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a b s t r a c t

The objective of the present paper is finite-dimensional observer-based control of the 1-D linear heat
equation with constructive and feasible design conditions. We propose a method which is applicable
to boundary or non-local sensing together with non-local actuation, or to Dirichlet actuation with
non-local sensing. We use a modal decomposition approach. The dimension of the controller, N0, is
equal to the number of modes which decay slower than a given decay rate δ > 0. The observer
may have a larger dimension N ≥ N0. The observer and controller gains are found separately by
solving N0 × N0-dimensional Lyapunov inequalities. We suggest a direct Lyapunov approach to the
full-order closed-loop system and provide linear matrix inequalities (LMIs) for finding N and the
exponential decay rate of the closed-loop system. We prove that the LMIs are always feasible for large
enough N . The proposed method is different from existing qualitative methods that do not give easily
verifiable and efficient bounds on the observer-based controller dimension and the resulting closed-
loop performance. Numerical examples demonstrate that our LMI conditions lead to non-conservative
bounds on N and the resulting decay rate.

© 2020 Elsevier Ltd. All rights reserved.
1. Introduction

Observer-based controllers for linear PDEs have been con-
tructed by the modal decomposition approach (Curtain, 1982;
atz, Fridman, & Selivanov, 2020; Lasiecka & Triggiani, 2000;
rlov, Lou, & Christofides, 2004), the backstepping method (Krstic
Smyshlyaev, 2008) and by the spatial decomposition (sampling)
ethod (Selivanov & Fridman, 2018), where the observer is found

n the form of PDE. A PDE observer (that can be implemented via
pproximations Lasiecka & Triggiani, 2000) usually leads to sepa-
ation of the controller and observer designs. Finite-dimensional
bservers and the resulting controllers, which are very attractive
n applications, generally do not allow such separation. There-
ore, design of the latter controllers is a very challenging control
roblem.
Finite-dimensional observer-based controllers for parabolic

ystems were designed by modal decomposition approach (Balas,
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Fouad Giri under the direction of Editor Miroslav Krstic.
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1988; Christofides, 2001; Curtain, 1982; Harkort & Deutscher,
2011). In particular, in the seminal work (Curtain, 1982) such
controllers were suggested in case where the control input enters
the PDE via one or several shape functions with special structure:
these functions are linear combinations of a finite number of
eigenfunctions. The latter assumption maintains the separation
of state and error dynamics, but is highly restrictive in practice.
For bounded control and observation operators, it was shown
in Balas (1988) that the closed-loop system is stable provided
the dimension of the controller is large enough. However, a con-
structive method for finding this dimension was not provided. A
singular perturbation approach that reduces the controller design
to a finite-dimensional slow system was suggested in Christofides
(2001), without giving constructive and rigorous conditions for
finding the dimension of the slow system that guarantees a
desired closed-loop performance of the full-order system.

The first step towards constructive conditions for the finite-
dimensional observer-based controller was done in Harkort and
Deutscher (2011), where a quantitative bound on the controller
and observer dimensions was suggested via modal decomposition
in the case of bounded control and observation operators. How-
ever, as mentioned in Harkort and Deutscher (2011), the obtained
bound may be difficult to compute and is highly conservative.

In the framework of modal decomposition methods for
parabolic PDEs, a direct Lyapunov method for either state-feedback

or observer design has been suggested in Coron and Trélat (2004),
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arafyllis, Ahmed-Ali, and Giri (2019) and Prieur and Trélat (2018)
ote that in the latter papers, due to separation of the finite-
imensional part from the remainder, there is no problem of the
easibility of the conditions. Recently, a delayed finite-dimensional
oundary observer was introduced for the 1-D heat equation
n Selivanov and Fridman (2019).

The objective of the present paper is finite-dimensional
bserver-based control of 1-D heat equation with easily verifiable
nd nonconservative conditions. We propose a method which is
pplicable to boundary or non-local sensing together with non-
ocal actuation, or to Dirichlet actuation with non-local sensing.
e use a modal decomposition approach. The dimension of our

ontroller, N0, is equal to the number of modes which decay
lower than a given decay rate δ > 0. The observer may have
larger dimension N ≥ N0. The observer and controller gains

are found separately by solving N0 × N0-dimensional Lyapunov
nequalities.

Inspired by Coron and Trélat (2004), Karafyllis et al. (2019) and
rieur and Trélat (2018), we suggest a direct Lyapunov approach
o the full-order closed-loop system and provide LMIs for finding
and the resulting exponential decay rate. Numerical examples

how that the LMIs lead to non-conservative bounds on N and
he decay rate.

Differently from state-feedback or PDE observer-based control,
he main challenge under the finite-dimensional observer is to
rove that the LMIs are always feasible for large enough N (see
.g. proof of Theorem 3.1). Note that the size of our LMIs grows
ith N , which may lead to unboundedness of the norm of the
losed-loop system matrix F and the norm of P > 0, which satis-
ies the Lyapunov inequality PF +F TP+2δP < 0. Unboundedness
f the norm of P can cause the LMIs to be infeasible for all N . We
ropose a decomposition of F into a triangular Hurwitz matrix
nd a perturbation, and present a novel asymptotic perturbation
nalysis to obtain bounds on the norm of P in terms of N .
The article is organized as follows. In Section 2, some math-

matical preliminaries are given. Section 3 is devoted to main
esults. Numerical examples are given in Section 4, and conclu-
ions are drawn in Section 5. Some preliminary results confined to
ounded control and observation operators have been presented
n Katz and Fridman (2020).

otation. We denote by L2(0, 1) the Hilbert space of Lebesgue
easurable and square integrable functions f : [0, 1] → R
ith the corresponding inner product ⟨f , g⟩ :=

∫ 1
0 f (x)g(x)dx and

nduced norm ∥f ∥2
L2 := ⟨f , f ⟩. H1(0, 1) is the Sobolev space of

unctions f : [0, 1] → Rwith a square integrable weak derivative.
he norm defined on H1(0, 1) is ∥f ∥2

H1 := ∥f ∥2
L2 +

f ′
2
L2 . The

tandard Euclidean norm on Rn will be denoted by ∥·∥. H2(0, 1)
s the Sobolev space of functions f : [0, 1] → R with a square
ntegrable weak derivative of the second order. For A ∈ Rn×n, the
perator norm of A, induced by ∥·∥, is denoted by ∥·∥2. For P ∈
n×n, the notation P > 0 means that P is symmetric and positive
efinite. The sub-diagonal elements of a symmetric matrix will
e denoted by ∗. For U ∈ Rn×n, U > 0 and x ∈ Rn we denote
x∥2

U := xTUx.

. Mathematical preliminaries

Consider the Sturm–Liouville operator:

Ah = −
d
dx

(
p(x) d

dxh(x)
)
+ q(x)h(x),

D(A) =
{
h ∈ H2(0, 1)| h′(0) = h(1) = 0

}
.

