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a b s t r a c t

This paper introduces stability conditions in the formof linearmatrix inequalities (LMIs) for general linear
retarded systemswith a delay term described by Stieltjes integral. The derived LMIs provide in the unified
formconditions for both discrete anddistributeddelays. Two Lyapunov-basedmethods for the asymptotic
mean square stability of stochastic linear time-invariant systems are presented. The first one employs
neutral type model transformation and augmented Lyapunov functionals. Differently from the existing
LMI stability conditions based on neutral type transformation, the proposed conditions do not require
the stability of the corresponding integral equations. Moreover, it is shown that in the simplest existing
LMIs based on non-augmented Lyapunov functionals, the stability analysis of the integral equation can be
omitted. The secondmethod is based on a stochastic extension of simple Lyapunov functionals depending
on the state derivative. The same two methods are further applied to delay-induced stability analysis of
stochastic vector second-order systems, simplifying the recent results via neutral type transformation
and leading to new conditions for stochastic systems via the second method. Numerical examples give
comparison of results via different methods.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

Construction of simple Lyapunov functionals that provide delay-
dependent conditions for linear time-delay systems originates
from the presentation of the delayed state in the form of the non-
delayed one plus perturbation [1–3]. Thus, for systems with a
constant discrete delay h > 0 there are two main presentations.
The first one

x(t − h) = x(t) −
d
dt

∫ t
t−h x(s)ds

leading to neutral type model transformation and to Lyapunov
functionals that depend on the state x only. However, in the exist-
ing results [1,3–6], additionally to the positivity of these function-
als and to the negativity of their derivatives along the neutral type
system, one has to guarantee the stability of the corresponding
integral equation. In the present paper we will show that the
LMI conditions for the positivity of these functionals and for the
negativity of their derivatives guarantee the asymptotic stability of
the system, whereas the condition on the stability of the integral
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equation can be omitted. The second presentation

x(t − h) = x(t) −
∫ t
t−h ẋ(s)ds

leads to Lyapunov functionals that depend on the state derivative
ẋ. This approach is applicable to systems with fast-varying delays
(without any constraints on the delay derivative) [1].

Differently from thedeterministic case, the solution of a stochas-
tic differential equation does not have a derivative. Therefore,
in the stochastic case it is not possible to use directly Lyapunov
functionals that depend on the state derivative. That is why, for
stochastic case, either functionals depending on the state
[2,4,7,8] or stochastic extension of Lyapunov functionals depending
on ẋ [9–11] have been used. The stochastic extension of Lyapunov
functionals depending on ẋ employs Lyapunov functionals that
depend on the deterministic part of ẋ (i.e. on the deterministic part
of the right-hand side of differential equation). Also input–output
approach to the stability of retarded systems with multiplicative
noise has been employed [12].

In this paper a linear time-invariant stochastic system is con-
sidered with the delay term described by Stieltjes integral (that
can be interpreted either as discrete or distributed delay). We
develop two methods for the asymptotic mean square stability
analysis of linear stochastic systems. The first one employs a neu-
tral type model transformation and the corresponding augmented
Lyapunov functional. Note that augmented Lyapunov functionals
have been applied directly to the original system in the case of
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deterministic systemwith distributed or discrete delay in [13] and
in the case of stochastic system with discrete delays in [7]. How-
ever, our application of augmented Lyapunov functional via neutral
type transformation allows to derive the simplest LMI stability
conditions. Our second method is based on stochastic extension
of simple (non-augmented) Lyapunov functionals depending on ẋ
and employs novel Lyapunov functionals.

Finally, delay-induced stability of stochastic vector second-
order systems is analyzed by using the same two methods. Here
the same conclusion on the simplification of the existing LMI
conditions based on simple Lyapunov functionals via neutral type
transformation [5,14]: the stability condition for the integral equa-
tion may be omitted. Moreover, for the first time, conditions for
the asymptotic mean square stability are derived via the second
method.

The efficiency of the results is illustrated by numerical ex-
amples. As expected, augmented Lyapunov functionals improve
results based on simple Lyapunov functionals (both, depending
on x or stochastic extension of the functionals depending on ẋ),
though for the case of delay-induced stability, the improvement
is less essential. Moreover, for large stochastic perturbations, the
simplest (minimal-size) LMIs via neutral type transformation lead
to slightly more conservative results than the ones via augmented
Lyapunov functional and improve the results via the second
method.

The presented stability conditions are the first LMIs for sys-
tems with Stieltjes integral (even in the deterministic case). They
provide in the unified form conditions for the discrete and dis-
tributed delay, which is different from the existing results that
derive separately conditions for discrete and for distributed delays
(see e.g. [7,10,15–18]). Some preliminary results on stability of
stochastic systemswith a delay term described by Stieltjes integral
were presented in [19].

1.1. Necessary notations, definitions and statements

Throughout the paper the superscript ‘′’ stands formatrix trans-
position,Rn×m is the set of all n×m real matrices, and the notation
P > 0, for P ∈ Rn×n means that P is symmetric and positive
definite, In is the identity n × n-matrix. The symmetric elements
of the symmetric matrix are denoted by ∗.

Let {Ω,F, P} be a probability space, {Ft , t ≥ 0} be a nonde-
creasing family of sub-σ -algebras of F, i.e., Fs ⊂ Ft for s < t , P{·}

be the probability of an event enclosed in the braces.
Themathematical expectation E of a random variable ξ = ξ (ω)

on the probability space {Ω,F,P} is defined as Eξ =
∫

Ω
ξ (ω)

P(dω). If a random variable X ∈ Rn is defined by a density of
distribution f (x) then the mathematical expectation E of a random
variable X is defined as EX =

∫
Rn xf (x)dx.

The standard (one-dimensional) Wiener process (also called
Brownian motion) is a stochastic Gaussian process w(t) with the
density of distribution f (x) =

1
√
2π t

exp{−x2/2t}, t > 0, w(0) = 0,
Ew(t) = 0, Ew2(t) = t . A n-dimensional Wiener process is a
vector-valued stochastic process w(t) = (w1(t), . . . , wn(t)) whose
components are independent, standard one-dimensional Wiener
processes.

Let H2 be the space of F0-adapted stochastic processes ϕ(s), s ≤

0, ∥ϕ∥0 = sups≤0 |ϕ(s)|, ∥ϕ∥
2

= sups≤0 E|ϕ(s)|2. Following [20,21],
we will consider the Ito stochastic functional differential equation

dx(t) = α(t, xt )dt + β(t, xt )dw(t), t ≥ 0,
x0 = φ ∈ H2.

