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Abstract. A linear time-invariant singularly perturbed system with multiple pointwise and
distributed small time delays is considered. A novel (direct) approach to exact slow-fast decomposi-
tion of this system is proposed. In contrast with the existing method, this approach uses neither a
preliminary transformation of the original differential system to an integral one nor rather compli-
cated integral manifold and operator techniques. Moreover, the approach of the present paper does
not assume the exponential stability of the fast subsystem. Based on this decomposition, an exact
slow-fast decomposition of the spectrum of a singularly perturbed system with a single pointwise
small delay is carried out. Using the theoretical results, the stability of a multilink single-sink optical
network is analyzed.
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1. Introduction. Various multi–time-scale (in particular, two–time-scale) pro-
cesses are adequately modeled by singularly perturbed differential systems. Such
systems have been studied extensively in the literature (see, e.g., [1, 2, 3, 4, 5, 6, 7, 8]
and references therein). An important type of singularly perturbed differential system
is a system with time delays of the order of a small parameter ε > 0 multiplying a
part of the highest-order state derivatives in the system. Such systems arise in various
applications (see, e.g., [9, 10, 11, 12, 13, 14, 15]). Surveys of results in this topic can
be found in [3, 5, 8, 16].

To the best of our knowledge, among various analytical approaches to study
of singularly perturbed systems with delays, two approaches are mainly developed
in the literature. The first one uses either a Lyapunov–Krasovskii-type functional
or a Razumikhin-type theorem, leading to reduction of the analysis of the original
system to analysis of a set of linear matrix inequalities (see, e.g., [12, 13, 15, 17,
18, 19, 20, 21, 22] and references therein). The second approach uses a slow-fast
decomposition of the original system, followed by separate analysis of two resulting
slow and fast subsystems, which are single–time-scale ones and independent of each
other. Based on this analysis, various properties of the original system, valid for
all sufficiently small values of the parameter of singular perturbation, are deduced
(see, e.g., [16, 19, 23, 24, 25, 26, 27, 28] and references therein). Although the first
approach is simple enough for implementation, it is rather conservative because it
does not preserve the infinite-dimensional nature of the original system. The second

∗Received by the editors August 4, 2014; accepted for publication (in revised form) October 18,
2016; published electronically February 1, 2017.

http://www.siam.org/journals/sicon/55-1/98100.html
Funding: This work was partially supported by Israel Science Foundation (grant 1128/14).

†Department of Mathematics, ORT Braude College of Engineering, Karmiel, 2161002 Israel
(valery48@braude.ac.il, valgl120@gmail.com).

‡School of Electrical Engineering, Tel Aviv University, Tel Aviv, 69978 Israel (emilia@eng.tau.ac.il,
yuri.feigin1@gmail.com).

236

D
ow

nl
oa

de
d 

02
/0

2/
17

 to
 1

32
.6

6.
51

.2
46

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

http://www.siam.org/journals/sicon/55-1/98100.html
mailto:valery48@braude.ac.il
mailto:valgl120@gmail.com
mailto:emilia@eng.tau.ac.il
mailto:yuri.feigin1@gmail.com


 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

DECOMPOSITION OF SINGULARLY PERTURBED DELAY SYSTEM 237

method, preserving the infinite-dimensional nature of the original system, is much less
conservative.

In the present paper, we develop the second approach to analysis of singularly
perturbed systems with delays, i.e., the slow-fast decomposition approach. There are
two types of such a decomposition, asymptotic and exact. The asymptotic decompo-
sition yields a set of unconnected slow and fast subsystems, which is not equivalent
to the original singularly perturbed system. Due to such a decomposition, one needs
to prove that some property of the decomposed system is valid also for the original
one, which is a disadvantage of the asymptotic slow-fast decomposition. In contrast
with the asymptotic decomposition, the exact slow-fast decomposition transforms the
original system to the equivalent set of unconnected slow and fast subsystems. The
latter means that both systems, original and decomposed, have the same properties,
while a study of the decomposed system can be carried out separately for the slow
and fast parts, which essentially simplifies analysis of the original system. This is a
considerable advantage of the exact slow-fast decomposition of a singularly perturbed
system.

In this paper, we deal with the exact slow-fast decomposition. For undelayed
singularly perturbed systems, starting from the work [29], such a decomposition has
been developed and used in numerous works (see, e.g., [2, 4, 30, 31, 32, 33, 34] and ref-
erences therein). However, the exact slow-fast decomposition of singularly perturbed
systems with the small delays was developed in only two works [23, 24]. In [23], the
case of the system with delays only in the fast state variable was considered, and the
decomposition was applied for feedback stabilization of such a system. In [24], the
case of the system with a single pointwise delay and a distributed delay in both slow
and fast state variables was studied, and the decomposition was applied for stability
analysis of the considered system. In these papers, the exact slow-fast decomposition
was carried out based on a transformation of the original differential system to an
equivalent integral one, and using integral manifolds and operator techniques subject
to the assumption on the exponential stability of the fast subsystem. The decomposed
system was an integral system.

In the present paper, a singularly perturbed system with multiple pointwise and
distributed small time delays in both slow and fast state variables is considered.
A novel (direct) approach to the exact slow-fast decomposition of such a system is
proposed. This approach does not require the transformation of the original system to
the integral one, as well as rather complex integral manifolds and operator techniques,
and the restrictive assumption on the stability of the fast subsystem. This approach
proposes explicit linear transformations of the original state variables, leading to the
exact slow-fast decomposition of the original system. The decomposed system remains
differential. The method proposed in this paper is simpler and more convenient for
applications than the method of the existing works [23, 24]. It can be effectively used in
analysis of uncontrolled singularly perturbed systems with the small delays, in design
of stabilizing controls for such a type of controlled systems, as well as in studying
stabilizability, detectability, controllability, and observability of such systems. Two
applications of the exact slow-fast decomposition are presented in the paper. The
first application is an exact slow-fast decomposition of the spectrum of a singularly
perturbed system with a small pointwise delay. The second application is stability
and instability analysis of a multilink single-sink optical network.

The paper is organized as follows. In the next section, the problem is formulated
rigorously. In section 3, by introducing a new state variable of two arguments, the
original system is transformed equivalently to a new system consisting of two ordinary
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238 V. Y. GLIZER, E. FRIDMAN, AND Y. FEIGIN

functional-differential equations and one partial first-order differential equation sub-
ject to a boundary condition. In this new system, one ordinary functional-differential
equation is a slow mode equation, while the second ordinary functional-differential
equation, as well as the partial differential equation, are fast mode equations. The
rest of this section, as well as sections 4–6, are devoted to a consecutive elimination of
the slow state variable from the fast mode equations and the fast state variables from
the resulting slow mode equation. These eliminations are subject to proper linear
transformations of the state variables, finite-dimensional for the first elimination and
infinite-dimensional for the second elimination. As a result of these eliminations, a
slow-fast decomposed system, equivalent to the original one, is obtained. In section
7, the case of a singularly perturbed system with a single pointwise small delay is
treated. Based on the previous results, an exact slow-fast spectrum decomposition
for this system is obtained. Using the theoretical results of the previous sections, a
real-world problem (stability and instability of a multilink single-sink optical network)
is studied in section 8. Section 9 contains conclusions. In Appendices A, B, and C we
give the proofs of three important lemmas.

Notation. (1) En is the real n-dimensional Euclidean space, while Cn is the
complex n-dimensional Euclidean space. (2) ‖ · ‖ is the Euclidean norm of a vector
and of a matrix (real or complex). (3) L2[a, b;En] is the Hilbert L2-space of functions
f(η) : [a, b] → En, and for any f(η), g(η) ∈ L2[a, b;En], 〈f(η), g(η)〉L2[a,b;En] is the
inner product in this space. (4) L2[a, b;Cn] is the Hilbert L2-space of functions
f(η) : [a, b] → Cn, and for any f(η), g(η) ∈ L2[a, b;Cn], 〈f(η), g(η)〉L2[a,b;Cn] is the
inner product in this space. (5) W 1,2[a, b;Cn] is the corresponding Sobolev space
of functions f(η) : [a, b] → Cn. (6) M[a, b;n] denotes the Hilbert space of all pairs
f = (fE , fL(η)), fE ∈ En, fL(η) ∈ L2[a, b;En]; the inner product in this space
is 〈f, g〉M[a,b;n] = fT

E gE + 〈fL(η), gL(η)〉L2[a,b;En], and the norm is ‖f‖M[a,b;n] =√
〈f, f〉M[a,b;n]; the superscript “T ” denotes the transposition. (7) col(x, y), where

x ∈ En, y ∈ Em, is the column block-vector of the dimension n+m with the upper
block x and the lower block y. (8) In is the identity matrix of dimension n× n. (9)
V b
a [D(η)] is the variation in the Euclidean matrix norm of the n ×m-matrix-valued

function D(η), η ∈ [a, b].

2. Problem statement. In subsection 2.1, the initial differential system with
delays is presented. Some important notions from the topics of differential systems
with delays and singularly perturbed differential systems with small delays are re-
called. In subsection 2.2, the initially formulated system is converted equivalently
to a form more suitable for the further analysis. In subsection 2.3, objectives of the
paper are formulated.

2.1. Initial system. Consider the differential system

dx(t)/dt =
N∑
j=0

[
A1j(ε)x(t − εhj) +A2j(ε)y(t− εhj)

]

+

∫ 0

−h

[
G1(η, ε)x(t + εη) +G2(η, ε)y(t+ εη)

]
dη, t ≥ 0,(2.1)

εdy(t)/dt =

N∑
j=0

[
A3j(ε)x(t − εhj) +A4j(ε)y(t− εhj)

]

+

∫ 0

−h

[
G3(η, ε)x(t + εη) +G4(η, ε)y(t+ εη)

]
dη, t ≥ 0,(2.2)
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where x(t) ∈ En, y(t) ∈ Em; ε ∈ (0, ε0] is a small parameter, ε0 > 0 is a given
constant; N ≥ 0 is a given integer; Aij(ε) and Gi(η, ε) (i = 1, . . . , 4; j = 0, . . . , N) are
given matrices of corresponding dimensions, dependent on ε and (η, ε), respectively;
and h0 = 0 < h1 < · · · < hN = h are given constants.

The system (2.1)–(2.2) is subject to the initial conditions

(2.3) x(θ) = ϕx(θ), y(θ) = ϕy(θ), θ ∈ [−εh, 0), x(0) = x0, y(0) = y0,

where ϕx(θ) ∈ L2[−ε0h, 0;En] and ϕy(θ) ∈ L2[−ε0h, 0;Em], as well as x0 ∈ En and
y0 ∈ Em, are given.

The system (2.1)–(2.2) is a functional-differential system. It is infinite-dimensional.
The state variable of this system has the form (z(t), z(t + εη)), η ∈ [−h, 0], where
z(t) = col(x(t), y(t)), z(t + εη) = col(x(t + εη), y(t + εη)). For any given t ≥ 0 and
ε > 0, (z(t), z(t + εη)) ∈ M[−εh, 0;n + m], (x(t), x(t + εη)) ∈ M[−εh, 0;n], and
(y(t), y(t + εη)) ∈ M[−εh, 0;m]. The component z(t) of the state variable is called
its Euclidean part, while the component z(t+ εη) is called the functional part of the
state variable. More details on a functional-differential system and its state variable
can be found, for instance, in [35] and references therein.

The system (2.1)–(2.2) is singularly perturbed by a small positive parameter ε
(see, e.g., [3, 5, 16] and references therein). The important feature of (2.1)–(2.2) is
that all the delays (pointwise and distributed) are proportional to the small parameter
ε. This system is singularly perturbed not only because of the presence of the small
multiplier for a part of the derivatives, but also because of the small delay (see, e.g.,
[8, section 18.4], [36, 37], and references therein). Equation (2.1) is called a slow
mode, and the Euclidean part x(t) of the state variable (x(t), x(t + εη)) is called a
slow one, while (2.2) and the entire state variable (y(t), y(t + εη)) are called a fast
mode and a fast state variable, respectively. As it will be shown below, the functional
part x(t+ εη) of the state variable (x(t), x(t + εη)) is fast.

In what follows, we make these assumptions:
(A1) The matrix-valued functions Aij(ε) (i = 1, . . . , 4; j = 0, . . . , N) are contin-

uously differentiable for ε ∈ [0, ε0].
(A2) The matrix-valued functions Gi(η, ε) (i = 1, . . . , 4) are piecewise continuous

with respect to η ∈ [−h, 0] for any ε ∈ [0, ε0], and they are continuously differentiable
with respect to ε ∈ [0, ε0] uniformly in η ∈ [−h, 0].

By virtue of the results of [38], for any given ε ∈ (0, ε0], the problem (2.1)–(2.2),
(2.3) has the unique locally absolutely continuous solution z(t, ε) = col(x(t, ε), y(t, ε)),
t ≥ 0.

2.2. Conversion of the system (2.1)–(2.2). Let us consider the following
matrix-valued functions:

(2.4) DA,i(η, ε) =

⎧⎪⎨
⎪⎩

−
∑N

j=1 Aij(ε), η ≤ −h,
−
∑k

j=1 Aij(ε), −hk+1 < η ≤ −hk, k = 1, . . . , N − 1,

0, η > −h1,

(2.5) DG,i(η, ε) = −

⎧⎪⎨
⎪⎩

∫ 0

−h
Gi(s, ε)ds, η ≤ −h,∫ 0

η Gi(s, ε)ds, −h < η < 0,

0, η ≥ 0,

(2.6) Di(η, ε) = DA,i(η, ε) +DG,i(η, ε), i = 1, . . . , 4, η ∈ [−h, 0], ε ∈ [0, ε0].
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Remark 2.1. For each ε ∈ [0, ε0], the matrix-valued functionsDi(η, ε) (i = 1, . . . , 4)
are piecewise continuous in η ∈ [−h, 0] with the break points η = −hj (j = 1, . . . ,
N), where these functions have finite limits from the right Di(−hj + 0, ε) =
limη→−hj+0Di(η, ε). These functions are continuous from the left at the break points
η = −hj (j = 1, . . . , N − 1). Moreover, these functions are of bounded variation (in
the Euclidean matrix norm) with respect to η ∈ [−h, 0] uniformly in ε ∈ [0, ε0].

Let us denote for all i = 1, . . . , 4, j = 1, . . . , N , η ∈ [−hj,−hj−1], ε ∈ [0, ε0] the
following:

Dij(η, ε) =

{
Di(−hj + 0, ε), η = −hj ,
Di(η, ε), η ∈ (−hj ,−hj−1].

Remark 2.2. The functions Dij(η, ε) (i = 1, . . . , 4; j = 1, . . . , N) are differentiable
with respect to η ∈ [−hj,−hj−1] for all ε ∈ [0, ε0].

Using (2.4)–(2.6), the system (2.1)–(2.2) can be rewritten equivalently as

dx(t)/dt = A10(ε)x(t) +A20(ε)y(t) +

∫ 0

−h

[dηD1(η, ε)]x(t+ εη)

+

∫ 0

−h

[dηD2(η, ε)]y(t+ εη), t ≥ 0,(2.7)

εdy(t)/dt = A30(ε)x(t) +A40(ε)y(t) +

∫ 0

−h

[dηD3(η, ε)]x(t+ εη)

+

∫ 0

−h

[dηD4(η, ε)]y(t+ εη), t ≥ 0,(2.8)

where the integrals in the right-hand parts are Stieltjes ones.

2.3. Objectives of the paper. Our objectives in this paper are (I) for all
sufficiently small ε > 0, to decompose equivalently the problem (2.7)–(2.8), (2.3) into
two parts, purely slow and purely fast systems with corresponding initial conditions;
(II) to use the above-mentioned decomposition for an exact decomposition of the
spectrum of a system of the type (2.1)–(2.2) into purely slow and purely fast parts;
(III) based on the theoretical results of the paper, to analyze the asymptotic stability
and the instability of a multilink single-sink optical network.

