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It is well known that in many particular systems, the upper bound on a certain time-varying delay that
preserves the stability may be higher than the corresponding bound for the constant delay. Moreover,
sometimes oscillating delays improve the performance (Michiels, W., Van Assche, V. & Niculescu, S.
(2005) Stabilization of time-delay systems with a controlled time-varying delays and applications.
IEEE Trans. Automat. Controb0, 493-504). Sawtooth delayswith ¢ = 1 (almost everywhere)

can posses this property (Louisell, J. (1999) New examples of quenching in delay differential equa-
tions having time-varying delayroceedigns of the 5th ECC, Karlsruhe, Germany). In this paper, we
show that general sawtooth delay, whérez 0 is constant (almost everywhere), also can posses this
property. By the existing Lyapunov-based methods, the stability analysis of such systems can be per-
formed in the framework of systems with bounded fast-varying delays. Our objective is to develop
‘gualitatively new methods’ that can guarantee the stability for sawtooth delay which may be not less
than the analytical upper bound on the constant delay that preserves the stability. We suggest two
methods. One method develops a novel input—output approach via a Wirtinger-type inequality. By this
method, we recover the result by Mirkin (2007, Some remarks on the use of time-varying delay to
model sample-and-hold circuitdeEE Trans. Automat. Contrpb2, 1109-1112) for = 1 and we

show that for any integet, the same maximum bound that preserves the stability is achieved. An-
other method extends piecewise continuous (in time) Lyapunov functionals that have been recently
suggested for the case of = 1 in Fridman (2010, A refined input delay approach to sampled-data
control. Automatica 46, 421-427) to the general sawtooth delay. The time-dependent terms of the func-
tionals improve the results for all values of though the most essential improvement corresponds
tor =1.

Keywords time-varying delay; Lyapunov-based methods; LMI.

1. Introduction
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Over the past decades, much effort has been invested in the analysis and design of uncertain syste
with time-varying delays (see, e.folmanovskii & Myshkis 1999; Niculescu,2001; Kharitonov &
Niculescu,2002; Fridman & Shaked2003; Richard,2003;Gu et al., 2003;He et al., 2007; Park &

Ko, 2007). The delay under consideration has been either differentiable with a known upper bound
0 < 7 < d < 1 or piecewise continuous without any constraints on the delay derivative (fast-varying
delay) Fridman & Shaked2003). In the existing Lyapunov-based methods, the maximum delay bound
that preserves the stability correspondsdto= 0 and this bound is usually a decreasing function

of d. However, it is well known (see examples liouisell, 1999 and discussions on ‘quenching’ in
Papachristodouloat al., 2007as well as Example 1 below) that in many particular systems, the upper
bound on a certain time-varying delay that preserves the stability may be higher than the corresponding
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bound for the constant delay. Moreover, sometimes oscillating delays improve the performance
(Michiels et al.,2005).

Recently, a discontinuous Lyapunov function method was introduced to sampled-data control sys-
tems (corresponds to the sawtooth delay with= 1 (almost everywhere)) ilNaghshtabriziet al.
(2008). This method improved the existing Lyapunov-based results and it inspired a piecewise con-
tinuous (in time) Lyapunov—Krasovskii functional (LKF) approach to sampled-data syskeitsén,
2010). The LKFs in the latter paper are time dependent and they do not grow after the sampling times.
The introduced novel discontinuous terms of Lyapunov functionalitiman(2010) lead to qualita-
tively new results, allowing a superior performance under the sampling, than the one under the con-
stant delay. The input delay approach to sampled-data control was also recently revised by using the
scaled small gain theorem and a tighter upper bound orLthimducednorm of the uncertain term
(Mirkin, 2007).

In the present paper, stability of systems with bounded sawtooth detagnalysed, wheré # 0
is piecewise constant. By the existing Lyapunov-based methods, the stability analysis of such systems
can be performed in the framework of systems with bounded fast-varying delays. Our objective is to
develop ‘qualitatively new methods’ that can guarantee the stability for sawtooth delay which may be
not less than the analytical upper bound on the constant delay that preserves the stability. We sug-
gest two methods. One method develops a novel input—output (I-O) approach via a Wirtinger-type
inequality. By this method, we recover the resultMirkin (2007) fort = 1 and we show that for
any integerz, the same maximum bound that preserves the stability is achieved. Another method ex-
tends direct Lyapunov approach to systems with a general form of sawtooth delay. By constructing
appropriate discontinuous LKFs, we obtain sufficient delay-dependent conditions that guarantee the ex-
ponential stability of systems in terms of linear matrix inequalities (LMIs). The time-dependent terms
of LKFs improve the results for all values &f though the most essential improvement corresponds
to ¢ = 1. A conference version of discontinuous LKF approach was presente i& Fridman
(2009).

