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Abstract

A new (descriptor) model transformation and a corresponding Lyapunov–Krasovskii functional are introduced for stabil-
ity analysis of systems with delays. Delay-dependent=delay-independent stability criteria are derived for linear retarded and
neutral type systems with discrete and distributed delays. Conditions are given in terms of linear matrix inequalities and
for the 1rst time refer to neutral systems with discrete and distributed delays. The proposed criteria are less conservative
than other existing criteria (for retarded type systems and neutral systems with discrete delays) since they are based on
an equivalent model transformation and since they require bounds for fewer terms. Examples are given that illustrate
advantages of our approach. c© 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

The choice of an appropriate Lyapunov–Krasovskii functional is the key-point for deriving of stability
criteria. It is known that the general form of this functional leads to a complicated system of partial di6er-
ential equations (see e.g. [12]). That is why many authors considered special forms of Lyapunov–Krasovskii
functional and thus derived simpler (but more conservative) su9cient conditions. Among the latter there are
delay-independent and delay-dependent conditions.
Three main transformations of the original system have been used for delay-dependent stability analysis

of retarded type systems [7]. One of these transformations (the second one in [7]—the “neutral type repre-
sentation” of system) has been used also for neutral type systems [9,13]. The conservatism of approaches
based on these transformations is two-fold: the transformed system is not equivalent to the original one (see
[1] concerning the 1rst transformation, while the second transformation requires additional assumptions as
mentioned in [13]) and bounds should be obtained (completion to the squares) for certain terms.
In the present paper, we introduce a new type of Lyapunov–Krasovskii functional inspired by [3] which

is based on equivalent augmented model—a “descriptor form” representation of the system. Our approach
essentially reduces the conservatism of the existing methods.
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2. Delay-dependent stability of linear systems: discrete delays

Let Rn be Euclidean space and C[a; b] be the space of continuous functions �: [a; b]→Rn with the supremum
norm | · |. Denote by xt(�)= x(t + �) (�∈ [− h; 0]).

2.1. Neutral systems

Given the following system:

ẋ(t)−
m∑

i= 0

Diẋ(t − hi)=
m∑

i= 0

Aix(t − hi); x(t)=�(t); t ∈ [− h; 0]; (1)

where x(t)∈Rn; h0 = 0, 0¡hi6 h; i=1; : : : ; m, Ai and Di are constant n × n-matrices, � is a continuously
di6erentiable initial function.
To guarantee that the di6erence operator D :C[ − h; 0]→Rn given by D(xt)= x(t) −∑m

i= 1 Dix(t − hi) is
stable (i.e. di6erence equation Dxt =0 is asymptotically stable) we assume [4,5]:

A1. Let
m∑

i= 1

|Di|¡1;

where | · | is any matrix norm.

Note that for neutral type systems there exist two types of stability results: those corresponding to continuous
initial functions and continuously di6erentiable initial functions. Under A1 both types of stability are equivalent
[2].
We represent (1) in the equivalent descriptor form:

ẋ(t)=y(t); y(t)=
m∑

i= 1

Diy(t − hi) +
m∑

i= 0

Aix(t − hi): (2)

The latter can be represented in the form of descriptor system with discrete and distributed delay in the “fast
variable” y:

ẋ(t)=y(t); 0= − y(t) +
m∑

i= 1

Diy(t − hi) +

(
m∑

i= 0

Ai

)
x(t)−

m∑
i= 1

Ai

∫ t

t−hi
y(s) ds: (3)

Lyapunov–Krasovskii functional for the latter system has the form introduced in [3]:

V (t)= [xT(t) yT(t)]EP

[
x(t)

y(t)

]
+ V1 + V2; (4)

where

E=

[
I 0

0 0

]
; P=

[
P1 0

P2 P3

]
; P1 =PT

1¿0; (5)

V1 =
m∑

i= 1

∫ t

t−hi
yT(s)Qiy(s) ds; Qi¿0 (6)

and

V2 =
m∑

i= 1

∫ 0

−hi

∫ t

t+�
yT(s)Riy(s) ds d�; Ri¿0: (7)
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The 1rst term of (4) corresponds to the descriptor system, V1 corresponds to the delay-independent stability
with respect to the discrete delays and V2—to delay-dependent stability with respect to the distributed delays.
The functional (4) is degenerated (i.e. nonpositive-de1nite) as it is usual for descriptor systems (see e.g.
[14]).
We obtain the following:

Theorem 1. Under A1 (1) is stable if there exist 0¡P1 =PT
1 ; P2; P3; and Qi =QT

i ; Ri =RT
i ; i=1; : : : ; m

that satisfy the following linear matrix inequality (LMI):


(∑m
i= 0A

T
i

)
P2 + PT

2

(∑m
i= 0Ai

)
P1 − PT

2 +
(∑m

i= 0A
T
i

)
P3 h1PT

2A1 · · · hmPT
2Am PT

2D1 · · · PT
2Dm

P1 − P2 + PT
3

(∑m
i= 0Ai

) −P3 − PT
3 +

∑m
i= 1 (Qi + hiRi) h1PT

3A1 · · · hmPT
3Am PT

3D1 · · · PT
3Dm

h1AT
1P2 h1AT

1P3 −h1R1 · · · 0 0 · · · 0

· · · · · · · · · · · ·
· · · · · · 0 0 · · · 0

hmAT
mP2 hmAT

mP3 · · · · −hmRm 0 · · · 0

DT
1P2 DT

1P3 · · · · 0 −Q1 · · · 0

· · · · · · · · · · · ·
DT

mP2 DT
mP3 · · · · 0 0 · · · −Qm




¡0:

(8)

Proof. We represent (1) in the equivalent form (3). Note that

[xT yT]EP

[
x

y

]
= xTP1x

and, hence,

d
dt
[xT(t) yT(t)]EP

[
x(t)

y(t)

]
=2xT(t)P1ẋ(t)= 2[xT(t) yT(t)]PT

[
ẋ(t)

0

]
:

Due to (3) the latter relations imply that

d
dt
[xT(t) yT(t)]EP

[
x(t)

y(t)

]

=2[xT(t) yT(t)]PT




y(t)

−y(t) +
m∑

i= 1
Diy(t − hi) +

(
m∑

i= 0
Ai

)
x(t)−

m∑
i= 1

Ai

∫ t

t−hi
y(s) ds


 : (9)

Di6erentiating (4) in t and applying (9) we obtain

dV (t)
dt

=�T




� PT

[
0

D1

]
· · · PT

[
0

Dm

]

[0 DT
1 ]P −Q1 · · · 0

· · · · · ·
[0 DT

m]P 0 · · · −Qm



�+

m∑
i=1

�i−
m∑
i=1

∫ t

t−hi
yT(s)Riy(s) ds; (10)
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where �, col{x(t); y(t); y(t − h1); : : : ; y(t − hm)} and

�, PT

[
0 I(∑m

i= 0Ai
) −I

]
+

[
0
(∑m

i= 0A
T
i

)
I −I

]
P +

[
0 0

0
∑m

i= 1 (Qi + hiRi)

]
; (11)

�i(t), −2
∫ t

t−hi
[xT(t) yT(t)]PT

[
0

Ai

]
y(s) ds: (12)

For any n× n-matrices Ri¿0

�i6 hi[xT yT]PT

[
0

Ai

]
R−1
i [0 AT

i ]P

[
x

y

]
+
∫ t

t−hi
yT(s)Riy(s) ds: (13)

Eqs. (10) and (13) yield (by Schur complements) that dV (x; t)=dt¡0 if the following LMI holds


� h1PT

[
0

A1

]
· · · hmPT

[
0

Am

]
PT

[
0

D1

]
· · · PT

[
0

Dm

]

h1[0 AT
1 ]P −h1R1 · · · 0 0 · · · 0

· · · · · · · · · · ·
hm[0 AT

m]P 0 · · · −hmRm 0 · · · 0

[0 DT
1 ]P 0 · · · 0 −Q1 · · · 0

· · · · · · · · · · ·
[0 DT

m]P 0 · · · 0 0 · · · −Qm



¡ 0; (14)

where � is given by (11). LMI (8) results from the latter LMI by multiplying the block matrices.
Functional V of (4) is degenerated and it has a negative derivative. This implies asymptotic stability of (1)

in the space of continuous functions and thus, under A1, in the space of continuously di6erentiable functions
[2].

