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Abstract

Output regulation of retarded type nonlinear systems is considered. Regulator equations are derived, which generalize
Francis–Byrnes–Isidori equations to the case of systems with delay. It is shown that, under standard assumptions, the
regulator problem is solvable if and only if these equations are solvable. In the linear case, the solution of these equations
is reduced to linear matrix equations. An example of a delayed Van der Pol equation illustrates the e6ciency of the
results.
c© 2003 Elsevier B.V. All rights reserved.
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1. Introduction

One of the most important problems in control theory is that of controlling the output of the system so as
to achieve asymptotic tracking of prescribed trajectories. This problem of output regulation has been studied
by many authors (see e.g. a survey paper by Byrnes and Isidori [2] and the references therein). In the linear
case, Francis [4] showed that the solvability of a multivariable regulator problem corresponds to the solvability
of a system of two linear matrix equations. In the nonlinear case, Isidori and Byrnes [10] proved that the
solvability of the output regulation problem is equivalent to the solvability of a set of partial di>erential and
algebraic equations. This set of partial di>erential and algebraic equations is now known as the regulator
equations or Francis–Isidori–Byrnes equations.
For linear in'nite-dimensional control systems bounded input and output operators, a solution of the regu-

lator problem was introduced by Schumacher [12] and Byrnes et al. [3], where a Hilbert space was used as a
state space. The case of the bounded input and output operators was considered. In the case of systems with
time-delay it means that there are no discrete delays in the control input, controller output and measured
output. The solution was given in terms of the operator regulator equations.
The solution of the output regulation problem is usually based on the application of the center manifold

theory. The existence, smoothness and the attractiveness of the center manifold for systems with delay were
proved by Hale [7] (see also [8, Chapter 10.2]), where a Banach space was used as a state space. A partial
di>erential equation for the function, determining the center manifold for system with delay was derived in
[1,5,13].
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In the present paper, we consider output regulation of nonlinear systems with state, controller output and
measured output delays, using a Banach space formulation. The systems with delay are inEnite-dimensional
systems, which are important in applications. We generalize the result of [10] to time-delay systems by
showing that the problem is solvable i> certain regulator equations are solvable. These equations consist of
partial di>erential equations for a center manifold of the closed-loop system with delay and of an algebraic
equation. In the linear case the solution of these equations is reduced to linear matrix equations. We End the
relation between our linear equations, derived by using a Banach space approach, and the operator regulator
equations of [3,12], obtained in the Hilbert space framework. We analyze the solvability of the linear matrix
equations. An example of delayed Van der Pol equation illustrates the developed theory.

Notations. Rm is the Euclidean space with the norm | · | and Cm[a; b] is the Banach space of continuous
functions � : [a; b] → Rm with the supremum norm ‖ · ‖.

A function f :X → Y , where X and Y are Banach spaces, is a Ck function if it has k continuous Frechet
derivatives.
Denote by xt(�) = x(t + �) (�∈ [ − h; 0]).
L2([− h; 0]; Rn) is the Hilbert space of square integrable Rn valued functions with the corresponding norm.
W 1;2([−h; 0]; Rn) is the Sobolev space of absolutely continuous Rn valued functions on [−h; 0] with square

integrable derivatives.
The transpose of a matrix M is written M ′.

2. Problem formulation

We consider a nonlinear system modeled by equations of the form

ẋ(t) = f(xt ; u(t); w(t)); e(t) = g(xt ; w(t)); (1a,b)

where x(�) = �(�); �∈ [ − h; 0]; with state x(t)∈Rn, initial function �∈Cn[ − h; 0], control input u(t)∈Rm,
exogenous input w(t)∈Rr and tracking error e(t)∈Rp. The exogenous input is generated by an autonomous
dynamical system of the form

ẇ(t) = s(w(t)); (2)

The functions f :V → Rn, s :W → Rr , g :Y → Rp are smooth (i.e. C∞) mappings, where V ⊂ Cn[ − h;
0] × Rm × Rr; W ⊂ Rr; Y ⊂ Cn[ − h; 0] × Rr are some neighborhoods of the origin of the corresponding
spaces. We assume that f(0; 0; 0) = 0, s(0) = 0, g(0; 0) = 0. Thus, for u= 0, system (1a) has an equilibrium
state (x; w) = (0; 0) with zero error (1b).

We consider both, a state-feedback and an error-feedback regulator problems.

