
qThe original version of this paper was presented at the IFAC
Conference on System Structure and Control, July 1998, Nantes,
France. This paper was recommended for publication in revised form
by Associate Editor K. Uchida under the direction of Editor T. Basar.

*Corresponding author. Tel.: #972-3640-5313; fax: #972-3640-
7095.

E-mail address: emilia@eng.tau.ac.il (E. Fridman).

Automatica 36 (2000) 1181}1188

Brief Paper

Robust H
=

minimum entropy static output-feedback control
of singularly perturbed systemsq

E. Fridman*, U. Shaked
Department of Electrical Engineering Systems, Tel Aviv University, Ramat Aviv 69978, Tel Aviv, Israel

Received 29 June 1998; revised 26 April 1999; received in "nal form 8 November 1999

Abstract

The problem of designing static output-feedback e-independent controllers for linear time-invariant singularly perturbed systems is
considered. The controller is required to satisfy a prescribed H

=
-norm bound and to minimize the closed-loop entropy (at s"R) for

all small enough e. The optimal controller gain is designed on the basis of generalized Riccati and Lyapunov equations with symmetric
block (2,2), that are coupled via a projection. This gain is either purely fast, purely slow or a composite one, depending on the structure
of the output coupling matrix. A well-posed problem with a "nite value of entropy for eP0 is obtained by assuming that the entropy
of the fast subproblem is zero or by scaling the matrices of the system. In the "rst case the optimal controller is the one that minimizes
the entropy of the corresponding descriptor system. ( 2000 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Robust state-feedback and dynamic output-feedback
H

=
control for singularly perturbed systems have been

considered by Khalil and Chen (1992), Pan and Basar
(1993, 1994), Dragan (1993), Tuan and Hosoe (1997) in
the standard case, and by Xu and Mizukami (1996), Tan,
Leung and Tu (1998) in the non-standard case (informa-
tion on non-standard singularly perturbed systems is
found in Khalil, 1989). In the present paper we investi-
gate the problem of achieving minimum entropy by static
output-feedback e-independent H

=
controller for non-

standard singularly perturbed systems. We denote this
controller as the &robust optimal controller'. This con-
troller should minimize, for all small enough values of e,
the closed-loop entropy while ensuring a prescribed
H

=
-norm bound. For each e'0, the minimizing con-

troller gain can be designed by solving a coupled pair of
e-dependent Riccati and Lyapunov equations (Yaesh

& Shaked, 1997). We shall show that the robust optimal
controller is the formal "rst-order approximation to the
above minimizing controller. Unlike the conventional
approaches we shall prove the optimality of the obtained
robust controller directly without considering its close-
ness to the optimal e-dependent one (the proof that relies
on the closeness arguments requires additional restrictive
assumptions).

The present paper is organized as follows. In the next
section we formulate the problem and the known results
from (Yaesh & Shaked, 1997). In Sections 3.1}3.4 we
derive e-independent generalized Riccati and Lyapunov
equations coupled via a projection for design of robust
optimal controller. This controller leads to unbounded
value of entropy for eP0. A well-posed problem with
a "nite value of entropy for eP0 is considered in
Sections 3.5 and 3.6. Numerical example is given in
Section 3.7. The paper ends with Conclusions.

Notations. We denote by ( ) )@ a transpose of a matrix, by
DD ) DD

=
the H

=
-norm of the transfer function.

2. Problem formulation

Consider the following linear time-invariant system

Eex5 "Ax#B
1
w#B

2
u, (1a)
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y"C
2
x, (1b)

z"C
1
x#D

12
u, (1c)

where

x"C
x
1

x
2
D, Ee"C

I
n1

0

0 eI
n2
D,

A"C
A

11
A

12
A

21
A

22
D, B

i
"C

B
i1

B
i2
D,

C
i
"[C

i1
C

i2
], i"1, 2, x

1
3Rn1 , x

2
3Rn2 , and where

e is a small positive scalar parameter. We assume that
C

2
is of full row rank, and D@

12
[D

12
C

1
]"[R 0], R'0.