Remark 1. Conservatism of our method is caused by bounding (13). We are bounding however fewer terms
than in the other existing criteria. Thus, there are m2 more terms of this kind when the 1rst transformation
of [7] is used (in the case of retarded system with Di =0).

Remark 2. Criterion (8) is delay-independent with respect to delays in the di6erence operator D. As we
mentioned above A1 guarantees delay-independent stability of D. The latter is necessary for robustness of
stability of (1) with respect to small delays [10,5].

Remark 3. Note that (8) yields the following inequality:

−P3 − PT

3 +
∑m

i= 1Qi PT
3D1 · · · PT

3Dm

DT
1P3 −Q1 · · · 0

· · · · · ·
DT

mP3 0 · · · −Qm


¡0: (15)

If there exists a solution to (8) then there exists a solution to (15). If moreover P3 =PT
3 , then P3¿0 and the

“fast system”

ẏ(t)= − y(t) +
m∑

i= 1

Diy(t − gi) (16)

is asymptotically stable for all gi¿0 (see e.g. [6]). Note also that (15) implies by Schur complements that

−P3 − PT
3 +

m∑
i= 1

Qi +
m∑

i= 1

PT
3DiQ−1

i DT
i P3¡0: (17)
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Remark 4. In the scalar case (17) implies A1 and therefore Theorem 1 holds without assumption A1. Really,
since

Qi + P2
3D

2
i =Qi¿ 2P3|Di|:

We have from (17)

−2P3

(
1−

m∑
i= 1

|Di|
)
6 − 2P3 +

m∑
i= 1

(Qi + P2
3D

2
i =Qi)¡0:

The latter yields A1 since P3¿0.

Remark 5. In the case of a single delay in the di6erence operator Dxt = x(t) − D1x(t − h1) assumption A1
should be changed to the following standard assumption for neutral systems ([4,11,13,15]):

A1′. Assume that all eigenvalues of D1 are inside of unit circle.

Under A1′ similarly to [2] the stability in the space of continuous and in the space of continuously di6er-
entiable functions is equivalent. As in the scalar case (17) implies A1′ and therefore Theorem 1 holds without
assumption A1. Really, multiplying (17) by y∈Rn from the right and by yT from the left we have

−2|yTP3y|+ |Q1=2
1 y|2 + |Q−1=2

1 DT
1P3y|2¡0:

Since

|Q1=2
1 y|2 + |Q−1=2

1 DT
1P3y|2¿ 2|yTDT

1P3y|:
We obtain from the previous inequality that

−2|yTP3y|+ 2|yTDT
1P3y|¡0:

Choose y to be an eigenvector of D1 that corresponds to the eigenvalue !. From the latter inequality we
conclude that

−|yTP3y|+ |!||yTP3y|¡0

and thus |!|¡1.

Remark 6. Comparing our approach with the “neutral type representation” of [7,9,13] in the form

d
dt

[
x(t)−

m∑
i= 1

Dix(t − hi) +
m∑

i= 1

Ai

∫ t

t−hi
x(s) ds

]
=

m∑
i= 0

Aix(t);

we see that there is the same number of terms in the bounding of the type (13), though these terms are di6erent.
Our advantage is that unlike [7,9,13] we have no additional assumption on stability of ND :C[ − h; 0]→Rn

given by

ND(xt)= x(t)−
m∑

i= 1

Dix(t − hi) +
m∑

i= 1

Ai

∫ t

t−hi
x(s) ds;

which is di9cult to verify. Su9cient condition for stability of ND is as follows:
m∑

i= 1

|Di|+
m∑

i= 1

hi|Ai|¡1;

but the latter may lead to conservative results (see Example 2 below).
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2.2. Retarded type systems

Given the system

ẋ(t)=
m∑

i= 0

Aix(t − hi); (18)

we represent it in the equivalent descriptor form:

ẋ(t)=y(t); y(t)=

(
m∑

i= 0

Ai

)
x(t)−

m∑
i= 1

Ai

∫ t

t−hi
y(s) ds: (19)

Since the fast variable y has no discrete delays, the Lyapunov–Krasovskii functional has the form (4), where
V1 = 0, i.e. Qi =0; i=1; : : : ; m. Theorem 1 implies the following

Corollary 1. Eq. (18) is asymptotically stable if there exist 0¡P1 =PT
1 ; P2; P3; and Ri =RT

i ; i=1; : : : ; m that
satisfy the following LMI:



(∑m
i= 0A

T
i

)
P2 + PT

2

(∑m
i= 0Ai

)
P1 − PT

2 +
(∑m

i= 0A
T
i

)
P3 h1PT

2A1 · · · hmPT
2Am

P1 − P2 + PT
3

(∑m
i= 0Ai

) −P3 − PT
3 +

∑m
i= 1hiRi h1PT

3A1 · · · hmPT
3Am

h1AT
1P2 h1AT

1P3 −h1R1 · · · 0

· · · · · · ·
· · · · · · 0

hmAT
mP2 hmAT

mP3 · · · · −hmRm



¡0: (20)

2.3. Examples

We applied our criteria to examples considered in [7–9] and [13]. We solved LMIs by using LMI Toolbox
of Matlab. None of the results we obtained for these examples were more conservative than the existing
results and in some examples our results were less conservative. Two of these examples (one for retarded
and one for neutral type cases) are given below.

Example 1 (Kolmanovskii and Richard [7] (retarded type case)). Consider the system

ẋ(t)=A0x(t) + A1x(t − h1)

with

A0 =

[
−1 1=2

−1=2 −1

]
; A1 =

[
−2 2

−2 −2

]
:

This is Example 2:2 of [7] with "=1; #= 1
2 ; $= %=2: In [7] it was found that the second transformation

leads to the less restrictive (than the other two transformations) condition: h1¡0:0369: Our Corollary 1
improves this result and our condition is h16 0:271. Thus for h1 = 0:271 we obtain the following solution to
LMI (20):

P1 =

[
94:1609 0:1653

0:1653 94:0469

]
; P2 =

[
93:5589 0:1872

0:1872 94:6599

]
;

P3 =

[
18:5170 −0:0930

−0:0930 18:4880

]
; R1 =

[
68:2748 0:0349

0:0349 68:1810

]
:

Note that applying LMI conditions of [8] and [13] we obtained h16 0:268 and h16 0:271, respectively.
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Example 2 (Lien et al. [9] (neutral type case)). Consider the following system:

ẋ(t)− D1ẋ(t − h1)=A0x1(t) + A1x(t − h1)

with

A0 =

[
−0:9 0:2

0:1 −0:9

]
; A1 =

[
−1:1 −0:2

−0:1 −1:1

]
; D1 =

[
−0:2 0

0:2 −0:1

]
: (21)

The stability condition of [9] is h16 0:3. We obtain h16 0:74 and for h1 = 0:74 we have the following
solution to (8):

P1 =

[
7:6203 2:6912

2:6912 7:4063

]
; P2 =

[
0:7783 0:0259

0:0259 0:7739

]
; P3 =

[
3:8011 1:3542

1:3542 3:6974

]
;

Q1 =

[
0:6499 −0:1261

−0:1261 0:4085

]
; R1 =

[
4:2419 2:0425

2:0425 4:4669

]
:

By applying LMI of [13] we 1nd that LMI has a solution for h16 0:71 (which is still less than 0.74), but
the stability of ND should be veri1ed. Su9cient condition for the latter |D1| + h1|A1|¡1 (where similarly to
[9] spectral norm is taken) leads to more restrictive condition h16 0:61.

3. Delay-dependent/delay-independent stability: distributed delays

3.1. Main result

We generalize our results to systems with distributed delays:

ẋ(t)−
k∑

i= 1

Diẋ(t − gi)=
m∑

i= 0

Aix(t − hi) +
m∑

i= 1

Ai0

∫ t

t−'i
x(s) ds+

k∑
i= 1

Fix(t − gi); (22)

where gi¿ 0. Similarly to [6,7], we are looking for stability criterion which is delay-dependent with respect
to one part of delays (hi and the distributed delays over [− 'i; 0]), and delay-independent with respect to the
other delays (gi). The descriptor form representation for this system has the form:

ẋ(t)=y(t); y(t) =
k∑

i= 1

Diy(t − gi) +

(
m∑

i= 0

Ai

)
x(t)−

m∑
i= 1

Ai

∫ t

t−hi
y(s) ds

+
m∑

i= 1

Ai0

∫ t

t−'i
x(s) ds+

k∑
i= 1

Fix(t − gi): (23)