Problem 1 (State-feedback regulator problem): Find a state-feedback control law

u(t) = �(xt ; w(t)); (3)

where � :Y → Rm is a Ck (k¿ 2) function and �(0; 0) = 0 such that
(1a) the equilibrium x(t) ≡ 0 of

ẋ(t) = f(xt ; �(xt ; 0); 0)

is exponentially stable;
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(1b) there exists a neighborhood Y ⊂ Cn[−h; 0]×W of the origin such that, the solution of the closed-loop
system

ẋ(t) = f(xt ; �(xt ; w(t)); w(t)); ẇ(t) = s(w(t)) (4)

satisEes

lim
t→∞ g(xt ; w(t)) = 0: (5)

Problem 2 (Error-feedback regulator problem): Find an error-feedback controller

u=�(zt); ż(t) =  (zt ; e(t)); z(t)∈R! (6)

with Ck functions  :Z0 → R! and � :Z1 → Rm, where Z0 ⊂ C![ − h; 0] × Rp, Z1 ⊂ C![ − h; 0] are some
neighborhoods of the origin, such that
(2a) the equilibrium (x(t); z(t)) ≡ 0 of

ẋ(t) = f(xt ; �(zt); 0); ż(t) =  (zt ; h(xt ; 0))

is exponentially stable;
(2b) there exists a neighborhood Z ⊂ Cn[ − h; 0] × C![ − h; 0] × W of the origin such that, the solution of

the closed-loop system

ẋ(t) = f(xt ; �(zt); w(t)); ż(t) =  (zt ; h(xt ; w(t))); ẇ(t) = s(w(t)) (7)

satisEes (5).

3. Linearized problem and assumptions

Using Taylor expansion in the neighborhood of the origin of the Banach space Cn[ − h; 0] × Rm × Rr , we
obtain the following approximation of the smooth function f:

f(x0; u; w) = Ax0 + Bu+ Pw + O(x0; u; w)2;

where the linear bounded operator [A; B; P] :Cn[ − h; 0] × Rm × Rr → Rn is a Frechet derivative of f at
the origin. The function O(·)2 vanishes at the origin with its Erst-order Frechet derivative. Similarly, smooth
functions h, �; � and  can be represented in the form

h(x0; w) = Cx0 + Qw + O(x0; w)2; �(x0; w) = Kx0 + Lw(t) + O(x0; w)2;

�(z0) = Hz0 + O(z0)2;  (z0; e) = Fz0 + Ge + O(z0; e)2;

where the functions O(·)2 vanish at the origin with their Erst-order Frechet derivatives and where Q; L and
G are the matrices of the appropriate dimensions. The linear bounded operators A :Cn[ − h; 0] → Rn and
C :Cn[ − h; 0] → Rp by Riesz theorem can be represented in the form of Stieltjes integrals [8]

A�=
∫ 0

−h
d[,(�)]�(�); C�=

∫ 0

−h
d[-(�)]�(�); (8)

with n× n and p× n-matrix functions , and - of bounded variations. A similar representation can be written
for the linear bounded operators K :Cn[ − h; 0] → Rm, H :C![ − h; 0] → Rm and F :C![ − h; 0] → R!.
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The linearized system is given by

ẋ(t) = Axt + Bu(t) + Pw(t); ẇ(t) = Sw(t); e(t) = Cxt + Qw(t): (9a–c)

The linearized state- and error-feedback controllers have the form

u(t) = Kxt + Lw(t) and u(t) = Hzt; ż(t) = Fzt + Ge(t); (10a,b)

respectively.
Similarly to the case without delay [10] we assume the following:
H1. Exosystem (2) is neutrally stable (i.e. Lyapunov stable in forward and backward time, and thus S has

all its eigenvalues on the imaginary axis).
H2. The pair {A; B} is stabilizable, i.e. there exists a linear bounded operator K :Cn[ − h; 0] → Rm such

that the system

ẋ(t) = (A+ BK)xt (11)

is asymptotically stable.
H3. The pair[

A P

0 S

]
; [C Q]

is detectable, i.e. there exists a (n+ r) × p-matrix G such that the system[
/̇1(t)

/̇2(t)

]
=

{[
A P

0 S

]
+ G[C Q]

}[
/1t

/2(t)

]
; (12)

where /1(t)∈Rn; /2(t)∈Rr , is asymptotically stable.
We note that H2 is equivalent to the following condition [9]:
H2′. rank[0I − ∫ 0

−h d[,(�)]e0�; B] = n for all 0∈C with Re 0¿ 0.
Similar condition equivalent to H3 can be written for the case of Cxt=C0x(t), where C0 is a constant matrix.