Notations Throughout the paper, the superscript §tands for matrix transpositioR" denoteghe
n-dimensional Euclidean space with vector ngrmy||, R"*™M is the set of allh x m real matrices and
the notationP > 0, for P € R"*" meansthat P is symmetric and positive definite. The symmetric
elements of the symmetric matrix will be denoted-byL » is the space of square integrable functions
v: [0, 00) — R" with the normjv|lL, = [f;° llo(®)[12 dt]}/2. The space of functiong: [a, b] — R",
which are absolutely continuous oa,[b), have a finite lip_,p- ¢ (0) and have square integrable first-
order derivatives is denoted Wy[a, b) with the norm

Nl

b
— ] 2
I9lvhtan = max 160)] + [ | s ds}

We also denot®/ = W,[—h, 0) andx; (0) = x(t +6)(@ € [—h, Q]).

2. Problem formulation

Consider the system

[ X(t) = AX(t) + Ax(t — 7 (1)), 2.1)

X(t) = ¢(t)3 te [_h’ O]7
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wherex(t) € R" is the state vectoA and A; denote the constant matrices(t) is the initial function,
7(t) € [0, h] is the time-varying delay. It is assumed that the delay function has the form of sawtooth
(see Figdl and?2), satisfying either A1 or A2 below:

Al:z(t) =d(t —tk), te[tk,tks1), k=0,1,2..., (2.2)
A2:t(t) =d(tkr1 —t), te[tk,tk+1), k=0,1,2..., (2.3)

whered > 0 andty = %.

N AIAY 731 1e 610 sfeunolplojxo’iouwrew woJj papeojumod

Itis clear that under A1, we have= d > 0 and under A2, we have= —d < 0. Both cases can be =
analysed by using time-independent Lyapunov functionals corresponding to systems with fast—varyingr<n
delays. Our objective is to derive delay-dependent stability criteria for sys2eih that improve the 5
recent results for fast-varying delays (see, Bayk & Ko, 2007). 2

o
3. 1-O approach via Wirtinger-type inequality g
o
We recall the following Wirtinger-type inequalityHardy et al., 1934): letz € Wi[a, b) be a scalar E
function withz(a) = 0. Then, t
o
[
o

b 4b—-a)® [P,
| o< 205 [2ea (3.1
a T a
This inequality is trivially extended to the vector case.

LEMMA 3.1 Letz € Wy[a, b). Assume that(a) = 0. Then, for anyn x n-matrix R > 0, the following
inequality holds:

b b — 2 rb
| oraod: < L2 [CaoRacrae, 3.2)
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Proof. We have
b _ 4b-a)? (O d 2
| T orand < 222 [d—fﬁwmz@] oz

ab-a? °f TOR Y . 4b-a? b
= dée < ————— R dé. (3.3
nt /a( zT(:)Rz@‘)) ¢ o [ Torak. 6y

O
System (2.1) can be rewritten as follows:
t
X(t) = (A+ Apx(t) — Al/ x(s)ds. (3.4)
t—z(t)
We present the latter as the following forward system:
X = (A+ Apx(t Agu(t
( + 1)X(t) + Agu(t) (3.5)
y(t) = x(v),
with the feedback
t
ut) = —/ y(s)ds. (3.6)
t—z(t)
Assumethat A + A; is Hurwitz andy(t) = O fort < O.
LEMMA 3.2 Assume that the time delay is given [8:%), whered € N. Then the following holds:
2h
ullL, < ;IIVIILZ. (3.7)
Proof. Defining
t tx
us) =~ [ y©ds ux®=- [ yods el to.
ty t—r
we note thatu(t) = us(t) + ust (t). We will prove next the following bounds:
2h
lusliL, < EHYHLZ, (3.8)
2h
lustllL, < (d — 1)H||y||L2> (3.9)

whichimply (3.7) since

2h
ullL, < llusllL, + llustllL, < ;HYIILZ-
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By using @.3), we obtain

O et 4 —t)2 [+ d
Jusi?, = [ x50 = x(0) T ox) = xcane < 3 Mt ~l [ G
k=0" 'k k

k=0

T d tt T . 4h2 2
()T g (x(t) — x(O)dt < zdzz | oxoa = ZoiiE, @1

Similarly, we have

S
fusei?, = 3 [ e =t = 10) = x(60) T (xtt - it~ 1) = ek
k=0" &

0 —1)2 [l
c@-py M [T di - ke - de - wydt
k

k=0
Usingthe following change of variables

s=t—dt—t) ds=@A-d)ydt, d=2,3,...

t =1tk
S=1x
we arrive to

Aty — te)? , .
lusl, < @ - et 24 /1 R
k=0 )tks1+dtk

t =tk
s=(1—d)tgys +dtg [’

4h? h2
-1) deZ/ xT(s)x(s)ds = (d — 1)? 2d2||x||2LZ_

(k+Dh—dh

O
REMARK 3.1Ford = 1, the bound of Lemma&.2 coincides with the bound dflirkin (2007), where

sampled-data control with variable samplipgs — t« < h was analysed by using the lifting technique.