The corresponding (degenerate) Lyapunov–Krasovskii functional is given by

V (t)= [xT(t) yT(t)]EP

[
x(t)

y(t)

]
+ V1 + V2 + V3 + V4; P=

[
P1 0

P2 P3

]
; P1 =PT

1¿0; (24)

where V2 is de1ned by (7), and where

V1 =
k∑

i= 1

∫ t

t−gi
yT(s)Qiy(s) ds; V3 =

k∑
i= 1

∫ t

t−gi
xT(s)Uix(s) ds; Qi¿0; Ui¿0;

V4 =
m∑

i= 1

∫ 0

−'i

∫ t

t+�
xT(s)Ri0x(s) ds d�; Ri0¿0: (25)
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The form of (24) (similarly to (4)) corresponds to discrete-delay independent=distributed-delay dependent
conditions for descriptor system (23). We obtain the following result:

Theorem 2. Under A1 (22) is stable for all gi¿ 0; i=1; : : : ; k if there exist 0¡P1 =PT
1 ; P2; P3; Qi =QT

i ;
Ui =UT

i ; i=1; : : : ; k and Rj =RT
j ; Rj0 =RT

j0; j=1; : : : ; m that satisfy the following LMI:




+ P1 − PT
2 +

(∑m
i= 0A

T
i

)
P3 h1PT

2A1 · · · hmPT
2Am

P1 − P2 + PT
3

(∑m
i= 0Ai

) −P3 − PT
3 +

∑k
i= 1Qi +

∑m
i= 1hiRi h1PT

3A1 · · · hmPT
3Am

h1AT
1P2 h1AT

1P3 −h1R1 · · · 0

· · · · · · ·
hmAT

mP2 hmAT
mP3 · · · · −hmRm

DT
1P2 DT

1P3 · · · · 0

· · · · · · ·
DT

k P2 DT
k P3 · · · · 0

'1AT
10P2 '1AT

10P3 0 · · · 0

· · · · · · ·
'mAT

m0P2 'mAT
m0P3 0 · · · 0

FT
1 P2 FT

1 P3 0 · · · 0

· · · · · · ·
FT
k P2 FT

k P3 0 · · · 0

PT
2D1 · · · PT

2Dk '1PT
2A10 · · · 'mPT

2Am0 PT
2F1 · · · PT

2Fm

PT
3D1 · · · PT

3Dk '1PT
3A10 · · · 'mPT

3Am0 PT
3F1 · · · PT

3Fm

0 · · · 0 0 · · · 0 0 · · · 0

· · · · · · · · · · · · · · ·
0 · · · 0 0 · · · 0 0 · · · 0

−Q1 · · · 0 0 :: 0 0 · · · 0

· · · · · · · · · · · · · · ·
0 · · · −Qk 0 · · · 0 0 · · · 0

0 · · · 0 −'1R10 · · · 0 0 · · · 0

· · · · · · · · · · · · · · ·
0 · · · 0 0 · · · −'mRm0 0 · · · 0

0 · · · 0 0 · · · 0 −U1 · · · 0

· · · · · · · · · · · · · · ·
0 · · · 0 0 · · · 0 0 · · · −Uk




¡0: (26)

where

+=

(
m∑

i= 0

AT
i

)
P2 + PT

2

(
m∑

i= 0

Ai

)
+

k∑
i= 1

Ui +
m∑

i= 1

'iRi0:
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Proof. Similar to the proof of Theorem 1. Note that in this case we have

dV (t)
dt

= �T




�1 PT

[
0

D1

]
· · · PT

[
0

Dk

]
PT

[
0

F1

]
· · · PT

[
0

Fk

]

[0 DT
1 ]P −Q1 · · · 0 · · · 0

· · · · · · · · · · ·
[0 DT

k ]P 0 · · · −Qk 0 · · · 0

[0 FT
1 ]P 0 · · · 0 −U1 · · · 0

· · · · · · · · · · ·
[0 FT

k ]P 0 · · · 0 0 · · · −Uk



�

+
m∑
i=1

�i +
m∑
i=1

�i0 −
m∑
i=1

∫ t

t−hi
yT(s)Riy(s) ds−

m∑
i=1

∫ t

t−'i
xT(s)Ri0x(s) ds; (27)

where �, col{x(t); y(t); y(t − g1); : : : ; y(t − gk); x(t − g1); : : : ; x(t − gk)}; �i is given by (12) and