Some su6cient conditions for H2 and for Ending a stabilizing controller u(t) = K0x(t) or u(t) = K1x(t − h)
may be found e.g. in [6] (see also references therein) in terms of linear matrix inequalities. Similar su6cient
conditions may be derived for H3.

4. Solution of the regulator problems

4.1. Center manifold of the closed-loop system

The solution of the output regulation problem is based on the center manifold theory [7,8].

Lemma 1. Assume that all eigenvalues of S are on the imaginary axis and that for some �(xt ; w) condition
(1a) holds. Then the closed-loop system (4) has a local center manifold xt(�) = 2(w(t))(�); �∈ [ − h; 0],
where 2 :W0 → Cn[ − h; 0] (0∈W0 ⊂ W ⊂ Rr) is a Ck mapping with 2(0)(�) ≡ 0. The center manifold is
locally attractive, i.e. satis'es

‖xt − 2(w(t))‖6Me−at‖x0 − 2(w(0))‖; M ¿ 0; a¿ 0 (13)

for all x0; w(0) su:ciently close to 0 and all t¿ 0.
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Proof. The closed-loop system (4) has the form

ẇ(t) = Sw(t) + O(w(t))2; ẋ(t) = (A+ BK)xt + (P + BL)w(t) + O(xt ; w(t))2: (14a,b)

By assumption, the zeros of the characteristic equation corresponding to (11) are in C−, and the eigenvalues
of the matrix S are on the imaginary axis. Then

|X (t)|6Ke−at ; |eSt |6Keat=2; K¿ 1; a¿ 0; (15)

where X (t); t ∈ [ − h;∞) is a fundamental matrix of (11). Moreover, it is well-known (see e.g. [8, p. 312])
that according to this dichotomy, the space Rr × Cn[ − h; 0] of the initial values of the linear system

ẇ(t) = Sw(t); ẋ(t) = (A+ BK)xt + (P + BL)w(t) (16)

can be decomposed as a direct sum Rr × Cn[ − h; 0] = P ⊕ Q, where P and Q are invariant sub-spaces
of the solutions of (16), in the sense that for all initial conditions from P (Q), solutions of (16) satisfy
{w(t); xt} ∈P ({w(t); xt} ∈Q) for all t¿ 0. Moreover, P is an r-dimensional and corresponds to solutions
of (16) of the form p(t)e0t , where p(t) is a polynomial in t and 0 is an eigenvalue of S. The space Q
corresponds to exponentially decaying solutions of (16).
We will determine the projections of Rr × Cn[ − h; 0] onto P and Q following [8, p. 314] and will show

that by appropriate choice of the basis 5 for P, the projection of (14) onto P is governed by (14a). Consider
for each �∈ [ − h; 0]

6(�) =
∫ 0

−∞
X (−s+ �)(P + BL)eSs ds=

∫ 0

−∞
X (−7)(P + BL)eS(7+�) d7: (17)

From (15) it follows that the integrals in (17) converge uniformly in �∈ [ − h; 0] and, since the function
inside the last integral is continuous in (7; �), the matrix function 6(�) is continuous. Moreover, x0 =6w is
a center manifold of (16) (see e.g. (2.7) in p. 315 of [8]). Then 5 = col{Ir ; 6} may be chosen as a basis
for P. Let 8 = col{Ir ; 0} be a corresponding basis for the adjoint linear system

ẇ(t) = −S ′w(t); ẋ(t) = −A′ − (BK)′xt − (P + BL)′w(t);

where A′xt =
∫ 0
−h d[,′(�)]x(t + �) and (BK)′xt is deEned similarly. Let (A + BK)xt =

∫ 0
−h d[ L,(�)x(t + �),

where L, is an n × n-matrix function of the bounded variation. We have (8;5) = Ir , where ( ; �) for  =
col{ 1;  2} ∈Rr × Cn[ − h; 0], �= col{�1; �2} ∈Rr × Cn[ − h; 0] is deEned by (see (2.23) in p. 268 of [8]):

( ; �) =  ′(0)�(0) −
∫ 0

−h

∫ �

0
 ′
2 (s − �)[d L,(�)]�2(s) ds:

For a solution col {w(t); xt} of (16) starting from 5, i.e. col {w(0); x0}=5, the following holds: col {w(t); xt}
= 5 exp St. Then (see (2.3) in p. 314 of [8]) the solution col {w(t); xt} = 5w(t) + zt (zt ∈Q) of (14) is a
solution of the system for w(t) and zt , where w(t) satisEes (14a) and zt satisEes some integral equation, and
conversely. By Theorem 2.1 of [8, p. 314] system (14) has a local smooth center manifold x0=2(w). The Mow
on this manifold is governed by (14a). By Theorem 2.2 of [8, p. 216] this manifold is locally attractive.