We note that A
22

may be singular.
Denoting by ¹

zw
the transference from the exogenous

input w to the objective vector z, for a given scalar c'0,
the problem is to "nd, of all e-independent static output-
feedback controllers u"Ky that satisfy, for all small
enough e,

DD¹
z,w

DD
=
(c, (2)

the one that minimizes, for small enough e, the entropy of
the closed-loop transfer-function matrix

¹
z,w

(s)"¹K
z,w

(s)"(C
1
#D

12
KC

2
)

[sEe!A!B
2
KC

2
]~1B

1
, (3)

where the entropy is given by

E(¹
z,w

, c)O!

c2
2pP

=

~=

ln det[I!c~2¹F
z,w

( jw)¹
z,w

( jw)]dw,

(4)

and where ¹F(s)"¹@(!s). By minimizing the entropy,
we push ¹

z,w
away from the upper bound c in the

magnitude Bode plot. We are thus looking for robust
optimal controller gain KH for which there is e

0
'0 such

that for all e3(0, e
0
] (2) is satis"ed and

KH"argmin
K

E(¹
z,w

, c). (5)

We begin by denoting the following:

Ae"E~1e A, B
ie"E~1e B

i
, AI "A#B

2
KC

2
,

AI e"E~1e AI , CI "C
1
#D

12
KC

2
. (6)

It is known (Doyle, Glover, Khargonekar & Francis,
1989) that for each e'0 the matrix AI e is stable and the
transfer-function matrix ¹

z,w
"CI (sI!AI e )~1B

1e satis-
"es (2) i! there exists a matrix Xe50 that satis"es the
following Riccati equation:

AI @eXe#XeAI e#c~2XeB1eB@
1eXe#CI @CI "0, (7)

so that AI e#c~2B
1eB@

1eXe is asymptotically stable. If
such Xe exists, then E(¹

z,w
, c) is given by Stoorvogel

(1991)

E(¹
z,w

, c)"¹rMB@
1eXeB1eN. (8)

Considering next the following Lyapunov (with re-
spect to >e) equation

(Ae#B
2eKC

2
#c~2B

1eB@
1eXe)>e

#>e(A@e#C@
2
K@B@

2e#c~2XeB1eB@
1e)#B

1eB@
1e"0.

(9)

It has been shown (Yaesh & Shaked, 1997) that for each
e'0, the following gain matrix:

K"Ke"!R~1B@
2eXe>eC@

2
(C

2
>eC@

2
)~1, (10)

solves the H
=

minimum entropy static output-feedback
control problem. Denote

le">eC@
2
(C

2
>eC@

2
)~1C

2
"Cs

2
C

2
, leM"I!le , (11)

where Cs
2

is the right inverse of C
2

(i.e. C
2
Cs

2
"I). It has

been also found that l2e"le , KC
2
"!R~1B@

2eXele ,
and that (7) can be written in the form

A@eXe#XeAe#c~2XeB1eB@
1eXe

#C@
1
C

1
!XeB2eR~1B@

2eXe
#l@eMXeB2eR~1B@

2eXeleM"0. (12)

The above are summarized in the following lemma
(Yaesh & Shaked, 1997):

Lemma 2.1. For each e'0, if there exist Xe ,>e and
Ke that satisfy (9)}(12) with the following properties:

(a) Xe50, C
2
>eC@

2
'0 and Ae#c~2B

1eB@
1eXe

!B
2eR~1B@

2eXele is stable, then (2) holds and the gain
Ke achieves (5).

Note that for leM"0 (this corresponds to the state-
feedback case) (12) and (9) are decoupled Riccati and
Lyapunov equations. For leMO0 (9)}(12) constitutes
a system of modi"ed Riccati and Lyapunov equations
coupled via projection that are highly nonlinear in Xe ,>e
and Ke . For each e, this system has been successfully
solved in (Yaesh & Shaked, 1997) by applying the
homotopy method (Richter, Hodel & Pruet, 1993).