We note that the bounds i8.(L0) are valid also fotk,1 — tx < h, i.e. ford = 1, we recover result of
Mirkin (2007). Moreover, Lemma.2 strengthens the result dirkin (2007), showing that the same
bound holds for ang € N if tx11 — tx = h.

It follows that stability of (3.5) can be verified by using the small gain theoremg(Gal., 2003).
Namely, (3.5) is stable if

there exists non-singuldl € R"™" suchthat|MGM™}|» < 1, (3.11)
where

G(s) =s[sl — (A+ Ap]t- zﬂ—hAl. (3.12)
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We can verify the condition3(11) via the following LMI:

PAA+A)+(A+A)TP 2pA; (A+A)YTR
¥ -R DATR | <0 (3.13)
* * -R

forP > 0,R> 0.

THEOREM 3.1 Ford € N, (3.5)—(3.6) is I-O stable (and, thus, (2.1)—(2.2) is asymptotically stable) if

one of the following conditions is satisfied:
e Condition (3.11) holds, wher@ is given by 3.12).

e There exist positivé x n-matricesP, R such that LMI (3.13) is feasible.

4. Lyapunov—Krasovskii approach
4.1 Lyapunov-based exponential stability

DEFINITION 4.1 The systemZ.1) is said to be exponentially stable if there exists consfants0 and
§ > 0 such that|x(t)| < x e 2t | |w fort > to.

LEMMA 4.1 (Fridman,2010). Let there exist positive numbefs J and a functionaV: R x W x
Lo[—h, 0] - £ suchthat

Blp O < V(t, ¢, d) < IlllG. (4.1)

Let the functionV (t) = V(t, X;, %) is continuous from the right fok(t) satisfying (2.1) absolutely
continuous fott # tx andsatisfies

lim V() > V(t). 4.2)
tte
Givena > 0, if along (2.1)
V(1) + 2aV(t) <0, almost for all, (4.3)

then @.1) is exponentially stable with the decay rate

4.2 Exponential stability: Case Al

We start with the case, whetesatisfiest = d > 0. We consider separately9d < 1 andd > 1.
(i) When 0< d < 1, we are looking for the functional of the form

B 2
V(t, X, %) = V(1) = Vo(xe, %) + 2 Vi(t, X, %) + Va(xe), (4.4)

where

t 1 0 t
Vo(Xt, %) = X T (1) PX(t) + /t . 45Uy T (s)Sx(s)ds + = /_ i /H& 45 VxT (s)Rx(s)dsd,
(4.5)
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h— x+xT _
Valt X, %) = ——¢f <t>[ ? s } &), (4.6)
* =X =Xy + T
. h—r« t ) T .
Va(t, X, %) = / % T (s)Ux(s)ds, (4.7)
t—1
t

Va(x) = / 40T (5) Qx(9)ds (4.8)

t—7

with &1(t) = col{x(t),x(t — 7)},a >20,P > 0,S>0,R>0,U > 0,Q > 0.

The above functional coincides with the one introduceéridiman(2010) forS= R = Q = 0,
where? = 1 was considered. The positive terms, dependin®,dR, Q, guarantee that the results will
be not worse than for the case of time-varying delays, where the above function&) wittX = X1
canbe applied. We note that the teNg is non-negative before the jumpstat tx andit becomes zero
just after the jumps (becausey, = (t — 7)t—). The time-dependent term§ andV, vanish before
the jumps (because= h) and after the jumps (because= 0 and thus(t — 7) = x(t)). Thus,V does
not increase after the jumps and the conditioqgr{r;f V(t) > V(t) holds.

To guarantee thaf > 0 in the sense that satisfies (4.1), we assume that

|:P+ X4 X7 X1 — X }

.
* —X1— X{ + 25X

(4.9)

DifferentiatingV, we find along (2.1)
V() + 2aV (1) < 2xT (1) PX(t) + X" (1) [R + h—;TU} X(t) 4 2a[x " (1) Px(t)]

t t
- %e‘z“h / x T (s)Rx(s)ds — %e—Z“h / xT (s)Ux(s)ds
t—h t—t
+xTM[S+ QIx(t) — X (t —h)e™2*"Sx(t —h) — (1 — d)x' (t — 1)

h—rz

U e—Zah)'((t _ T) _ (1 _ d)XT(t — ‘L')e_zlthX(t — T)

d—2ah — XX X4 X
_ﬁg(t)[ 2 ! }fl(t)

h * _Xl_XI+X+_2XT

X

— [)‘(T(t)(X + XTX(t) + 2% T (1) (=X + X)X(t — 1)

+2(1 — d)x " ()(=X + X)X(t — 1)

§
120 —dxT(t — 1) (—xl _x7+2 +2X )x(t _ r)].