3. Transformation of system (2.7)–(2.8). In this section, two consecutive
equivalent transformations of the system (2.7)–(2.8) are carried out. The first trans-
formation (subsection 3.1) is due to the following observation. The presence of a small
delay in a state variable with the slow Euclidean part of a time delay system generates
an “additional” singular perturbation effect and an additional fast state variable in
the system. This new fast variable is the functional part of the above-mentioned state
variable with the slow Euclidean part (see, e.g., [8, section 18.4], [36, 37], and refer-
ences therein). Therefore, in the exact slow-fast decomposition of system (2.7)–(2.8),
we have to separate not the mode for (x(t), x(t+ εη)) (equation (2.7)) and the mode
for (y(t), y(t+εη)) (equation (2.8)), but the mode for x(t) and the modes for x(t+εη)
and (y(t), y(t+εη)). In order to do this, the fast mode of x(t+εη) should be obtained.
This is done in subsection 3.1 by definition of a new state variable—the functional
part of the original state variable (x(t), x(t + εη))—and deriving a fast differential
equation for this state variable. The latter allows us to transform the original system
(2.7)–(2.8) into an equivalent new system consisting of one slow mode and two fast
modes. The second transformation (subsection 3.2) is a linear algebraic invertible

D
ow

nl
oa

de
d 

02
/0

2/
17

 to
 1

32
.6

6.
51

.2
46

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

DECOMPOSITION OF SINGULARLY PERTURBED DELAY SYSTEM 241

transformation of the fast state variables in the new system. This transformation
allows us to eliminate the slow state variable from the fast modes of the resulting
system by a proper choice of its matrix-valued coefficients.

3.1. Additional fast state variable. For a given ε ∈ (0, ε0], let us define the
function, a new state variable,

(3.1) v(t, η)
�
= x(t+ εη), t ≥ 0, η ∈ [−h, 0].

Remark 3.1. The new state variable v(t, η) is the functional part of the state
(x(t), x(t + εη)). Therefore, it is a function of two independent variables, time t and
the independent variable η, representing the stretched delay. The latter varies in the
stretched delay interval [−h, 0]. Thus, in contrast with the undelayed case, here we
have not only two time scales, the original t and the stretched t/ε time, but also two
delay scales, the original θ ∈ [−εh, 0] and the stretched η ∈ [−h, 0] delay.

The state variable v(t, η) satisfies the following differential equation and boundary
and initial conditions:

(3.2) ε∂v(t, η)/∂t− ∂v(t, η)/∂η = 0, (t, η) ∈ Ω+
ε ,

(3.3) v(t, 0) = x(t), t ≥ 0,

(3.4) v(t, η) = ϕx(t+ εη), (t, η) ∈ Ω−
ε ; v(t, η) = x0, (t, η) ∈ Ω0

ε,

where Ω+
ε

�
= {(t, η) : t ≥ 0, η ∈ [−h, 0], t + εη > 0}, Ω−

ε
�
= {(t, η) : t ≥ 0, η ∈

[−h, 0], t+ εη < 0}, and Ω0
ε

�
= {(t, η) : t ≥ 0, η ∈ [−h, 0], t+ εη = 0}.

Using (3.1), we can rewrite the system (2.7)–(2.8) in the form

dx(t)/dt = A10(ε)x(t) +A20(ε)y(t) +

∫ 0

−h

[dηD1(η, ε)]v(t, η)

+

∫ 0

−h

[dηD2(η, ε)]y(t+ εη), t ≥ 0,(3.5)

εdy(t)/dt = A30(ε)x(t) +A40(ε)y(t) +

∫ 0

−h

[dηD3(η, ε)]v(t, η)

+

∫ 0

−h

[dηD4(η, ε)]y(t+ εη), t ≥ 0.(3.6)

Remark 3.2. Due to the results of [35, 39], the system (3.2), (3.5)–(3.6), along
with the boundary condition (3.3) and the initial conditions (3.4), (2.3), is equivalent
to the system (2.7)–(2.8) with the initial conditions (2.3) and the relation (3.1). In the
new system, the Euclidean and the functional parts of the state variable (x(t), x(t +
εη)) become separated state variables, thus increasing the Euclidean dimension of the
new system.

Remark 3.3. Since the partial derivative with respect to time t in (3.2) is multi-
plied by the small parameter ε, the state variable v(t, η) is fast. Thus, in the system
(3.2), (3.5)–(3.6), the mode (3.5) and the state variable x(t) are slow, while the modes
(3.2), (3.6) and the state variables v(t, η), (y(t), y(t+ εη)) are fast.
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3.2. Fast states’ transformation of the system (3.2)–(3.3), (3.5)–(3.6).
Let us transform the fast state variables of (3.2)–(3.3), (3.5)–(3.6) as follows:

(3.7) wv(t, η) = v(t, η)− Lv(η, ε)x(t), (t, η) ∈ Ω,

(3.8)
wy(t) = y(t)− Ly(ε)x(t), t ≥ 0,

wy(t+ εη) = y(t+ εη)− Ly(ε)v(t, η), t ≥ 0, η ∈ [−h, 0],

where wv(t, η) and (wy(t), wy(t+ εη)) are new state variables; Lv(η, ε) and Ly(ε) are
some matrix-valued functions of (η, ε) ∈ [−h, 0]× (0, ε0] and ε ∈ (0, ε0], respectively;

Lv(η, ε) is differentiable with respect to η ∈ [−h, 0] for any ε ∈ (0, ε0]; and Ω
�
=

{(t, η) : t ≥ 0, η ∈ [−h, 0]}.
Substituting (3.7) into (3.2) yields for (t, η) ∈ Ω+

ε

(3.9) ε
∂wv(t, η)

∂t
− ∂wv(t, η)

∂η
=

(
dLv(η, ε)

dη

)
x(t)− εLv(η, ε)

(
dx(t)

dt

)
.

The derivative of wy(t) for t ≥ 0 has the form

(3.10)
dwy(t)

dt
=
dy(t)

dt
− Ly(ε)

(
dx(t)

dt

)
.

Now, we do the following. First, we eliminate v(t, η) and (y(t), y(t + εη)) from
(3.5), using the transformations (3.7)–(3.8). Second, we substitute (3.5)–(3.6) into
(3.9) and (3.10), and eliminate v(t, η) and (y(t), y(t+εη)) from the resulting equations,
using the same transformations. As a final result, we obtain the following system of
three differential equations with respect to x(t), wv(t, η), and (wy(t), wy(t+ εη)):

dx(t)

dt
= F1

(
ε, Lv(η, ε), Ly(ε)

)
x(t) +

∫ 0

−h

[
dηΓ12

(
η, ε, Ly(ε)

)]
wv(t, η)

+A20(ε)wy(t) +

∫ 0

−h

[dηD2(η, ε)]wy(t+ εη), t ≥ 0,(3.11)

ε
∂wv(t, η)

∂t
− ∂wv(t, η)

∂η
=

{
dLv(η, ε)

dη
− F2

(
ε, Lv(η, ε), Ly(ε)

)}
x(t)

− εLv(η, ε)

{∫ 0

−h

[
dηΓ12

(
η, ε, Ly(ε)

)]
wv(t, η) +A20(ε)wy(t)

+

∫ 0

−h

[dηD2(η, ε)]wy(t+ εη)

}
, (t, η) ∈ Ω+

ε ,(3.12)

εdwy(t)

dt
= F3

(
ε, Lv(η, ε), Ly(ε)

)
x(t)

+

∫ 0

−h

[
dη

(
Γ34

(
η, ε, Ly(ε)

)
− εLy(ε)Γ12

(
η, ε, Ly(ε)

))]
wv(t, η)

+
(
A40(ε)− εLy(ε)A20

)
wy(t)

+

∫ 0

−h

[
dη

(
D4(η, ε)− εLy(ε)D2(η, ε)

)]
wy(t+ εη), t ≥ 0,(3.13)
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where

F1

(
ε, Lv(η, ε), Ly(ε)

) �
= Υ12

(
ε, Ly(ε)

)
+

∫ 0

−h

[
dηΓ12

(
η, ε, Ly(ε)

)]
Lv(η, ε),(3.14)

F2

(
ε, Lv(η, ε), Ly(ε)

) �
= εLv(η, ε)F1

(
ε, Lv(η, ε), Ly(ε)

)
,(3.15)

F3

(
ε, Lv(η, ε), Ly(ε)

) �
= Υ34

(
ε, Ly(ε)

)
− εLy(ε)Υ12

(
ε, Ly(ε)

)
+

∫ 0

−h

[
dη

(
Γ34

(
η, ε, Ly(ε)

)
− εLy(ε)Γ12

(
η, ε, Ly(ε)

))]
Lv(η, ε),(3.16)

Υk k+1

(
ε, Ly(ε)

) �
= Ak0(ε) +Ak+1 0(ε)Ly(ε), k = 1, 3,(3.17)

Γk k+1

(
η, ε, Ly(ε)

) �
= Dk(η, ε) +Dk+1(η, ε)Ly(ε), k = 1, 3.

The system (3.11)–(3.13) is singularly perturbed. In this system, the mode (3.11)
and the state x(t) are slow, while the modes (3.12), (3.13) and the states wv(t, η),
(wy(t), wy(t+ εη)) are fast. Moreover, due to the transformation (3.7), the boundary
condition (3.3) for the system (3.2), (3.5)–(3.6) becomes for t ≥ 0

(3.18) wv(t, 0) =
(
In − Lv(0, ε)

)
x(t).

Remark 3.4. Since the transformations (3.7)–(3.8) are invertible, the system (3.11)–
(3.13) with the boundary condition (3.18) and the system (3.2), (3.5)–(3.6) with the
boundary condition (3.3) are equivalent to each other subject to (3.7)–(3.8).

Now, we are in position to separate the fast modes from the slow one. Such a
separation is carried out in the next section.

4. Separation of the fast modes from the slow mode in the system
(3.11)–(3.13). In this section, first, we choose the matrices Lv(η, ε) and Ly(ε) in
such a way that the terms in the right-hand sides of (3.12)–(3.13), containing the
slow state x(t), vanish. Such a choice yields a system of two equations with respect
to these matrices (subsection 4.1). In subsection 4.2, the existence of a solution to
this system is established. Finally, based on the results of subsections 4.1 and 4.2, the
singularly perturbed upper triangular system, equivalent to the system (3.11)–(3.13),
is derived. In this system, the fast modes do not contain the slow state variable, while
the slow mode contains the fast state variables.

4.1. Elimination of the slow state from the fast modes (3.12)–(3.13).
In order to separate the fast modes from the slow mode in the system (3.11)–(3.13),
we have to eliminate the slow state variable x(t) from the fast modes (3.12)–(3.13).
For this purpose, we choose the matrices Lv(η, ε) and Ly(ε) such that the coefficients
for x(t) in the right-hand sides of these equations become zero. Thus, we obtain the
following system of equations with respect to Lv(η, ε) and Ly(ε):

(4.1)
dLv(η, ε)/dη = F2

(
ε, Lv(η, ε), Ly(ε)

)
,

H4(0)Ly(ε) = −F3

(
ε, Lv(η, ε), Ly(ε)

)
+H4(0)Ly(ε),
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where

Hi(ε)
�
= Ai0(ε) +

∫ 0

−h

dη

[
Di(η, ε)

]
=

N∑
j=0

Aij(ε) +

∫ 0

−h

Gi(η, ε)dη,(4.2)

i = 1, . . . , 4.

The system (4.1) is functional-differential-algebraic. In the next subsection, we
show the existence of a solution to (4.1) by constructing and justifying its asymptotic
solution with respect to ε.

4.2. Asymptotic solution of system (4.1). We look for the zero-order asymp-
totic solution (L0

v(η), L
0
y) of (4.1). Equations for this asymptotic solution are obtained

by formally setting ε = 0 in (4.1), and replacing Lv(η, ε) and Ly(ε) with L0
v(η) and

L0
y, respectively. Thus, by using (3.14)–(3.16), (3.18), and (4.2), the following system

of equations with respect to L0
v(η) and L

0
y is obtained:

dL0
v(η)/dη = 0, η ∈ [−h, 0],(4.3)

H4(0)L
0
y = −A30(0)−

∫ 0

−h

[dηD3(η, 0)]L
0
v(η)

+

∫ 0

−h

[dηD4(η, 0)]L
0
y

(
In − L0

v(η)
)
.(4.4)

It is seen that any constant n×nmatrix is a solution of (4.3). In order to eliminate
L0
y from the right-hand side of (4.4), we choose

(4.5) L0
v(η) ≡ L0

v = In, η ∈ [−h, 0].

Substituting (4.5) into (4.4) yields H4(0)L
0
y = −H3(0). Using the following addi-

tional assumption,
(A3) detH4(0) 
= 0,

we obtain the unique solution of this equation,

(4.6) L0
y = −H−1

4 (0)H3(0).

Thus, the terms L0
v(η) and L0

y of the zero-order asymptotic solution to (4.1) have
been derived. Based on this asymptotic solution, we obtain the following lemma.

Lemma 4.1. Let assumptions (A1)–(A3) be valid. Then there exists a positive
number ε∗1 (ε∗1 ≤ ε0) such that, for all ε ∈ (0, ε∗1], system (4.1) has a solution
(Lv(η, ε), Ly(ε)) satisfying the condition Lv(−h, ε) = In and the inequalities

(4.7) ‖Lv(η, ε)− L0
v(η)‖ ≤ a∗1ε ∀η ∈ [−h, 0], ‖Ly(ε)− L0

y(ε)‖ ≤ a∗1ε,

where a∗1 > 0 is some constant independent of ε.

The lemma is proven in Appendix A.

4.3. Upper triangular system for t ≥ εh. Due to the existence of a solution
to system (4.1), the fast mode equations (3.12) and (3.13) in the system (3.11)–(3.13)
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become as follows for (t, η) ∈ Ω+
ε :

ε
∂wv(t, η)

∂t
− ∂wv(t, η)

∂η
= −εLv(η, ε)

{∫ 0

−h

[
dηΓ12

(
η, ε, Ly(ε)

)]
wv(t, η)

+A20(ε)wy(t) +

∫ 0

−h

[dηD2(η, ε)]wy(t+ εη)

}
,(4.8)

εdwy(t)

dt
=

∫ 0

−h

[
dη

(
Γ34

(
η, ε, Ly(ε)

)
− εLy(ε)Γ12

(
η, ε, Ly(ε)

))]
wv(t, η)

+
(
A40(ε)− εLy(ε)A20(ε)

)
wy(t)

+

∫ 0

−h

[
dη

(
D4(η, ε)− εLy(ε)D2(η, ε)

)]
wy(t+ εη).(4.9)

Using (2.3), (3.4), and (3.7)–(3.8) yields the initial conditions for (4.8) and (4.9)

(4.10)
wv(t, η) = ϕx(t+ εη)− Lv(η, ε)x(t), (t, η) ∈ Ω−

ε ,
wv(t, η) = x0 − Lv(η, ε)x(t), (t, η) ∈ Ω0

ε,

(4.11) wy(θ) = ϕy(θ) − Ly(ε)ϕx(θ), θ ∈ [−εh, 0), wy(0) = y0 − Ly(ε)x
0.

It is seen that the initial conditions for wy(·) are independent of the slow state
variable x(t), while the initial conditions for wv(·) and the boundary condition (3.18)
depend on x(t). Thus, although the fast mode differential equations (4.8)–(4.9) do not
contain the slow state variable x(t), a part of the initial conditions for these equations
and the boundary condition (3.18) still contain this variable.