Remark 1. The existence and smoothness of 2 may be proved also by applying the standard arguments of
the center manifolds theory directly to Eq. (14), where the functions O(w)2 and O(x0; w)2 are extended to all
values of w∈Rr as described in [8] (see (2.4) in p. 315). In this case 2 is a solution of the integral equation

2(w0)(�) =
∫ 0

−∞
X (−s+ �)[(P + BL)w(s) + O(2(w(s)); w(s))2] ds;

where w(t) is a solution of (14a) with the initial condition w(0) = w0.
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The function 2 which determines a center manifold of (4) can be considered as a function of one variable
2 :W0 → Cn[−h; 0] in the Banach space or a function of two variables 2 :W0×[−h; 0] → Rn in the Euclidean
space. Further, we End relation between the smoothness properties in both considerations by introducing two
classes of functions:
Class M1 of C1 functions 2 :W0 → Cn[ − h; 0](W0 ⊂ Rr), satisfying the following conditions:

(i) For each w∈W0 there exists a continuous in �∈ [ − h; 0] partial derivative @2(w)(�)=@� , ;(w)(�);
(ii) The function ; :W0 → Cn[ − h; 0] is continuous.

Class M2 of functions  :W0 → Cn[−h; 0] such that the functions L (w; �),  (w)(�); L :W0× [−h; 0] →
Rn are continuously di>erentiable.

Proposition 1. M1 =M2.

Proof. Let 2∈M1, then @2(w)(�)=@� and @2(w)(�)=@w (the Frechet derivative of 2) are continuous in w
uniformly in �∈ [ − h; 0] and for each w∈W0 they are continuous in �. Therefore, these partial derivatives
are continuous in (w; �) and thus L2(w; �) , 2(w)(�), L2 :W0 × [ − h; 0] → Rn is continuously di>erentiable,
i.e. 2∈M2. Hence M1 ⊂ M2.
To prove that M2 ⊂ M1, consider  ∈M2, L as deEned above, w∈W0 and the closed bounded set LW such

that w∈ LW ⊂ W0. Functions L ; @ L =@w and @ L =@� are uniformly continuous on the compact set LW × [− h; 0].
Hence, these functions are continuous as functions from W to Cn[ − h; 0]. From the relation

 (w +Nw)(�) −  (w)(�) − @ L (w; �)
@w

Nw =
∫ 1

0

[
@ L (w + sNw; �)

@w
− @ L (w; �)

@w

]
dsNw , <(Nw)Nw

and the fact that @ L (w; �)=@w is continuous in w uniformly in � it follows that limNw→0 ‖<(Nw)‖ = 0 and
thus @ L (w; �)=@w is a continuous Frechet derivative of  . Hence,  ∈M1.

Lemma 2. A C1 mapping 2 :W0 → Cn[−h; 0]; 2(0)=0 de'nes a center manifold xt(�)=2(w(t))(�); �∈ [−
h; 0] of (4) if and only if 2∈M1 and ∀w∈W0; ∀�∈ [ − h; 0] it satis'es the following system of
partial di;erential equations:

@2(w)(�)
@w

s(w) =
@2(w)(�)

@�
;

@2(w)(0)
@w

s(w) = f(2(w); �(2(w); w); w): (18a,b)

Proof. Note that for a C1 mapping 2 :W0 → Cn[ − h; 0] and for w(t), satisfying (2), we End that for each
�∈ [ − h; 0]

d
dt
[2(w(t))(�)] =

@2(w(t))(�)
@w

s(w(t)): (19)

Necessity: Let a C1 mapping 2 :W0 → Cn[ − h; 0] determine a center manifold of (14). Then there exists
=¿ 0 such that xt(�) = 2(w(t))(�) satisEes (4) for t ∈ [ − =; =] and, hence

@xt(�)
@t

=
@xt(�)
@�

; x0 = �; �∈ [ − h; 0]; t ∈ [ − =; =];

@xt(0)
@t

= f(xt ; �(xt ; w(t)); w(t)); ẇ(t) = s(w(t)): (20)
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Substituting xt = 2(w(t)); w(0) = w; t ∈ [ − =; =] into (21) and setting further t = 0, we obtain that for all
w∈W0, 2(w)(�) is di>erentiable in �∈ [− h; 0] and 2 satisEes (18). The function @2=@� :W0 → Cn[− h; 0] is
continuous since the left-hand side of (18a) has the same property.
Su:ciency: let a C1 mapping 2 :W0 → Cn[ − h; 0] satisfy (18). Substitute w = w(t) into (18), where w(t)

is a solution of (2), then xt = 2(w(t)) satisEes (20) (and thus (4)) and therefore 2 determines the invariant
manifold of (4).