(1.1)

Here x(t) ∈ Rn is a value of the solution of Eq. (1.1) in the
time moment t , xt = x(t + s), s < 0, is a trajectory of the
solution of Eq. (1.1) until the time moment t , w(t) ∈ Rm is the Ft-
adapted Wiener process, the continuous functionals α(t, ϕ) ∈ Rn,

β(t, ϕ) ∈ Rn×m. It is supposed also that Eq. (1.1) has the zero
solution, i.e., α(t, 0) ≡ 0, β(t, 0) ≡ 0.

A solution of (1.1)with the initial condition x(s) = φ(s) for s ≤ 0
is a stochastic process x(t), t ∈ Rn that satisfies the initial condi-
tion for t ≤ 0 and for t ≥ 0with probability 1 satisfies the equation

x(t) = φ(0) +
∫ t
0 α(s, xs)ds +

∫ t
0 β(s, xs)dw(s).

Consider a functional V (t, ϕ) : [0, ∞) × H2 → R+ that can be
presented in the form V (t, ϕ) = V (t, ϕ(0), ϕ(s)), s < 0, and for
ϕ = xt put

Vϕ(t, x) = V (t, ϕ) = V (t, xt ) = V (t, x, x(t + s)),
x = ϕ(0) = x(t), s < 0. (1.2)

Denote by D the set of the functionals, for which the function
Vϕ(t, x) defined in (1.2) has a continuous derivative with respect to
t and two continuous derivatives with respect to x. Let ∇ and ∇

2

be respectively the first and the second derivatives of the function
Vϕ(t, x). For the functionals from D the generator L of Eq. (1.1) has
the form [8,20]

LV (t, xt ) =
∂
∂t Vϕ(t, x(t)) + ∇V ′

ϕ(t, x(t))α(t, xt )
+

1
2Tr[β

′(t, xt )∇2Vϕ(t, x(t))β(t, xt )].
(1.3)

It is known that the trajectories of theWiener process are continu-
ouswith probability 1, but not differentiable at any point functions.
So, solutions of the stochastic differential equation (1.1) are also
continuouswith probability 1 but not differentiable functions. This
is the reason why stochastic differential equations even if some-
times written in the form of derivatives always are understood in
the form of differentials. This is also the reason why differently
from the deterministic case it is impossible to use directly Lya-
punov functionals that depend on the derivative of the solution
of the considered stochastic differential equation.

2. Problem formulation

Consider the Ito stochastic differential equation [20,21]

ẋ(t) = Ax(t) + A1
∫

∞

0 x(t − s)dK (s)
+Cx(t)ẇ(t), t ≥ 0, (2.1)

where x(t) ∈ Rn, A, A1, C ∈ Rn×n, w(t) is the scalar stan-
dard Wiener process, K (s) is a scalar right-continuous function of
bounded variation on [0, ∞) such that

ki =
∫

∞

0 sidK (s) < ∞, i = 0, 1, (2.2)

and the integral is understood in the Stieltjes sense. For an arbitrary
continuous with probability 1 initial function φ there exists a
unique solution of the linear equation (2.1) subject to (2.2), which
is continuouswith probability 1 [2,20,21]. Classical stability theory
for systems of such type is represented in [2,8,22].

Definition 2.1. System (2.1) is mean square stable if ∀ε >

0 there exists δ > 0 such that for all initial functions with
sups≤0 E|φ(s)|2 < δ the solutions of (2.1) satisfy E|x(t)|2 < ε for
all t ≥ 0. System (2.1) is asymptotically mean square stable if it
is mean square stable and limt→∞ E|x(t)|2 = 0 for each initial
function φ(s).

Our objective is to derive sufficient LMI conditions for the
asymptoticmean square stability of (2.1). The general formof delay
as in (2.1) includes the cases of discrete and distributed delays
(depending on the concrete choice of the kernel K (s)). Put for
example

dK (s) = δ(s − h)ds,
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where δ(s) is the Dirac function, h > 0. In this case (2.1) has the
discrete delay

ẋ(t) = Ax(t) + A1x(t − h) + Cx(t)ẇ(t),
k0 = 1, k1 = h. (2.3)

Putting

dK (s) = K0(s)ds,

where K0(s) is an integrable function, satisfying the condition (2.2),
we obtain the distributed delay

ẋ(t) = Ax(t) + A1
∫

∞

0 x(t − s)K0(s)ds
+Cx(t)ẇ(t), ki =

∫
∞

0 siK0(s)ds, i = 0, 1.
(2.4)

In particular, K0(s) = 1 for s ∈ [0, h] and K0(s) = 0 for s > h then
k0 = h, k1 =

1
2h

2.
Note that (2.1) includes the case of several discrete and dis-

tributed delays multiplied from the left by the same matrix A1.
Our results can be easily extended to the case of several Stieltjes
integrals

ẋ(t) = Ax(t) +
∑k

j=1 Aj
∫

∞

0 x(t − s)dKj(s) + Cx(t)ẇ(t)

with different matrices Aj ∈ Rn×n and different scalar kernels Kj.
We will derive stability conditions by using neutral type trans-

formation via augmented Lyapunov functional and without model
transformation via stochastic extensions of simple (non-
augmented) Lyapunov functionals depending on ẋ. We will con-
sider separately the case of Hurwitz A + k0A1 (see Section 3) and
the case of delay-induced stability, where A + k0A1 is not Hurwitz
(see Section 4).

Our results employ Jensen’s inequalities that extend the in-
equalities of [23] to the case of Stieltjes integrals:

Lemma 2.1 (Jensen’s Inequality). For any n × n matrix R > 0, vector
function x : (−∞, t) and scalar function of bounded variation K :

[0, ∞) → R such that the integrations concerned are well defined,
the following inequalities hold with k0 and k1 defined by (2.2):

z ′

0(t)Rz0(t) ≤ k0
∫

∞

0 x′(t − s)Rx(t − s)dK (s),

for z0(t) =
∫

∞

0 x(t − s)dK (s)
(2.5)

and

z ′(t)Rz(t) ≤ k1
∫

∞

0

∫ t
t−s x

′(τ )Rx(τ )dτdK (s)

for z(t) =
∫

∞

0

∫ t
t−s x(τ )dτdK (s).