Remark 4.2. The presence of the slow state in the boundary condition (3.18) is
unavoidable, because (3.18) is a direct consequence of the boundary condition (3.3).
The latter is necessary and sufficient for the equivalence of the original differential
system (2.7)–(2.8) and the transformed one (3.2), (3.5)–(3.6). Without (3.3), the
differential systems (2.7)–(2.8) and (3.2), (3.5)–(3.6) are not equivalent to each other.
However, as will be shown in sections 6 and 7, the connection (3.18) between the fast
and slow states does not prevent the further complete exact separation of the slow
mode from the fast one, as well as the exact slow-fast decomposition of the spectrum
of the original system (2.7)–(2.8).

In order to resolve the problem of the presence of x(t) in the conditions (4.10),

we introduce into consideration the domain Ω̃ε
�
= {(t, η) : t > εh, η ∈ [−h, 0]} ⊂ Ω+

ε .
In what follows, we consider the functional-differential set of equations (3.11), (4.8),
(4.9), and the boundary condition (3.18) for (t, η) ∈ Ω̃ε. Also, we consider the original
problem (2.7)–(2.8), (2.3) on the interval t ∈ [0, εh] (ε ∈ (0, ε∗1]), where this problem
is not singularly perturbed any more, and it has the unique absolutely continuous
solution x(t) = xin(t, ε), y(t) = yin(t, ε), bounded uniformly in ε ∈ (0, ε∗1]. Thus, the
system (3.11), (4.8)–(4.9), (3.18), considered for (t, η) ∈ Ω̃ε, is subject to the following
conditions for all ε ∈ (0, ε∗1]: (3.11) is subject to the initial condition

(4.12) x(εh) = xin(εh);

(4.9) is subject to the initial condition

(4.13) wy(t) = yin(t, ε)− Ly(ε)xin(t, ε), t ∈ [0, εh];
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and (3.18) is considered for t > εh. Moreover, the conditions (4.10), along with
the transformation (3.7), determine the fast state variable wv(t, η) in the rectangle
{(t, η) : t ∈ [0, εh], η ∈ [−h, 0]} as
(4.14)

wv(t, η) = ϕx(t+ εη)− Lv(η, ε)xin(t, ε), (t, η) ∈ Ω−
ε ,

wv(t, η) = x0 − Lv(η, ε)xin(t, ε), (t, η) ∈ Ω0
ε,

wv(t, η) = xin(t+ εη, ε)− Lv(η, ε)xin(t, ε), (t, η) ∈ {0 ≤ t ≤ εh} ∩ Ω+
ε .

The transformation (3.7)–(3.8) is invertible for all (t, η) ∈ Ω. Using this obser-
vation, the above-mentioned equivalence of the systems (3.2)–(3.3), (3.5)–(3.6), and
(2.7)–(2.8), as well as Remark 3.2 and Lemma 4.1, one directly obtains the theorem.

Theorem 4.3. Let assumptions (A1)–(A3) be valid. Let (Lv(η, ε), Ly(ε)) be the
solution of system (4.1) mentioned in Lemma 4.1. Then, for all ε ∈ (0, ε∗1], the system
(3.11), (4.8)–(4.9), (3.18) for (t, η) ∈ Ω̃ε with the initial conditions (4.12)–(4.13), and
the system (2.7)–(2.8) for t ∈ (εh,+∞) with the initial conditions

(4.15) x(t) = xin(t), y(t) = yin(t), t ∈ [0, εh],

are equivalent to each other subject to the relations (3.7)–(3.8) and (3.1) on their state
variables.

In what follows, the system (3.11), (4.8)–(4.9), (3.18) subject to the initial condi-
tions (4.12)–(4.13) is called the upper triangular system (UTS) for t ≥ εh. It is seen
that the right-hand sides of the fast modes (4.8) and (4.9) in the UTS do not contain
the slow state variable x(t), while the right-hand side of the slow mode (3.11) of this
system does contain the fast state variables wv(t, η) and

(
wy(t), wy(t+ εη)

)
. To elim-

inate these state variables from (3.11), this equation needs a proper transformation.
Such a transformation is undertaken in the next section.

5. Transformation of the slow mode in the upper triangular system for
t ≥ εh. In subsection 5.1, we introduce some auxiliary matrix-valued functions, used
in the transformation of (3.11). The transformation itself is made in subsection 5.2.
This transformation is a linear functional invertible transformation, and it allows us
to eliminate the fast state variables from the resulting slow mode equation.

5.1. Auxiliary matrix-valued functions. Let us consider the following matrix-
valued functions for any ε ∈ (0, ε∗1]:

(5.1) Qv(η, ε) =

{
0, η ≤ −h,
Qv,k(η, ε), −hk < η ≤ −hk−1, k = 1, . . . , N,
Qv,1(0, ε), η > 0,

(5.2) DQ,v(η, ε) = −

⎧⎨
⎩

∫ 0

−h
Qv(s, ε)ds, η ≤ −h,∫ 0

η
Qv(s, ε)ds, −h < η < 0,

0, η ≥ 0,

(5.3) Qy(η, ε) =

{
0, η ≤ −h,
Qy,k(η, ε), −hk < η ≤ −hk−1, k = 1, . . . , N,
Qy,1(0, ε), η > 0,

(5.4) DQ,y(η, ε) = −

⎧⎪⎨
⎪⎩

∫ 0

−hQy(s, ε)ds, η ≤ −h,∫ 0

η Qy(s, ε)ds, −h < η < 0,

0, η ≥ 0.
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In (5.1) and (5.3), for any j ∈ {1, . . . , N}, Qv,j(η, ε) and Qy,j(η, ε) are some n×n
and n × m, respectively, matrix-valued functions of (η, ε) ∈ [−hj ,−hj−1] × (0, ε∗1],
differentiable with respect to η ∈ [−hj,−hj−1] for each ε ∈ (0, ε∗1].

5.2. Transformation of (3.11). In order to eliminate the fast state variables
wv(t, η) and (wy(t), wy(t + εη)) from (3.11), we make in this equation the following
transformation of the slow state variable:

(5.5)
wx(t) = x(t)− ε

∫ 0

−h

[dηDQ,v(η, ε)]wv(t, η)− εPy(ε)wy(t)

− ε

∫ 0

−h

[dηDQ,y(η, ε)]wy(t+ εη), t ≥ εh, ε ∈ (0, ε∗1],

where wx(t) is a new slow state variable and Py(ε) is some n×m-matrix.
Let us change the variable of integration η in both integrals of (5.5) as follows:

ω = t+ εη. Then, let us differentiate both sides of the resulting equation with respect
to t. After this, let us return to the original variable of integration η in all integrals,
obtained after the differentiation in t. As a final result, we obtain

dwx(t)

dt
=
dx(t)

dt
+

∫ 0

−h

[dηQv(η, ε)]wv(η, ε)

−
∫ 0

−h

[dηDQ,v(η, ε)]

(
ε
∂wv(t, η)

∂t
− ∂wv(t, η)

∂η

)
−Qv(0, ε)wv(t, 0)(5.6)

− εPy(ε)

(
dwy(t)

dt

)
+

∫ 0

−h

[dηQy(η, ε)]wy(t+ εη)−Qy(0, ε)wy(t), t ≥ εh.

Now, we do the following. First, we substitute (3.11) and (4.9) into (5.6). Second,
we replace the value wv(t, 0) in the obtained equation with its expression (3.18).
Third, we eliminate from the resulting equation the original slow state variable x(t)
and the expression ε∂wv(t, η)/∂t − ∂wv(t, η)/∂η, using (5.5) and (4.8), respectively.
Thus, we obtain the differential equation for wx(t). In order to write down this
equation, let us introduce into consideration the set of unknown matrices,

(5.7) N (η, ε)
�
=
{
Qv(η, ε), Py(ε), Qy(η, ε)

}
,

and the following expressions:

F1

(
ε,N (η, ε)

) �
= F1

(
ε, Lv(η, ε), Ly(ε)

)
−Qv(0, ε)

(
In − Lv(0, ε)

)
,(5.8)

F2

(
ε,N (η, ε)

) �
= εF1

(
ε,N (η, ε)

)
Py(ε) +A20(ε)

−Py(ε)
(
A40(ε)− εLy(ε)A20(ε)

)
−Qy(0, ε)

+ ε

∫ 0

−h

[
dηDQ,v(η, ε)

]
Lv(η, ε)A20(ε),(5.9)

F3

(
η, ε,N (η, ε)

) �
= εF1

(
ε,N (η, ε)

)
DQ,v(η, ε) +Qv(η, ε)

+

{
In + ε

∫ 0

−h

[dηDQ,v(η, ε)]Lv(η, ε)

}
Γ12

(
η, ε, Ly(ε)

)
−Py(ε)

[
Γ34

(
η, ε, Ly(ε)

)
− εLy(ε)Γ12

(
η, ε, Ly(ε)

)]
,(5.10)
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F4

(
η, ε,N (η, ε)

) �
= εF1

(
ε,N (η, ε)

)
DQ,y(η, ε) +Qy(η, ε)

+

{
In + ε

∫ 0

−h

[dηDQ,v(η, ε)]Lv(η, ε)

}
D2(η, ε)

−Py(ε)
[
D4(η, ε)− εLy(ε)D2(η, ε)

]
.(5.11)

Using (5.7)–(5.11), we represent the above-mentioned differential equation for
wx(t) in the form

dwx(t)

dt
= F1

(
ε,N (η, ε)

)
wx(t) + F2

(
ε,N (η, ε)

)
wy(t)

+

∫ 0

−h

[
dηF3

(
η, ε,N (η, ε)

)]
wv(t, η) +

∫ 0

−h

[
dηF4

(
η, ε,N (η, ε)

)]
wy(t+ εη).(5.12)

Due to the transformation (5.5), the boundary condition (3.18) becomes

wv(t, 0) =
(
In − Lv(0, ε)

)
wx(t) + ε

(
In − Lv(0, ε)

){∫ 0

−h

[
dηDQ,v(η, ε)

]
wv(t, η)dη

+Py(ε)wy(t) +

∫ 0

−h

[
dηDQ,y(η, ε)

]
wy(t+ εη)dη

}
,(5.13)

t ≥ εh, ε ∈ (0, ε∗1].

Thus, we have transformed the UTS to the equivalent new system, which is
obtained from the UTS by replacing there the slow mode (3.11) with (5.12), and the
boundary condition (3.18) with (5.13), while the other equations of the UTS remain
the same. This new system has the same feature as the UTS. Namely, the fast modes
(4.8) and (4.9) are separated from the slow one (the fast modes do not contain the
slow state variable wx(t)), while the slow mode (5.12) is not separated from the fast
ones (the slow mode contains the fast state variables wv(t, η) and (wy(t), wy(t+εη))).
However, in contrast with the UTS, now it is possible to separate the slow mode from
the fast modes, i.e., to eliminate wv(t, η) and (wy(t), wy(t + εη)) from (5.12) by a
proper choice of N (η, ε). Such a separation is made in the next section.

6. Separation of the slow mode (5.12) from the fast modes (4.8)–(4.9).
In this section, first, we choose the set of unknown matrices N (η, ε) in such a way
that the terms in the right-hand sides of (5.12), containing the fast states wv(t, η)
and (wy(t), wy(t+ εη)), vanish. Such a choice yields a system of three equations with
respect to the matrices of the set N (η, ε) (subsection 6.1). In subsection 6.2, the
existence of a solution to this system is established. Finally, based on the results of
subsections 6.1 and 6.2, the singularly perturbed diagonal system, equivalent to the
UTS, is derived. In this system, the fast modes do not contain the slow state variable,
and the slow mode does not contain the fast state variables; i.e., the slow and fast
differential equations are completely separated.

6.1. Elimination of the fast state variables from (5.12). In order to elim-
inate the fast state variables from (5.12), and thus to separate the slow state variable
wx(t) from the fast states wv(t, ·) and wy(·), one has to choose the set N (η, ε) such
that the matrix F2(ε,N (η, ε)) becomes zero, while the matrices F3(ε,N (η, ε)) and
F4(ε,N (η, ε)) become constant with respect to η. This observation, along with (5.9)–
(5.11), leads to the following equations for obtaining the set N (η, ε):

(6.1) F2

(
ε,N (η, ε)

)
= 0,
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(6.2) Fl

(
η, ε,N (η, ε)

)
= Cl(ε), η ∈ [−h, 0], l = 3, 4,

where C3(ε) and C4(ε) are unknown matrices of the dimensions n × n and n × m,
respectively. These matrices should satisfy the equations

(6.3) C3(ε) = F3

(
η, ε,N (η, ε)

)∣∣∣
η=−h

, C4(ε) = F4

(
η, ε,N (η, ε)

)∣∣∣
η=−h

.

By substituting (6.3) into (6.2), we obtain

(6.4) Fl

(
η, ε,N (η, ε)

)
= Fl

(
η, ε,N (η, ε)

)∣∣∣
η=−h

, η ∈ [−h, 0], l = 3, 4.

Note that the system (6.1), (6.4) is functional-integral-algebraic. In the next sec-
tion, we show the existence of a solution to this system by constructing and justifying
its asymptotic solution with respect to ε.

6.2. Asymptotic solution of the system (6.1), (6.4). We look for the zero-

order asymptotic solution N 0(η)
�
=
(
Q0

v(η), P
0
y , Q

0
y(η)

)
of (6.1), (6.4).

Due to (5.1) and (5.3), it is reasonable to set

(6.5) Q0
v(−h) = 0, Q0

y(−h) = 0.

Equations for the terms of the zero-order asymptotic solution to system (6.1),
(6.4) are obtained by formally setting ε = 0 in this system and replacing Qv(η, ε),
Py(ε), and Qy(η, ε) with Q

0
v(η), P

0
y , and Q

0
y(η), respectively. Thus, by using Lemma

4.1 and (6.5), we obtain the following system of equations with respect to the unknown
matrices Q0

v(η), P
0
y , Q

0
y(η):

(6.6) A20(0)− P 0
yA40(0)−Q0

y(0) = 0,

Γ12(η, 0, L
0
y)− Γ12(−h, 0, L0

y) +Q0
v(η)

−P 0
y

(
Γ34(η, 0, L

0
y)− Γ34(−h, 0, L0

y)
)
= 0, η ∈ [−h, 0],(6.7)

(6.8) Q0
y(η) +D2(η, 0)−D2(−h, 0)− P 0

y

(
D4(η, 0)−D4(−h, 0)

)
= 0, η ∈ [−h, 0].

Setting η = 0 in (6.8) and using (2.4)–(2.6) and (4.2) yields

(6.9) Q0
y(0) = P 0

y

(
H4(0)−A40(0)

)
−
(
H2(0)−A20(0)

)
.

Substituting (6.9) into (6.6) yields H2(0)− P 0
yH4(0) = 0, leading to

(6.10) P 0
y = H2(0)H−1

4 (0).

Now, (6.7) and (6.8) yield immediately for η ∈ [−h, 0]
(6.11)

Q0
v(η) = Γ12(−h, 0, L0

y)− Γ12(η, 0, L
0
y) + P 0

y

(
Γ34(η, 0, L

0
y)− Γ34(−h, 0, L0

y)
)
,

Q0
y(η) = D2(−h, 0)−D2(η, 0) + P 0

y

(
D4(η, 0)−D4(−h, 0)

)
,

which completes the solution of (6.6)–(6.8). This solution is unique.
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Remark 6.1. Due to (6.11), Q0
v(−h) = 0n×n and Q0

y(−h) = 0n×m, where 0n×n

and 0n×m are zero-matrices of dimensions n× n and n×m, respectively. Due to Re-
mark 2.1, the functions Q0

v(η) and Q
0
y(η) are piecewise continuous in η ∈ [−h, 0] with

the break points η = −hj (j = 1, . . . , N), where these functions have finite limits from
the right Q0

v(−hj + 0) = limη→−hj+0Q
0
v(η) and Q0

y(−hj + 0) = limη→−hj+0Q
0
y(η),

respectively. Also, these functions are continuous from the left at the break points
η = −hj (j = 1, . . . , N − 1). Moreover, the matrix-valued functions

Q0
v,j(η) =

{
limη→−hj+0Q

0
v(η), η = −hj,

Q0
v(η), η ∈ (−hj,−hj−1],

and

Q0
y,j(η) =

{
limη→−hj+0Q

0
y(η), η = −hj ,

Q0
y(η), η ∈ (−hj ,−hj−1],

are differentiable on the interval [−hj ,−hj−1] for all j = 1, . . . , N .