Remark 2. Approximate solution to (18) can be found in a form of series expansions in the powers of w
(similarly to [1,7,13]).

4.2. State-feedback regulator problem

Applying Lemmas 1 and 2, we obtain regulator equations by using arguments of [10].

Lemma 3. Under H1 assume that for some �(xt ; w) condition (1a) holds. Then, condition (1b) is also ful'lled
i; there exists a Ck (k¿ 2) mapping 2 :W0 → Cn[−h; 0]; 2(0)=0 satisfying (18) and the algebraic equation

h(2(w); w) = 0: (21)

Proof. The proof is similar to Lemma 1 of [10] and it is based on Lemmas 1 and 2 above. The closed-loop
system (4) has a center manifold. By H1 no trajectory on this manifold converges to zero. Then (1b) holds
only if this manifold is annihilated by the error map e, i.e. only if (21) holds. On the other hand, since the
center manifold is locally attractive, (21) guarantees that (1b) is satisEed.

Theorem 1. Under H1 and H2, the state-feedback regulator problem is solvable if and only if there exist
Ck (k¿ 2) mappings x0(�) = 2(w)(�), with 2∈M1; 2(0)(�) = 0, and u= c(w), with c(0) = 0, both de'ned
in a neighborhood W ⊂ Rr of the origin, satisfying the conditions ∀w∈W0; ∀�∈ [ − h; 0]

@2(w)(�)
@w

s(w) =
@2(w)(�)

@�
;

@2(w)(0)
@w

s(w) = f(2(w); c(w); w); h(2(w); w) = 0: (22a–c)

Suppose that 2 and c satisfy (22), then the state-feedback

u= �(xt ; w(t)) = c(w(t)) + K[xt − 2(w(t))]; (23)

where K is a stabilizing gain which is de'ned in H2, solves the state-feedback regulator problem.

Proof. The necessity follows immediately from Lemma 3. For the su6ciency consider the state-feedback
(23). This choice satisEes (1a), since

f(xt ; �(xt ; 0); 0) = (A+ BK)xt + O(xt)2:

Moreover, by construction

�(2(w); w) = c(w)

and therefore, (22a), (22b) reduce to (18). From (22c) by Lemma 2 it follows that condition (1b) is also
fulElled.

4.3. Error-feedback regulator problem

Applying Lemmas 1 and 2 to system (7), we obtain the following:
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Lemma 4. Assume that all eigenvalues of S are on the imaginary axis and that for some �(zt) and  (zt ; e)
condition (2a) holds. Then
(i) the closed-loop system (7) has a local center manifold xt(�) = 2(w(t))(�); zt(�) = ?(w(t))(�), where

2 :W0 → Cn[−h; 0]; ? :W0 → C![−h; 0] (0∈W0 ⊂ W ⊂ Rr) are Ck mappings with 2(0)(�) ≡ 0; ?(0)(�) ≡ 0;
(ii) the center manifold is locally attractive, i.e. satis'es

‖xt − 2(w(t))‖ + ‖zt − ?(w(t))‖6Me−at(‖x0 − 2(w(0))‖ + ‖z0 − ?(w(0))‖); M ¿ 0; a¿ 0 (24)

for all x0; z0; w(0) su:ciently close to 0 and all t¿ 0.
(iii) C1 mappings 2 :W0 → Cn[ − h; 0]; 2(0)(�) = 0; ? :W0 → C![ − h; 0]; ?(0)(�) = 0 de'ne a center

manifold xt(�) = 2(w(t))(�); zt(�) = ?(w(t))(�); �∈ [ − h; 0] of (7) if and only if 2 :W0 × [ − h; 0] →
Rn; ? :W0 × [ − h; 0] → R! are continuously di;erentiable functions and ∀w∈W0; ∀�∈ [ − h; 0] they satisfy
the following system of partial di;erential equations:

@2(w)(�)
@w

s(w) =
@2(w)(�)

@�
;

@?(w)(�)
@w

s(w) =
@?(w)(�)

@�
;

@2(w)(0)
@w

s(w) = f(2(w); �(?(w)); w);
@?(w)(0)

@w
s(w) =  (?(w); 0): (25a–d)

Remark 3. In the case when z(t)=col{z1(t); z2(t)}, where z2 appears in (7) without delay and thus col{z1t(�);
z2(t)} = col{?1(w(t))(�); ?2(w(t))}, (25b) holds only for ? = ?1.