(2.6)

Proof. The inequality (2.5) follows from the Cauchy–Schwarz
inequality and (2.2):

z0(t)′Rz0(t) = |R1/2z0(t)|
2

=
⏐⏐∫ ∞

0 R1/2x(t − s)dK (s)
⏐⏐2

≤ k0
∫

∞

0 x′(t − s)Rx(t − s)dK (s).

Similarly for (2.6) we have

z(t)′Rz(t) = |R1/2z(t)|2 =

⏐⏐⏐∫ ∞

0

∫ t
t−s R

1/2x(τ )dτdK (s)
⏐⏐⏐2

≤ k1
∫

∞

0

∫ t
t−s x

′(τ )Rx(τ )dτdK (s). □

3. Stability in the case of Hurwitz A + k0A1

3.1. Stability via neutral type model transformation

Denote
z(t) = x(t) + G(t),
G(t) =

∫
∞

0

∫ t
t−s A1x(τ )dτdK (s).

(3.1)

Then
Ġ(t) = k0A1x(t) − G0(t),
G0(t) =

∫
∞

0 A1x(t − s)dK (s).
(3.2)

By virtue of (3.1), (3.2) we use a neutral typemodel transformation
of (2.1)

ż(t) = (A + k0A1)x(t) + Cx(t)ẇ(t). (3.3)

We assume that A + k0A1 is Hurwitz. The standard approach
to stability analysis of (3.3) includes construction of a Lyapunov
functional V (xt ) with the conditions

EV (xt ) ≥ c1E|z(t)|2, ELV (xt ) ≤ −c2E|x(t)|2, t ≥ 0

that hold for some positive constants c1 and c2 provided the inte-
gral equation z(t) = 0 is asymptotically stable [2,8,22]. In the novel
approach that we present in this paper, an appropriate augmented
Lyapunov functional is constructed in the form V (xt ) = V (xt ,G(t))
subject to the conditions

EV (xt ) ≥ c1E|x(t)|2, ELV (xt ) ≤ −c2E|x(t)|2,
t ≥ 0 (3.4)

for some positive c1 and c2. In this case, due to classical Lyapunov–
Krasovskii theorem (see e.g. Theorem 2.1 of [8]), there is no need
to verify the stability of z(t) = 0.

Proposition 3.1. Given matrices A, A1, C ∈ Rn×n and a right-
continuous scalar function K (s) of the bounded variation on [0, ∞)
that satisfies (2.2).

(i) Let there exist n × n matrices P1, P2, P3, R > 0 and S > 0 that
satisfy the following LMIs:

Ψ1 =

[
P1 P1 + P2
∗ P1 + P2 + P ′

2 + P3 +
k0
k1
S

]
> 0 (3.5)

and

Φ1aug =

⎡⎢⎢⎣Φ11 Φ12 P2
∗ −R P2 + P3
∗ ∗ −S

⎤⎥⎥⎦ < 0,

Φ11 = P1(A + k0A1) + (A + k0A1)′P1
+k0(P2A1 + A′

1P
′

2) + A′

1(k
2
0S + k21R)A1 + C ′P1C,

Φ12 = A′(P1 + P2) + k0A′

1(P1 + P2 + P ′

2 + P3).

(3.6)

Then system (2.1) is asymptotically mean square stable.
(ii) If there exist n × n matrices P1 > 0 and R > 0 that satisfy the

LMI

Φ1sim =

[
φ1s (A + k0A1)′P1
∗ −R

]
< 0,

φ1s = P1(A + k0A1) + (A + k0A1)′P1
+k21A

′

1RA1 + C ′P1C,

(3.7)

then system (2.1) is asymptotically mean square stable.
(iii) LMIs of items (i) and (ii) are feasible for small enough k1 and

C provided A + k0A1 is Hurwitz.
(iv) The feasibility of (3.7)with C = 0 implies that the eigenvalues

of k1A1 are inside of the unit circle.

Proof (i). Let L be the generator of Eq. (3.3) [8,20,21]. Via (3.1), (3.2)
for the functional

V1(xt ) =

[
z(t)
G(t)

]′ [
P1 P2
P ′

2 P3

][
z(t)
G(t)

]
(3.8)

we have

LV1(xt ) = 2
[
z(t)
G(t)

]′ [
P1 P2
P ′

2 P3

][
(A + k0A1)x(t)
k0A1x(t) − G0(t)

]
+x′(t)C ′P1Cx(t).

(3.9)
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Using the additional functional

V2(xt ) = k0
∫

∞

0

∫ t
t−s x

′(τ )A′

1SA1x(τ )dτdK (s)
+k1

∫
∞

0

∫ t
t−s(τ − t + s)x′(τ )A′

1RA1x(τ )dτdK (s)
(3.10)

with S, R > 0 and Jensen’s inequalities (2.5), (2.6)

G′

0(t)SG0(t) ≤ k0
∫

∞

0 x′(t − s)A′

1SA1x(t − s)dK (s),

G′(t)RG(t) ≤ k1
∫

∞

0

∫ t
t−s x

′(τ )A′

1RA1x(τ )dτdK (s)

we have

LV2(xt ) ≤ x′(t)A′

1(k
2
0S + k21R)A1x(t)

−G′

0(t)SG0(t) − G′(t)RG(t).
(3.11)

Choose Lyapunov functional

V (xt ) = V (xt ,G(t)) = V1(xt ) + V2(xt ).

From (3.9), (3.11) it follows that LV (xt ) ≤ η′(t)Φ1augη(t), where
η(t) = col{x(t),G(t), −G0(t)} and Φ1aug < 0 is defined in (3.6).
Moreover, by Jensen’s inequality

V2(xt ) ≥ k0
∫

∞

0

∫ t
t−s x

′(τ )A′

1SA1x(τ )dτdK (s) ≥
k0
k1
G′(t)SG(t)

that implies due to (3.6)

V (xt ) ≥

[
x(t)
G(t)

]′

Ψ1

[
x(t)
G(t)

]
≥ c1|x(t)|2

with c1 > 0 sinceΨ1 > 0. Therefore, conditions (3.4) hold and (2.1)
is asymptotically mean square stable.

(ii) If LMI (3.7) holds with P1 > 0 and R > 0, then (3.5) and (3.6)
hold with the same P1, R and P2 = P3 = 0 and any S > 0. Thus, the
result follows from (i).

(iii) For Hurwitz A + k0A1, let P1 > 0 be such that

P1(A + k0A1) + (A + k0A1)′P1 < 0.