3. Main results

3.1. System transformation (diagonalization of C
2

)

Since C
2

is of full row rank, we assume, without loss of
generality, that C

2
possesses one of the following three

forms:

(i) C
2
"[CM 21 0

CM 3 CM 22
], where CM

2i
, i"1,2 are of full row rank,

(ii) C
2
"[CM

3
CM

22
], where CM

22
is of full row rank,

(iii) C
2
"[CM

21
0], where CM

21
is of full row rank.
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Cases (ii) and (iii) are degenerate cases of (i), where (ii)
corresponds to CM

21
with zero number of rows, and (iii)

corresponds to CM
22

with zero number of rows. Cases (ii)
and (iii) physically mean that linear independent combi-
nations of the fast or the slow variables are, respectively,
observed.

Let C
2

be in the form of (i) and let ¸ be a matrix that
transforms C

2
to block-diagonal form CM

2
as follows:

CM
2
"C

CM
21

0

0 CM
22
D"C

CM
21

0

CM
3

CM
22
DC

I 0

¸ ID. (13)

We introduce the following nonsingular transformation
of the state variables:

x6
1
"x

1
, x6

2
"x

2
!¸x

1
, x6 "colMx6

1
,x6

2
N. (14)

Then, from (1a)}(1c), (14) and (13), we obtain the follow-
ing system for x6 :

x65 "AM ex6 #BM
1ew#BM

2eu, (15a)

y"CM
2
x6 , (15b)

z"CM
1
x6 #D

12
u, (15c)

where AM
i1
"A

i1
#A

i2
¸, i"1, 2 and

AM e"C
AM

11
A

12
e~1AM

21
!¸AM

11
e~1A

22
!¸A

12
D,

BM
ie"C

B
i1

e~1B
i2
!¸B

i1
D,

CM
1
"[CM

11
CM

12
]"C

1C
I 0

¸ ID.
Since the closed-loop transfer-function matrix ¹

zw
of

the new system of (15a)}(15c) is identical to the one
de"ned by (3), the robust optimal control law u"Ky for
the H

=
minimum entropy control of (15a)}(15c) is also

optimal for the original system. For the system of
(15a)}(15c) the optimal controller is derived by solving
the coupled equations of (12), (9) and (10), where

Ae"AM e , B
ie"BM

ie , C
i
"CM

i
, i"1,2. (16)

3.2. Generalized e-independent Riccati and Lyapunov
equations

Denote

E"C
I
n1

0

0 0D, (17a)

AM "AC
I 0

¸ ID, (17b)

AI "[AM #B
2
KCM

2
], (17c)

AI "C
AI

11
AI

12
AI

21
AI

22
D, (17d)

CI "[CM
1
#D

12
KCM

2
]"[CI

1
CI

2
]. (17e)

With Riccati and Lyapunov equations (7) and (9) with
(16) we associate (similarly to Tan et al., 1998) the follow-
ing generalized Riccati and Lyapunov equations:

AI @X#X@AI #c~2X@B
1
B@
1
X#CI @CI "0, (18)

(AM #B
2
KCM

2
#c~2B

1
B@
1
X)>

#>@(AM @#CM @
2
K@B@

2
#c~2X@B

1
B@

1
)#B

1
B@
1
"0, (19)

where

X"C
X(0)

1
0

X@
2
(0) X(0)

3
D, (20a)

>"C
>(0)

1
0

>@
2
(0) >(0)

3
D, (20b)

K"[K(0)
1

K(0)
2

], (20c)

X(0)
1
"X@

1
(0)50, (20d)

X(0)
3
"X@

3
(0)50, (20e)

>(0)
1
">@

1
(0), (20f )

>(0)
3
">@

3
(0). (20g)

Consider

K"!R~1B@
2
X>CM @

2
(CM

2
>CM @

2
)~1. (21)

Denoting

l">CM @
2
(CM

2
>CM @

2
)~1CM

2
, l

M
"I!l. (22)

we "nd that l2"l and (18) can be written in the form

AM @X#X@AM #c~2X@B
1
B@
1
X#CM @

1
CM

1

!X@B
2
R~1B@

2
X#l@

M
X@B

2
R~1B@

2
Xl

M
"0. (23)

3.3. Fast and slow subsystems

Expanding (21) and noting that

(CM
2
>CM @

2
)~1"C

(CM
21
>(0)

1
CM @

21
)~1 0

M@ (CM
22
>(0)

3
CM @

22
)~1D,

(24a)