Thus, we have completed the formal construction of the zero-order asymptotic
solution to system (6.1), (6.4). Based on this asymptotic solution, we obtain the
following lemma.

Lemma 6.2. Let assumptions (A1)–(A3) be valid. Then there exists a positive
number ε∗2 (ε∗2 ≤ ε∗1) such that, for all ε ∈ (0, ε∗2], system (6.1), (6.4) has a solution
(Qv(η, ε), Py(ε), Qy(η, ε)), η ∈ [−h, 0], satisfying the inequalities

(6.12) ‖Qv(η, ε)−Q0
v(η)‖ ≤ a∗2ε, ‖Qy(η, ε)−Q0

y(η)‖ ≤ a∗2ε ∀η ∈ [−h, 0],

(6.13) ‖Py(ε)− P 0
y ‖ ≤ a∗2ε,

where a∗2 > 0 is some constant independent of ε.
Such a solution is unique. Moreover, the matrix-valued functions

Qv,j(η, ε) =

{
limη→−hj+0Qv(η, ε), η = −hj,
Qv(η, ε), η ∈ (−hj,−hj−1],

and

Qy,j(η, ε) =

{
limη→−hj+0Qy(η, ε), η = −hj,
Qy(η, ε), η ∈ (−hj ,−hj−1],

are differentiable with respect to η on the interval [−hj ,−hj−1] for all j = 1, . . . , N
and any ε ∈ (0, ε∗2].

The lemma is proven in Appendix B.

6.3. Diagonal system for t ≥ εh. Due to the existence of solution to the
system (6.1), (6.4), the slow mode equation (5.12) in the system (5.12), (4.8)–(4.9)
becomes as follows for t > εh:

(6.14) dwx(t)/dt = F1

(
ε,N (η, ε)

)
wx(t),

where F1(ε,N (η, ε)) is given by (5.8).
Using (5.1)–(5.5) and (4.13)–(4.14), one obtains the initial condition for (6.14),

wx(εh) = xin(εh, ε)− ε

∫ 0

−h

Qv(η, ε)
[
xin(εh+ εη, ε)− Lv(η, ε)xin(εh, ε)

]
dη

− εPy(ε)
[
yin(εh, ε)− Ly(ε)xin(εh, ε)

]
− ε

∫ 0

−h

Qy(η, ε)
[
yin(εh+ εη, ε)− Ly(ε)xin(εh+ εη, ε)

]
dη, 0 < ε ≤ ε∗2.(6.15)
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Also, using (4.14), (5.1)–(5.4) and Lemma 6.2, the boundary condition (5.13) becomes

wv(t, 0) =
(
In − Lv(0, ε)

)
wx(t) + ε

(
In − Lv(0, ε)

){∫ 0

−h

Qv(η, ε)wv(t, η)dη

+Py(ε)wy(t) +

∫ 0

−h

Qy(η, ε)wy(t+ εη)dη

}
, t ≥ εh, ε ∈ (0, ε∗2].(6.16)

The transformation (5.5) is invertible for all t ≥ εh. This observation, as well as
Theorem 4.3 and Lemma 6.2, yields immediately the following theorem.

Theorem 6.3. Let assumptions (A1)–(A3) be valid. Let
(
Lv(η, ε), Ly(ε)

)
be the

solution of system (4.1) mentioned in Lemma 4.1. Let (Qv(η, ε), Py(ε), Qy(η, ε)) be
the solution of system (6.1), (6.4) mentioned in Lemma 6.2. Then, for all ε ∈ (0, ε∗2],
the system (6.14) and (4.8)–(4.9), considered in the domain Ω̃ε, with the initial con-
ditions (6.15), (4.13) and the boundary condition (6.16), and the system (2.7)–(2.8),
considered in the interval (εh,+∞), with the initial conditions (4.15), are equivalent to
each other subject to the relations (5.5), (3.7)–(3.8), and (3.1) on their state variables.

In what follows, the system of equations (6.14) and (4.8)–(4.9), subject to the ini-
tial conditions (6.15), (4.13) and the boundary condition (6.16), is called the diagonal
system (DS) for t ≥ εh. Note that, in the DS, the slow and fast state variables are
connected only by the boundary condition (6.16), which is not a differential equation.
Moreover, this connection is weak, because it is neglected for ε→ +0. The differential
equations (6.14) and (4.8)–(4.9) for the slow wx(t) and fast wv(t, η), (wy(t), wy(t+εη))
state variables are completely disconnected from each other.

7. Important particular case: Single pointwise delay. In this section, the
particular case of system (2.1)–(2.2) with a single pointwise delay and without a dis-
tributed delay is treated. In subsection 7.1, we briefly describe the exact slow-fast
decomposition of such a system. Then, we derive a set of equations for the spec-
trum of the decomposed system (subsection 7.2). It is shown that this set consists
of two unconnected equations. One of these equations determines the slow part of
the spectrum, while the other determines its fast part. Since the decomposed system
and the original one are equivalent, they have the same spectrum. Therefore, the
derivation of the above-mentioned set of equations for the spectrum of the decom-
posed system means the exact slow-fast decomposition of the characteristic equation
(spectrum equation) for the original singularly perturbed system.

We consider the case of system (2.1)–(2.2), frequently arising in applications,
where

(7.1) N = 1, h1 = h, Gi(η, ε) ≡ 0, i = 1, . . . , 4.

7.1. Exact slow-fast decomposition. In the case (7.1), we deal directly with
the original system (2.1)–(2.2), not converting it to the equivalent form (2.7)–(2.8).
Namely, the system (4.1) becomes

dLv(η, ε)/dη = εLv(η, ε)
[
Ψ12,0

(
ε, Ly(ε)

)
+Ψ12,1

(
ε, Ly(ε)

)
Lv(−h, ε)

]
,

H4(0)Ly(ε) = εLy(ε)
[
Ψ12,0

(
ε, Ly(ε)

)
+Ψ12,1

(
ε, Ly(ε)

)
Lv(−h, ε)

]
−
[
Ψ34,0

(
ε, Ly(ε)

)
+Ψ34,1

(
ε, Ly(ε)

)
Lv(−h, ε)

]
+H4(0)Ly(ε),(7.2)
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where Hi(ε) (i = 1, . . . , 4) are given by (4.2) subject to (7.1),

Ψk k+1,j

(
ε, Ly(ε)

) �
= Akj(ε) +Ak+1 j(ε)Ly(ε), k = 1, 3, j = 0, 1.(7.3)

The terms of the zero-order asymptotic solution to system (7.2) have the form
(4.5), (4.6). The upper triangular system (3.11), (4.8)–(4.9) becomes

dx(t)

dt
=
[
Ψ12,0

(
ε, Ly(ε)

)
+Ψ12,1

(
ε, Ly(ε)

)
Lv(−h, ε)

]
x(t)

+Ψ12,1

(
ε, Ly(ε)

)
wv(t,−h) +A20(ε)wy(t) +A21(ε)wy(t− εh), t > εh,(7.4)

ε
∂wv(t, η)

∂t
− ∂wv(t, η)

∂η
= −εLv(η, ε)

[
Ψ12,1

(
ε, Ly(ε)

)
wv(t,−h)

+A20(ε)wy(t) +A21(ε)wy(t− εh)
]
, (t, η) ∈ Ω̃ε,(7.5)

εdwy(t)

dt
=
[
Ψ34,1

(
ε, Ly(ε)

)
− εLy(ε)Ψ12,1

(
ε, Ly(ε)

)]
wv(t,−h)

+
(
A40(ε)− εLy(ε)A20(ε)

)
wy(t) +

(
A41(ε)− εLy(ε)A21(ε)

)
wy(t− εh),(7.6)

t > εh.

For system (7.4)–(7.6), the transformation of variables (5.5) becomes wx(t) =

x(t)−ε
∫ 0

−h
Qv(η, ε)wv(t, η)dη−εPy(ε)wy(t)−ε

∫ 0

−h
Qy(η, ε)wy(t+εη)dη, where t ≥ εh;

Py(ε), as in (5.5), is some n ×m-matrix-valued function of ε ∈ (0, ε∗1]; Qv(η, ε) and
Qy(η, ε) are some n×n- and n×m-matrix-valued functions of (η, ε) ∈ [−h, 0]×(0, ε∗1];
however, these functions, in contrast with (5.5), are differentiable with respect to
η ∈ [−h, 0] for each ε ∈ (0, ε∗1].

The matrices Qv(η, ε), P (ε), Qy(η, ε), allowing us to eliminate the fast state
variables wv(t, η) and (wy(t), wy(t + εη)) from the slow mode equation for the new
slow state wx(t), satisfy the following set of equations:

dQv(η, ε)/dη = −ε
[
Ψ12,0

(
ε, Ly(ε)

)
+Ψ12,1

(
ε, Ly(ε)

)
Lv(−h, ε)

−Qv(0, ε)
(
In − Lv(0, ε)

)]
Qv(η, ε), η ∈ [−h, 0],

dQy(η, ε)/dη = −ε
[
Ψ12,0

(
ε, Ly(ε)

)
+Ψ12,1

(
ε, Ly(ε)

)
Lv(−h, ε)

−Qv(0, ε)
(
In − Lv(0, ε)

)]
Qy(η, ε), η ∈ [−h, 0],

Qv(−h, ε) = −
(
In + ε

∫ 0

−h

Qv(η, ε)Lv(η, ε)dη

)
Ψ12,1

(
ε, Ly(ε)

)
+Py(ε)

[
Ψ34,1

(
ε, Ly(ε)

)
− εLy(ε)Ψ12,1

(
ε, Ly(ε)

)]
,

Qy(−h, ε) = −
(
In + ε

∫ 0

−h

Qv(η, ε)Lv(η, ε)dη

)
A21(ε)

+Py(ε)
(
A41(ε)− εLy(ε)A21(ε)

)
,
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Qy(0, ε) =

(
In + ε

∫ 0

−h

Qv(η, ε)Lv(η, ε)dη

)
A20(ε)

+ ε

[
Ψ12,0

(
ε, Ly(ε)

)
+Ψ12,1

(
ε, Ly(ε)

)
Lv(−h, ε)

−Qv(0, ε)
(
In − Lv(0, ε)

)]
Py(ε)− Py(ε)

(
A40(ε)− εLy(ε)A20(ε)

)
.(7.7)

The terms of the zero-order asymptotic solution to the set (7.7) have the form
(6.10) and Q0

v(η) ≡ Q0
v = P 0

yΨ34,1(0, L
0
y) − Ψ12,1(0, L

0
y), Q

0
y(η) ≡ Q0

y = P 0
yA41(0) −

A21(0), η ∈ [−h, 0].
Finally, the slow mode equation (6.14) in the DS becomes

dwx(t)/dt =
[
Ψ12,0

(
ε, Ly(ε)

)
+Ψ12,1

(
ε, Ly(ε)

)
Lv(−h, ε)

−Qv(0, ε)
(
In − Lv(0, ε)

)]
wx(t), t > εh,(7.8)

while the fast mode equations in the DS are (7.5)–(7.6). Moreover, this system is
subject to the boundary condition (6.16).

7.2. Equations for the spectrum of the diagonal and original systems.
Let us introduce into consideration the following matrix-valued functions of the small
parameter ε and a complex variable λ:

Λ11(ε, λ)
�
= Ψ12,0

(
ε, Ly(ε)

)
+Ψ12,1

(
ε, Ly(ε)

)
Lv(−h, ε)

−Qv(0, ε)
(
In − Lv(0, ε)

)
− λIn,(7.9)

Λ22

(
ε, λ

) �
= A40(ε)− εLy(ε)A20(ε)

+
(
A41(ε)− εLy(ε)A21(ε)

)
exp

(
− ελh

)
− ελIm,(7.10)

Λ23(ε)
�
= Ψ34,1

(
ε, Ly(ε)

)
− εLy(ε)Ψ12,1

(
ε, Ly(ε)

)
,

(7.11)

Λ32

(
ε, λ

) �
=Mv

(
− h, ε, λ

)[
A20(ε) +A21(ε) exp

(
− ελh

)]
,

Λ33

(
ε, λ

) �
=
[
Mv

(
− h, ε, λ

)
Ψ12,1

(
ε, Ly(ε)

)
− In

]
,

Λ34

(
ε, λ

) �
= exp

(
− ελh

)
In,

Λ41(ε)
�
=
(
In − Lv(0, ε)

)
,

Λ42

(
ε, λ

) �
= ε

(
In − Lv(0, ε)

){∫ 0

−h

Qv(η, ε)Mv

(
η, ε, λ

)
dη
[
A20(ε)

+A21(ε) exp
(
− ελh

)]
+ Py(ε) +

∫ 0

−h

Qy(η, ε) exp
(
ελη

)
dη

}
,(7.12)

Λ43

(
ε, λ

) �
= ε

(
In − Lv(0, ε)

) ∫ 0

−h

Qv(η, ε)Mv

(
η, ε, λ

)
dηΨ12,1

(
ε, Ly(ε)

)
,

Λ44

(
ε, λ

) �
= ε

(
In − Lv(0, ε)

) ∫ 0

−h

Qv(η, ε) exp
(
ελη

)
dη − In,
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where Mv

(
η, ε, λ

)
has the form

(7.13) Mv

(
η, ε, λ

)
= ε

∫ η

0

exp
(
ελ(η − ζ)

)
Lv(ζ, ε)dζ.

Based on (7.9)–(7.12), let us consider the set of two equations

(7.14) Δs

(
ε, λ

)
= 0, Δs

(
ε, λ

) �
= detΛ11

(
ε, λ

)
,

(7.15) Δf

(
ε, λ

)
= 0, Δf

(
ε, λ

) �
= det

⎡
⎣ Λ22

(
ε, λ

)
Λ23(ε) 0m×n

Λ32

(
ε, λ

)
Λ33

(
ε, λ

)
Λ34

(
ε, λ

)
Λ42

(
ε, λ

)
Λ43

(
ε, λ

)
Λ44

(
ε, λ

)
⎤
⎦ ,

where 0m×n is zero matrix of the dimension m× n.

Lemma 7.1. Let assumptions (A1), (A3) be valid. Then, for each ε ∈ (0, ε∗2], the
spectrum of the DS (7.8), (7.5)–(7.6), (6.16) coincides with the set of all roots λ = λ(ε)
of the system (7.14)–(7.15), where ε∗2 > 0 is defined in Lemma 6.2.

The lemma is proven in Appendix C.

Remark 7.2. The first equation of system (7.14)–(7.15) is a polynomial equation
of degree n (the dimension of the Euclidean slow state variables x(t) and wx(t) in the
original and the diagonal systems), while the second equation is a quasipolynomial
equation of degree m (the dimension of the Euclidean fast state variables y(t) and
wy(t) in the original and the diagonal systems).

Let us analyze (7.14) and (7.15) separately.
Due to (7.9), the coefficient for λn (the highest degree of λ in the polynomial

equation (7.14)) is (−1)n, while the other coefficients are bounded with respect to
ε ∈ (0, ε∗2]. This observation directly yields the following lemma.

Lemma 7.3. Let assumptions (A1), (A3) be valid. Then there exists a positive
number γs, independent of ε, such that any root λ(ε) of (7.14) satisfies the inequality
|λ(ε)| ≤ γs for all ε ∈ (0, ε∗2].