Then, by Schur complements, (3.7) with k1 = 0 is feasible with this
P1 and R = ρI , where the scalar ρ > 0 is large enough. Hence, (3.7)
holds also for small enough k1 > 0.

(iv) The proof follows arguments of Remark 5 from [24]. Denote
P̄ = −P1(A + k0A1). By Schur complements, (3.7) implies

− P̄ − P̄ ′
+ k21A

′

1RA1 + P̄ ′R−1P̄ < 0 (3.12)

that can be presented as

−R + k21A
′

1RA1 + (P̄ − R)′R−1(P̄ − R) < 0.

From the latter inequality it follows that−R+k21A
′

1RA1 < 0, i.e. that
eigenvalues of k1A1 are inside of the unit circle. □

Remark 3.1. Differently from the existing LMI stability conditions
via neutral model transformation and simple Lyapunov functional
V (xt ) = x′(t)P1x(t)+V2(xt )|S=0 (see e.g. [1,6]), the conditions of (ii)
are simplified, where the additional condition on the stability of
the integral equation z(t) = 0 is omitted. Note that for the discrete
delay case, the LMI of (ii) implies due to (iv) that eigenvalues of
hA1 are inside of the unit circle. The latter guarantees the stability
of z(t) = 0 (see e.g. Lemma 4 of [5]). The same implication was
obtained for the simplest LMIs derived via the simplest Lyapunov
functional with R-term depending on ẋ (see Remark 3.4 in [16]).
For the general case of Stieltjes integral, the condition of (iv) is
less conservative than the classical condition k1|A1| < 1 that
guarantees the stability of the integral equation (see e.g. (2.10)
in [8]).

Remark 3.2. Augmented Lyapunov functionals have been ap-
plied directly to the original system in the deterministic case with
distributed or discrete delay in [13] and in stochastic case with

discrete delays in [7]. Augmented Lyapunov functional Vaug (xt ) =

V̄1(xt ) + V2(xt ) with V2 defined by (3.10) and

V̄1(xt ) =

[
x(t)
G(t)

]′ [
P1 P2
P ′

2 P3

][
x(t)
G(t)

]
,

where G(t) is defined in (3.1), can be directly applied to the initial
system (2.1). By arguments of Proposition 3.1 this leads to the
following equivalent to (3.5), (3.6) LMI stability conditions:[
P1 P2
P ′

2 P3 +
k0
k1
S

]
> 0 (3.13)

and[
Φ11 A′P2 + k0A′

1P3 P1 − P2
∗ −R P ′

2 − P3
∗ ∗ −S

]
< 0,

Φ11 = P1A + A′P1 + k0(P2A1 + A′

1P
′

2)
+A′

1(k
2
0S + k21R)A1 + C ′P1C .

(3.14)

The equivalence of LMIs (3.13), (3.14) and (3.5), (3.6) follows from
the following: substitution into (3.13) and (3.14) P2 → P1 + P2,
P3 → P1 + P2 + P ′

2 + P3 leads to (3.5) and (3.6). Note that
(3.13), (3.14) do not lead to feasible reduced-order LMIs (with
P2 = P3 = 0) if A is not Hurwitz (it is seen from (3.14)). Thus,
the LMI conditions of (ii) are the simplest that are applicable to the
important case, where A is not Hurwitz, but A + k0A1 is Hurwitz.

3.2. Stability via stochastic extension of simple Lyapunov functionals
depending on ẋ(t)

In this section we assume that the initial function x(t) =

φ(t), t < 0 is continuously differentiable. In the deterministic
case, this is a standard assumption for application of Lyapunov
functionals depending on ẋ(t) (see e.g. [23]).

Proposition 3.2. Given matrices A, A1, C ∈ Rn×n and K subject to
(2.2), assume that

k2 =

∫
∞

0

(∫
∞

θ

dK (s)
)2

dθ < ∞. (3.15)

Let there exist positive definite n × n matrices P, S, R and F such that
the LMI

Φ1ẋ =

[
Φ11 Φ12 k0R
∗ Φ22 −R
∗ ∗ −(R + F )

]
< 0 (3.16)

holds, where

Φ11 = PA + A′P + k20(S − R) + k21A
′RA + C ′ (P + k2F) C,

Φ12 = PA1 + k0R + k21A
′RA1,

Φ22 = k21A
′

1RA1 − R − S.
(3.17)

Then (2.1) is asymptotically mean square stable. Here k2 = h in
the case of system (2.3) with discrete delay (because

∫ h
θ
dK (s) = 1),

whereas k2 =
1
3h

3 in the case of system (2.4) with distributed delay
and kernel K0(s) = 1, s ∈ [0, h], K0(s) = 0 s > h.

Proof. Let L be the generator of (2.1). Extending the idea of [11] to
general delay, put

y(t) = Ax(t) + A1y0(t), t ≥ 0,
y(t) = ẋ(t), t < 0,

y0(t) =
∫

∞

0 x(t − s)dK (s),

y1(t) =
∫

∞

0

∫ t
t−s y(τ )dτdK (s).

(3.18)

From (2.1) we have

dx(t) = y(t)dt + χ (t)Cx(t)dw(t), t ∈ R, (3.19)
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where χ (t) = 1 for t ≥ 0 and χ (t) = 0 for t < 0. Via (3.19), (3.18)
the function V1(x(t)) = x′(t)Px(t) with P > 0 satisfies the condition

LV1(xt ) = 2x′(t)P[Ax(t) + A1y0(t)]
+x′(t)C ′PCx(t), t ≥ 0. (3.20)

For the functional

V2(xt ) = k0
∫

∞

0

∫ t
t−s x

′(τ )Sx(τ )dτdK (s)
+k1

∫
∞

0

∫ t
t−s(τ − t + s)y′(τ )Ry(τ )dτdK (s),

using (3.18), Jensen’s inequalities (2.5), (2.6)

y′

0(t)Sy0(t) ≤ k0
∫

∞

0 x′(t − s)Sx(t − s)dK (s),

y′

1(t)Ry1(t) ≤ k1
∫

∞

0

∫ t
t−s y

′(τ )Ry(τ )dτdK (s),

and via (3.18) the equality

y′(t)Ry(t) = x′(t)A′RAx(t) + 2x′(t)A′RA1y0(t)
+xsy′

0(t)A
′

1RA1y0(t)

we obtain

LV2(xt ) = k20x
′(t)Sx(t) + k21y

′(t)Ry(t)

−k0
∫

∞

0 x′(t − s)Sx(t − s)dK (s)

−k1
∫

∞

0

∫ t
t−s y

′(τ )Ry(τ )dτdK (s)

≤ x′(t)(k20S + k21A
′RA)x(t)

+2k21x
′(t)A′RA1y0(t)

+y′

0(t)(k
2
1A

′

1RA1 − S)y0(t) − y′

1(t)Ry1(t).