M"!(CM
21
>(0)

1
CM @

21
)~1CM

21
>(0)

2
CM @

22
(CM

22
>(0)

3
CM @

22
)~1,

(24b)

we "nd

K(0)
1
"!MR~1[B@

21
X(0)

1
>(0)

1
#B@

22
(X@

2
(0)>(0)

1

#X(0)
3
>@

2
(0))]#K(0)

2
CM

22
>@

2
(0)NCM @

21
(CM

21
>(0)

1
CM @

21
)~1,

(25)

K(0)
2
"!R~1B@

22
X(0)

3
>(0)

3
CM @

22
(CM

22
>(0)

3
CM @

22
)~1. (26)
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From (18) and (19) we obtain the following fast equa-
tions (Tan et al., 1998):

AI @
22

X(0)
3
#X(0)

3
AI

22
#CI @

2
CI

2
#c~2X(0)

3
B
12

B@
12

X(0)
3
"0,

(27a)

F
22
>(0)

3
#>(0)

3
F@

22
#B

12
B@

12
"0. (27b)

where

F
22

"A
22

#c~2B
12

B@
12

X(0)
3
#B

22
K(0)

2
CM

22
.

We write (27a) in the form

A@
22

X(0)
3
#X(0)

3
A

22
#c~2X(0)

3
B

12
B@

12
X(0)

3

!X(0)
3

B
22

R~1B@
22

X(0)
3
#l@

fM
X(0)

3
B
22

R~1B@
22

X(0)
3

l
fM

#CM @
12

CM
12

"0,

l
f
">(0)

3
CM @

22
(CM

22
>(0)

3
CM @

22
)~1CM

22
, l

fM
"I!l

f
. (28)

Assume that

A1. The system of coupled equations (19), (21)}(23) has
a solution X,>,K of (20) with the following properties:

(b) X(0)
3
50, CM

22
>(0)

3
CM @

22
'0 and F

22
, where K(0)

2
CM

22
"!R~1B@

22
X(0)

3
l
fM

, is stable,
(c) X(0)

1
50, CM

21
>(0)

1
CM @

21
'0 and [E, AM #c~2B

1
B@
1
X

!B
2
R~1B@

2
Xl

M
] is stable.

Remark 3.1. The second property of (b) implies that
B
12

O0 (otherwise >(0)
3
"0).

The system of coupled equations (26), (27b) and (28)
provides a solution to the H

=
mininimum entropy static

output-feedback control problem for the fast subsystem:

x65
2
"A

22
x6
2
#B

12
w#B

22
u, y

2
"CM

22
x6
2
,

z
2
"CM

12
x6
2
#D

12
u. (29)

The optimal controller for (29) u
f
"K(0)

2
CM

22
x6
2

leads to
the stable matrix AI

22
and to the minimum value of

entropy

E
f
"¹rMB@

12
X(0)

3
B

12
N. (30)

The slow subsystem is the descriptor one

Ex65 "AM x6 #B
1
w#B

2
u, y"CM

2
x6 ,

z"CM
1
x6 #D

12
u. (31)

It will be shown in Section 3.5 that the system of
generalized Riccati and Lyapunov equations coupled
by projection (19), (21)}(23) provide the optimal solu-
tion to (31), if E

f
"0.

3.4. Robust optimal controller design

We now are in a position to state our main result
* the design of e-independent robust optimal controller
gain KH:

Theorem 3.1. Given c'0, for C
2

of the forms (i)}(iii) we
have correspondingly the following results:

(i) Under A1 KH"K is the robust optimal gain. The
robust optimal controller uH"KHC

2
x (uH"KHCM

2
x6 )

leads (1) (15) for all small enough values of e, to the
H

=
-norm bound of c and to the following minimum value

of entropy:

EH"e~1E
f
#¹rMB@

11
X(0)

1
B
11

#2B@
12

X@
2
(0)B

11

#B@
12

X(1)
3

B
12

N#O(e), (32)

where E
f

is dexned in (30), and X(1)
3

is a solution of the
following Lyapunov equation:

F@
22

X(1)
3
#X(1)

3
F
22

#AI @
12

X(0)
2
#X@

2
(0)AI

12

#c~2X(0)
3

B
12

B@
11

X(0)
2
#c~2X@

2
(0)B

11
B@
12

X(0)
3
"0.