Similarly to Lemma 3, the following lemma can be proved

Lemma 5. Under H1, assume that for some �(zt) and  (zt ; e) condition (2a) holds. Then, condition (2b) is
also ful'lled i; there exist Ck (k¿ 2) mappings 2 :W0 → Cn[−h; 0]; 2(0)=0; ? :W0 → C![−h; 0]; ?(0)=0
satisfying (25) and the algebraic equation (21).

From the latter lemmas we deduce a necessary and su6cient condition for the solvability of the error-
feedback regulator problem

Theorem 2. Under H1, H2 and H3, the error-feedback regulator problem is solvable if and only if there
exist Ck (k¿ 2) mappings x0(�) = 2(w)(�), with 2∈M1; 2(0)(�) = 0, and u = c(w), with c(0) = 0, both
de'ned in a neighborhood W ⊂ Rr of the origin, satisfying conditions (22) ∀w∈W; ∀�∈ [ − h; 0].

Suppose that 2 and c satisfy (22), and that a linear bounded operator H :Cn[ − h; 0] → Rm is such that
the system

ẋ(t) = (A+ BH)xt (26)

is asymptotically stable. Then the error-feedback (6), where

z(t) = col{z1(t); z2(t)};  = col{ 1;  2}; u=�(zt) = c(z2(t)) + H [z1t − 2(z2(t))];

 1(z1t ; z2(t); e(t)) = f(z1t ; �(zt); z2(t)) − G1(h(z1t ; z2(t)) − e(t));

 2(z1t ; z2(t); e(t)) = s(z2(t)) − G2(h(z1t ; z2(t)) − e(t)); (27)

and where G = col{G1; G2} is de'ned in H3, solves the regulator problem.

Proof. The necessity follows immediately from Lemma 5. For the su6ciency we note, that there exist a linear
bounded operator H :C![−h; 0] → Rm and a matrix G=col{G1; G2} such that (26) and (12) are asymptotically
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stable. A standard calculation shows that for any m × r-matrix K , the characteristic quasipolynomial that
corresponds to the system


ẋ(t)

ż1(t)

ż2(t)


=




A BH BK

G1C A+ BH − G1C P + BK − G1Q

G2C −G2C S − G2Q






xt

z1t

z2(t)


 (28)

is equal to the product of the characteristic quasipolynomials that correspond to (26) and (12) respectively.
Therefore, (28) is asymptotically stable.
Consider the error-feedback controller of (6), (27). The linearized system corresponding to the closed-loop

system (7) has exactly the form of (28), where

K =
[
@c
@w

]
w=0

− H
[
@2
@w

]
w=0

:

Thus requirement (2a) is satisEed. By construction z2(t) appears in (7) without delay and thus (22a)–(22b)
imply (26) with ?(w) = col{?1(w); ?2(w)} = col{2(w); w}, where in (25b) ? = ?1. Thus requirement (2b)
follows from Lemma 5.

5. Linear case

5.1. Linear regulator equations

Consider the linear regulator problem (9). In the linear case the center manifold has a form xt =6(�)w(t),
where 6 is an n×r matrix function continuously di>erentiable in �∈ [−h; 0]. Note that 6 satisEes (17). From
Theorems 1 and 2 it follows, that the linear problem (9) is solvable i> there exists 6 and an m × r-matrix
@, that satisfy the following system:

6̇(�) =6(�)S; �∈ [ − h; 0]; 6(0)S =
∫ 0

−h
d[,(�)]6(�) + B@ + P;

∫ 0

−h
d[-(�)]6(�) + Q = 0:

(29a–c)

Eq. (29a) yields 6(�) =6(0) exp S�. Substituting the latter into (29b) and (29c), we obtain the following
linear algebraic system for initial value 6(0):

6(0)S =
∫ 0

−h
d[,(�)]6(0)eS� + B@ + P;

∫ 0

−h
d[-(�)]6(0)eS� + Q = 0: (30)

The latter system is a generalization of Francis equations [4] to the case of retarded systems.
We consider now a particular, but important in applications case of (9) with