(3.21)

Integrating (3.19) we have∫ t
t−s y(τ )dτ = x(t) − x(t − s) −

∫ t
t−s χ (τ )Cx(τ )dw(τ ),

t ∈ R.
(3.22)

Via (3.18)

y1(t) = k0x(t) − y0(t) − ξ (t),

ξ (t) =
∫

∞

0

∫ t
t−s χ (τ )Cx(τ )dw(τ )dK (s)

=
∫ t

−∞

∫
∞

t−τ
dK (s)χ (τ )Cx(τ )dw(τ )

=
∫ t
0

∫
∞

t−τ
dK (s)Cx(τ )dw(τ ).

(3.23)

So,

−y′

1(t)Ry1(t) = −k20x
′(t)Rx(t)

+2k0x′(t)Ry′

0(t) − y′

0(t)Ry0(t)
+2k0x′(t)Rξ (t) − 2y′

0(t)Rξ (t) − ξ ′(t)Rξ (t).
(3.24)

From (3.23) by Ito’s integral properties (see e.g. [8,20,21]) we have
for any n × nmatrix F

Eξ ′(t)Fξ (t)

=
∫ t
0

(∫
∞

t−τ
dK (s)

)2 x′(τ )C ′FCx(τ )dτ .
(3.25)

We add the following term to the Lyapunov functional:

V3(xt ) =
∫ t
0

∫
∞

t−τ

(∫
∞

θ
dK (s)

)2 dθx′(τ )C ′FCx(τ )dτ ,

F > 0.
(3.26)

By using k2 defined in (3.15) we find

LV3(xt ) = k2x′(t)C ′FCx(t)
−

∫ t
0

(∫
∞

t−τ
dK (s)

)2 x′(τ )C ′FCx(τ )dτ .

Then for the Lyapunov functional

V (xt ) = x′(t)Px(t) + V2(xt ) + V3(xt ) (3.27)

Table 3.1
Example 3.1: the maximum h that preserves the stability.
σ 0.1 0.3 0.6 1.0 No vars

Φ1aug < 0 3.822 2.259 1.006 0.240 2.5(n2
+ n)

Φ1sim < 0 0.890 0.748 0.536 0.206 n2
+ n

Φ1ẋ < 0 3.295 1.533 0.559 0.058 2(n2
+ n)

we obtain

ELV (xt ) ≤ Eη′(t)Φ1ẋη(t),

where η(t) = col{x(t), y0(t), ξ (t)} and Φ1ẋ < 0. □

Remark 3.3. In the case of system (2.4) with distributed delay
and kernel K0(s) = 1, s ∈ [0, h], K0(s) = 0 s > h the Lyapunov
functional has the form (3.27) with

V2(xt ) = h
∫ t
t−h(τ − t + h)x′(τ )Sx(τ )dτ

+
h2
4

∫ t
t−h(τ − t + h)2y′(τ )Ry(τ )dτ ,

y(t) = Ax(t) + A1
∫ t
t−h x(s)ds

and with a novel ’’stochastic’’ term

V3(xt ) =
1
3

∫ t
t−h(τ − t + h)3x′(τ )C ′FCx(τ )dτ .

For C = 0 this functional coincides with the one from [23]. In the
case of system (2.3) with discrete delay the Lyapunov functional
has the form (3.27) with

V2(xt ) =
∫ t
t−h x

′(τ )Sx(τ )dτ + h
∫ t
t−h(τ − t + h)y′(τ )Ry(τ )dτ ,

y(t) = Ax(t) + A1x(t − h),

V3(xt ) =
∫ t
t−h(τ − t + h)x′(τ )C ′FCx(τ )dτ .

A similar V3-term was considered in [10].

Remark 3.4. By arguments of [16,23], the LMI of Proposition 3.2 is
always feasible if A + k0A1 is Hurwitz and C = 0.

3.3. Examples

Example 3.1. Consider the well-studied example with discrete
delay (see e.g. [25]): (2.3) with

A =

[
−2 0
0 −0.9

]
, A1 =

[
−1 0
−1 −1

]
, C = σ

[
1 1
1 1

]
, σ ∈ R.

In the deterministic case (C = 0) LMIs of Proposition 3.1(i) (Ψ1 >

0, Φ1aug < 0) and of Proposition 3.2 (Φ1ẋ < 0) give the same
maximal value of delay h = 4.4721 that preserves stability (the
same value was obtained in [25]), whereas the simplest LMI of
Proposition 3.1(ii) (Φ1sim < 0) leads to h = 0.9999. In Table 3.1
the results are presented obtained from LMIs Ψ1 > 0, Φ1aug < 0
(for brevity we write this throughout the section as Φ1aug < 0),
Φ1sim < 0 and Φ1ẋ < 0 for various values of σ . Numbers of scalar
decision variables are presented too. Note that an additional LMI
for verification of the stability of the integral equation (similar to
LMI of Lemma 4 in [5]), which is avoided by our method, adds
0.5(n2

+ n) variables to n2
+ n variables of the conditions for

Φ1sim < 0. It is seen that less conservative results are obtained from
Φ1aug < 0 , but on the account of computational complexity. The
simplest LMIΦ1sim < 0 leads to efficient results for large stochastic
perturbation σ = 1 that are close to the ones via Φ1aug < 0 and
that essentially improve the results via Φ1ẋ < 0.
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Table 3.2
Example 3.2: the stability intervals for h.
σ 0 0.2 0.4

Φ1aug < 0 [0.2001,1.6339] [0.2334,1.3990] [0.4048,1.1364]
Φ1sim < 0 [0.2001,1.4142] [0.2335,1.2271] [0.4052,1.0144]
Φ1ẋ < 0 [0.2001,1.6339] [0.2568,1.2560] –

Example 3.2 ([15]). Consider the system with distributed delay

ẋ(t) =

[
0.2 0
0.2 0.1

]
x(t) +

∫ h
0

[
−1 0
−1 −1

]
x(t − s)ds

+Cx(t)ẇ(t), C = σ

[
1 1
1 1

]
, σ ∈ R.