(33)

(ii) Assume that there exists a solution to the fast
equations (26), (27b) and (28), with the properties of (b),
and there exists a solution to the generalized Riccati equa-
tion (18), where K"K(0)

2
of (26), such that

[E,AI #c~2B
1
B@

1
X] is stable. Then, KH"K(0)

2
and the

robust optimal controller uH"K(0)
2

[CM
3
x
1
#CM

22
x
2
]

(uH"K(0)
2

CM
22

x6
2
) leads (1) (15), for all small enough e, to

the H
=

norm bound c and to the minimum value of entropy
given by (32).

(iii) Assume that (27a) with AI
22

"A
22

has a solution
X(0)

3
50 such that A

22
#c~2B

12
B@

12
X(0)

3
is stable and

assume that there exists a solution to the Eqs. (19), (21)}(23)
with the properties of (c). Then, KH"K(0)

1
and the slow

controller uH"K(0)
1

CM
21

x
1

leads (1) to the H
=

-norm bound
of c and to the minimum entropy of (32).

Proof. Similarly to Yaesh and Shaked (1997), minimizing
(8) with respect to K can be performed by forming the
following Lagrangian:

L(K,Xe ,>e )O¹rMBM @
1eXeBM 1e#[AI @eXe#XeAI e

#XeBM 1eBM @1eXe#CM @
1
CM

1

#CM @
2
K@RKCM

2
]>eN. (34)

The stationarity of (8) with respect to Xe requires that
LL/LXe"0 that implies (9). As in Yaesh and Shaked
(1997) we obtain that the part of L that depends on K is
given by ¹rM¹

3
N, where

¹
3
"[K(CM

2
>eCM @2)1@2#R~1BM @

2eXe>eCM @2(CM
2
>eCM @2)~1@2]@

R[K(CM
2
>eCM @2 )1@2#R~1BM @

2eXe>eCM @2(CM
2
>eCM @2)~1@2].

Note that ¹
3
50. Since the generalized Riccati equa-

tions (18) has a stabilizing solutions (in the sense of Tan
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et al., 1998), then by implicit function theorem the full-
order Riccati equation (7) with K"[K(0)

1
K(0)

2
] has

a stabilizing solution and by standard arguments

Xe"C
X(0)

1
#O(e) eX(0)

2
#O(e2)

eX@(0)
2
#O(e2) eX(0)

3
#e2X(1)

3
#O(e3)D, (35a)

>e"C
>(0)

1
#O(e) >(0)

2
#O(e)

>@(0)
2

#O(e) e~1>(0)
3
#O(1)D. (35b)

Substituting (35b) in CM
2
>eCM @2 we obtain that for all

small enough e the matrix CM
2
>eCM @2 is invertible and

(CM
2
>eCM @2)~1

"C
(CM

21
>(0)

1
CM @

21
)~1#O(e) eM#O(e2)

eM@#O(e2) e(CM
22
>(0)

3
CM @

22
)~1#O(e2)D,

(36)

where M is given by (24b). In cases (ii) and (iii) we "nd,
that CM

2
>eCM @2 is invertible and

(CM
2
>eCM @2)~1"e(CM

22
>(0)

3
CM @

22
)~1#O(e2)

and

(CM
2
>eCM @2)~1"(CM

21
>(0)

1
CM @

21
)~1#O(e),

correspondingly. We obtain that KH"K of (21) leads
(15) (and thus (1)) to H

=
-norm bound of c and minimizes

to O(e) the value of ¹rM¹
3
N, for all small enough e.

Expanding (8) in the powers of e and applying (35) we
obtain (32). h

We summarize in the algorithm the design of the robust
optimal controller gain in the general case (i): "nd X,>
and K of (20) with properties (b) and (c) by solving the
coupled system of equations (19), (21)}(23). Then
KH"K.