(2.1)

Here p ∈ C2([0, 1]) and q ∈ C([0, 1]) are subject to the following
bounds:

0 < p ≤ p(x) ≤ p∗, 0 ≤ q(x) ≤ q∗, x ∈ [0, 1]. (2.2)
∗

2

The assumption q(x) ∈ [0, q∗
] is made for simplicity only. Other-

wise one can consider the shifted operator A+µI with appropri-
ate µ ∈ R. The Sturm–Liouville operator (2.1) has a sequence of
eigenvalues λ1 < λ2 < · · · < λn < . . . satisfying

π2(n − 1)2p∗ ≤ λn ≤ π2n2p∗
+ q∗, n ≥ 1 (2.3)

ith corresponding eigenfunctions φn(x), n ≥ 1 (Orlov, 2017).
he eigenfunctions form a complete orthonormal system in
2(0, 1). Note that in the case p(x) ≡ 1 and q(x) ≡ 0, λn and
n can be computed explicitly:

n = π2
(
n −

1
2

)2

, φn(x) =
√
2 cos(

√
λnx), n ≥ 1. (2.4)

Following the assumptions on p(x) and q(x), A is positive and
−A is a sectorial operator, which generates an analytic semigroup
on L2(0, 1). Furthermore, A has a square root A

1
2 : D(A

1
2 ) →

2(0, 1), where

D(A
1
2 ) =

{
h ∈ L2(0, 1)|

∑
∞

n=1 λn|⟨h, φn⟩ |
2< ∞

}
(2.5)

(for further details, see Tucsnak &Weiss, 2009, Section 3.5). Recall
that D(A

1
2 ) is the completion of D(A) with respect to the norm

∥g∥ 1
2

=

(∫ 1
0 p(x)

⏐⏐g ′(x)
⏐⏐2 + q(x) |g(x)|2 dx

) 1
2

=
√

⟨Ag, g⟩ =

√∑
∞

n=1 λn|⟨g, φn⟩ |2, g ∈ D(A).
(2.6)

y (2.6) and Wirtinger’s inequality we have:

p∗

g ′
2
L2 ≤ ∥g∥

2
1
2

≤
p∗π2

+4q∗

π2

g ′
2
L2 , (2.7)

implying for h ∈ D(A)

π2

p∗π2 + 4q∗

∞∑
n=1

λnh2
n ≤

h′
2
L2 ≤

1
p∗

∞∑
n=1

λnh2
n. (2.8)

ote that due to equivalence of ∥·∥ 1
2
and ∥·∥H1 subject to g(1) =

for any g ∈ D(A) we have

(A
1
2 ) =

{
h ∈ H1(0, 1)| h(1) = 0

}
. (2.9)

Finally, density of D(A) in D(A
1
2 ) yields that (2.8) holds for any

h
L2(0,1)
=

∑
∞

n=1 hnφn ∈ D(A
1
2 ). Summarizing:

Lemma 2.1. Let h ∈ L2(0, 1) be given by h
L2(0,1)
=

∑
∞

n=1 hnφn. Then,
h ∈ H1(0, 1) satisfies h(1) = 0 iff

∑
∞

n=1 λnh2
n < ∞. Moreover, in

this case (2.8) holds.

3. Observer–controller design

3.1. Non-local measurement and actuation: L2-stability

Consider the reaction–diffusion system

zt (x, t) = ∂x (p(x)zx(x, t)) + (qc − q(x))z(x, t) + b(x)u(t),
zx(0, t) = 0, z(1, t) = 0,

(3.1)

where t ≥ 0, x ∈ [0, 1], z(x, t) ∈ R, qc ∈ R is a constant
reaction coefficient, b ∈ L2(0, 1) and u(t) is the control input. For
large enough qc > 0 the open-loop system (3.1) is unstable. We
consider non-local measurement

y(t) =

∫ 1

0
c(x)z(x, t)dx, (3.2)

where c ∈ L2(0, 1). Given any δ > 0, our objective is exponential
stabilization of (3.1) with a decay rate δ.
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We begin by presenting the solution to (3.1) as

z(x, t) =
∑

∞

n=1 zn(t)φn(x), zn(t) = ⟨z(·, t), φn⟩ . (3.3)

y differentiating under the integral sign, integrating by parts and
sing (2.1), we have

żn(t) =
∫ 1
0 zt (x, t)φn(x)dx = qczn(t) + bnu(t)

+
∫ 1
0 [∂x (p(x)zx(x, t)) − q(x)z(x, t)]φn(x)dx

= (−λn + qc)zn(t) + bnu(t),
zn(0) = ⟨z0, φn⟩ =: z0,n, bn = ⟨b, φn⟩ .

(3.4)

Since limn→∞ λn = +∞, there exists N0 ∈ N such that

− λn + qc < −δ, n > N0. (3.5)

N0 will define the dimension of the controller, whereas N ≥ N0
will be the dimension of the observer.

We construct a finite-dimensional observer of the form

ẑ(x, t) :=

N∑
n=1

ẑn(t)φn(x), (3.6)

where ẑn(t) satisfy the ODEs
˙̂zn(t) = (−λn + qc)ẑn(t) + bnu(t)

− ln
[∫ 1

0 c(x)
(∑N

n=1 ẑn(t)φn(x)
)
dx − y(t)

]
,

ẑn(0) = 0, 1 ≤ n ≤ N.

(3.7)

Here ln are scalar observer gains.
Denote

A0 = diag
{
−λ1 + qc, . . . ,−λN0 + qc

}
,

L0 =
[
l1, . . . , lN0

]T
, C0 =

[
c1, . . . , cN0

]
,

cn = ⟨c, φn⟩ , n ≥ 1.

(3.8)

Assume that

cn ̸= 0, 1 ≤ n ≤ N0. (3.9)

Then, the pair (A0, C0) is observable by the Hautus lemma. We
choose l1, . . . , lN0 such that L0 satisfies the following Lyapunov
inequality:

Po(A0 − L0C0) + (A0 − L0C0)TPo < −2δPo, (3.10)

where Po ∈ RN0×N0 satisfies Po > 0. Furthermore, we choose
ln = 0, n > N0. We assume

bn ̸= 0, 1 ≤ n ≤ N0, (3.11)

where bn = ⟨b, φn⟩, and denote

B0 :=
[
b1 . . . bN0

]T
. (3.12)

By the Hautus lemma the pair (A0, B0) is controllable. Let K0 ∈

R1×N0 satisfy

Pc(A0 + B0K0) + (A0 + B0K0)TPc < −2δPc, (3.13)

where Pc ∈ RN0×N0 satisfies Pc > 0. We propose a N0-dimensional
controller of the form

u(t) = K0ẑN0 (t), ẑN0 (t) =
[
ẑ1(t), . . . , ẑN0 (t)

]T
, (3.14)

which is based on the N-dimensional observer (3.7).