Axt =
k∑

i=0

Aix(t − hi) +
∫ 0

−h
Ad(�)x(t + �) d�; Cxt =

k∑
i=0

Cix(t − hi) +
∫ 0

−h
Cd(�)x(t + �) d�; (31)

where 0 = h0 ¡h1 ¡ · · ·¡hk 6 h, Ad and Cd are piecewise continuous matrix functions and where Ai and
Ci are constant matrices of the appropriate dimensions. In this case (30) has the form:

6(0)S =
k∑

i=0

Ai6(0)e−Shi +
∫ 0

−h
Ad(�)6(0)eS� d�+ B@ + P;

k∑
i=0

Ci6(0)e−Shi +
∫ 0

−h
Cd(�)6(0)eS� d�+ Q = 0: (32)
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Theorem 3. Under H1 and H2, the linear state-feedback regulator problem (9) ((9) and (31)) is solvable if
and only if there exist n × r and m × r-matrices 6(0) and @ which solve the linear matrix equations (30)
((32)).

In the case of error-feedback regulator problem, the similar result holds under H1, H2 and H3.

5.2. Relation to the operator regulator equations

We consider linear state-feedback regulator problem for the case of (31), where there is no discrete delay
in the controller output and in the equation for the error e, i.e.

Kxt = K0x(t) +
∫ 0

−h
Kd(s)x(t + s) ds; Cxt = C0x(t) +

∫ 0

−h
Cd(s)x(t + s) ds; (33a,b)

where Kd and Cd are piecewise continuous matrix functions and where K0 and C0 are constant matrices. We
show that in this case the linear problem may be formulated in the form of an inEnite-dimensional system,
deEned on a Hilbert space with the bounded input and output operators, and that regulator equations (29) are
equivalent to the operator regulator equations of [3,12].
Eqs. (9) may be represented in the form of an evolution equation (see e.g. [14]) by introducing a Hilbert

space M2 = Rn × L2([ − h; 0];Rn) endowed with the inner product

〈�;  〉 = �0′ 0 +
∫ 0

−h
�1′(�) (�) d�; �= (�0; �1)∈M 2;  = ( 0;  1)∈M 2:

The inEnitesimal generator corresponding to the system ẋ(t) = Axt is characterized by

A(�0; �1) = (A�1; �̇1); (�0; �1)∈D(A);

D(A) = {(�0; �1)∈M 2: �0 = �1(0); �1 ∈W 1;2(−h; 0;Rn)}: (34a,b)

Stabilizability in M 2 is equivalent to H2′ (see e.g. [14]). Note that in the case of nonzero Ci for some i¿ 0,
the linear operator C :M 2 → Rn is unbounded, while (33) is bounded. Eqs. (9), (31), (33) can be written in
the form of the evolution equation (cf. [14])

L̇x(t) =A Lx(t) + (Bu(t); 0) + (Pw(t); 0); ẇ(t) = Sw(t); C Lx(t) + Qw(t) = 0; (35)

where Lx(t) = col{x(t); xt} ∈M 2 and where C Lx(t) is deEned by the right-hand side of (33b).
In [3] the following regulator equations were derived in the case of bounded input and bounded output

operators:

6S =A6 + (B; 0)@ + (P; 0); C6 + Q = 0; (36)

where 6 :Rr → M 2 is a linear bounded operator, Ran(6) ⊂ D(A), @ is an m × r-matrix.

Proposition 2. Eqs. (36) are equivalent to Eqs. (29).

Proof. From (34a) it follows that Eqs. (36) imply (29). Conversely, if 6(�); �∈ [−h; 0] is a solution to (29),
then the bounded continuously di>erentiable matrix-function 6 deEnes a linear bounded operator 6 :Rr → M 2

with 6w∈D(A) ∀w∈Rr and this operator satisEes (36).

5.3. On the solvability of the linear regulator equations

As in [3], we assume that p = m. First we consider the case of (31), (33), where the results of [3]
(on solvability of the regulator equations for inEnite-dimensional linear systems with bounded input and
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output operators) may be applied. Consider the transfer function

G(s) =

(
C0 +

∫ 0

−h
Cd(�)es� d�

)(
sI −

∫ 0

−h
d[,(�)]es�

)−1

B; (37)

which corresponds to the linear system (9a), (9c), (33) with P = 0 and Q = 0. A transmission zero of this
linear system is such 0∈C that detG(0)=0. Note that there is a Enite number of the roots of the characteristic
equation corresponding to the retarded type system ẋ(t)=Axt in the closed right-half plane LC+. From Corollary
V.2 of [3] it follows

Proposition 3. Under H1 and H2 the output regulation of (9) with (31) and (33) via state-feedback of (10a)
is achievable and the regulator equations (36) (and thus (29) and (32)) are solvable for all choice P and
Q if and only if detG(0) �= 0 for all eigenvalues 0 of S.