The results obtained via Φ1aug < 0, Φ1sim < 0 and LMI Φ1ẋ < 0
are presented in Table 3.2 for various values of σ . Note that for
σ = 0.4 the LMI Φ1ẋ < 0 does not give any interval for h, but
for σ = 0.39 the following small stability interval is obtained:
h ∈ [0.6564, 0.7929]. As in the previous example, less conservative
results are obtained from Φ1aug < 0, but the simplest LMI Φ1sim <
0 leads to rather efficient results for large stochastic perturbations.

4. Delay-induced stability for stochastic vector second-order
system

Consider stochastic vector second-order system

ẍ1(t) = A1x1(t) + A2ẋ1(t) + Cx1(t)ẇ(t) + Bu(t),
x1(t) ∈ Rn, A1, A2, C ∈ Rn×n, B ∈ Rn×m,

(4.1)

where w(t) is the scalar standard Wiener process. The system can
be presented as

ẋ(t) =

[
0 In
A1 A2

]
x(t) +

[
0
B

]
u(t) +

[
0
C

]
x1(t)ẇ(t) (4.2)

with x(t) = col{x1(t), x2(t) = ẋ1(t)} ∈ R2n.
Assume that (4.2) is stabilizable, i.e. there exists K̄ = [K̄1 K̄1] ∈

Rm×2n such that u(t) = K̄1x1(t) + K̄2x2(t) exponentially stabilizes
(4.2) with C = 0. The derivative ẋ1(t) = x2(t) can be approximated
by the finite-difference

ẋ1(t) ≈
x1(t) − x1(t − h)

h
, h > 0,

leading to the static output-feedback with a stabilizing delay h >
0:

u(t) = K0x1(t) + K1x1(t − h), (4.3)

where x1(t) = 0 for t < 0 and

K0 = K̄0 +
1
h
K̄1, K1 = −

1
h
K̄1. (4.4)

The closed-loop system (4.2), (4.3) has the form

ẋ(t) =

[
0 In
A1 A2

]
x(t) +

[
0
B

]
(K1x1(t)

+K2x1(t − h)) +

[
0
C

]
x1(t)ẇ(t).

(4.5)

Differently from the previous section, for h = 0 and C = 0 system
(4.5) is not exponentially stable.

4.1. Stability via neutral type model transformation

Put

G(t) =
∫ t
t−h(s − t + h)K2x2(s)ds,

G0(t) =
∫ t
t−h K2x2(s)ds, G,G0 ∈ Rm.

(4.6)

Then via x2(s)ds = dx1(s) we have Ġ(t) = hK2x2(t) − G0(t) =

hK2x2(t) − K2x1(t) + K2x1(t − h) or

K2x1(t − h) = Ġ(t) − hK2x2(t) + K2x1(t). (4.7)

Note also that
[
0
C

]
x1(t) =

[
0 0
C 0

]
x(t). So, substituting (4.7) into

(4.5) we obtain

ż(t) = Dx(t) +

[
0 0
C 0

]
x(t)ẇ(t),

z(t) =

[
I2n −

[
0
B

]][
x(t)
G(t)

]
∈ R2n,

D =

[
0 In

A1 + B(K1 + K2) A2 − hBK2

]
.

(4.8)

Proposition 4.1. Given matrices A1, A2, C ∈ Rn×n, B ∈ Rn×m,
K1, K2 ∈ Rm×n.

(i) Let there exist matrices P1 ∈ R2n×2n, P2 ∈ R2n×m, P3, R, S ∈

Rm×m that satisfy the following LMIs:

Ψ2 =

⎡⎣P1 P2 − P1

[
0
B

]
∗ Ψ22

⎤⎦ > 0,

Ψ22 = [0 B′
]P1

[
0
B

]
− [0 B′

]P2 − P ′

2

[
0
B

]
+P3 +

2
h S

(4.9)

and

Φ2aug =

[
Φ11 Φ12 −P2
∗ −R [0 B′

]P2 − P3
∗ ∗ −S

]
< 0,

Φ11 = P1D + D′P1 + hP2[0 K2] + h
[
0
K ′

2

]
P ′

2

+

[
0 0
0 K ′

2

(
h2S +

1
4h

4R
)
K2

]
+

[
0 C ′

0 0

]
P1

[
0 0
C 0

]
,

Φ12 = D′

(
P2 − P1

[
0
B

])
+h

[
0
K ′

2

](
P3 − P ′

2

[
0
B

])
.

(4.10)

Then system (4.8) is asymptotically mean square stable.
(ii) If there exist 2n × 2n matrix P1 > 0 and m × m matrix R that

satisfy the LMI

Φ2sim =

⎡⎣φ2s D′P1

[
0
B

]
∗ −R

⎤⎦ < 0,

φ2s = P1D + D′P1

+

[
0 0
0 1

4h
4K ′

2RK2

]
+

[
0 C ′

0 0

]
P1

[
0 0
C 0

]
,

(4.11)

then the system (4.8) is asymptotically mean square stable.

Proof. Consider V1 given by (3.8), where z(t) and G(t) are defined
in (4.8) and (4.6) respectively. Let L be the generator of Eq. (4.8).
Differentiating V1 along (4.8) we obtain

LV1(xt ) = 2(x′(t) − G′(t)[0 B′
])P1Dx(t)

+ 2(x′(t) − G′(t)[0 B′
])P2(hK2x2(t) − G0(t))

+ 2G′(t)P3 (hK2x2(t) − G0(t))

+ 2x′(t)D′P2G(t) + x′(t)
[
0 C ′

0 0

]
P1

[
0 0
C 0

]
x(t).

(4.12)
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For the additional term of the Lyapunov functional

V2(xt ) = h
∫ t
t−h(s − t + h)x′

2(s)K
′

2SK2x2(s)ds
+

1
4h

2
∫ t
t−h(s − t + h)2x′

2(s)K
′

2RK2x2(s)ds,

via Jensen’s inequalities (2.5)

G′(t)RG(t) ≤
h2
2

∫ t
t−h(s − t + h)x′

2(s)K
′

2RK2x2(s)ds,

G′

0(t)SG0(t) ≤ h
∫ t
t−h x

′

2(s)K
′

2SK2x2(s)ds,

we have

LV2(xt ) = h2x′

2(t)K
′

2SK2x2(t)

−h
∫ t
t−h x

′

2(s)K
′

2SK2x2(s)ds

+
1
4h

4x′

2(t)K
′

2RK2x2(t)

−
1
2h

2
∫ t
t−h(s − t + h)x′

2(s)K
′

2RK2x2(s)ds

≤ x′

2(t)K
′

2

(
h2S +

1
4h

4R
)
K2x2(t)

−G′(t)RG(t) − G′

0(t)SG0(t).