Remark 3.1. In the state-feedback case, the control law u(t) =

K0zN0 (t) with zN0 (t) =
[
z1(t), . . . , zN0 (t)

]T stabilizes the finite-
dimensional part of (3.4), where 1 ≤ n ≤ N0. Since the resulting
closed-loop is separated from zn with n > N + 1, u(t) = K0zN0 (t)
stabilizes (3.1). A finite-dimensional observer-based controller
was proposed in Curtain (1982) under very restrictive assump-
tions on b (b = 0, n > N ), which ensure separation of z
n 0 n

3

with n > N + 1 from the finite-dimensional part. For a general
b ∈ L2(0, 1) the observer, estimation error and remainder are
coupled (see (3.22)).

For well-posedness of the closed-loop system (3.1) and (3.7)
with u(t) = K0ẑN0 (t), let H := D

(
A

1
2

)
×RN , with D(A

1
2 ) defined

in (2.5). This is a Hilbert space with the norm ∥·∥
2
H := ∥·∥

2
H2+∥·∥

2.
Defining the state ξ (t) as

ξ (t) =
[
z(·, t) ẑN (t)

]T
∈ H, ẑN (t) =

[
ẑ1(t), . . . , ẑN (t)

]T
,

the closed-loop system can be presented as

d
dt

ξ (t) + Ãξ (t) =

[
f1(ξ )
f2(ξ )

]
, Ã =

[
A 0
0 A2

]
,

A2 : RN
→ RN , A2v =

[
−A0 − B0K0 + L0C0 L0C1

−B1K0 −A1

]
v,

f1(ξ ) = b(·)K0ẑN0 (t) + qcz(·, t),

f2(ξ ) =
[
L0 ⟨c, z(·, t)⟩ 0

]T
,

A1 = diag
{
−λN0+1 + qc, . . . ,−λN + qc

}
,

C1 =
[
cN0+1, . . . , cN

]
, B1 =

[
bN0+1, . . . , bN

]T
.

(3.15)

Ã has a domain D(Ã) = D(A) × RN , with D(A) defined in
(2.1). Furthermore, since −A generates an analytic semigroup on
L2(0, 1) and A2 is a bounded operator on RN , −Ã generates an
analytic semigroup on H.

Let ξi ∈ H, i ∈ {1, 2}. It can be easily verified that

∥f1(ξ1) − f1(ξ2)∥L2 ≤
(
∥b∥L2 ∥K0∥ + |qc |

)
∥ξ1 − ξ2∥H ,

∥f2(ξ1) − f2(ξ2)∥ ≤ ∥c∥L2 ∥L0∥ ∥ξ1 − ξ2∥H .

hese estimates, together with the fact that f1(0) = f2(0) = 0
mply that col {f1, f2} : H → H satisfies assumptions (F) and
3.22) of Section 6.3 in Pazy (1983) with α = 0 (which is one
f the cases discussed therein. See the last paragraph of p. 195).
heorems 6.3.1 and 6.3.3 in Pazy (1983) imply that system (3.1),
3.7) with u(t) = K0ẑN0 (t) and initial condition z0 = z(·, 0) ∈
2(0, 1) has a unique classical solution

ξ ∈ C ([0, ∞);H) ∩ C1 ((0, ∞);H) (3.16)

such that

ξ (t) ∈ D
(
Ã
)

= D (A) × RN
∀t > 0. (3.17)

he latter result follows from (3.20) and (3.21) in Pazy (1983),
ection 6.3.
Let

n(t) = zn(t) − ẑn(t), 1 ≤ n ≤ N (3.18)

e the estimation error. By using (3.3) and (3.6), the last term on
he right-hand side of (3.7) can be written as∫ 1

0 c(x)
[∑N

n=1 ẑn(t)φn(x) −
∑

∞

n=1 zn(t)φn(x)
]
dx

= −
∑N

n=1 cnen(t) − ζ (t), ζ (t) =
∑

∞

n=N+1 cnzn(t).
(3.19)

hen the error equation has the form

˙n(t) = (−λn + q)en(t) − ln
(∑N

n=1 cnen(t) + ζ (t)
)

, 1 ≤ n ≤ N.
(3.20)
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enote

eN0 (t) =
[
e1(t), . . . , eN0 (t)

]T
,

eN−N0 (t) =
[
eN0+1(t), . . . , eN (t)

]T
,

ẑN−N0 (t) =
[
ẑN0+1(t), . . . , ẑN (t)

]T
,

X(t) = col
{
ẑN0 (t), eN0 (t), ẑN−N0 (t), eN−N0 (t)

}
,

L = col
{
L0, −L0, 02(N−N0)×1

}
, K̃ =

[
K0, 01×(2N−N0)

]
,

F =

⎡⎢⎢⎣
A0 + B0K0 L0C0 0 L0C1

0 A0 − L0C0 0 −L0C1

B1K0 0 A1 0
0 0 0 A1

⎤⎥⎥⎦ .

(3.21)

From (3.4), (3.7), (3.14), (3.19) and (3.20), by using A1, B1, C1
defined in (3.15), we present the closed-loop system for ẑ given
by (3.6) and the estimation error

z(x, t) − ẑ(x, t) =

N∑
n=1

en(t)φn(x) +

∞∑
n=N+1

zn(t)φn(x)

as follows:
Ẋ(t) = FX(t) + Lζ (t), t ≥ 0,

żn(t) = (−λn + qc)zn(t) + bnK̃X(t), n > N.
(3.22)

Note that we consider the closed-loop system in ℓ2(N) by using
the isometry between L2(0, 1) and ℓ2(N) given by L2(0, 1) ∋ h ↦→

{⟨h, φn⟩}
∞

n=1 ∈ ℓ2(N). The Cauchy–Schwarz inequality implies the
following estimate

ζ 2(t) ≤
(∑

∞

n=N+1 c
2
n

) (∑
∞

n=N+1 z
2
n (t)

)
≤ ∥c∥2

L2
∑

∞

n=N+1 z
2
n (t).

(3.23)

For L2-stability analysis of the closed-loop system (3.22), we
define the Lyapunov function

V (t) = ∥X(t)∥2
P +

∞∑
n=N+1

z2n (t), (3.24)

where P ∈ R2N×2N satisfies P > 0. Using Parseval’s equality and
ẑ2n + e2n = (zn − en)2 + e2n ≥ 0.5z2n , we have

V (t) ≥ λmin (P)
∑N

n=1

[
ẑ2n (t) + e2n(t)

]
+
∑

∞

n=N0+1 z
2
n (t)

≥ min
(

λmin(P)
2 , 1

)
∥z(·, t)∥2

L2 ,

V (t) ≤ λmax (P)
∑N

n=1

[
ẑ2n (t) + e2n(t)

]
+
∑

∞

n=N0+1 z
2
n (t)

≤ max
(

λmax(P)
2 , 1

)
∥z(·, t)∥2

L2 , t ≥ 0.