We proceed to (7.15).

Lemma 7.4. Let assumptions (A1), (A3) be valid. Then there exist a positive
number ε∗3 ≤ ε∗2 and a positive number γf , independent of ε, such that any root λ(ε)
of the quasipolynomial equation (7.15) satisfies the inequality |λ(ε)| ≥ γf/ε for all
ε ∈ (0, ε∗3].

Proof. We prove the lemma by contradiction. Namely, let us assume that the
statement of the lemma is wrong. This means the existence of three sequences {εk},
{γf,k}, {λk} satisfying the following properties: (i) εk > 0 (k = 1, 2, . . .); (ii) εk →
+0 for k → +∞; (iii) γf,k > 0 (k = 1, 2, . . .); (iv) γf,k → +0 for k → +∞; (v)
Δf

(
εk, λk

)
= 0 (k = 1, 2, . . .); and (vi) |λk| < γf,k/εk (k = 1, 2, . . .).

Due to the properties (i), (iii), (iv), and (vi), εkλk → 0 for k → +∞. Using the
latter, as well as (7.10)–(7.12), (7.15), and Lemmas 4.1 and 6.2, we obtain

(7.16) lim
k→+∞

Δf

(
εk, λk

)
= det

⎡
⎢⎣ H4(0) Ψ34,1

(
0, L0

y

)
0m×n

0n×m − In In
0n×m 0n×n − In

⎤
⎥⎦ = detH4(0).
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Remember that H4(0) is given by (4.2) subject to (7.1).
Equation (7.16), along with the property (v), yields detH4(0) = 0, which contra-

dicts assumption (A3). This contradiction proves the lemma.

Let Rs(ε), ε ∈ (0, ε∗2], be the set of all roots of (7.14). Let Rf (ε), ε ∈ (0, ε∗3],
be the set of all roots of (7.15). Finally, for a given ε > 0 let R(ε) be the spectrum
of the original singularly perturbed system (2.1)–(2.2), (7.1), i.e., the set of all roots
of the following quasipolynomial equation of degree (n + m) with respect to λ (the
characteristic equation):
(7.17)

det

⎡
⎣ A10(ε) +A11(ε) exp(−ελh)− λIn A20(ε) +A21(ε) exp(−ελh)

A30(ε)+A31(ε) exp(−ελh)
ε

A40(ε)+A41(ε) exp(−ελh)
ε − λIm

⎤
⎦ = 0.

Now, Lemmas 7.1, 7.3, and 7.4 and the above-mentioned fact, that the original
system (2.1)–(2.2), (7.1) and the corresponding DS (7.8), (7.5)–(7.6), (6.16) have the
same spectrum, directly yield the following theorem.

Theorem 7.5. Let assumptions (A1), (A3) be valid. Then there exists a positive
number ε∗4 ≤ ε∗3 such that, for all ε ∈ (0, ε∗4], the following relations hold: R(ε) =
Rs(ε)

⋃
Rf (ε), Rs(ε)

⋂
Rf (ε) = ∅.

Remark 7.6. Concluding this section, we would like to note the following. Theo-
rem 7.5 states the exact slow-fast decomposition of (7.17) for the spectrum R(ε) of the
original system (2.1)–(2.2), (7.1) into two unconnected equations, (7.14) and (7.15).
The set Rs(ε) of roots of (7.14) is the slow part of the spectrum R(ε), while the set
Rf (ε) of roots of (7.15) is the fast part of this spectrum. Note that Rs(ε) coincides
with the spectrum of the slow homogeneous subsystem (7.8) of the DS (7.8), (7.5)–
(7.6), (6.16), while Rf (ε) coincides with the spectrum of the homogeneous system
corresponding to the fast nonhomogeneous subsystem (7.5)–(7.6), (6.16), where wx(t)
is considered as a known nonhomogeneous term. Note also that in the works [19, 40] a
qualitative slow-fast decomposition of the spectrum of a singularly perturbed system
with small delays was studied. In the present paper, in contrast with [19, 40], the
quantitative exact slow-fast decomposition of the spectrum of a singularly perturbed
system with a small pointwise delay was carried out.

8. Example: Stability analysis of a multilink single-sink optical net-
work. In this section, we consider a real-world example, to which the results of the
previous sections are applied. This example is devoted to stability analysis of the
singularly perturbed system of nonlinear differential equations with a small pointwise
delay, modeling a multilink single-sink optical network. In subsection 8.1, an analyt-
ical study is carried out. In subsection 8.2, a numerical illustration is presented.

8.1. Analytical study. The mathematical model of the multilink single-sink
optical network is a nonlinear singularly perturbed time-invariant system with a single
pointwise delay (see equations (23)–(24) of [15]). This system consists of scalar slow
mode and vector fast mode equations. The delay is on the order of a small parameter
ε > 0 multiplying the part of state derivatives in the system. In [15], the asymptotic
stability of the trivial solution to this system was studied, using the linear matrix
inequality (LMI) approach. A sufficient stability condition in the form of feasibility
of some rather complicated and high-dimensional LMI was obtained in this work.

In the present section, sufficient conditions for the asymptotic stability, as well as
the instability, of the trivial solution to the system modeling the multilink single-sink
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optical network are derived based on its exact slow-fast decomposition and on the
exact slow-fast decomposition of its spectrum.

In the case of perfectly known coefficients, this system can be represented as

(8.1)
dx(t)/dt = bx(t)/

(
x(t) + c

)
+ αT y(t),

εdy(t)/dt = εγx(t)/
(
x(t) + c

)3
+ εBy(t)/

(
x(t) + c

)2
+ Cy(t− εh),

where t ≥ 0; x(t) ∈ E1, y(t) ∈ Em; b and c 
= 0 are given numbers; α and γ are given
m-dimensional column-vectors; B and C are given m×m-matrices; and ε and h have
the same sense as in (2.1)–(2.2).

In system (8.1), x(t) is a shifted dynamic pricing term, while each coordinate of
y(t) is a shifted optical input power at the transmitter in the respective link from
the transmitter to the receiver in the optical path of channels. The small positive
parameter ε represents a fast dynamics of y(t) and a smallness of the delay. More
details on the physical and engineering sense of (8.1) can be found in [15].

We analyze the asymptotic stability of the trivial solution of system (8.1) based
on the first Lyapunov method [41], i.e., on the linearization of this system. Then, the
spectrum of the resulting linear system is analyzed by its exact slow-fast decomposi-
tion.

The linearization of (8.1) in a neighborhood of the trivial solution {x(t) ≡ 0, y(t) ≡
0}, t ≥ −εh, yields the system

(8.2)
dx(t)/dt = b1x(t) + αT y(t),

εdy(t)/dt = εγ1x(t) + εB1y(t) + Cy(t− εh),

where b1 = b/c, γ1 = γ/c3, B1 = B/c2.
Using the transformations (3.1), (3.7)–(3.8), (5.5), system (8.2) is converted equiv-

alently for all sufficiently small ε > 0 to the following diagonal system in the domain
Ω̃ε:

(8.3)

dwx(t)/dt =
[
b1 + αTLy(ε)−Qv(0, ε)

(
1− Lv(0, ε)

)]
wx(t),

ε∂wv(t, τ)/∂t− ∂wv(t, τ)/∂τ = −εLv(τ, ε)α
Twy(t),

εdwy(t)/dt = CLy(ε)wv(t,−h) + ε
[
B1 − Ly(ε)α

T
]
wy(t) + Cwy(t− εh),

and the boundary condition (6.16).
The scalar Lv(τ, ε) and the column m-vector Ly(ε), appearing in (3.7)–(3.8) and

in (8.3), (6.16), satisfy the condition Lv(−h, ε) = 1 and the system

(8.4)
dLv(η, ε)/dη = εLv(η, ε)

(
b1 + αTLy(ε)

)
,

CLy(ε) = −ε
[
γ1 +B1Ly(ε)− Ly(ε)

(
b1 + αTLy(ε)

)]
.

For this system, assumption (A3) becomes det(C) 
= 0. Subject to this assumption,
the zero-order asymptotic solution of this system is L0

v = 1, L0
y = 0, and Lemma 4.1

is valid; i.e., (8.4) has a solution for all sufficiently small ε > 0.
The scalar Qv(τ, ε) and the row m-vectors Py(ε) and Qy(τ, ε), appearing in (5.5)
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and in (8.3), (6.16), satisfy the following system:
(8.5)

dQv(η, ε)/dη = −ε
[
b1 + αTLy(ε)−Qv(0, ε)

(
1− Lv(0, ε)

)]
Qv(η, ε),

dQy(η, ε)/dη = −ε
[
b1 + αTLy(ε)−Qv(0, ε)

(
1− Lv(0, ε)

)]
Qy(η, ε),

Qv(−h, ε) = Py(ε)CLy(ε),

Qy(−h, ε) = Py(ε)C,

Qy(0, ε) =

(
1 + ε

∫ 0

−h

Qv(η, ε)Lv(η, ε)dη

)
αT

+ ε
[
b1 + αTLy(ε)−Qv(0, ε)

(
1− Lv(0, ε)

)]
Py(ε)− εPy(ε)[B1 − Ly(ε)α

T ].

The zero-order asymptotic solution of this system is P 0
y = αTC−1, Q0

v(τ) ≡ 0,
Q0

y(τ) ≡ αT . Moreover, Lemma 6.2 is valid for (8.5); i.e., this system has the solution.
Based on the exact slow-fast decomposition of system (8.2), i.e., on its transforma-

tion to the DS, we can establish properties of the spectrum R(ε) of (8.2), guaranteeing
the asymptotic stability of this system for all sufficiently small ε > 0. Namely, due
to Theorem 7.5, R(ε) = Rs(ε)

⋃
Rf (ε) (Rs(ε)

⋂
Rf (ε) = ∅). Moreover, due to this

theorem and (7.14), the slow part Rs(ε) of the spectrum consists of the single element

(8.6) λs(ε) = b1 + αTLy(ε)−Qv(0, ε)
(
1− Lv(0, ε)

)
.

The fast part Rf (ε) of the spectrum is obtained from (7.15), where

(8.7)

Λ22(ε, λ) = ε
(
B1 − Ly(ε)α

T
)
+ C exp

(
− ελh

)
− ελIm,

Λ23(ε, λ) = CLy(ε), Λ32(ε, λ) = εMv(−h, ε, λ)αT , Λ33(ε, λ) = −1,

Λ34(ε, λ) = exp
(
− ελ(ε)h

)
,

Λ42(ε, λ) = ε
(
1− Lv(0, ε)

)
×
[∫ 0

−h

Qv(η, ε)Mv(η, ε, λ)dηα
T + Py(ε) +

∫ 0

−h

Qy(η, ε) exp(ελη)dη

]
,

Λ43(ε, λ) = 0, Λ44(ε, λ) = ε
(
1− Lv(0, ε)

) ∫ 0

−h

Qv(η, ε) exp(ελη)dη − 1.

By transformation of the unknown λ = μ/ε in (7.15), (8.7), formally setting the
first argument ε = 0 and redenoting the second argument μ as μ̄f in the resulting
equations, we obtain the quasipolynomial equation with respect to μ̄f

(8.8) det
(
C exp(μ̄fh)− μ̄f Im

)
= 0.

Let R̄f be the set of all roots of (8.8).
In what follows, we assume

(8.9) b1 < 0, max
μ̄f∈R̄f

Re
(
μ̄f

) �
= βμ < 0.

Due to the first inequality in (8.9), for any given constant 0 < κ < 1 there
exists a positive number εs,κ such that λs(ε), given by (8.6), satisfies the inequality
λs(ε) < κb1 < 0, ε ∈ (0, εs,κ].

Lemma 8.1. Let the second inequality in (8.9) be valid. Then, for any given
constant 0 < κ < 1 there exists a positive number εf,κ such that each λf (ε) ∈ Rf (ε)
satisfies the inequality Re

(
λf (ε)

)
< κβμ/ε, ε ∈ (0, εf,κ].
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Proof. We prove the lemma by contradiction. Let us assume that the statement of
the lemma is wrong. This means the existence of two sequences {εk} and {λf,k} with
the following properties: (a) {εk} is positive and convergent to zero; (b) Re(λf,k) ≥
κβμ/εk (k = 1, 2, . . .); and (c) (7.15) and (8.7), determining the setRf (ε), are satisfied
for any pair

(
ε, λ

)
= (εk, λf,k).

Consider the sequence {μf,k} such that μf,k = εkλf,k. The following two cases can
be distinguished: (i) {μf,k} is bounded; (ii) {μf,k} is unbounded. Let us start with the
first case. In this case, there exists a convergent subsequence of {μf,k}. For the sake of
simplicity (but without loss of generality), we assume that the sequence {μf,k} itself is
such a subsequence. Let μ̂f = limk→+∞ μf,k. Due to the property (b), Re(μ̂f ) ≥ κβμ.
Substituting

(
ε, λ

)
= (εk, λf,k) into (7.15) and (8.7), calculating the limit of the

resulting equalities for k → +∞, and using the zero-order asymptotic solutions of the
systems (8.4) and (8.5) yields, after some rearrangement, det(C exp(μ̂fh)−μ̂f Im) = 0.
The latter means that μ̂f is a root of (8.8). Thus, due to the second inequality in (8.9),
Re(μ̂f ) ≤ βμ < 0, which contradicts the above obtained inequality Re(μ̂f ) ≥ κβμ.

Proceed to the case (ii), where the sequence {μf,k} is unbounded. In this case,
there exists a subsequence of {μf,k}, modules of elements of which tend to infin-
ity. As for the case (i), we assume that {μf,k} itself is such a subsequence; i.e.,
limk→+∞ |μf,k| = +∞. By substituting (ε, λ) = (εk, λf,k) into (7.15), (8.7), dividing
the resulting equality (7.15) by μf,k, and then calculating the limit of the last equality
for k → +∞, one obtains the contradiction (−1)m = 0.

The contradictions obtained in the cases (i) and (ii) prove the lemma.

Thus, based on the exact slow-fast decompositions of system (8.2) and its spec-
trum R(ε), we have established the following. Subject to the inequalities (8.9), for
any given number 0 < κ < 1 and all sufficiently small ε > 0, each element λ ∈ R(ε)
satisfies the inequality Re

(
λ
)
< κb1. The latter means that the trivial solution of

the linearized system (8.2) is asymptotically stable. Moreover, by virtue of the first
Lyapunov method [41], the trivial solution of the original nonlinear system (8.1) is
asymptotically stable for all sufficiently small ε > 0. It is important to note that if at
least one of the numbers, either b1 or βμ, is positive, then the trivial solution of (8.1)
is unstable for all sufficiently small ε > 0.

Remark 8.2. Similarly to the above presented analysis of the system (8.1) with
perfectly known coefficients, an uncertain version of this system can be studied.
Namely, let the coefficients of (8.1) have the form b = bnom + Δb, α = αnom + Δα,
γ = γnom+Δγ, B = Bnom+ΔB, C = Cnom+ΔC, where the values bnom, αnom, γnom,
Bnom, and Cnom are known nominal values, while Δb, Δα, Δγ, ΔB, and ΔC are un-
certainties, satisfying the inequalities |Δb| ≤ δb, ‖Δα‖ ≤ δα, ‖Δγ‖ ≤ δγ , ‖ΔB‖ ≤ δB,
and ‖ΔC‖ ≤ δC . In this case, the inequalities (8.9) with b1 = (bnom + δb)/c and
C = Cnom guarantee the robust asymptotic stability of the trivial solution to system
(8.1) for all sufficiently small ε > 0 and δC > 0. The fulfilment of either the inequal-
ity (bnom − δb)/c > 0 or the inequality βμ > 0, where βμ is obtained from (8.9) for
C = Cnom, guarantees the robust instability of the trivial solution to system (8.1) for
all sufficiently small ε > 0 and δC > 0.