Remark 3.2. For l
M
"0 (23) and (19) are the well-known

generalized Riccati and Lyapunov equations (for their
solution see, e.g., Tan et al., 1998). For l

M
O0 the system

of (19), (21)}(23) constitutes a set of highly nonlinear
coupled equations with respect to X,> and K. One way
of solving this system is to use the homotopy method
(Richter et al., 1993).

Remark 3.3. It follows from the proof of the theorem
that KH de"ned by (20c), (25) and (26) is the formal O(e)-
approximation to the optimal gain Ke of (10).

Remark 3.4. In the case (ii) (in the case (iii)), where the
linear independent combinations of the fast (slow) vari-
ables are observed, the robust optimal gain is purely fast
(slow). Note that unlike Kokotovic, Khalil & O'Reilly

(1986, Chapter 3), our static output-feedback control in
the case, which is based on the slow model, is robust, in
the sense that it cannot destabilize the original system.
This is due to the structure (iii) of C

2
with C

2
x"CM

21
x
1
.

Remark 3.5. Note that if E
f
O0 the value of EH ap-

proaches in"nity for eP0 (see (32)), but still for all small
values of e the controller gain KH minimizes the value of
entropy among all static output-feedback controllers sat-
isfying (2). A well-posed problem is obtained by assuming
E
f
"0 or by scaling. We treat these cases in the next

subsections.

3.5. Descriptor system approach to a well-posed problem

In this subsection we assume that E
f

given by (30)
equals zero. A zero E

f
is encountered, for example when

B
12

"0 (no disturbances in the fast equation) or when
C

12
"0 with stable matrix A

22
(no fast variables in the

objective vector z).

Lemma 3.1. If E
f
"0, then the following relations hold:

B@
12

X(0)
3
"0, (37a)

CI
2
AI ~1

22
B
12

"0, (37b)

CI
2
B
12

"0, (37c)

X(0)
2

B
12

"!X(0)
1

AI
12

AI ~1
22

B
12

, (37d)

X(0)
3

AI ~1
22

B
12

"0, (37e)

and X(0)
1

satisxes the following Riccati equation:

A@
s
X(0)

1
#X(0)

1
A

s
#c~2X(0)

1
B
1s

B@
1s

X(0)
1
#C@

s
C

s
"0, (38)

where

A
s
"AI

11
!AI

12
AI ~1

22
AI

21
, B

1s
"B

11
!AI

12
AI ~1

22
B

12
,

C
s
"CI

1
!CI

2
AI ~1

22
AI

21
. (39)

Proof. A zero E
f

implies (37a). It also means that the
transfer function matrix of the fast subsystem (29) with
u"K(0)

2
CM

22
x6
2
, is equal to zero and, hence, (37b) holds.

Matrix X(0)
2

satis"es the following equation (see e.g. Tan
et al., 1998):

AI @
21

X(0)
3
#X(0)

1
AI

12
#X(0)

2
AI

22
#CI @

1
CI

2

#c~2X(0)
1

B
11

B@
12

X(0)
3
#c~2X(0)

2
B

12
B@

12
X(0)

3
"0.

(40)

Eqs. (37d) and (37e) follow from (40) and (27) multiplying,
from the right, by AI ~1

22
B
12

, while (37c) follows from (27a)
multiplying it, from the left, by B@

12
and, from the right,

by B
12

. Eq. (38) follows from (2.5)}(2.8) of Dragan (1993)
and (37b). h
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We consider the descriptor system (31) that corres-
ponds to (15). The transfer-function matrix ¹

d
of (31),

with u"KCM
2
x6 , is given by

¹
d
"(CM

1
#D

12
KCM

2
)[sE!AM !B

2
KCM

2
]~1B

1

"CI (sE!AI )~1B
1
. (41)

We want to choose of all the K that satisfy both
DD¹

d
DD
=
(c and E

f
"0, the one that minimizes the en-

tropy of ¹
d

given by (4), where ¹
zw

"¹
d
.

Lemma 3.2. For the descriptor system of (31), with
u"B

2
KCM

2
x6 and E

f
"0, where E

f
is given by (30), the

following holds:

(i) The transfer-function matrix is given by

¹
d
"C

s
(sI!A

s
)~1B

1s
. (42)

(ii) A
s

is stable and DD¹
d
DD
=
(c iw there exists a solution

X(0)
1
50 to the Riccati equation (38) such that

A
s
#c~2B

1s
B@

1s
X(0)

1
is stable.