(3.25)

Since z(·, t) is a classical solution, the series
∑

∞

n=N+1 z
2
n (t) can be

ifferentiated term-by-term. Differentiation of V (t) along (3.22)
gives

V̇ + 2δV = XT (t)
[
PF + F TP + 2δP

]
X(t)

+ 2XT (t)PLζ (t) + 2
∑

∞

n=N+1(−λn + qc + δ)z2n (t)
+ 2

∑
∞

n=N+1 zn(t)bnK̃X(t).
(3.26)

Furthermore, the Cauchy–Schwarz inequality implies∑
∞

n=N+1 2zn(t)bnK̃X(t) ≤
1
α

∑
∞

n=N+1 z
2
n (t)

+ α
(∑

∞

n=N+1 b
2
n

) K̃X(t)2 ≤
1
α

∑
∞

n=N+1 z
2
n (t)

+ α ∥b∥2
L2

K̃X(t)2 ,

(3.27)

where α > 0. Denote η(t) = col {X(t), ζ (t)}. By (3.26) with (3.27)
and taking into account (3.23) we obtain for some β > 0

V̇ + 2δV + β
(
∥c∥2

L2
∑

∞

n=N+1 z
2
n (t) − ζ 2(t)

)
T ∑

∞ 2 (3.28)

≤ η (t)Ψ η(t) + 2 n=N+1 Wnzn (t) ≤ 0

4

if Wn = −λn + qc + δ +
1
2α +

β∥c∥2
L2

2 < 0, n > N and

Ψ =

[
PF + F TP + 2δP + α ∥b∥2

L2 K̃
T K̃ PL

∗ −β

]
< 0. (3.29)

Note that monotonicity of {λn}
∞

n=1 and Schur’s complement imply
that Wn < 0 for all n > N iff⎡⎣−λN+1 + qc + δ +

β∥c∥2
L2

2
1

√
2

1
√
2

−α

⎤⎦ < 0. (3.30)

ummarizing, we arrive at:

heorem 3.1. Consider (3.1) with b ∈ L2(0, 1) satisfying (3.11),
easurement (3.2) with c ∈ L2(0, 1) satisfying (3.9), control law
3.14) and z0 ∈ L2(0, 1). Let δ > 0 be a desired decay rate, N0 ∈ N
atisfy (3.5) and N ∈ N satisfy N0 ≤ N. Assume that L0 and K0 are
btained using (3.10) and (3.13), respectively. If there exist a positive
efinite matrix P ∈ R2N×2N and scalars α, β > 0 which satisfy
3.29) and (3.30), then the solution z(x, t) to (3.1) under the control
aw (3.14), (3.7) and the corresponding observer ẑ(x, t) defined by
(3.6) satisfy the following inequalities

∥z(·, t)∥2
L2 ≤ Me−2δt ∥z0∥2

L2 ,z(·, t) − ẑ(·, t)
2
L2 ≤ Me−2δt ∥z0∥2

L2 ,
(3.31)

with some constant M > 0. Moreover, LMIs (3.29) and (3.30) are
always feasible for large enough N.

Proof. To show (3.31), we note that (3.28) implies

V (t) ≤ e−2δtV (0), t ≥ 0. (3.32)

y (3.24), for some M0 > 0 we have

V (0) ≤ M0 ∥z0∥2
L2 (3.33)

inally, (3.32) and (3.25) imply (3.31).
For the proof of the feasibility of LMIs (3.29) and (3.30) we will

irst show that the solution to the Lyapunov equation

(F + δI) + (F + δI)T P = −I. (3.34)

atisfies ∥P∥2 = O(1), uniformly in N . Note that this solution is
iven by

=

∫
∞

0
e(F+δI)T te(F+δI)tdt. (3.35)

o, it is sufficient to show that for some constants κ0 > 0 and
M0 > 0, independent of N , the following inequality holds:e(F+δI)t


2 ≤ M0e−κ0t , t ≥ 0. (3.36)

To prove (3.36), we present F + δI = F̃1 + F̃2, where

F̃1 =

⎡⎢⎣A0 + B0K0 L0C0 0 0
0 A0 − L0C0 0 0
0 0 A1 0
0 0 0 A1

⎤⎥⎦+ δI,

F̃2 = F + δI − F̃1.

ince L0 and K0 satisfy (3.10) and (3.13), respectively, the block-
iagonal matrix F̃1 = diag{F10, F11} (F10 is a 2N0 × 2N0 block ) is
urwitz. Thus, for some κ > 0 and M1 > 1, independent of N ,
e have:
eF10t


2 ≤ M1e−κt , t ≥ 0,

eF̃1t

2

≤ max{∥eF10t∥2, e−κt
} ≤ M1e−κt .

(3.37)

y Parseval’s equality,

∥B1K0∥2 ≤ ∥B1∥ ∥K0∥ ≤ ∥b∥L2 ∥K0∥ ,
(3.38)
∥L0C1∥2 ≤ ∥L0∥ ∥C1∥ ≤ ∥c∥L2 ∥L0∥ .
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hen, for some M2 > 0, independent of N:

F̃2

2

≤ M2 max(∥B1K0∥2 , ∥L0C1∥2)
≤ M2 max(∥b∥L2 ∥K0∥ , ∥c∥L2 ∥L0∥).

(3.39)

From (3.37) and (3.39) it can be easily verified that for all t1 ≥ 0
and t2 ≥ 0 there exists M3 > 0, independent of N , such that∏2

i=1 e
F̃1ti F̃2


2

≤ M3e−κ(t1+t2) · ∥b∥L2 · ∥K0∥ · ∥c∥L2 · ∥L0∥ .
(3.40)

Moreover, it can be shown that the block-diagonal matrix F̃1 and
nilpotent matrix F̃2 satisfy
3∏

i=1

(F̃ ni
1 F̃2) = 0 ni ∈ {0, 1, . . .}

Then for any ti ≥ 0 (i = 1, 2, 3) we have
3∏

i=1

(
eF̃1ti F̃2

)
= 0. (3.41)

For t > 0, we apply the following identity (see, e.g., Van Loan,
1977):

e(F+δI)t
= eF̃1t +

∫ t

0
eF̃1(t−t1)F̃2e(F+δI)t1dt1. (3.42)

By using (3.42) again with t, t1 replaced by t1, t2, respectively, and
substituting back into (3.42), we obtain

e(F+δI)t
= eF̃1t +

∫ t
0 eF̃1(t−t1)F̃2eF̃1t1dt1

+
∫ t
0

∫ t1
0 eF̃1(t−t1)F̃2eF̃1(t1−t2)F̃2e(F+δI)t2dt2dt1.

Finally, repeating this step again and using (3.41) in the resulting
triple integral leads to

e(F+δI)t
= eF̃1t +

∫ t
0 eF̃1(t−t1)F̃2eF̃1t1dt1

+
∫ t
0

∫ t1
0 eF̃1(t−t1)F̃2eF̃1(t1−t2)F̃2eF̃1t2dt2dt1.