�1 , PT

[
0 I(∑m

i= 0Ai
) −I

]
+

[
0
(∑m

i= 0A
T
i

)
I −I

]
P+

[∑k
i= 1Ui +

∑m
i= 1'iRi0 0

0
∑k

i= 1Qi +
∑m

i= 1hiRi

]
;

�i0(t), −2
∫ t

t−hi
[xT(t) yT(t)]PT

[
0

Ai0

]
x(s) ds:

3.2. Delay-independent stability

Consider the system

ẋ(t)−
k∑

i= 1

Diẋ(t − gi)=A0x(t) +
k∑

i= 1

Fix(t − gi): (28)

Delay-independent stability conditions can be derived by applying Lyapunov–Krasovskii functional of (24),
where V2 =V4 = 0. Theorem 2 implies the following delay-independent stability criterion:

Corollary 2. Under A1 (28) is stable for all gi¿ 0; i=1; : : : ; k if there exist 0¡P1 =PT
1 ; P2; P3; and

Qi =QT
i ; Ui =UT

i ; i=1; : : : ; k that satisfy the following LMI:




AT
0P2 + PT

2A0 +
∑k

i= 1Ui P1 − PT
2 + AT

0P3 PT
2F1 · · · PT

2Fk PT
2D1 · · · PT

2Dk

P1 − P2 + PT
3A0 −P3 − PT

3 +
∑k

i= 1Qi PT
3F1 · · · PT

3Fk PT
3D1 · · · PT

3Dk

FT
1 P2 FT

1 P3 −U1 · · · 0 0 · · · 0

· · · · · · · · · · · ·
· · · · · · 0 0 · · · 0

FT
k P2 FT

k P3 · · · · −Uk 0 · · · 0

DT
1P2 DT

1P3 · · · · 0 −Q1 · · · 0

· · · · · · · · · · · ·
DT

k P2 DT
k P3 · · · · 0 0 · · · −Qk




¡0: (29)
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Example 3. Consider a two-dimensional system

ẋ(t)− D1ẋ(t − g1)=A0 x(t) + F1x(t − g1) + A10

∫ t

t−'1
x(s) ds (30)

with

A0 =

[
−a1 0

0 −a2

]
; F1 =

[
b1 b2

−b2 b1

]
; A10 =

[
c1 c2

−c2 c1

]
:

For D1 = 0 this is Example 4:1 from [7]. From results of [7] it follows that for a1 = a2 = 1:5; b1 = b2 = 1 and
c1 = 1; c2 = 0:5 the system (30) is stable for all delays g1 and for '16 0:03. Our Theorem 2 leads to less
restrictive condition: '16 0:07. For D1 = 0 and

a1 = 2; a2 = 15; b1 = 1; b2 = 3; c1 = 1; c2 = 0:5 (31)

stability conditions of [7] do not hold (even for '1 = 0). For this case by Theorem 2 we 1nd that (30) is
stable for all g1 and '16 1:1.
Choosing D1 given by (21) and the other parameters given by (31) we obtain that (30) is stable for all g1

and '16 1. Thus for '=1 we obtain the following solution to (26):

P1 =

[
272:1194 47:1695

47:1695 254:1802

]
; P2 =

[
270:1438 41:3581

41:3581 192:5597

]
; P3 =

[
67:5927 −4:2914

−4:2914 15:8292

]
;

U1 =

[
295:8 498:8

498:8 3101:4

]
; R10 =

[
276:4176 171:1430

171:1430 464:0256

]
; Q1 =

[
62:7484 3:8686

3:8686 9:0791

]
:

4. Conclusions

New Lyapunov–Krasovskii functionals have been introduced for stability of linear retarded and neutral
type systems with discrete and distributed delays. These degenerate functionals are based on equivalent de-
scriptor form of the original system and lead to new results (for neutral systems with distributed delays)
and to results that are less conservative than existing results for both, retarded and neutral type systems.
Delay-dependent=delay-independent conditions have been obtained in terms of LMI. The new model transfor-
mation and functionals can be applied further to H∞ control of linear systems with delay and to analysis and
synthesis of some nonlinear time-delay systems. This work is currently in progress.
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