Consider next more general case of (31) with the general controller output. We assume that the regulator
problem for (9) without delay, i.e. for

ẋ(t) =

(
k∑

i=0

Ai

)
x(t) + Bu(t) + Pw(t); ẇ(t) = Sw(t); e(t) =

(
k∑

i=0

Ci

)
x(t) + Qw(t)

is solvable for all P and Q. This is equivalent (see e.g. [4]) to the following assumption:

A1. det G0(0) �= 0 for all eigenvalues 0 of S, where G0(0) = (
∑k

i=0 Ci)(0I − ∑k
i=0 Ai)−1B.

Under A1 the linear regulator equations

60S =

(
k∑

i=0

Ai

)
60 + B@ + P;

(
k∑

i=0

Ci

)
60 + Q = 0;

where 60 and @ are constant matrices, are solvable for all P and Q. Then, by the implicit function theorem
for all small enough h¿ 0 (32) is solvable. We have:

Proposition 4. Under H1, H2 and A1, the output regulation of (9) with (31) via state-feedback of (10a) is
achievable and the regulator equations (32) are solvable for all small enough h.

6. Example

Consider the forced delayed Van der Pol Equation

ẋ1(t) = −x2(t − h); ẋ2(t) = x1(t − h) + ax2(t − h) + bx32(t − h) + u(t); e(t) = x1 − w1 (38a–c)

with the exosystem[
ẇ1

ẇ2

]
=

[
0 E

−E 0

][
w1

w2

]
; E∈ [0; 22]: (39)

The unforced equation (38) was studied by Murakami [11]. It was shown that for a¿ 0; b¡ 0, while the
system without delay has a stable limit cycle, delayed Van der Pol Equation may exhibit a chaotic behavior.
In the case of a¡ 0; b¡ 0, the equation without delay is asymptotically stable, whereas for h¿ 0 there may
appear a periodic solution. Output regulation of (38), (39) without delay was considered in [2].
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Fig. 1. x1(t)—solid line, w1(t)—dashed line.

Regulator equations for (38), (39) with w = col {w1; w2}; 2= col{21; 22} have the form

@2(w)(�)
@w

[
0 E

−E 0

]
w =

@2(w)(�)
@�

; �∈ [ − h; 0];

@2(w)(0)
@w

[
0 E

−E 0

]
w =

[ −22(w)(−h)

21(w)(−h) + a22(w)(−h) + b23
2(w)(−h) + c(w)

]
;

21(w)(0) = w1: (40a–c)

Substituting (40c) into the Erst row of (40b) we End

22(w)(−h) = −Ew2: (41)

Solving the boundary value problem (40a), (40c) and (41) we obtain

2(w)(�) =

[
cosE� sinE�

E sin(E(h+ �)) −E cos(E(h+ �))

]
w: (42)

Finally, from the second row of (40b) and from (42) we derive

c(w) = (E2 − 1)cosEh · w1 + [(E2 + 1)sinEh+ aE]w2 + bP3w3
2 : (43)

For h= 0 the memoryless controller u(t) = −(3 + a)x2(t) stabilisizes the linearized system (38a,b) (where
b=0). Then for all small enough h¿ 0 this controller is stabilizing for the linearized system (38a,b) and thus
H2 holds. Moreover, the linearized problem (38), (39) is solvable by Proposition 3 since G(s)= e−sh �= 0 for
s= ±Ej. The corresponding state-feedback for nonlinear problem may be chosen as follows:

u= c(w) − (3 + a)[x2(t) − E(sinEh · w1 − cosEh · w2)]: (44)

We made numerical simulations of (38), (44) for a=1; b=−1; E=0:5; w1=cosEt; h=1 and x0=0. Note
that by the stability condition of [6], this state-feedback stabilizes the linearized system. Plots of the output
x1(t) and of the reference signal w1(t) are given in Fig. 1. It is clear that x1(t) asymptotically approaches
w1(t).
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7. Conclusions

The geometric theory of output regulation is generalized to nonlinear systems with delay. It is shown that
the state-feedback and the error-feedback regulator problems are solvable, under the standard assumptions on
stabilizability and detectability of the linearized system, if and only if a set of regulator equations is solvable.
This set consists of partial di>erential and algebraic equations. In the linear case these equations are reduced
to the linear matrix equations.
The issues of the solvability of the nonlinear regulator equations and of approximate solutions to these

equations are currently under study.
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