(3.43)

From (3.40) and (3.43) we finde(F+δI)t

2 ≤ M4e−κt (1 + t + t2

)
, (3.44)

where M4 > 0 is independent of N . Hence, (3.36) holds and
∥P∥2 = O(1), uniformly in N .

We show next that (3.29) and (3.30) are feasible for large
enough N with P which solves (3.34), α = N−1, β = N and λN+1
satisfying (2.3). By Schur complement, (3.29) and (3.30) with the
chosen decision variables are feasible if and only if

WN+1 ≤ −p∗N2π2
+ qc + δ +

N
(
1+∥c∥2

L2

)
2 < 0,

Ξ = −I +
∥b∥2

L2
N K̃ T K̃ +

1
N PLL

TP < 0.

It is clear thatWN+1 < 0 holds for large N . Since ∥P∥2 , ∥K̃∥2, ∥L∥2
re uniformly bounded in N , all of the eigenvalues of Ξ approach
1 uniformly in N . Hence, Ξ < 0 for N large enough. □

3.2. Non-local measurement and actuation: H1-stability

Here we assume b ∈ H1(0, 1) with b(1) = 0 in order to
obtain a stronger H1-stability result. Such stability is important
e.g. in application of PDEs to multi-agent systems, where any b
appropriate for PDE control may be adopted (Wei, Fridman, &
Johansson, 2019). Then, by (2.8), we have

∞∑
λnb2n ≤ µ

b′
2
L2 , µ =

(
p∗π2

+ 4q∗
)
π−2. (3.45)
n=1

5

Furthermore, we assume that z0 ∈ H1(0, 1) with z0(1) = 0.
e note that exponential H1-convergence of the closed-loop

ystem still holds under the assumption z0 ∈ L2(0, 1), due to the
moothing property of the heat equation (see Remark 3.2).
The observer and controller are defined as in Section 3.1. The

losed-loop system is given by (3.22). Moreover, the estimate
3.23) continues to hold. For H1-stability analysis, we modify V (t),
efined in (3.24), as follows

(t) := ∥X(t)∥2
P +

∞∑
n=N+1

λnz2n (t). (3.46)

ifferentiating V (t) along (3.22) gives

V̇ + 2δV = XT (t)
[
PF + F TP + 2δP

]
X(t)

+ 2XT (t)PLζ (t) + 2
∑

∞

n=N+1 λn(−λn + qc + δ)z2n (t)
+
∑

∞

n=N+1 2zn(t)λnbnK̃X(t).
(3.47)

urthermore, (3.45) and the Cauchy–Schwarz inequality imply∑
∞

n=N+1 2λnzn(t)bnK̃X(t) ≤
1
α

∑
∞

n=N+1 λnz2n (t)

+ α
(∑

∞

n=N+1 λnb2n
) K̃X(t)2 ≤

1
α

∑
∞

n=N+1 λnz2n (t)

+ αµ
b′
2
L2

K̃X(t)2 .

(3.48)

enote η(t) = col {X(t), ζ (t)}. By combining (3.47) with (3.48)
nd taking into account (3.23) we obtain for some β > 0

V̇ + 2δV + β
(
∥c∥2

L2
∑

∞

n=N+1 z
2
n (t) − ζ 2(t)

)
≤ ηT (t)Ψ 1η(t) + 2

∑
∞

n=N+1 λnW
(1)
n z2n (t) ≤ 0

(3.49)

f

W (1)
n = −λn + qc + δ +

1
2α +

β∥c∥2
L2

2λn
< 0, n > N,

Ψ 1
=

[
PF + F TP + 2δP + αµ

b′
2
L2 K̃

T K̃ PL
∗ −β

]
< 0.

(3.50)

onotonicity of {λn}
∞

n=1 and Schur’s complement imply that
(1)
n < 0 for all n > N iff⎡⎣−λN+1 + qc + δ +

β∥c∥2
L2

2λN+1
1

√
2

1
√
2

−α

⎤⎦ < 0. (3.51)

ummarizing, we arrive at:

heorem 3.2. Consider (3.1) with b ∈ H1(0, 1), b(1) = 0
atisfying (3.11), measurement (3.2) with c ∈ L2(0, 1) satisfying
3.9), control law (3.14) and z0 ∈ H1(0, 1), z0(1) = 0. Let δ > 0 be
desired decay rate, N0 ∈ N satisfy (3.5) and N ∈ N satisfy N0 ≤ N.
ssume that L0 and K0 are obtained using (3.10) and (3.13),respec-
ively. If there exist a positive definite matrix P ∈ R2N×2N and scalars
α, β > 0 which satisfy (3.50) and (3.51), then the solution z(x, t)
to (3.1) under the control law (3.14), (3.7) and the corresponding
observer ẑ(x, t) defined by (3.6) satisfy the following inequalities

∥z(·, t)∥2
H1 ≤ Me−2δt ∥z0∥2

H1 ,z(·, t) − ẑ(·, t)
2
H1 ≤ Me−2δt ∥z0∥2

H1 ,
(3.52)

ith some constant M > 0. Moreover, LMIs (3.50) and (3.51) are
always feasible for large enough N.

Proof. By Wirtinger’s inequality (see Section 3.10 of Fridman,
2014), for each t ≥ 0,

∥zx(·, t)∥2
L2 ≤ ∥z(·, t)∥2

H1 ≤
(
1 + 4π−2)

∥zx(·, t).∥2
L2

ince z(·, t) ∈ D(A) for all t > 0, by Lemma 2.1 we have ′
2 2
V (0) ≤ M0 z0 L2 ≤ M0 ∥z0∥H1 . (3.53)
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or someM0 > 0. By positivity and monotonicity of λn, Wirtinger’s
nequality and Lemma 2.1 we obtain

V (t) ≥ 0.5σmin(P)
∑N

n=1 z
2
n (t) +

∑
∞

n=N+1 λnz2n (t)
≥ M1 ∥z(·, t)∥2

H1 , t ≥ 0.

for some M1 > 0. The rest of the proof of (3.52), as well as
the feasibility of (3.50) and (3.51) for large enough N follow
arguments of Theorem 3.1. □

Remark 3.2. In the case where z0 ∈ L2(0, 1), Theorem 3.2
still implies exponential H1-convergence (although not expo-
nential stability) of the closed-loop system. Indeed for t∗ > 0
small enough, we have z(·, t∗) ∈ D(A). Therefore, by applying
Theorem 3.2 we obtain

∥z(·, t)∥2
H1 ≤ Me−2δ(t−t∗) ∥z(·, t∗)∥2

H1 ,z(·, t) − ẑ(·, t)
2
H1 ≤ Me−2δ(t−t∗) ∥z(·, t∗)∥2

H1 ,

for all t > t∗, where M > 0 is some constant.