8.2. Numerical illustration. Consider a particular case of system (8.1) with
the following data: m = 1, b = −2, c = 1, α = 3, γ = 8, B = 2, C = −0.9, h = 0.6.
For these data, b1 = −2, γ1 = 4, B1 = 2. Equation (8.8) becomes −0.9 exp(μ̄f )−μ̄f =
0, and all roots of this equation satisfy the inequality Re(μ̄f ) < −0.53. Thus, both
inequalities in (8.9) are valid.
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Fig. 1. x-component of the trajectory of system (8.2).
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Fig. 2. y-component of the trajectory of system (8.2).

In Figures 1 and 2, the x- and y-components of the trajectory of the linearized
system (8.2), for two different values of ε and subject to the initial conditions x(0) = 2,
y(θ) = 4, θ ∈ [−0.6ε, 0], are depicted. It is seen that, for both values of ε, these
components tend to zero as t→ +∞.

In Figures 3 and 4, the x- and y-components of the trajectory of the nonlinear
system (8.1) are depicted for the same values of ε and subject to the same initial
conditions as for the linearized system (8.2) (Figures 1 and 2). Due to the large
initial values of the state variables, the solution of the nonlinear system (8.1) differs
considerably from the solution of the linearized system (8.2) for each value of ε.
Nevertheless, for these values of ε, the solution of the nonlinear system tends to its
trivial solution as t→ +∞, meaning that the attraction domain of the trivial solution
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Fig. 3. x-component of the trajectory of system (8.1).
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Fig. 4. y-component of the trajectory of system (8.1).

is extremely large.
Extensive computer simulation showed that in this numerical example, for ε ≥

0.07, the solutions of neither the linearized nor nonlinear systems approach the trivial
solution as t→ +∞.

9. Conclusions. The linear time-invariant singularly perturbed system with
multiple pointwise and distributed time delays was considered. The delays are on
the order of the small multiplier ε > 0 for a part of the derivatives in the system.
A direct method of the exact slow-fast decomposition of this system was developed.
This method consists of several stages. First, a new state variable, the functional part
of the slow Euclidean state variable, is introduced. This new state depends on two
arguments and satisfies a partial first-order differential equation with the multiplier ε
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for the time derivative. Thus, this state is fast. By introduction of the new state, the
original system is transformed to the equivalent system of three equations, one slow
and two fast modes. Then, a linear algebraic transformation of the fast states with the
matrix-valued coefficients, satisfying a proper set of functional-differential-algebraic
equations, eliminates the slow state from the fast modes. A linear functional-algebraic
transformation of the slow state with the matrix-valued coefficients, satisfying a proper
set of functional-integral-algebraic equations, completely separates the slow and fast
mode equations. It was shown that, under reasonable assumptions, solutions of both,
functional-differential-algebraic and functional-integral-algebraic, sets exist and can
be obtained asymptotically. Based on this slow-fast decomposition of the original
singularly perturbed system of time delay equations, an exact slow-fast decomposi-
tion of its spectrum was carried out in the case of a single pointwise delay. This
spectrum decomposition yields two scalar unconnected algebraic equations: The first
is a polynomial equation for the slow part of the spectrum, while the second one is
a quasipolynomial equation for the fast part of the spectrum. Using this spectrum
decomposition, the stability of a multilink single-sink optical network was analyzed.
Conditions of the asymptotic stability and the instability of the trivial solution to
the corresponding nonlinear singularly perturbed time delay system were derived and
illustrated by a numerical example.

Appendix A. Proof of Lemma 4.1. Let us make the following transformation
of variables in system (4.1):

(A.1) Lv(η, ε) = L0
v + θv(η, ε), Ly(ε) = L0

y + θy(ε),

where θv(η, ε) and θy(ε) are new unknown matrices.
Substituting (A.1) into (4.1) and using (4.2), (4.5), one obtains after some rear-

rangement the system of equations for θv(η, ε) and θy(ε)

(A.2)
dθv(η, ε)/dη = Hv

(
ε, θv(η, ε), θy(ε)

)
+Kv(η, ε),

H4(0)θy(ε) = Hy

(
ε, θv(η, ε), θy(ε)

)
+Ky(ε),

where

Hv

(
ε, θv(η, ε), θy(ε)

) �
= F2

(
ε, L0

v + θv(η, ε), L
0
y + θy(ε)

)
− F2

(
ε, L0

v, L
0
y

)
,

Hy

(
ε, θv(η, ε), θy(ε)

) �
= −F3

(
ε, L0

v + θv(η, ε), L
0
y + θy(ε)

)
+F3

(
ε, L0

v, L
0
y

)
+H4(0)θy(ε),(A.3)

(A.4) Kv(ε)
�
= F2

(
ε, L0

v, L
0
y

)
, Ky(ε)

�
= −F3

(
ε, L0

v, L
0
y

)
.

By virtue of the algorithm for constructing the zero-order asymptotic solution
{L0

v(η), L
0
y} to the system (4.1) (see subsection 4.1), we directly have

(A.5) ‖Kv(ε)‖ ≤ aε, ‖Ky(ε)‖ ≤ aε, ε ∈ (0, ε0],

where a > 0 is some constant independent of ε.
Due to (3.15), (3.18), and (4.5), the expression for Hv in (A.3) can be rewritten

as

Hv

(
ε, θv(η, ε), θy(ε)

)
= ε

[
P
(
ε, θv(η, ε), θy(ε)

)
+ θv(η, ε)Q

(
ε, θv(η, ε), θy(ε)

)]
,(A.6)
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where

P
(
ε, θv(η, ε), θy(ε)

) �
= A20(ε)θy(ε)

+

∫ 0

−h

[
dηΓ12

(
η, ε, L0

y + θy(ε)
)]
θv(η, ε) +

∫ 0

−h

[dηD2(η, ε)]θy(ε),(A.7)

Q
(
ε, θv(η, ε), θy(ε)

) �
= Υ12

(
ε, L0

y + θy(ε)
)

+

∫ 0

−h

[
dηΓ12

(
η, ε, L0

y + θy(ε)
)](

In + θv(η, ε)
)
.(A.8)

Similarly, by using (3.16)–(3.18), (4.2), and (4.5), we can rewrite the expression
for Hy from (A.3) in the form

Hy

(
ε, θv(η, ε), θy(ε)

)
=
(
H4(0)−H4(ε)

)
θy(ε) + ε

[
L0
yP
(
ε, θv(η, ε), θy(ε)

)
+ θy(ε)Q

(
ε, θv(η, ε), θy(ε)

)]
+R

(
ε, θv(η, ε), θy(ε)

)
,(A.9)

where R(ε, θv(η, ε), θy(ε))
�
= −

∫ 0

−h[dηΓ34(η, ε, L
0
y + θy(ε))]θv(η, ε).

By virtue of assumptions (A1) and (A2) along with (4.2),

(A.10) ‖H4(0)−H4(ε)‖ ≤ aε, ε ∈ (0, ε0],

where a > 0 is some constant independent of ε.
In the remainder of the proof, we look for the solution {θv(η, ε), θy(ε)} of the

system (A.2) satisfying the condition θv(−h, ε) = 0. Using assumption (A3), system
(A.2), subject to this condition, can be rewritten in the equivalent form

(A.11)
θv(η, ε) =

∫ η

−h

Hv

(
ε, θv(σ, ε), θy(ε)

)
dσ +

∫ η

−h

Kv(σ, ε)dσ,

θy(ε) = H−1
4 (0)Hy

(
ε, θv(η, ε), θy(ε)

)
+H−1

4 (0)Ky(ε).

Substituting the first equation of (A.11) into the second yields after some re-
denoting and rearrangement (by using (A.9)) the following system, equivalent to
(A.11):

(A.12)
θv(η, ε) = Sv

(
η, ε, θv(η, ε), θy(ε)

)
+ Tv(η, ε),

θy(ε) = Sy

(
ε, θv(η, ε), θy(ε)

)
+ Ty(ε),

where

(A.13) Sv

(
η, ε, θv(η, ε), θy(ε)

) �
=

∫ η

−h

Hv

(
ε, θv(σ, ε), θy(ε)

)
dσ,

(A.14) Tv(η, ε)
�
= Kv(ε)(η + h),

Sy

(
ε, θv(η, ε), θy(ε)

) �
= H−1

4 (0)

{
Hy

(
ε, Sv

(
η, ε, θv(η, ε), θy(ε)

)
, θy(ε)

)

+ εL0
y

∫ 0

−h

[dηD2(η, ε)]θy(ε)Tv(η, ε)−
∫ 0

−h

[dηD4(η, ε)]θy(ε)Tv(η, ε)

}
,(A.15)
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Ty(ε)
�
= H−1

4 (0)

{
εL0

y

∫ 0

−h

[
dηΓ12

(
η, ε, L0

y

)]
Tv(η, ε)

−
∫ 0

−h

[
dηΓ34

(
η, ε, L0

y

)]
Tv(η, ε) +Ky(ε)

}
.(A.16)

By virtue of the first inequality in (A.5), we obtain

(A.17) ‖Tv(η, ε)‖ ≤ aε, η ∈ [−h, 0], ε ∈ (0, ε0].

Using Remark 2.1, (3.18), the second inequality in (A.5), and (A.17), one has

(A.18) ‖Ty(ε)‖ ≤ aε, ε ∈ (0, ε0].

In (A.17)–(A.18), a > 0 is some constant independent of ε.

Let Θvy be the set of all pairs θvy(η)
�
= {θv(η), θy}, where θv(η) is an n × n-

matrix-valued function, continuous for η ∈ [−h, 0], while θy is an m× n-matrix. Let
θ1vy(η) = {θ1v(η), θ1y} and θ2vy(η) = {θ2v(η), θ2y} be any two elements of Θvy. Let us
define the linear combination of these elements with any real coefficients α1 and α2

as α1θ
1
vy(η) + α2θ

2
vy(η) = {α1θ

1
v(η) + α2θ

2
v(η), α1θ

1
y + α2θ

2
y}. This definition converts

the set Θvy to a linear space. Further, for any θvy(η) ∈ Θvy, let us define the number

(A.19) ‖θvy(η)‖Θ
�
= max

η∈[−h,0]
‖θv(η)‖ + ‖θy‖.

It is directly verified that this number is a norm of an element in the linear space Θvy.
Moreover, Θvy endowed with the norm (A.19) is a Banach space.

Let ε > 0 be a sufficiently small number. Consider a ball in Θvy,

(A.20) B(c, ε) �
=
{
θvy(η) ∈ Θvy : ‖θvy(η)‖Θ ≤ cε

}
,

where c > 0 is some constant independent of ε.
For the aforementioned ε > 0, consider the operator, given in the space Θvy,

Fvy,ε

(
θvy(η)

) �
=
{
Sv

(
η, ε, θv(η), θy

)
+ Tv(η, ε), Sy

(
ε, θv(η), θy

)
+ Ty(ε)

}
.(A.21)

For any number c > 0 and any ε ∈ (0, ε0] this operator maps the ball (A.20) into
the space Θvy. Now, we are going to show that, for a proper choice of numbers
c > 0 and ε̄ > 0, the operator Fvy,ε(θvy(η)) maps the ball (A.20) into itself for any
ε ∈ (0, ε̄]. Namely, let us choose c = 4a, where a > 0 is the constant appearing
in the inequalities (A.17)–(A.18). Further, let us estimate Hv(η, ε, θv(η), θy) for any
{θv(η), θy} ∈ B(4a, ε), where ε ∈ (0, ε0] is any fixed number.

Using (A.6)–(A.8) and (A.20), one has for η ∈ [−h, 0]∥∥∥Hv

(
ε, θv(η), θy

)∥∥∥ ≤ ε‖L0
y‖
∥∥∥P(ε, θv(η), θy)∥∥∥+ 4aε2

∥∥∥Q(ε, θv(η), θy)∥∥∥,∥∥P(ε, θv(η), θy)∥∥ ≤ 4aε
{
‖A20(ε)‖ + V 0

−h

[
Γ12

(
η, ε, L0

y

)]
+(4aε+ 1)V 0

−h[D2(η, ε)]
}
,(A.22) ∥∥∥Q(ε, θv(η), θy)∥∥∥ ≤

∥∥∥Υ12

(
ε, L0

y(ε)
)∥∥∥+ 4aε‖A20(ε)‖

+(4aε+ 1)
{
V 0
−h

[
Γ12

(
η, ε, L0

y

)]
+ 4aεV 0

−h[D2(η, ε)]
}
.
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Due to assumptions (A1)–(A3), Remark 2.1, and (3.18), there exists a positive
constant c1, independent of ε, such that the following inequality is valid for all ε ∈
(0, ε0]:

‖L0
y‖
{
‖A20(ε)‖+ V 0

−h

[
Γ12

(
η, ε, L0

y

)]
+ (4aε+ 1)V 0

−h[D2(η, ε)]
}

+
∥∥∥Υ12

(
ε, L0

y(ε)
)∥∥∥+ 4aε‖A20(ε)‖

+(4aε+ 1)
{
V 0
−h

[
Γ12

(
η, ε, L0

y

)]
+ 4aεV 0

−h[D2(η, ε)]
}
≤ c1.(A.23)

Based on the inequalities (A.22)–(A.23), we obtain after a simple algebra the
following estimate: ‖Hv(ε, θv(η), θy)‖ ≤ 4ac1ε

2, η ∈ [−h, 0], ε ∈ (0, ε0]. Using this
estimate, (A.13), and the inequality (A.17), one immediately has the following in-
equality for all η ∈ [−h, 0] and ε ∈ (0, ε0]:∥∥∥Sv

(
η, ε, θv(η), θy

)
+ Tv(η, ε)

∥∥∥ ≤ 4ac1hε
2 + aε = aε(1 + 4c1hε).(A.24)

Let us introduce the positive numbers ε1 = 1/(4c1h), ε̄1 = min{ε0, ε1}. Then,
from (A.24), we obtain the following inequality for {θv(η), θy} ∈ B(4a, ε):

max
η∈[−h,0]

∥∥∥Sv

(
η, ε, θv(η), θy

)
+ Tv(η, ε)

∥∥∥ ≤ 2aε, ε ∈ (0, ε̄1].(A.25)

Similarly to (A.25), based on (A.9), (A.15) and the inequalities (A.10), (A.18), one
can prove the existence of a positive number ε̄2 (ε̄2 ≤ ε0) such that for all ε ∈ (0, ε̄2]
and {θv(η), θy} ∈ B(4a, ε) the following inequality is valid:

∥∥∥Sy

(
ε, θv(η), θy

)
+ Ty(ε)

∥∥∥ ≤ 2aε.(A.26)

The inequalities (A.25)–(A.26), along with the definitions (A.19)–(A.20), mean
immediately that the operator Fvy,ε(θvy(η)) (see (A.21)) maps the ball B(4a, ε) into
itself for any ε ∈ (0, ε̄], where ε̄ = min(ε̄1, ε̄2).

