57
X = X1 = U = 0 1.33 1.33 1.33 1.33 1.33 1.33 1.331.33
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TABLE 3 Example3: maximum value of h for differentτ̇

h\τ̇ −1.2 −1 −0.9 0.5 0.9 1 1.1 h\τ̇ τ̇ ∈ N
L–K approach 1.95 1.98 1.90 2.34 2.06 2.53 1.91 I–O approach 1.57
X = X1 = U = 0 1.86 1.86 1.86 2.33 1.87 1.86 1.86

TABLE 4 Example4: maximum value of h for differentτ̇

h\τ̇ −1.2 −1 −0.9 0.5 0.9 1 1.1 h\τ̇ τ̇ ∈ N
Ourmethod 1.10 1.11 1.10 1.44 1.48 1.64 1.26 I–O approach 0.8797
X = X1 = U = 0 1.06 1.06 1.06 1.26 1.06 1.06 1.06

It is well known that this system is stable for constant delayτ 6 6.17, whereas inPark & Ko (2007),
it was found that the system is stable for all fast-varying delaysτ 6 1.86. For differentτ̇ , by applying
our methods, we obtain the maximum value ofh given in Table3. Our results forX = X1 = U = 0
coincidewith the ones ofPark & Ko (2007). Also in this Example, the time-dependent terms of LKFs
improve the performance. However, the I–O approach via Wirtinger-type inequality has not improved
the results ford > 1,d ∈ N and the result is worse than the result for the fast-varying delays.

EXAMPLE 5.4 Consider the system (Kharitonov & Niculescu, 2002):

ẋ(t) =

[
0 1

−1 −2

]

x(t) +

[
0 0

−1 1

]

x(t − τ(t)).

For differentτ̇ , by applying our methods, we obtain the maximum value ofh given in Table4.

REMARK 5.1Simulations in all the examples above show that our results are conservative (at least for
d 6= 1) and that the value of maximumh that preserves the stability grows for growingd > 1.

6. Conclusions

In this paper, two methods have been introduced to investigate delay-dependent stability problem for
systems with sawtooth delay with constantτ̇ 6= 0. One method develops a novel I–O approach via a
Wirtinger-type inequality. The result byMirkin (2007) is recovered foṙτ = 1 and for any integeṙτ ,
the same maximum bound that preserves the stability is achieved. Another method improves stability
criteria by constructing piecewise continuous (in time) Lyapunov functionals. Though the most essential
improvement corresponds tȯτ = 1, the time-dependent terms improve the results for all values ofτ̇ .
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