Following He et al. (2007), we employ the representation
t

t t—7
- / x T (s)Rx(s)ds = — / x T (s)Rx(s)ds — / x T (s)Rx(s)ds. (4.10)
t—h t—h t

-7

0TOZ ‘7T J18qWIBAON UO A LISHIAINN AIAY 131 ¥e 610 s[euinolpiojxo iowrew woly papeojumod


http://imamci.oxfordjournals.org/

80f 18 K. LIU ET AL.

We apply the Jensen’s inequalit@ et al., 2003)

t

t t
/ xT(s)[R+ U]x(s)ds > %/ xT(s)dg R+ U] x(s)ds,
t—z t—1

t—7
t—r7 1 t—7 t—7
/ xT(s)Rx(s)ds > —— x T (s)dsR / x(s)ds. (4.11)
t—h h—7 Ji—n t—h
Here,for z = 0, we understand by

1t 1t .
- /t_r x(s)ds = TI[)no; /t_z x(s)ds = x(t).

T

Forh — 7z =0, the vectorh . ft h ’ x(s)dsis defined similarly as(t — h). Then, denoting
1 t 1 t—7
v11 = —/ X(s)ds, wvip=.— X(s)ds,
T Jt—z h—7 Ji_n
we obtain

V() + 2aV () < 2xT () PX(t) + X (1) [R + hTU} X(t) 4+ 2a[x " (t)Px(t)]

h—
_g2n’ vll[R+ dUJo11 — e 20 . Lo LRo12+ X O[S+ QIX(1)

—x'(t—he2Msxt—h)y— L—d)x' (t—r1) h—7, e 2Nyt — 1)

—@A=d)X"(t —7)e 2" Qx(t — 7)

d—2a(h — x4xT -
~d—2a( T)EJ(t)[j X + X1 }rlm

h —X1— xil' X+2XT

; ‘ [xT(t)(x + XTx(t) + 2T (1) (=X + X)X(t — 1)

+2@1 — d)x T (1) (=X 4+ X)X(t — 1)

.
+21—d)x"(t — 1) (—xl - X! + X +2X ) x(t — r)i| . (4.12)

Following He et al. (2004), we insert free-weighting x n-matrices by adding the following
expressions t¥:

0=2[x" )Y, + X )Y, +x"(t —2)TT][—x(t) + X(t — 7) + 7011],
0=2[x"(1)Z] +XT(®)ZJ = x(t — 7) + X(t — h) + (h — 7)v12]. (4.13)

We use further the descriptor method (Fridma®01), where the right-hand side (RHS) of the expres-
sion

0=2[x" ()P 4+ xT ()P I AX(t) + Arx(t — 7) — X(1)], (4.14)

with somen x n-matrices,P,, P is added into the RHS o#(12).
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Setting
n1(t) = col{x(t), X(t), X(t — h), v11, v12, X(t — 7), X(t — 7)},

we obtain that

V() + 2aV () < nf O)¥am(t) <O, (4.15)
if the following inequality
[0 — 9=240=0 (X 4 XT)  d1p+ BpE (X + XT) z] oy] (h-0Z] @15 @17
* Ppp + DETU z] A (h-0Z] @ O
* * —se~2¢h 0 0 0 0
P = . . . —L[R+dUje2eh 0 T o | <0
* * * * —ﬂﬁ—’ Re~2¢h ¢ 0
* * % * * Des  Pe7
L * * * * * * D77 ]
(4.16)

holds,where
D11=ATP,+P/A+2aP +S+Q-Y1-Y/,
P12=P—P,) + ATP3 Yy,

d—2a(h—1
¢16=Y1T—21T+P2TA1—T+#

h—z
P17 = (1—d)T(—X+X1),
®pp=—P3— Py +R,

h— 4.17
¢26=Y2T—ZZT+P3TA1—TT(X—X1), (@40
X4 XT —2Xy —2X]
Po5= —(1—A)Qe 2N 4+ T+ TT —[d — 2a(h — 7)] s
h—
®g7 = (1—d) ZhT (X + XT = 2X; — 2X]),
h—
o1 =—(1-d)— Tue2h,
Thelatter inequality forr — 0 andr — h leads to the following LMlIs:
Py — S2M (x4 XT) Do+ X+2XT z] hz] P16l:=0  P17lc=0
- P+ U zJ hz]  ®al—0 0
Py = . . —sersh 0 0 ° | <o, (4.18)
* * * —Re2¢h 0 0
* * * * Pegl=0  Pe7l:=0
* * * * * D77l =0
#11- S X+XT) @, Z] hy, P16lr=h
* Doo Z; hYZT D26lr=h
P, = . .  _ge-2ah 0 0 < 0. (4.19)
- * * —[R+dUJe~2eh  hT

* * * * De6lr=h
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Denoting:#1i (t) = col{x(t), x(t), X(t — h), v3i, X(t — 7), X(t — 7)}(i = 1, 2), the latter two LMIs
imply (4.16) because

h—1 T
Tﬂsz(t)'I’nmz(t) + HﬂlTl(t)‘Plz’?ll(t) =5 () Pin(t) <O,

and¥; is thus convex irt € [0, h].