(iii) The entropy of the system is given by

E
d
"¹rMB@

1s
X(0)

1
B
1s

N. (43)

This entropy E
d

is O(e)-close to the entropy of (15),
where u"KCM

2
x6 .

Proof. Denote

N
1
"C

I !AI
12

AI ~1
22

0 AI ~1
22

D and N
2
"C

I 0

!AI ~1
22

AI
21

ID.
Then,

N
1
AI N

2
"C

A
s

0

0 ID and N
1
EN

2
"C

I 0

0 0D
and thus

¹
d
"C

s
(sI!A

s
)~1B

1s
!CI

2
AI ~1

22
B
12

. (44)

Relation (42) follows from (44) and (37b).
Item (i) implies (ii) and (43). It follows from (33) using

F
22

"AI
22

, that X(1)
3
"!X(0){

2
AI

12
AI ~1

22
. The O(e)-close-

ness of E
d

to the entropy of (15) follows from (32), (43)
and (37d). h

Remark 3.6. Note that if CI
2
AI ~1

22
B

12
O0 (and thus

E
f
O0), then (44) implies E

d
"R since ¹

d
(R)O0

(Mustafa and Glover, 1990).

We obtain the following from the last lemma and Tan
et al. (1998):

Theorem 3.2. The controller u"KHCM
2
x6 that leads to

E
f
"0 achieves a H

=
-norm bound of c and minimizes the

entropy of (31) iw it is the robust optimal controller for the
singularly perturbed system (15). This controller is given by
Theorem 3.1.

Remark 3.7. If B
12

"0, then only (iii) of Theorem 3.1
may hold (here >(0)

3
"0) and there is a purely-slow gain.

If C
12

"0 and A
22

is stable, then from (i) we obtain
K(0)

2
"0 and thus also in this case the gain is purely slow.

3.6. Scaled well-posed problems

A well-posed problem with a "nite entropy for eP0
can be also obtained by scaling the matrices of the
system:

x5
1
"A

11
x
1
#A

12
x
2
#eaB

11
w#B

21
u, (45a)

ex5
2
"ebA

21
x
1
#A

22
x
2
#e1@2B

12
w#edB

22
u. (45b)

The parameters a, b, d represent the relative size of the
small parameters within the system, with respect to the
small time constants of the fast subsystem. We multiply
B
12

by e1@2 to obtain a "nite and positive value of
entropy for eP0. For information on scaled LQG prob-
lem refer to Kokotovic, Khalil and Reilly (1986) and
Saskena and Basar (1986). The results below are obtained
by using arguments similar to Theorem 3.1.

In the case of &uniform scaling', when a"1
2
, b"d"0

and y and z are non-scaled, we choose the H
=

-norm
bound of e1@2c. For each e we obtain the same equations
(7), (9) and (10) as in the case without scaling. Then the
optimal robust controller of Theorem 3.1 achieves the
H

=
-norm bound of e1@2c and the minimum value of

entropy E
f
#O(e) for all small enough e.

Given c'0, consider next the case of a"0. The
entropy of (45) with u"KC

2
x satis"es relation

lim
e?0

E"¹rMB@
11

X(0)
1

B
11

#B@
12

X(0)
3

B
12

N.

A solution to Lyapunov equation (9) has the following
form:

>e"C
>

1
>

2
>@

2
>

3
D,

where since B
11

B@
12

"0 and B
12

B@
12

"0

AI
11
>

1
#AI

12
>@

2
#>

1
AI @

11
#>

2
AI @

12
#B

11
B@

11
"0,

>
2
"!>

1
(AI @

21
AI @

22
~1)#O(e1@2), (46)

AI
21
>

2
#AI

22
>

3
#>@

2
AI @

21
#>

3
AI @

22
"0

with

AI
11

"A
11

#A
12

¸#B
21

K(0)
1

CM
21

,

AI
12

"A
12

#edB
21

K(0)
2

CM
22

,

AI
21

"ebA
21

#A
22

¸#edB
22

K(0)
1

CM
21

,

AI
22

"A
22

#edB
22

K(0)
2

CM
22

.