(4.13)

Via (4.12), (4.13) for the Lyapunov functional V (xt ) = V1(xt ) +

V2(xt ) we obtain LV (xt ) ≤ η′(t)Φ2augη(t), where Φ2aug < 0 is
defined in (4.10) and η(t) = col{x(t),G(t),G0(t)}. Moreover, V (xt )

is positive definite V (xt ) ≥

[
x(t)
G(t)

]′

Ψ2

[
x(t)
G(t)

]
, where Ψ2 > 0 is

defined in (4.9).
The proof of (ii) is similar to (ii) of Proposition 3.1. □

4.2. Stability via stochastic extension of simple Lyapunov functional
depending on ẋ2

Following [14], we use the following Taylor expansion with the
integral form of the remainder:

x1(t − h) = x1(t) − hx2(t) + W (t),

W (t) =
∫ t
t−h(s − t + h)dx2(s).

(4.14)

We further extend the results of [14] to stochastic casewith C ̸= 0.
Denote

y2(t) = (A1 + BK1)x1(t) + A2x2(t)
+BK2x1(t − h). (4.15)

Then from (4.5) we have

dx2(s) = y2(s)ds + Cx1(s)dw(s).

Therefore

W (t) = r(t) + ξ (t),
r(t) =

∫ t
t−h(s − t + h)y2(s)ds,

ξ (t) =
∫ t
t−h(s − t + h)Cx1(s)dw(s).

(4.16)

Substituting (4.14), (4.16) into (4.5), we arrive at

ẋ(t) = Dx(t)

+

[
0
B

]
K2[r(t) + ξ (t)] +

[
0 0
C 0

]
x(t)ẇ(t),

D =

[
0 In

A1 + B(K1 + K2) A2 − hBK2

]
,

(4.17)

whereas y2 defined by (4.15) has the form

y2(t) = [0 In]Dx(t) + BK2[r(t) + ξ (t)]. (4.18)

We choose the following Lyapunov functional:

V (xt ) = VP (x(t)) + VR(y2t ) + VF (x1t ),

where
VP (x(t)) = x′(t)Px(t),

VR(y2t ) =
∫ t
t−h(s − t + h)2y′

2(s)Ry2(s)ds,

VF (x1t ) =
∫ t
t−h(s − t + h)3x′

1(s)C
′FCx1(s)ds,

(4.19)

and matrices P ∈ R2n×2n, R, F ∈ Rn×n are positive definite. Let L be
the generator of (4.17). Then

LVP (x(t)) = 2x′(t)P
(
Dx(t) +

[
0
B

]
K2(r(t) + ξ (t))

)
+x′(t)

[
0 C ′

0 0

]
P

[
0 0
C 0

]
x(t).

Via Jensen’s inequality and (4.16), (4.18) we obtain

LVR(y2t ) = h2y′

2(t)Ry2(t)

−2
∫ t
t−h(s − t + h)y′

2(s)Ry2(s)ds

≤ h2η′(t)
[
[0 In]D BK2 BK2

]′ R
×

[
[0 In]D BK2 BK2

]
η(t) −

4
h2
r ′(t)Rr(t),

where η(t) = col{x(t), r(t), ξ (t)}.
Via Ito’s integral property

Eξ ′(t)Fξ (t) = E
∫ t
t−h(s − t + h)2x′

1(s)C
′FCx1(s)ds.

So, ELVF (xt ) = h3Ex′(t)[C 0]′F [C 0]x(t) − 3Eξ ′(t)Fξ (t). Therefore,
ELV (xt ) ≤ Eη′(t)Φ2ẋη(t), where

Φ2ẋ =

⎡⎢⎢⎣φ2 P
[

0
BK2

]
P

[
0

BK2

]
∗ −

4
h2
R 0

∗ ∗ −3F

⎤⎥⎥⎦
+h2

[
[0 In]D BK2 BK2

]′

×R
[
[0 In]D BK2 BK2

]
,

φ2 = PD + D′P +

[
0 C ′

0 0

]
P

[
0 0
C 0

]
+h3

[
C 0

]′ F
[
C 0

]
.

(4.20)

Summarizing we arrive at the following

Proposition 4.2. Given matrices A1, A2, C ∈ Rn×n, B ∈ Rn×m,
K1, K2 ∈ Rm×n, let there exist positive definite matrices P ∈ R2n×2n,
R, F ∈ Rn×n that satisfy the LMI Φ2ẋ < 0, where Φ2ẋ is defined by
(4.20). Then (4.17) is asymptotically mean square stable.

Remark 4.1. LMIs of Propositions 4.1 and 4.2 are feasible for small
enough h provided D defined in these Propositions is Hurwitz [5].
The feasibility of Φ2ẋ < 0 yields that

−
4
h2 R + h2K ′

2B
′RBK2 < 0,

i.e. that all the eigenvalues of h2
2 BK2 are inside of the unit circle.

The feasibility of (4.11) implies the same conclusion. This can be
proved by arguments of (iv) of Proposition 3.1. Indeed, denoting
P̄ ′

= −[0 I]D′P1[0 I]′ we find that (4.11) by Schur complements
implies

−P̄ − P̄ ′
+

h4

4
K ′

2RK2 + P̄ ′BR−1B′P̄ < 0.

that can be presented as

−R +
h4

4
K ′

2RK2 + (P̄ − R)′R−1(P̄ − R) < 0.

From the latter inequality it follows that

−R +
h4

4
K ′

2RK2 < 0,



90 E. Fridman and L. Shaikhet / Systems & Control Letters 124 (2019) 83–91

Table 4.1
Example 4.1: the stability intervals for h and different σ .
σ 0 0.5 No var (m = n)

Φ2aug < 0 [0.106, 1.413] [0.259, 1.370] 5.5n2
+ 2.5n

Φ2sim < 0 [0.106, 1.406] [0.259, 1.370] 2.5n2
+ 1.5n

[5] 3n2
+ 2n

Φ2ẋ < 0 [0.106, 1.406] [0.344, 0.955] 3n2
+ 2n

Table 4.2
Example 4.2: the stability intervals for h and different σ .
σ 0 0.7 1.3

Φ2aug < 0 (0, 1.0962] [0.132, 1.079] [0.616, 0.942]
Φ2sim < 0 (0, 0.999] [0.132, 0.999] [0.616, 0.942]
Φ2ẋ < 0 (0, 0.999] [0.166, 0.723] –

i.e. that the eigenvalues of h2
2 BK2 are inside of the unit circle.