(ii) For d > 1, we consider the following LKF:

B 2
V(t, X, %) = V(1) = Vo(Xt, %) + _Zl\/i (t, Xt, Xt), (4.20)

whereVy is given by @.5) and

.
Vit X, %) = ——& (t)[ v X x] 4 28 &(), (4.21)
. h—1 t (s—t)yT .
Vao(t, X, %) = . / T (s)Ux(s)ds, (4.22)
=g

with &(t) = col{x(t), x(t — §)},a > 0,U > 0. To guarantee that > 0, we assume4(9). Since
ti—y = (t — é)“:tk' we see thaV does not grow after the jumps.
DifferentiatingV, we have alongd.1)

V() + 2aV (1) < 2xT (1) PX(t) + X () [R + h%u] X(t) 4 2a[x " (t)Px(1)]

1 h t T d 20h t T
— g2 / X" (Ri(s)ds — - e"T / x T (s)Ux(s)ds
t t—%

h -h
+xTOSX() — x" (t — h)e" 2" Sx(t — h)

d—2ath—-1) T X+2XT X 4+ Xy
- %0 [ . Xeo X] 4 X &(t)

h—zr.T T T T
+— [XTOX+ X)X + 22T O=X + Xox(t - 6)] ,

We employ the representation

t t—r1
_ T . _ _ T . _
/t_hx (s)Rx(s)ds /t_h X' (s)Rx(s)ds /t

-7

t—3 t
x T (s)Rx(s)ds — / x T (s)Rx(s)ds.
t—§

Similarto (4.11), applying the Jensen’s inequality and then denoting

d t
V21 = —
T Jt—

t-g

. 1 t=r d .
X(s)ds, 022=E/t . X(s)ds, 023:h(d——1) , X(s)ds,

z
d
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we obtain
V() 4 2aV (1) < 2xT (@) PX(t) + X (t) [R + h%u} X(t) + 2a[x T () Px(1)]
; le |:6Re_2“h + U e_zgh} o1 — e~2ah hh 022R022 - e_z"Chd 1)23R1)23

+xT()Sx(t) — xT (t — hye 2 sx(t — h)

d—2a(h— 1) xtxL o _x4x
—fé‘;(t) |: i Xy - X] +1x+2xT :| 2
+h “EIXTO(X + XTHx() + 2XT @O (=X + XDx(t — §)].

h

Similarto (4.13), we insert free-weightingx n-matrices by adding the following expressions\7t0

0=2 [xT(t)YlT +XTOY] +xT (t — %)TIT] [— X(t) + x(t — g) + 3021],
0=2[x"(M)Z] +xT(t)Z] +xT(t — )T, J[-X(t — 7) + x(t — h) + (h — 7)v22],

0=2[xT(t)M] + xT(t)MZT][ _ x(t _ é) FX(t—1)+ wuzg].

Similarto (4.14), the same expression is added into the RH&.aj) (
Settingza(t) = col{x(t), X(t), x(t — h), v21, v22, v23, X(t — ), X(t — 1)}, we obtain that

V(t) + 2aV(t) o (t)?’znz(t) <0, (4.23)
if the inequality
¥, =
Q- 2= (x4 XT) @+ BEx+xT)  z] gy (h-oz]  MEMT 0, o
" by + Bty zy  wv)  h-nzZ) DM 0y 0
* * —se2¢h "o 0 0 0 T
* * * Qqq 0 0 %Tl 0
* * * * —HH—T Re~2¢h 0 0 (h-0)T <0
* * * % * _%Re—Zah 0 0
* % * * * * Q77 0
* * * % * * % T2+T2
(4.24)
holds,where
Qu=A"P,+P]A+20P+S—Y1 Y],
d—2a(h—1)
Q=Y —M] —T1 + T(x — X1),

Qig=M] —Z] + P A,
Q=Y —M] — —

(4.25)
Qg=M, —Z] + PJ Ay,
2ch

7[R
Qu=——|-e2ued
44 h[d + >

X4+ XT —2Xy —2X]
Qr7=Ti+ T —[d - 2a(h — 7)] 17

2h
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Thelatter inequality forr — 0 andr — h leads to the following LMIs:

— _ T — ]
Q1p - 92N (X 4 XT) by + XEX z7 hz] MEDMT Q70 Qus
hd—1
* Do+ U z; hzj T( ) M] Q7l—0 Q28
* * —se2¢h 0 0 0 T
V1= . . s —Re2h 0 0 h, | <Oand
. " N N _dﬁ?*l Re—Zah 0 0
% * * * * Q771 =0 0
L * * * * * * T2+ TZT -
(4.26)
_ h(d-1 -
ou-Fx+xD) ezl Gy MGUMT oyl o
* Doo Z; gYZT hde_—l) M; Q27l:=h Q28
* % —Seg2¢h 0 0 0 T2
Wy — ) e ol 0 b, o | <O. (4.27)
. . N % _% Re—Zah 0 0
* * * * * Q77l=h 0
L . . N " * * T+ T

Similarly, we can obtain tha; is also convex irr € [0, h].
We summarize the results in the following theorem.

THEOREM 4.2 (i) Givena > 0,0 < d < 1, let there exish x n-matricesP > 0, R > 0,U >
0,S>0,Q > 0,X, X1, T, Py, P3, Yi and Zi (i = 1,2) suchthat the LMIs (4.9), (4.18), (4.19) with
notations given in4.17) are feasible. Then2.() is exponentially stable with the decay ratéor all
delays 0< 7 < h satisfying Al.

(i) Givena > 0,d > 1, let there exish x n-matricesP > 0,R > 0,U > 0,S> 0, X, X1, P, P3,
Ti,Yi, Zi andM; (i = 1,2) suchthat the LMIs @.9), @.26), @.27) with notations given in4(25) are
feasible. Then,4.1) is exponentially stable with the decay ratfor all delays 0< = < h satisfying Al.

REMARK 4.1LMiIs of Theorem4.2with X = X1 = U = 0 give sufficient conditions for exponential
stability of (2.1) withz(t) € [0, h]: (i) for all slowly varying delays and (ii) for fast-varying delays. In
the numerical examples, these conditions lead to the same results as the reBalts &fKo (2007),
however, they posses a fewer number of slack matrices.

4.3 Exponential stability: Case A2

Fort = —d < 0, we also differ between @ d < 1 andd > 1.
() When 0< d < 1, we are looking for the functional of the form:
. W, D 2 D
V(t, X, %) = V(1) = Vo(Xt, %) + > Vi(t, Xt, %) + Va(x), (4.28)
i=1

whereVy is given by @.5) and

X+XT —X + X
Vit X, %) = %f; (t)[ 2 ' }ém,

T
XX e
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t
Va(t, Xt, Xt) = %/ " eZa(S—t))-(T(S)U X(s)ds,
t—(h—1)

t
Va(x) = /t o, ST 9 0xss

with &3(t) = col{x(t), x(t — (h— 7))}, a > 0,U > 0,Q > 0 and @.9) also satisfied to guarantee that
VvV > 0.

We note thatvz is non-negative before the jump tat= tx andit becomes zero just after the jump
(becauseji—t, = (t — (h — 7));t=t,). The time-dependent termg and V, vanish before the jumps
(becauser = 0) and after the jumps (because= h and thusx(t — (h — 7)) = x(t)). Hence, the
condition lim_, - V (t) > V() holds.

(ii) Ford > 1, the discontinuous Lyapunov functional is modified as follows:

_ 2
V(t, X, %) = V(1) = Volxe, %) + 2 Vi(t, X, %), (4.29)
1=
whereV) is also given by 4.5) and

X+XT
. T —X 4+ X1
VAt X, X) = &0 (t)[ ? « XT+X+XT}54(t),
* —ALT A 2

t
Va(t, X¢, Xt) = % / 4 UxT (U (9)ds,

h—
=g

with &(t) = col{x(t), x(t — hg’)}, a > 0,U > 0and @.9) also satisfied to guarantee that> 0.
Also in this caseV does not grow after the jumps.
Similar to Theoremt.2, we obtain the following theorem.

THEOREM4.3 (i) Givena > 0,0 < d < 1, let there exish x n-matricesP > 0,R> 0,U > 0,S >
0,Q > 0, X, X1, Po1, P31, P22, P32, Yij, Mij, Zjj andTij (i, j = 1,2) suchthat @4.9) and the following
four LMIs: (4.30), forz — 0 andz — J, and (4.31), for — § andz — h,

011 O+ H£X+XT) M Y (h-20zZ],  M]} 017  O18+2]—M]; 0197
* O+ EU M, oY, (h-20z], M], 027  Op+ZL,-M, 0
* * —Se~2¢h 0 0 0 0 0 0
* * ¥ —E[R+dUJe2¢n 0 0 i1 0 0
* * * * Os5 0 0 (h—20)Typ 0o | <0,
* * * * * —LRe2¢h 0 0 0
* * * * * * T11+ Tﬂ -T2 0
% * * * x * * Ogg+Ti2+ T, Ogg
L« * * * x * * * B9