3.3. Boundary measurement and non-local actuation: H1-
convergence

Consider (3.1) with boundary measurement

y(t) = z(0, t). (3.54)

As in Section 3.2, we assume b ∈ H1(0, 1), b(1) = 0 and z0 ∈

H1(0, 1), z0(1) = 0. This allows to use V (t) of (3.46) in order to
compensate ζ (t) defined by (3.56) below.

We present the solution to (3.1) as (3.3) with zn(t) satisfying
(3.4). We construct a N-dimensional observer of the form (3.6),
where ẑn(t) satisfy

˙̂zn(t) = (−λn + qc)ẑn(t) + bnu(t)
− ln

[∑N
n=1 ẑn(t)φn(0) − y(t)

]
,

ẑn(0) = 0 1 ≤ n ≤ N.

(3.55)

Here ln are scalar observer gains. Let L0 defined in (3.8) satisfy
(3.10) and choose ln = 0, n > N0. Define the controller (3.14)
with K0 ∈ R1×N0 subject to (3.13).

By using (3.4) and the estimation error (3.18), the last term on
the right-hand side of (3.55) can be presented as∑N

n=1 φn(0)ẑn(t) − y(t) = −
∑N

n=1 cnen(t) − ζ (t)

cn = φn(0), ζ (t) = z(0, t) −
∑N

n=1 cnzn(t).
(3.56)

Remark 3.3. In the case of boundary measurement, all compo-
nents of C0 are non-zero. Indeed, if for n ≥ 1 we have φn(0) =

φ′
n(0) = 0, then by uniqueness of solutions to the ODE Aφn = φn,

we obtain φn ≡ 0, which is a contradiction. Thus, assumption
(3.9) is satisfied for all N ∈ N. Note that by Orlov (2017), cn = O(1)
for all n ≥ 1.

For well-posedness of the closed-loop system (3.1), (3.55) with
u(t) = K0ẑN0 (t), let G := D

(
A

1
2

)
× RN , with D(A

1
2 ) defined

n (2.5). This is a Hilbert space endowed with the norm ∥·∥
2
G =

·∥
2
H1+∥·∥

2. We present the system (3.1) and (3.55) as (3.15) with
f2 replaced by

f̃2(ξ ) =

[
−L0

∫ 1
0 zx(x, t)dx 0

]T
.

Let ξi = [wi, yi]T ∈ G, i ∈ {1, 2}. Then f̃2(0) = 0 and, by using
he Cauchy–Schwarz inequality, we have

f̃ (ξ ) − f̃ (ξ )
 ≤ ∥L ∥ ∥w − w ∥ 1 ≤ ∥L ∥ ∥ξ − ξ ∥ .
2 1 2 2 0 1 2 H 0 1 2 G

6

These estimates imply col
{
f1, f̃2

}
: D

(
A

1
2

)
× RN

→ G sat-
sfy assumptions (F) and (3.22) in Pazy (1983), Section 6.3 with

=
1
2 . By Theorems 6.3.1 and 6.3.3 in Pazy (1983), the system

(3.1), (3.55) with u(t) = K0ẑN0 (t) and initial condition z0 ∈

H1(0, 1), z0(1) = 0 has a unique classical solution ξ (t) satisfying
3.16) and (3.17).

Since z(·, t) ∈ D(A) for all t > 0, by using (2.1), the Cauchy–
chwarz inequality and Lemma 2.1, we obtain

ζ 2(t) :=

[
z(0, t) −

∑N
n=1 φn(0)zn(t)

]2
=

[∫ 1
0

(
zx(s, t) −

∑N
n=1 φ′

n(s)zn(t)
)
ds
]2

≤

zx(·, t) −
∑N

n=1 φ′
n(·)zn(t)

2
L2

≤
1
p∗

∑
∞

n=N+1 λnz2n (t).

(3.57)

By using cn and ζ (t) defined in (3.56) and the notations (3.8) and
(3.21), we obtain the closed-loop system (3.22).

Taking into account the estimate (3.57), for exponential H1-
convergence, we consider the Lyapunov function (3.46). Let η(t) =

col {X(t), ζ (t)}. Differentiating (3.46) along (3.22) and using argu-
ments similar to (3.47) and (3.48) we obtain for some β > 0

V̇ + 2δV + β

(
1
p∗

∑
∞

n=N+1 λnz2n (t) − ζ 2(t)
)

≤ ηT (t)Ψ 1η(t) + 2
∑

∞

n=N+1 λnW
(2)
n z2n (t) ≤ 0

(3.58)

if

W (2)
n = −λn + qc + δ +

1
2α

+
β

2p∗

< 0, n > N,

Ψ 1 < 0,
(3.59)

where Ψ 1 is given by (3.50). Monotonicity of {λn}
∞

n=1 and Schur’s
omplement imply that W (2)

n < 0 for all n > N iff[
−λN+1 + qc + δ +

β

2p∗

1
√
2

1
√
2

−α

]
< 0. (3.60)

Summarizing, we arrive at:

Theorem 3.3. Consider (3.1) with b ∈ H1(0, 1), b(1) = 0
atisfying (3.11), measurement (3.54), control law (3.14) and z0 ∈

H1(0, 1), z0(1) = 0. Let δ > 0 be a desired decay rate, N0 ∈ N
satisfy (3.5) and N ∈ N satisfy N0 ≤ N. Assume that L0 and K0
are obtained using (3.10) and (3.13), respectively. If there exist a
positive definite matrix P ∈ R2N×2N and scalars α, β > 0 which
satisfy (3.59) and (3.60), then the solution z(x, t) to (3.1) under
the control law (3.14), (3.7) and the corresponding observer ẑ(x, t)
defined by (3.6) satisfy (3.52) with some constant M > 0. Moreover,
LMIs (3.59) and (3.60) are always feasible for large enough N.

Proof. The feasibility of (3.59) and (3.60) for large enough N
follow from arguments similar to proof of Theorem 3.1 with slight
modifications. For completeness, we outline the differences. For
the case of boundary measurement (3.43) and (3.40) continue to
hold, while (3.38) is replaced by

∥B1K0∥2 ≤ ∥B1∥ ∥K0∥ ≤ ∥b∥L2 ∥K0∥ ,

∥L0C1∥2 ≤ ∥L0∥ ∥C1∥ = ∥L0∥ · O(
√
N).