Now we are going to show that, for all sufficiently small ε > 0, the opera-
tor Fvy,ε(θvy(η)) satisfies the Lipschitz condition in the ball B(4a, ε) with the con-
stant 1/2. For this purpose, we first estimate the difference Hv(ε, θv,1(η), θy,1) −
Hv(ε, θv,2(η), θy,2) for any θvy,k(η) = {θv,k(η), θy,k} ∈ B(4a, ε) (k = 1, 2). Namely,
from (A.6), we obtain for η ∈ [−h, 0], ε ∈ (0, ε̄]

∥∥∥Hv

(
ε, θv,1(η), θy,1

)
−Hv

(
ε, θv,2(η), θy,2

)∥∥∥
≤ ε

∥∥∥Pv

(
ε, θv,1(η), θy,1

)
− Pv

(
ε, θv,2(η), θy,2

)∥∥∥
+ ε

∥∥∥θv,1(η)Qv

(
ε, θv,1(η), θy,1

)
− θv,2(η)Qv

(
ε, θv,2(η), θy,2

)∥∥∥.(A.27)

Using (A.7), Remark 2.1, and (3.18), we obtain for ε ∈ (0, ε̄]

∥∥∥Pv

(
ε, θv,1(η), θy,1

)
− Pv

(
ε, θv,2(η), θy,2

)∥∥∥ ≤ ‖θvy,1(η)− θvy,2(η)‖Θ
{
‖A20(ε)‖

+(8aε+ 1)V 0
−h[D2(η, ε)] + V 0

−h

[
Γ12

(
η, ε, L0

y

)]}
.(A.28)
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Similarly, using (A.8), (3.18) and Remark 2.1 yields for η ∈ [−h, 0], ε ∈ (0, ε̄]∥∥∥θv,1(η)Qv

(
ε, θv,1(η), θy,1

)
− θv,2(η)Qv

(
ε, θv,2(η), θy,2

)∥∥∥
≤ 4aε‖θvy,1(η)− θvy,2(η)‖Θ

{
‖A20(ε)‖ + (1 + 4aε)V 0

−h[D2(η, ε)]
}

+ ‖θvy,1(η)− θvy,2(η)‖Θ
{
4aεV 0

−h

[
Γ12

(
η, ε, L0

y

)]
+16a2ε2V 0

−h[D2(η, ε)] +
∥∥∥Qv

(
ε, θv,2(η), θy,2

)∥∥∥}.(A.29)

It should be noted that, due to (A.8) and the inclusion θvy,2(η) ∈ B(4a, ε), the value
‖Qv(ε, θv,2(η), θy,2)‖ is bounded for ε ∈ (0, ε̄].

Similarly to the inequality (A.23), one obtains the existence of a positive constant
c2 independent of ε such that for all ε ∈ (0, ε̄] the following inequality is valid:

(1 + 4aε)
{
‖A20(ε)‖+ (1 + 8aε)V 0

−h[D2(η, ε)] + V 0
−h

[
Γ12

(
η, ε, Ly,1(ε)

)]}
+
∥∥∥Qv

(
ε, θv,2(η), θy,2

)∥∥∥ ≤ c2.(A.30)

The inequalities (A.27)–(A.30) directly yield the following inequality:∥∥∥Hv

(
ε, θv,1(η), θy,1

)
−Hv

(
ε, θv,2(η), θy,2

)∥∥∥
≤ c2ε‖θvy,1(η)− θvy,2(η)‖Θ, η ∈ [−h, 0], ε ∈ (0, ε̄].(A.31)

This estimate, along with (A.13), leads immediately to the estimate

max
η∈[−h,0]

∥∥∥Sv

(
η, ε, θv,1(η), θy,1

)
− Sv

(
η, ε, θv,2(η), θy,2

)∥∥∥
≤ c2hε‖θvy,1(η)− θvy,2(η)‖Θ, ε ∈ (0, ε̄].(A.32)

By introducing the positive number ε̄3 = min{ε̄, 1/(4c2h)}, we obtain from (A.32)

max
η∈[−h,0]

∥∥∥Sv

(
η, ε, θv,1(η), θy,1

)
− Sv

(
η, ε, θv,2(η), θy,2

)∥∥∥
≤ (1/4)‖θvy,1(η)− θvy,2(η)‖Θ, ε ∈ (0, ε̄3].(A.33)

Similarly to (A.33), one can show the existence of a positive constant ε̄4 (ε̄4 ≤ ε̄)
such that, for all ε ∈ (0, ε̄4], the following inequality is satisfied:∥∥∥Sy

(
ε, θv,1(η), θy,1

)
− Sy

(
ε, θv,2(η), θy,2

)∥∥∥ ≤ (1/4)‖θvy,1(η)− θvy,2(η)‖Θ,(A.34)

which yields, along with (A.33), (A.19), and (A.21), the following inequality for any
ε ∈ (0, ε∗1] (ε

∗
1 = min{ε̄3, ε̄4}) and any θvy,1(η), θvy,2(η) ∈ B(4a, ε):∥∥∥Fvy,ε

(
θvy,1(η)

)
−Fvy,ε

(
θvy,2(η)

)∥∥∥ ≤ (1/2)‖θvy,1(η)− θvy,2(η)‖Θ.(A.35)

Thus, for any ε ∈ (0, ε∗1], the operator Fvy,ε(θvy(η)) satisfies the Lipschitz condition
in the ball B(4a, ε) with the constant 1/2.

Now, let us show that

(A.36)
∥∥∥Fvy,ε

(
0Θ

)∥∥∥
Θ
≤ 2aε, ε ∈ (0, ε∗1],
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where a > 0 is the constant appearing in the inequalities (A.17)–(A.18) and in the ra-
dius of the ball B(4a, ε); 0Θ is zero element of the space Θvy, i.e., 0Θ = {0n×n, 0m×n}.

Indeed, due to (A.3), (A.13), and (A.15), we obtain Sv(η, ε, 0n×n, 0m×n) ≡ 0
and Sy(ε, 0n×n, 0m×n) ≡ 0. The latter, along with (A.21), yields Fvy,ε(0Θ) =
{Tv(η, ε), Ty(ε)}, η ∈ [−h, 0], ε ∈ (0, ε0]. This equation, along with (A.19), the
inequalities (A.17)–(A.18), and the inequality ε∗1 ≤ ε0, directly implies the inequality
(A.36).

Thus, we have proven that, for any ε ∈ (0, ε∗1], the operatorFvy,ε(θvy(η)) maps the
ball B(4a, ε) into itself. Moreover, the operator Fvy,ε(θvy(η)) satisfies the Lipschitz
condition in the ball B(4a, ε) with the constant 1/2, and the inequality (A.36) is
valid. Now, by using the aforementioned properties of the operator Fvy,ε(θvy(η)), the
fact that 0Θ ∈ B(4a, ε), and the results of [42], one directly obtains the existence
of the unique solution {θv(η, ε), θy(ε)} to the set (A.12) in the ball B(4a, ε) for any
ε ∈ (0, ε∗1]. Moreover, by virtue of (A.13)–(A.14), one has

(A.37) θv(−h, ε) = 0, ε ∈ (0, ε∗1].

Now, (A.1) and (A.37), and the equivalence of the set (A.12) to the problem (A.2),
(A.37) directly yield all the statements of the lemma with a∗1 = 4a in the inequalities
(4.7).

Appendix B. Proof of Lemma 6.2. Let us make the following transformation
of variables in the system (6.1), (6.4):

(B.1) Qv(η, ε) = Q0
v(η) + ϑv(η, ε), Qy(η, ε) = Q0

y(η) + ϑy(η, ε), η ∈ [−h, 0],

(B.2) Py(ε) = P 0
y + ϑ(ε),

where ϑv(η, ε), ϑ(ε), and ϑy(η, ε) are new unknown matrices.
Equations (5.1), (5.3), (B.1) and Remark 6.1 yield ϑv(−h, ε) = 0, ϑy(−h, ε) = 0,

ε ∈ (0, ε∗1].

Denote Nϑ(η, ε)
�
= {ϑv(η, ε), ϑ(ε), ϑy(η, ε)}. Thus, due to this notation and (5.7),

N (η, ε) = {Q0
v(η) + ϑv(η, ε), P

0
y + ϑ(ε), Q0

y(η) + ϑy(η, ε)} = N 0(η) +Nϑ(η, ε).
By substituting (B.1)–(B.2) into (6.1), (6.4), one obtains after some rearrange-

ment the following system of equations for ϑv(η, ε), ϑ(ε), and ϑy(η, ε):

ϑ(ε)A40(0) + ϑy(0, ε) = D2

(
ε,Nϑ(η, ε)

)
+ L2(ε),(B.3)

ϑv(η, ε)− ϑ(ε)
(
Γ34(η, 0, L

0
y)− Γ34(−h, 0, L0

y)
)

= D3

(
− h, ε,Nϑ(η, ε)

)
−D3

(
η, ε,Nϑ(η, ε)

)
+ L3(−h, ε)− L3(η, ε),

ϑy(η, ε)− ϑ(ε)
(
D4(η, 0)−D4(−h, 0)

)
= D4

(
− h, ε,Nϑ(η, ε)

)
−D4

(
η, ε,Nϑ(η, ε)

)
+ L4(−h, ε)− L4(η, ε),
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where

D2

(
ε,Nϑ(η, ε)

)
= F2

(
ε,N 0(η) +Nϑ(η, ε)

)
+ ϑ(ε)A40(0)

+ϑy(0, ε)−F2

(
ε,N 0(η)

)
, L2(ε) = F2

(
ε,N 0(η)

)
,(B.4)

D3

(
η, ε,Nϑ(η, ε)

)
= F3

(
η, ε,N 0(η) +Nϑ(η, ε)

)
− ϑv(η, ε)

+ϑ(ε)Γ34(η, 0, L
0
y)−F3

(
η, ε,N 0(η)

)
, L3(η, ε) = F3

(
η, ε,N 0(η)

)
,

D4

(
η, ε,Nϑ(η, ε)

)
= F4

(
η, ε,N 0(η) +Nϑ(η, ε)

)
− ϑy(η, ε)

+ϑ(ε)D4(η, 0)−F4

(
η, ε,N 0(η)

)
, L4(η, ε) = F4

(
η, ε,N 0(η)

)
.

Remark B.1. Due to (5.10)–(5.11) and Remarks 2.1, 6.1, for all ε ∈ (0, ε∗1] the
functions L3(η, ε) and L4(η, ε) are piecewise continuous in η ∈ [−h, 0] with the break
points η = −hj (j = 1, . . . , N), where these functions have finite limits from the
right, L3(−hj+0, ε) = limη→−hj+0 L3(η, ε) and L4(−hj+0, ε) = limη→−hj+0 L4(η, ε),
respectively. Also, these functions are continuous from the left at the break points
η = −hj (j = 1, . . . , N−1). Moreover, by virtue of the algorithm for constructing the
asymptotic solution N 0(η) to the system (6.1), (6.4) (see subsection 6.1), we directly
have the following inequalities for all ε ∈ (0, ε∗1]:

(B.5) ‖L2(ε)‖ ≤ aε, ‖Lk(−h, ε)− Lk(η, ε)‖ ≤ aε, k = 3, 4, η ∈ [−h, 0],

where the positive constant ε∗1 has been introduced in Lemma 4.1 and where a > 0 is
some constant independent of ε.

Let us denote for all j = 1, . . . , N , η ∈ [−hj,−hj−1], ε ∈ (0, ε∗1],

(B.6) Lk,j(η, ε) =

{
Lk(−hj + 0, ε), η = −hj,
Lk(η, ε), η ∈ (−hj,−hj−1],

k = 3, 4.

Remark B.2. Due to Remark 2.2, the functions L3,j(η, ε) and L4,j(η, ε) (j =
1, . . . , N) are differentiable with respect to η ∈ [−hj ,−hj−1] for all ε ∈ (0, ε∗1].

The system (B.3) can be transformed equivalently to the following one:

(B.7)

ϑ(ε) = S2

(
ε,Nϑ(η, ε)

)
+ T2(ε),

ϑv(η, ε) = S3

(
η, ε,Nϑ(η, ε)

)
+ T3(η, ε),

ϑy(η, ε) = S4

(
η, ε,Nϑ(η, ε)

)
+ T4(η, ε),

where

S2

(
ε,Nϑ(η, ε)

)
=
[
D2

(
ε,Nϑ(η, ε)

)
+D4

(
0, ε,Nϑ(η, ε)

)
−D4

(
− h, ε,Nϑ(η, ε)

)]
H−1

4 (0),(B.8)

S3

(
η, ε,Nϑ(η, ε)

)
= S2

(
ε,Nϑ(η, ε)

)(
Γ34(η, 0, L

0
y)− Γ34(−h, 0, L0

y)
)

+D3

(
− h, ε,Nϑ(η, ε)

)
−D3

(
η, ε,Nϑ(η, ε)

)
,

S4

(
η, ε,Nϑ(η, ε)

)
= S2

(
ε,Nϑ(η, ε)

)(
D4(η, 0)−D4(−h, 0)

)
+D4

(
− h, ε,Nϑ(η, ε)

)
−D4

(
η, ε,Nϑ(η, ε)

)
,
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(B.9)

T2(ε) =
[
L2(ε) + L4(0, ε)− L4(−h, ε)

]
H−1

4 (0),

T3(η, ε) = T2(ε)
(
Γ34(η, 0, L

0
y)− Γ34(−h, 0, L0

y)
)
+ L3(−h, ε)− L3(η, ε),

T4(η, ε) = T2(ε)
(
D4(η, 0)−D4(−h, 0)

)
+ L4(−h, ε)− L4(η, ε).

Remark B.3. By virtue of (B.9) and Remarks 2.1, 6.1, B.1, for all ε ∈ (0, ε∗1] the
functions T3(η, ε) and T4(η, ε) are piecewise continuous in η ∈ [−h, 0] with the break
points η = −hj (j = 1, . . . , N), where these functions have finite limits from the
right, T3(−hj +0, ε) = limη→−hj+0 T3(η, ε) and T4(−hj +0, ε) = limη→−hj+0 T4(η, ε),
respectively. Also, these functions are continuous from the left at the break points
η = −hj (j = 1, . . . , N − 1). Moreover, due to the inequalities (B.5), we immediately
obtain for all ε ∈ (0, ε∗1]

(B.10) ‖T2(ε)‖ ≤ aε, ‖Tk(η, ε)‖ ≤ aε, k = 3, 4, η ∈ [−h, 0],

where a > 0 is some constant independent of ε.

Let us denote for all j = 1, . . . , N , η ∈ [−hj,−hj−1], ε ∈ (0, ε∗1],

(B.11) Tk,j(η, ε) =
{

Tk(−hj + 0, ε), η = −hj,
Tk(η, ε), η ∈ (−hj ,−hj−1],

k = 3, 4.

Remark B.4. Due to Remarks 2.2 and B.2, the functions T3,j(η, ε) and T4,j(η, ε)
(j = 1, . . . , N) are differentiable with respect to η ∈ [−hj ,−hj−1] for all ε ∈ (0, ε∗1].

Let Mvy be the set of all triplets ϑvy(η)
�
= {ϑv(η), ϑ, ϑy(η)}, where ϑv(η) and

ϑy(η) are n × n- and n × m-matrix-valued functions, respectively, defined for η ∈
[−h, 0]; ϑ is an n×m matrix. Moreover, the functions ϑv(η) and ϑy(η) are piecewise
continuous with the break points η = −hj (j = 1, . . . , N), where these functions have
finite limits from the right, ϑv(−hj + 0) = limη→−hj+0 ϑv(η) and ϑy(−hj + 0) =
limη→−hj+0 ϑy(η), respectively. Also, these functions are continuous from the left
at the break points η = −hj (j = 1, . . . , N − 1). Let ϑ1vy(η) = {ϑ1v(η), ϑ1, ϑ1y(η)}
and θ2vy(η) = {ϑ2v(η), ϑ2, ϑ2y(η)} be any two elements of Mvy. Let us define the
linear combination of these elements with any real coefficients α1 and α2 as follows:
α1ϑ

1
vy(η) + α2ϑ

2
vy(η) = {α1ϑ

1
v(η) + α2ϑ

2
v(η), α1ϑ

1 + α2ϑ
2, α1ϑ

1
y(η) + α2ϑ

2
y(η)}. This

definition converts the set Mvy to a linear space. Further, for any ϑvy(η) ∈ Mvy, let

us define the number ‖ϑvy(η)‖M
�
= supη∈[−h,0] ‖ϑv(η)‖+‖ϑ‖+supη∈[−h,0] ‖ϑy(η)‖. It

is verified immediately that this number is a norm of an element in the linear space
Mvy. Moreover, Mvy, endowed with this norm, is a Banach space.