(4.30)
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(511 B+ FH(X+XT) Y (h=0)Y), @ -mz], (-oM) 517 O1+MJ;—Z] 0197]
* S+ fU (25 h=-0Y),  @-mzl, (-oM), 57  @3p+ML,-2], 0©
* * —Se2¢h 0 0 0 To1 0 0
* * x  —herRe-2dh 0 0 (h—10)Ty 0 0
. - * * —2t=hpe-20h 0 0 @2r —h)Top o [<0,
* * * * * Ze6 0 0 0
* 5 * * * * —To1 — TZ—E. Too 0
% * * * * * * Ogg — Too — TZE Ogg
L * 5 5 * % % * * Bgg _|
(4.31)
where
d

O11=ATPo1 + P£A+2aP+S+Q—Y11—Yf—1—
O12=P — P,)| + AT P31 — Y12,
O17=Y,] — Z]; - Tur + P Ay,

d—2art

018 = —— (X=X,

T
O19 = (1 —d)-(=X + X),
@22 =—P31— PJ| + R,

O =Y, — Z],+ P A1,

— 2art
— (X 4+ XT
(X + X,

T
O = — (X — X1),
- 27
h

Ogg = —(1—d)Qe 2" _ (d — 2ar)
Ogo = (1 — d);_h(x + XT = 2%y — 2X]),
Ogo = —(1— d)%U e20h,

Os5 = — [R+dUJe 2",
X+ XT —2Xy —2X]

2h ’

E11=ATPo+ PLA+ 24P + S+ Q— My — M), — ——
E12=P — P+ ATP3 — My,

E17=2Z5,— Y5, + PLAL,

2 =—Pn-PL+R,

Eor=23,— Yo+ P3T2A1,

[

h—
66 = ———[R+dUJe 2",
arefeasible. ThenZ.1) is exponentially stable with the decay ratéor all delays 0< 7 < h satisfying
A2.
(ii) Givena > 0,d > 1, let there exish x n-matricesP > 0,R > 0,U > 0,S > 0, X, X1, P21,
P31, P22, P3p, Yij, Mij, Zjj andTij (i, j = 1, 2) suchthat @4.9) and the following four LMIs:4.32), for
r - Oandr — 75, and @.33), forr > 5 andr — h,
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(I O+ X+ XT) M oy BT o honyvT o 6, 01tz -M] ]
* 02+ EU ML, oY), P h-bonymT 0y 0p+z,-M],
* * —se~2¢h g 0 0 0 0
* * * 244 0 0 T11 0
<0 4.32
% % 5 * 255 0 0 la+d TTlZ ’ ( )
* * * * * 266 0 0
* * * * * * T11+T]1 —T12
L = * * * * * * 288+T12+T]E _
M1 S+ £ X+xXT) Y] (h—0)Yy)] Qtdyrh 77 em] =7 @1grMIZ] ]
* Ep+ fU Y3, (h=1)Yp, A Qeh 77 M), E O+Mj-Z),
¥ * —se~2¢h 0 0 0 To1 0
« * * —her Rg2ah 0 0 (h=1)Tyy 0 <0
* * * * _% (]-i;?ﬂRe—Zah 0 0 %ﬂ_rzz s
* % % * * Y66 0 0
* * * * * * —Tzl—Tz—E_ Too
L = * * * * * * 288_T22_T2-5 _
(4.33)
where
T T r _ d-2ar T
211=A P+ P21A+20(P—I—S—Y11—Y11—T(X+X ),
T _ 2ah
2aq = ——[Re‘z"‘h +dUe T],
lh—-QA+d)z 20h
255:———)[Re_2ah+due d ],
0%
—7
Zee=——|h— Re‘z"‘h,
h d
X+ XT —2X; —2X]
2gg=—(d —2ar) h L
d—2ar
Y11= ATPx+ PLA+2aP + S— M1 — My, — —n X+ X,

Yo — lh—-¢
86="1"¢
arefeasible. ThenZ.1) is exponentially stable with the decay ratéor all delays 0< 7 < h satisfying

A2.

2ah

[Re~2¢h 4 dU e~ 4 |,

5. Examples

ExAMPLE 5.1 Consider the system froivue et al. (2005)

; 01 0
X(t) = [O —0.1:| x(t) + {0.11| Kx(t — 7 (1)),

K = —[3.75 115].