(3.61)

By using (3.43), (3.40) and (3.61) we obtainF̃2
2

≤ M5
√
N,

eFt2 ≤ M6e−κt
√
N
(
1 + t + t2

)
, (3.62)

where M5 > 0 and M6 > 0 are independent of N .
Consider the Lyapunov equation

P (F + δI) + (F + δI)T P = −
1
I. (3.63)
N
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hen ∥P∥2 = O(1), uniformly in N:

∥P∥2 ≤
1
N

∫
∞

0

eFT t
2

eFt2 dt
≤ M7

∫
∞

0
e−2κt (1 + t + t2

)2
dt < ∞,

(3.64)

where M7 > 0 is independent of N . Substitute α = N−1.5, β =

N1.5, λN+1 satisfying (2.3) and (3.63) into (3.59) and (3.60). By
taking Schur complement, (3.59) and (3.60) are feasible for large
enough N . □

3.4. Boundary actuation and non-local measurement

In this section we consider the reaction–diffusion system

zt (x, t) = ∂x (p(x)zx(x, t)) + (qc − q(x))z(x, t),
zx(0, t) = 0, z(1, t) = u(t),

(3.65)

where t ≥ 0, x ∈ [0, 1], z(x, t) ∈ R and qc ∈ R is a constant
reaction coefficient, under Dirichlet actuation where u(t) is the
control. We consider measurement of the form (3.2) with c ∈

H1(0, 1), c(1) = 0.
By presenting the solution to (3.65) as (3.3), performing calcu-

lations similar to (3.4) and using arguments from proof of Lemma
4.1 in Karafyllis and Krstic (2018) (see eq. (42) therein), we obtain
the following ODEs for zn(t):

żn(t) = (−λn + q)zn(t) + bnu(t), t > 0,
bn = −p(1)φ′

n(1).
(3.66)

Using results of Orlov (2017) (see eq. (35)-(40) therein) one can
obtain a constant Mφ > 0, in terms of p(x) and q(x), such that

|bn| ≤ p∗
⏐⏐φ′

n(1)
⏐⏐ ≤ Mφ

√
λn, ∀n ≥ 1. (3.67)

In the particular case p(x) ≡ 1 and q(x) ≡ 0, φ′
n(1) can be

computed explicitly to obtain φ′
n(1) = (−1)n+1√2λn with Mφ =

2 in (3.67). Thus, unlike the previous sections, |bn| may be
nbounded as n → ∞.
Moreover, assumption (3.11) is satisfied for all N ∈ N, by

rguments similar to Remark 3.3. Using (2.3) and the integral
onvergence test, the following estimate is obtained:∑

∞

n=N+1
b2n
λ2n

≤
M2

φ

p∗π2

∑
∞

n=N
1
n2

≤
M2

φ

p∗π2

(
1
N +

∫
∞

N
dx
x2

)
≤

M2
φ

p∗π2
2
N .

(3.68)

For p(x) ≡ 1 and q(x) ≡ 0 using (2.4) we arrive at a less
conservative bound 4

π2(2N−1)
in (3.68).

We construct a N-dimensional observer of the form (3.6),
here ẑn(t) satisfy (3.7) with scalar observer gains ln. Moreover,

et L0 defined in (3.8) satisfy (3.10) and choose ln = 0, n > N0.
e consider a controller (3.14) with K0 ∈ R1×N0 subject to (3.13)

nd choose kn = 0, n > N0.
By arguments in Baudouin, Seuret, and Gouaisbaut (2019),

he closed-loop system (3.65) and (3.7) has a unique solution
n(t), 1 ≤ n ≤ N and z(·, t) with

z(·, t) ∈ C
(
[0, ∞);H1(0, 1)

)
∩ L2

(
(0, ∞);H2(0, 1)

)
,

zt (·, t) ∈ L2
(
(0, ∞); L2(0, 1)

)
.

e introduce the notations

ρn(t) = λ
−

1
2

n ẑn(t), νn(t) = λ
−

1
2

n en(t), N0 + 1 ≤ n ≤ N,

ρN−N0 (t) =
[
ρN0+1(t), . . . , ρN (t)

]T
,

νN−N0 (t) =
[
νN0+1(t), . . . , νN (t)

]T
,{ N0 N0 N−N0 N−N0

}
(3.69)
X(t) = col ẑ (t), e (t), ρ (t), ν (t) .

7

Then, by arguments similar to (3.4), (3.7), (3.14) and (3.19), we
obtain the closed-loop system (3.22) with C1 and B1 in F (defined
in (3.21)) replaced by

C̃1 =

[
λ

1
2
N0+1cN0+1, . . . , λ

1
2
N cN

]
,

B̃1 =

[
λ

−
1
2

N0+1bN0+1, . . . , λ
−

1
2

N bN

]T
,

(3.70)

respectively. Furthermore, by using the Cauchy–Schwarz inequal-
ity and Lemma 2.1 we obtain

ζ 2(t) =
(∑

∞

n=N+1 cnzn(t)
)2

≤
(∑

∞

n=N+1 λnc2n
) (∑

∞

n=N+1 λ−1
n z2n (t)

)
≤ µ

c ′
2
L2
∑

∞

n=N+1 λ−1
n z2n (t),

(3.71)

with µ defined in (3.45).
For convergence analysis of the closed-loop system, we intro-

duce the Lyapunov function

V (t) := ∥X(t)∥2
P + r

∞∑
n=N+1

λ−1
n z2n (t), (3.72)

here P ∈ R2N×2N satisfies P > 0 and r ∈ R is positive.

emark 3.4. For h =
∑

∞

n=1 hnφn ∈ L2(0, 1), one can define the
−

1
2 -norm of h(x) as

∥h∥2

H−
1
2

:=

∞∑
n=1

λ−1
n h2

n.

It is easy to see that the norm induced by V (t) is equivalent to
∥z(·, t)∥2

H−
1
2
(for additional information see e.g (Tucsnak & Weiss,

2009), p. 84). Therefore, the convergence analysis carried out in
this section implies H−

1
2 -stability of the closed-loop system.

Differentiation of V (t) along (3.22) gives

V̇ + 2δV = XT (t)
[
PF + F TP + 2δP

]
X(t)

+2XT (t)PLζ (t) + 2r
∑

∞

n=N+1

(
−1 +

qc+δ

λn

)
z2n (t)

+r
∑

∞

n=N+1 2zn(t)
bn
λn
K̃X(t).

(3.73)

y (3.68) and the Cauchy–Schwarz inequality we have

r
∞∑

n=N+1

2zn(t)
bn
λn

K̃X(t) ≤
r
α

∞∑
n=N+1

z2n (t)

+ rα

(
∞∑

n=N+1

b2n
λ2
n

)K̃X(t)2 ≤
r
α

∞∑
n=N+1

z2n (t)

+
rαM2

φ

p∗π2

2
N

K̃X(t)2 ,

(3.74)

here α > 0. Denote η(t) = col {X(t), ζ (t)}. By combining (3.73)
ith (3.74) and recalling (3.71) we obtain for µ in (3.50) and some
> 0

V̇ + 2δV + β

(
µ
c ′
2
L2

∞∑
n=N+1

1
λn

z2n (t) − ζ 2(t)

)

≤ ηT (t)Ψ 2η(t) + 2r
∞∑

W (3)
n z2n (t) ≤ 0

(3.75)
n=N+1
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i

z
a

P

s
f

4

T
g
L
v
f

4

N

−

f

w
w
K

f

W (3)
n = −1 +

qc + δ

λn
+

1
2α

+
βµ

c ′
2
L2

2rλn
< 0, n > N,

Ψ 2
=

[
PF + F TP + 2δP + rα

2M2
φ

Np∗π2 K̃ T K̃ PL
∗ −β

]
< 0.