If >
2@e/0

O0 (it means that b"0 or d"0 or CM
3
O0),

then in cases (i) and (ii) all the equations for the zero-
approximations are coupled and there is no slow-fast

1186 E. Fridman, U. Shaked / Automatica 36 (2000) 1181}1188



Table 1

e 0.1 0.01 0.001 0.0001

EH 164.3 1031.6 9689 96260
Ee 133.2 1021.5 9688 96260
K

1
!1.0946 !0.5138 !0.6808 !0.7122

K
2

!1.6563 !1.1985 !1.0859 !1.0706

decomposition of the problem. Thus, in case (ii)

KH"K(0)
2
"!R~1M[B@

21
X(0)

1
#B@

22
X(0){

2
]>(0)

2

#B@
22

X(0)
3
>(0)

3
NCM @

22
(CM

22
>(0)

3
CM @

22
)~1,

where >(0)
i

satisfy (46a)}(46c). In case (iii) the optimal
controller is the purely slow one of Theorem 3.1, where
>(0)

1
and >(0)

2
satisfy (46a) and (46b) with e"0.

If b"1
2
, d"1

2
and CM

3
"0, then both X(0)

3
and X(0)

1
do

not depend on K(0)
2

. Assuming that A
22

is stable we "nd
that the robust optimal controller gain is purely slow
KH"[K(0)

1
0], where K(0)

1
is the gain of the minimizing

controller u"K(0)
1

y
s

for the slow problem

x5
s
"A

11
x
s
#B

11
w#B

21
u, y

s
"CM

21
x
s
,

z
s
"CM

11
x
s
#D

12
u.

3.7. Example

Consider (1a)}(1c) with the following matrices:

A"C
!1 0 1

0 1 2

1 1 0D, B
2
"C

2

1

1D, B
1
"C

1

1

3D,
C

2
"C

1 1 0

0 1 1D, C
1
"C

1 !3 1

0 0 0D
and D

12
"[0 1]@. This is the case of (i), where both

CM
21

and CM
22

are full-rank, with singular A
22

. From (13)
we "nd that ¸"[0 !1]. The fast subproblem in this
example is a state-feedback-type H

=
-control. Choosing

c"8.5, which is close to the minimum possible value of
c for small values of e, we obtain from (19), (21)}(23)
KH"[!1.0688,!0.7153]. Applying robust optimal
controller u"KHy, to (1a)}(1c) and choosing the values
of e that are given in Table 1, we "nd that (7) has
a nonnegative stabilizing solution and thus (2) is satis"ed.
Using the solution of (7) we compute by (8) the resulting
values of entropy EH and bring them in Table 1.

For the same value of c"8.5, and for each value of
e under consideration, we obtain the values of the
optimal e-dependent gain Ke by solving the full-order
Eqs. (9)}(12). We see that for small e the resulting
Ke"[K

1
K

2
] is close to KH (see Table 1). We also

compute the corresponding values of Ee using (8). It is
seen from Table 1 that Ee is close to EH.

In this example E
f
"9.619O0 and therefore EH and

Ee are unbounded for small e. In order to obtain a "nite
entropy for eP0 we apply a uniform scaling on the

system, where instead of B
1

we take Je B
1
. Then choos-

ing an H
=

-norm bound of Je 8.5, we "nd the same
values of KH and Ke . The resulting values of entropy are
those given in the Table 1, multiplied now by e. We see
that the resulting values of entropy are bounded for small
values of e and tend to E

f
"9.619.

4. Conclusions

In the present note we have designed e-independent
robust optimal static output-feedback controllers for
non-standard singularly perturbed systems that satisfy
given H

=
-norm performance bounds and also minimize

the entropy at s"R. Our method is based on solving
a generalized Riccati equation coupled via a projection
with a generalized Lyapunov equation. Our solution
yields a minimum value of the entropy which becomes
unbounded when e tends to zero. A well-posed problem
with a "nite value of entropy for eP0 is obtained either
when the entropy of the fast subproblem is zero or when
the matrices of the system are scaled.
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