The stability of this system was studied by many authors K&aghshtabrizet al.,2008and the refer-
ences therein). For the constant sampling, it was fouridaghshtabrizet al. (2008) that the system
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remainsstable for all constant samplingsl.7 and becomes unstable for samplingk.7. Moreover,
the above system with constant delais asymptotically stable for < 1.16 and becomes unstable for
7 > 1.17. The latter means that all the existing methods, that are based on time-independent Lyapunov
functionals, corresponding to stability analysis of systems with fast-varying delays, cannot guarantee the
stability for the samplings with the upper bourd..17. InNaghshtabrizet al. (2008), the upper bound
on the constant sampling interval that preserves the stability is found tic=bd&.3277, improving all
the existing LMI-based results.

For differentz, by applying Lyapunov—Krasovskii(L—K) approach with= 0 and 1-O approach
via Wirtinger-type inequality, we obtain the maximum valuelofjiven in Tablel. Our results for
X = X1=U =0 coincide with the ones d?ark & Ko (2007). We see that discontinuous terms of LKFs
improve the performance. Moreover, the I-O approach via Wirtinger-type inequality improves the result
ford > 1,d € N compared to time-dependent L—K approach.

ExAMPLE 5.2 We consider the following simple and much-studied probl@amp@achristodouloet al,,
2007;Fridman,2010):

X(t) = —x(t — 7(t)). (5.1)

It is well known that the equatior(t) = —x(t — 7) with constant delay is asymptotically stable for
t < m/2 and unstable for > 7 /2, whereas for the fast-varying delay, it is stablefot 1.5 and there
exists a destabilizing delay with an upper bountl5. The latter means that all the existing methods,
that are based on time-independent Lyapunov functionals, corresponding to stability analysis of systems
with fast-varying delays, cannot guarantee the stability for the samplings, which may.be

Itis easy to check, that the system remains stable for all constant samplraged becomes unstable
for samplings>2. Conditions oNaghshtabrizet al. (2008) and oMirkin (2007) guarantee asymptotic
stability for all variable samplings up ta28 and 157, respectively. For different, by applying our
methods, we obtain the maximum valuehofiven in Table2.We can also see that discontinuous terms
of LKFs improve the performance and the 1-O approach via Wirtinger-type inequality improves the
result ford > 1,d € N compared to time-dependent L-K approach.

ExAMPLE 5.3 Consider the systenbbg Souza & Li,1999)
() = -2 0 (t -1 0 (t t
X(t) = 0 —09 x(t) + 1 1 X 7(1)).

TABLE 1 Examplel: maximum value of h for differert

h\z -12 -1 -09 05 0.9 1 1.1 h\7 7eN

L-K approach 114 114 111 124 161 169 134 I|-Oapproach 1.3659
X=X;=U=0 104 104 104 104 1.04 1.041.04

TABLE 2 Example2: maximum value of h for differert

h\z -12 -1 -09 05 09 1 11 1.2 h\z 7eN

L-K approach 141 141 136 147 189 199 161 154 I-Oapproach 1.57
X=X;=U=0 133 133 133 133 133 1.33 1.33.33
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TABLE 3 Example3: maximum value of h for differert

h\¢ -12 -1 -09 05 09 1 11 h\7 i eN

L—-K approach 195 198 190 234 206 253 191 I-O approach 1.57
X=X;=U=0 186 186 18 233 187 1.861.86

TABLE 4 Exampled: maximum value of h for differert

h\z -1.2 -1 -09 05 0.9 1 1.1 h\7 7 €N

Our method 110 111 110 144 148 164 1.26 I|-Oapproach 0.8797
X=X1=U=0 106 106 106 126 1.06 1.061.06

It is well known that this system is stable for constant delay 6.17, whereas iPark & Ko (2007),

it was found that the system is stable for all fast-varying detays 1.86. For different:, by applying

our methods, we obtain the maximum valuehafiven in Table3. Our results forxX = X3 =U =0
coincidewith the ones oPark & Ko (2007). Also in this Example, the time-dependent terms of LKFs
improve the performance. However, the 1-O approach via Wirtinger-type inequality has not improved
the results fod > 1,d € N and the result is worse than the result for the fast-varying delays.

EXAMPLE 5.4 Consider the systeniKharitonov & Niculesc,i2002):

. 0 1 0 O
X(t) = |:_1 _2} X(t) + |:_1 1:| Xt —z(t)).

For differentz, by applying our methods, we obtain the maximum valul given in Table4.

REMARK 5.1 Simulations in all the examples above show that our results are conservative (at least for
d # 1) and that the value of maximumthat preserves the stability grows for growidg- 1.

6. Conclusions

In this paper, two methods have been introduced to investigate delay-dependent stability problem fo
systems with sawtooth delay with constantt 0. One method develops a novel I-O approach via a
Wirtinger-type inequality. The result birkin (2007) is recovered fof = 1 and for any integet,

the same maximum bound that preserves the stability is achieved. Another method improves stability®
criteria by constructing piecewise continuous (in time) Lyapunov functionals. Though the most essential>
improvement corresponds to= 1, the time-dependent terms improve the results for all valués of
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