The latter guarantees the stability of the integral equation z(t) =

x2(t)−
∫ t
t−h(s−t+h)BK2x2(s)ds = 0 (see Remark 3 of [5]). Thus, we

arrived at the additional justification of the fact that the stability
condition for the integral equation can be omitted.

Differently from the augmented Lyapunov functional of Propo-
sition 3.1, the augmented functional of Proposition 4.1 (for the
delay-induced stability) does not essentially improve the stability
analysis results in the examples even in the deterministic case.
However, the augmented Lyapunov functional and the functional
of Proposition 4.2 may be more efficient than the simplest one
that corresponds to item (ii) of Proposition 4.2 in various control
problems, where a lower bound of V in terms of |x(t)| should be
employed (e.g. for finding bounds on |x(t)| or for finding domains
of attraction for nonlinear systems [16]). These problems may be
topics for future research.

4.3. Examples

Example 4.1 (Delay-Induced Stability ([17], p. 176)). The system

ẍ1(t) = (−2 + σẇ(t))x1(t) + 0.1ẋ1(t) + u, u(t) = x1(t − h),

is reduced to (4.1), (4.3) with n = m = 1, A1 = −2, A2 = 0.1, B =

1, C = σ ,K1 = 0 andK2 = 1. Themean square asymptotic stability
intervals via the augmented Lyapunov functional (LMIs Ψ2 > 0,
Φ2aug < 0 written for brevity as Φ2aug < 0) and simple Lyapunov
functionals (LMI Φ2sim < 0 or LMI Φ2ẋ < 0) for σ = 0 and σ = 0.5
are presented in Table 4.1. Note that the number of scalar decision
variables in these LMIs are: 2n2

+ n + 2nm + 1.5(m2
+ m) for

Φ2aug < 0, 2n2
+n+0.5(m2

+m) forΦ2sim < 0 (whereas in [5] there
are additional 0.5(n2

+ n) variables for the stability of the integral
equation) and 3n2

+ 2n for Φ2ẋ < 0. It is seen that for σ = 0.5
the simplest LMI Φ2sim < 0 leads to the same result as Φ2aug < 0
essentially improving the result via Φ2ẋ < 0.

Example 4.2 (Inverted Pendulum ([8], p. 209)). Consider the con-
trolled inverted pendulum with stochastic perturbations

ẍ1(t) = [1 + σẇ(t)]x1(t) + u(t), u(t) = −4x1(t) + 2x1(t − h).

It is reduced to Eq. (4.5) with A1 = 1, A2 = 0, B = 1, C =

σ , K1 = −4, K2 = 2. The maximal (asymptotic mean square)
stability intervals via different methods for various values of σ are
presented in Table 4.2. Also in this example, for large values of
stochastic perturbations, the simplest LMI Φ2sim < 0 leads to the
best (in terms of conservatism and numerical complexity) results.

Table 4.3
Example 4.3: the obtained K1 and the maximal σ .
Method h K1 σ

Φ2aug < 0 0.025 [241.145 230.541] 3.224

Φ2aug < 0
0.018 [332.658 310.497]

3.234
Φ2sim < 0 3.234
Φ2ẋ < 0 2.228

Example 4.3 (Inverted Pendulum on the Cart ([16], p. 313)). Consider
a model of the inverted pendulum on a cart⎡⎢⎣ ẋ

θ̇

ẍ
θ̈

⎤⎥⎦ =

⎡⎢⎣
0 0 1 0
0 0 0 1
0 −mg

M 0 0
0 (M+m)g

Ml 0 0

⎤⎥⎦
⎡⎢⎣ x

θ

ẋ
θ̇

⎤⎥⎦

+

⎡⎢⎢⎣
0
0
a
M
−a
Ml

⎤⎥⎥⎦ u(t) + σ

⎡⎢⎣0
0
x
θ

⎤⎥⎦ ẇ(t)

with M = 3.9249, m = 0.2047, l = 0.2302, g = 9.81, a = 25.3
and σ ≥ 0. In thismodel, x and θ represent cart position coordinate
and pendulum angle from vertical, respectively. The system can be
stabilized by a state-feedback

u(t) = K̄1[x(t) θ (t)]′ + K̄2[ẋ(t) θ̇ (t)]′,

[K̄1 K̄2] = [5.825 24.941 5.883 5.140].

Assumenow that themeasurement is givenby y(t) = col{x(t), θ (t)},
and we are looking for a static output-feedback

u(t) = K1[x(t) θ (t)]′ + K2[x(t − h) θ (t − h)]′

that stabilizes by using delay h. The delays that ensure stability,
the resulting gain K1 found from (4.4) (for brevity K2 is omitted)
and maximal possible σ are shown in Table 4.3. It is seen that
augmented Lyapunov functional allows to use a larger delay h =

0.25 that leads to a smaller gain.

5. Conclusions

In this paper two novel Lyapunov-based methods (via aug-
mented Lyapunov functionals and via stochastic extension of Lya-
punov functionals depending on ẋ) for two important classes of
stochastic systems have been presented: for general retarded sys-
tems with the delay term in the form of Stieltjes integral (that are
stablewithout delay) and for systemswith delay-induced stability.
The paper has introduced the first LMIs (even in the deterministic
case) for systems with general delay term in the form of Stieltjes
integral. These LMIs provide in the unified form conditions for both
discrete and distributed delay.

The method via augmented Lyapunov functional that employs
neutral type transformation is novel for both classes of systems
(even in the deterministic case). The main novelty of the method
via stochastic extension of Lyapunov functional depending on ẋ is
for the stochastic systems, where novel Lyapunov functionals are
introduced. The paper simplifies the existing results based on neu-
tral type transformation: the stability conditions for the integral
equation are omitted (which is also new in the deterministic case).

Though results via the secondmethod are less efficient for large
stochastic perturbations in the numerical examples, this method
and themethod based on augmented Lyapunov functionals should
be more efficient than the simplest method for finding bounds on
|x(t)|. In this paper, the simplest conditions via Jensen’s inequality
were presented. The suggested methodology based on Stieltjes
integral presentation may be useful for advanced results via other
augmented Lyapunov functionals and less conservative integral
inequalities (see e.g. [13,18,26]). These may be the topics for the
future research.
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