(3.76)

Monotonicity of {λn}
∞

n=1, positivity of r and Schur’s complement
imply that W (3)

n < 0 for all n > N iff⎡⎣−1 +
qc+δ

λN+1
+

βµ∥c′∥
2
L2

2rλN+1
1

√
2

1
√
2

−α

⎤⎦ < 0. (3.77)

Summarizing, we obtain:

Theorem 3.4. Consider (3.65) with control law (3.14), measure-
ment (3.2) with c ∈ H1(0, 1), c(1) = 0 satisfying (3.9) and
0 ∈ L2(0, 1). Let δ > 0 be a desired decay rate, N0 ∈ N satisfy (3.5)
nd N ∈ N satisfy N0 ≤ N. Assume that L0 and K0 are obtained

using (3.10) and (3.13), respectively. If there exist a positive definite
matrix P ∈ R2N and scalars α, β, r > 0 which satisfy (3.76) and
(3.77), then the following inequality holds

V (t) ≤ e−2δtV (0), t > 0 (3.78)

for V (t) defined in (3.72). Moreover, LMIs (3.76) and (3.77) are
always feasible for large enough N. For p(x) ≡ 1 and q(x) ≡ 0, the
last term in the (1,1) entry of Ψ 2 should be changed to 4rα

(2N−1)π2 K̃ T K̃ .

roof. Note thatB̃1K0


2

≤ ∥K0∥

(∑N
n=N0+1

b2n
λn

) 1
2

≤ ∥K0∥ · O(
√
N),L0C̃1


2

≤ ∥L0∥
(∑N

n=N0+1 λnc2n
) 1

2
≤ µ

1
2 ∥L0∥

c ′

L2 ,

where the latter bound follows from Lemma 2.1. By substituting
P which solves (3.63), α = N

1
4 , β = N

5
4 , r = N−

1
2 and λN+1

atisfying (2.3) we find that the LMIs (3.76) and (3.77) are feasible
or large enough N . □

. Numerical examples

In all the examples, we choose p(x) ≡ 1, q(x) ≡ 0 and qc = 10.
his choice corresponds to an unstable open-loop system. The
ains L0 and K0 are found from (3.10) and (3.13), respectively. The
MIs are verified by using the standard Matlab LMI toolbox. The
alues of N start from the minimal ones that guarantee the LMIs
easibility.

.1. Non-local measurement and actuation

Consider system (3.1) with measurement (3.2), where

c(x) =
√
2 · χ[0.25,0.75](x),

b(x) =

⎧⎨⎩
√
2 (4x − 1) , x ∈ [0.25, 0.5]

√
2 (−4x + 3) , x ∈ [0.5, 0.75]

0, x /∈ [0.25, 0.75].

(4.1)

ote that b ∈ H1(0, 1), b(1) = 0 and c ∈ L2(0, 1). Let N0 = 1
and δ = 1. The obtained observer and controller gains are K0 =

57.6811, L0 = 29.217. The LMIs of Theorem 3.2 are feasible
or N = 4.

For the simulation of the solutions to the closed-loop system
e chose z0(x) = x2 − 1 with z0(1) = 0. The simulation
as carried out for the corresponding PDE (3.1) with u(t) =

ẑ (t) (using the finite-difference FTCS scheme) and ODEs (3.7)
0 1

8

Fig. 1. Non-local measurement and actuation.

(using 4th order Runge–Kutta scheme). The norms ∥zx(·, t)∥L2 andzx(·, t) − ẑx(·, t)

L2 for t > 0 were estimated using (2.8) with

∥zx∥2
L2 =

∑40
n=1 λnz2n , whereas zn were found from simulation of

ODEs (3.4) (note that these ODEs are not part of the closed-loop
system). The H1(0, 1) norms of the state and estimation error e =

z−ẑ are presented, on a logarithmic scale, in Fig. 1. The computed
linear fits are given by fz(t) ≈ −1.0031t − 1.1824, fe(t) ≈

−0.9873t − 2.0721, which is consistent with a decay rate δ = 1
up to numerical errors. Numerical simulations showed that for
N = 3 the closed-loop system is unstable. Thus, our LMIs are not
conservative.

4.2. Non-local actuation and boundary measurement

Consider (3.1) with the boundary measurement (3.54) and b
given by (4.1). Let N0 = 1, δ = 1. The obtained observer and
controller gains are K0 = −57.6811, L0 = 14.2359. The LMIs
in Theorem 3.3 are feasible for N = 5. For the simulation of
the solution to the closed-loop system we chose initial condition
z0(x) = x2 − 1 with z0(1) = 0. The H1([0, 1]) norms of the
state and estimation error are presented, on a logarithmic scale,
in Fig. 2. The computed linear fits are given by fz(t) ≈ −1.0007t−
1.6942, fe(t) ≈ −1.0049t−1.2269 and correspond to theoretical
δ = 1. Simulations show that for N = 4 the closed-loop system
is unstable, i.e. LMIs are not conservative.

4.3. Boundary actuation and non-local measurement

Consider system (3.65) and measurement (3.2) with c ∈

H1(0, 1), c(1) = 0 is equal to b appearing in (4.1). Let N0 = 1 and
δ = 0.13. The obtained gains are K0 = −9.0629, L0 = 22.6812.
The LMIs in Theorem 3.4 were feasible for N = 5, r = 0.001.
The simulation was carried out with z0(x) = x2 − 3 for the ODEs
(3.66) and the closed-loop system (3.22), with L0C1 and B1K0 in
(3.21) replaced by (3.70). The evaluation of V (t), defined in (3.72),
was based on truncating the series presented therein after 40
coefficients. The values of V (t) and the corresponding linear fit, on
a logarithmic scale, are presented in Fig. 3. The computed linear
fit fV (t) ≈ −0.12981t − 1.7385 corresponds to δ = 0.13. In this
case simulations for N = 6 show instability, meaning that LMIs
are not conservative.
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Fig. 2. Boundary measurement and non-local actuation.

Fig. 3. Boundary actuation and non-local measurement.

. Conclusions

The present paper has suggested the first LMI-based solution
or the challenging finite-dimensional observer-based controller
esign in the case of 1-D linear heat equation. The method is
emostrated to be applicable to the heat equation when at least
ne of the control or observation operators is bounded. This
ethod is based on modal decomposition, and results in easily
erifiable LMI conditions for finding the observer dimension N

and the decay rate of the closed-loop system. The derived LMIs
appear to be nonconservative in the examples. It is shown that
the LMIs are always feasible for large enough N . The presented
ethod gives tools for finite-dimensional observer-based control
f other parabolic systems, and can be extended to design in the
ase of delayed and sampled-data inputs and outputs.
9
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