Let ε > 0 be a sufficiently small number. Consider the following ball in Mvy:

BM(c, ε)
�
= {ϑvy(η) ∈ Mvy : ‖ϑvy(η)‖M ≤ cε}, where c > 0 is some constant inde-

pendent of ε.
For the aforementioned ε > 0, consider the following operator in the space Mvy:

Gvy,ε(ϑvy(η))
�
=
{
S3(η, ε, ϑvy(η)) + T3(η, ε),S2(ε, ϑvy(η)) + T2(ε),S4(η, ε, ϑvy(η)) +

T4(η, ε)
}
. Using this operator and based on Remark B.3, one can show (similarly to

the proof of Lemma 4.1 in Appendix A) the existence of a positive number ε∗2 (ε
∗
2 ≤ ε∗1)

such that for any ε ∈ (0, ε∗2] the system (B.7) (and therefore the equivalent one (B.3))
has the unique solution Nϑ(η, ε) = {ϑv(η, ε), ϑ(ε), ϑy(η, ε)} in the ball BM(6a, ε),
where a > 0 is the constant appearing in the inequalities (B.10). Thus, due to (B.1)–
(B.2), we have proven the existence of a solution N (η, ε) = {Qv(η, ε), Py(ε), Qy(η, ε)}
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to the system (6.1), (6.4) for all ε ∈ (0, ε∗2], and the validity of the inequalities (6.12)–
(6.13) for these values of ε and a∗2 = 6a.

Now, let us show the differentiability of the functions Qv,j(η, ε), Qy,j(η, ε) with
respect to η ∈ [−hj ,−hj−1] for all j ∈ {1, . . . , N}, ε ∈ (0, ε∗2].

Let us denote for all j = 1, . . . , N , η ∈ [−hj,−hj−1], ε ∈ (0, ε∗2],

(B.12)

ϑv,j(η, ε) =

{
ϑv(−hj + 0, ε), η = −hj ,
ϑv(η, ε), η ∈ (−hj ,−hj−1],

ϑy,j(η, ε) =

{
ϑy(−hj + 0, ε), η = −hj ,
ϑy,k(η, ε), η ∈ (−hj ,−hj−1],

Remark B.5. Due to Remarks 2.2, B.2, and B.4, as well as (5.8)–(5.11), the ex-
pressions for D2(ε,Nϑ(η, ε)), D3(η, ε,Nϑ(η, ε)), D4(η, ε,Nϑ(η, ε)) in (B.4), and the
equations (B.8), the functions ϑv,j(η, ε) and ϑy,j(η, ε) (j = 1, . . . , N) are differen-
tiable with respect to η ∈ [−hj ,−hj−1] for all ε ∈ (0, ε∗2].

This observation and (B.1) imply immediately the differentiability of the functions
Qv,j(η, ε), Qy,j(η, ε) (j = 1, . . . , N). Thus, the lemma is proven.

Appendix C. Proof of Lemma 7.1. First, let us transform the DS (7.8),
(7.5)–(7.6) by introducing, for any ε ∈ (0, ε∗2], the new state

(C.1) z(t, η)
�
= wy(t+ εη), (t, η) ∈ Ω̃ε.

Remember that ε∗2 was introduced in Lemma 6.2 and then was used in Theorem 6.3.
The new state variable z(t, η) satisfies the following differential equation and

boundary condition:

(C.2)
ε∂z(t, η)

∂t
− ∂z(t, η)

∂η
= 0, (t, η) ∈ Ω̃ε,

(C.3) z(t, 0) = wy(t), t > εh.

Using (C.2), we can rewrite (7.5)–(7.6) and the condition (6.16) in the form

ε
∂wv(t, η)

∂t
− ∂wv(t, η)

∂η
= −εLv(η, ε)

[
Ψ12,1

(
ε, Ly(ε)

)
wv(t,−h)

+A20(ε)wy(t) +A21(ε)z(t,−h)
]
, (t, η) ∈ Ω̃ε,(C.4)

εdwy(t)

dt
=
[
Ψ34,1

(
ε, Ly(ε)

)
− εLy(ε)Ψ12,1

(
ε, Ly(ε)

)]
wv(t,−h)

+
(
A40(ε)− εLy(ε)A20(ε)

)
wy(t) +

(
A41(ε)− εLy(ε)A21(ε)

)
z(t,−h),

t > εh,(C.5)

wv(t, 0) =
(
In − Lv(0, ε)

)
wx(t) + ε

(
In − Lv(0, ε)

){∫ 0

−h

Qv(η, ε)wv(t, η)dη

+Py(ε)wy(t) +

∫ 0

−h

Qy(η, ε)z(t, η)dη

}
, t ≥ εh.(C.6)
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Remark C.1. The new differential system (7.8), (C.2), (C.4)–(C.5) subject to the
conditions (C.3) and (C.6) is equivalent to the DS (7.8), (7.5)–(7.6), (6.16). Therefore,
the spectrum of the latter equals the spectrum of the former.

We proceed to deriving the equation for the spectrum of the system (7.8), (C.2)–

(C.6). Let Φxyvz be the set of all subsets φxyvz(η)
�
= {φx, φy , φv(η), φz(η)}, con-

sisting of four elements, where φx ∈ Cn, φy ∈ Cm, φv(η) ∈ L2[−h, 0;Cn], φz(η) ∈
L2[−h, 0;Cm]. Let φkxyvz(η) = {φkx, φky , φkv(η), φkz (η)} (k = 1, 2) be any two elements
of Φxyvz. Let us define the linear combination of these elements with any complex
coefficients α1 and α2 as follows: α1φ

1
xyvz(η) + α2φ

2
xyvz(η) = {α1φ

1
x + α2φ

2
x, α1φ

1
y +

α2φ
2
y , α1φ

1
v(η) + α2φ

2
v(η), α1φ

1
z(η) + α2φ

2
z(η)}. This definition converts the set Φxyvz

to a linear space. Further, for any φ1xyvz(η) ∈ Φxyvz and φ2xyvz(η) ∈ Φxyvz, let us
define the number〈

φ1xyvz(η), φ
2
xyvz(η)

〉
Φ

�
=
(
φ1x
)T
φ2x +

(
φ1y
)T
φ2y

+
〈
φ1v(η), φ

2
v(η)

〉
L2[−h,0;Cn]

+
〈
φ1z(η), φ

2
z(η)

〉
L2[−h,0;Cm]

.(C.7)

One can verify immediately that this number is an inner product in the linear space
Φxyvz. Moreover, this space, endowed with the inner product (C.7) and the norm
induced by (C.7), is a Hilbert space. In the Hilbert space Φxyvz, we consider the

linear subspace Φ̃xyvz(ε), each element φxyvz(η) = {φx, φy , φv(η), φz(η)} of which
satisfies the following conditions:

φv(η) ∈ W 1,2[−h, 0;Cn], φz(η) ∈W 1,2[−h, 0;Cm], φz(0) = φy,

φv(0) =
(
In − Lv(0, ε)

)
φx + ε

(
In − Lv(0, ε)

){∫ 0

−h

Qv(η, ε)φv(η)dη

+Py(ε)φy +

∫ 0

−h

Qy(η, ε)φz(η)dη

}
.(C.8)

For any ε ∈ (0, ε∗2], the subspace Φ̃xyvz(ε) is dense in the Hilbert space Φxyvz. Let us

consider the following linear operator mapping Φ̃xyvz(ε) into Φxyvz:

(C.9) gxyvz(η) = Aεφxyvz(η),

where gxyvz(η) = {gx, gy, gv(η), gz(η)} and

gx =
[
Ψ12,0

(
ε, Ly(ε)

)
+Ψ12,1

(
ε, Ly(ε)

)
Lv(−h, ε)

−Qv(0, ε)
(
In − Lv(0, ε)

)]
φx,(C.10)

gy = (1/ε)
[
Ψ34,1

(
ε, Ly(ε)

)
− εLy(ε)Ψ12,1

(
ε, Ly(ε)

)]
φv(−h)

+ (1/ε)
(
A40(ε)− εLy(ε)A20(ε)

)
φy + (1/ε)

(
A41(ε)− εLy(ε)A21(ε)

)
φz(−h),

gv(η) = (1/ε)dφv(η)/dη − Lv(η, ε)
[
Ψ12,1

(
ε, Ly(ε)

)
φv(−h)

+A20(ε)φy +A21(ε)φz(−h)
]
,

gz(η) = (1/ε)dφz(η)/dη.
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Remark C.2. Comparing the system of equations (7.8), (C.2)–(C.6) with the def-
inition of the operator Aε : Φ̃xyvz(ε) → Φxyvz (see (C.9)–(C.10)), one can conclude
that the set of eigenvalues of the latter coincides with the spectrum of the former for
any ε ∈ (0, ε∗2].

Let, for any fixed ε ∈ (0, ε∗2], λ be an eigenvalue ofAε and ψxyvz(η) = {ψx, ψy, ψv(η),

ψz(η)} ∈ Φ̃xyvz(ε) be an eigenfunction corresponding to λ. Then, λ and ψxyvz(η) sat-
isfy the following equations:[

Ψ12,0

(
ε, Ly(ε)

)
+Ψ12,1

(
ε, Ly(ε)

)
Lv(−h, ε)

−Qv(0, ε)
(
In − Lv(0, ε)

)]
ψx = λψx,(C.11)

[
Ψ34,1

(
ε, Ly(ε)

)
− εLy(ε)Ψ12,1

(
ε, Ly(ε)

)]
ψv(−h)

+
(
A40(ε)− εLy(ε)A20(ε)

)
ψy

+
(
A41(ε)− εLy(ε)A21(ε)

)
ψz(−h) = ελψy,(C.12)

dψv(η)/dη − εLv(η, ε)
[
Ψ12,1

(
ε, Ly(ε)

)
ψv(−h)

+A20(ε)ψy +A21(ε)ψz(−h)
]
= ελψv(η), η ∈ [−h, 0],(C.13)

(C.14) dψz(η)/dη = ελψz(η), η ∈ [−h, 0], ψz(0) = ψy,

ψv(0) =
(
In − Lv(0, ε)

)
ψx + ε

(
In − Lv(0, ε)

){∫ 0

−h

Qv(η, ε)ψv(η)dη

+Py(ε)ψy +

∫ 0

−h

Qy(η, ε)ψz(η)dη

}
.(C.15)

Equation (C.11) can be rewritten in the form of a linear homogeneous algebraic
equation with respect to ψx,

(C.16) Λ11

(
ε, λ

)
ψx = 0,

where Λ11(ε, λ) is given by (7.9).
Solving (C.13) and the terminal-value problem (C.14) yields

ψv(η) = exp
(
ελη

)
ψv(0) +Mv

(
η, ε, λ

)[
Ψ12,1

(
ε, Ly(ε)

)
ψv(−h)

+A20(ε)ψy +A21(ε)ψz(−h)
]
, η ∈ [−h, 0],(C.17)

(C.18) ψz(η) = exp
(
ελη

)
ψy, η ∈ [−h, 0],

where Mv

(
η, ε, λ

)
is introduced by (7.13).

By substituting (C.18) into (C.12), one obtains the linear homogeneous algebraic
equation with respect to ψy and ψv(−h),

Λ22

(
ε, λ

)
ψy + Λ23(ε)ψv(−h) = 0,(C.19)
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where Λ22

(
ε, λ

)
and Λ23

(
ε, λ

)
are given in (7.10).

Let us set η = −h in (C.17) and substitute (C.18) into the resulting equa-
tion. Thus, we obtain the linear homogeneous algebraic equation with respect to
ψy, ψv(−h), and ψv(0),

Λ32

(
ε, λ

)
ψy + Λ33

(
ε, λ

)
ψv(−h) + Λ34

(
ε, λ

)
ψv(0) = 0,(C.20)

where Λ32

(
ε, λ

)
, Λ33

(
ε, λ

)
, and Λ34

(
ε, λ

)
are given in (7.11).

Finally, by substituting (C.17) into (C.15), one obtains one more linear homoge-
neous algebraic equation with respect to ψx, ψy, ψv(−h), and ψv(0):

Λ41(ε)ψx + Λ42

(
ε, λ

)
ψy

+Λ43

(
ε, λ

)
ψv(−h) + Λ44

(
ε, λ

)
ψv(0) = 0,(C.21)

where Λ41

(
ε, λ

)
, Λ42

(
ε, λ

)
, Λ43

(
ε, λ

)
, and Λ44

(
ε, λ

)
are given in (7.12).

Thus, we have constructed the set of four vector linear homogeneous algebraic
equations (C.16), (C.19), (C.20), (C.21) with respect to ψx, ψy, ψv(−h), and ψv(0).
This set consists of 3n+m scalar equations with respect to 3n+m scalar unknowns.
Moreover, the set of equations (C.16), (C.19), (C.20), (C.21), (C.17)–(C.18), with
respect to ψx, ψy, ψv(η), ψz(η), and λ, is equivalent to the set (C.11)–(C.15). Hence,
the complex number λ is an eigenvalue of the operator Aε if and only if the deter-
minant of the set (C.16), (C.19), (C.20), (C.21) equals zero, i.e., if and only if λ is a
root of the equation

(C.22) Δ
(
ε, λ

) �
= det

⎡
⎢⎢⎣

Λ11

(
ε, λ

)
0n×m 0n×n 0n×n

0m×n Λ22

(
ε, λ

)
Λ23(ε) 0m×n

0n×n Λ32

(
ε, λ

)
Λ33

(
ε, λ

)
Λ34

(
ε, λ

)
Λ41(ε) Λ42

(
ε, λ

)
Λ43

(
ε, λ

)
Λ44

(
ε, λ

)
⎤
⎥⎥⎦ = 0.

Since Δ
(
ε, λ

)
= Δs

(
ε, λ

)
Δf

(
ε, λ

)
, then (C.22) is equivalent to the system (7.14)–

(7.15). This observation, along with Remarks C.1 and C.2, directly yields the state-
ment of the lemma.

Acknowledgment. The authors are grateful to Prof. Vladimir Turetsky for
helpful discussion on the example section of the paper.

REFERENCES

[1] A. B. Vasil’eva, V. F. Butuzov, and L. V. Kalachev, The Boundary Function Method for
Singular Perturbation Problems, SIAM Stud. Appl. Math. 14, SIAM, Philadelphia, 1995.

[2] P. V. Kokotovic, H. K. Khalil, and J. O’Reilly, Singular Perturbation Methods in Control:
Analysis and Design, Classics in Appl. Math. 25, SIAM, Philadelphia, 1999.

[3] M. G. Dmitriev and G. A. Kurina, Singular perturbations in control problems, Autom. Re-
mote Control, 67 (2006), pp. 1–43, https://doi.org/10.1134/S0005117906010012.

[4] S. R. Shimjith, A. P. Tiwari, and B. Bandyopadhyay, Modeling and Control of a Large
Nuclear Reactor: A Three-Time-Scale Approach, Springer, Berlin, 2013.

[5] Y. Zhang, D. S. Naidu, C. Cai, and Y. Zou, Singular perturbations and time scales in control
theories and applications: An overview 2002–2012, Int. J. Inform. System Sci., 9 (2014),
pp. 1–36.

[6] A. Narang-Siddarth and J. Valasek, Nonlinear Time Scale Systems in Standard and Non-
standard Forms: Analysis and Control, Adv. Des. Control 26, SIAM, Philadelphia, 2014.

[7] R. E. O’Malley, Historical Developments in Singular Perturbations, Springer, New York,
2014.

[8] C. Kuehn, Multiple Time Scale Dynamics, Springer, New York, 2015.

D
ow

nl
oa

de
d 

02
/0

2/
17

 to
 1

32
.6

6.
51

.2
46

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

https://doi.org/10.1134/S0005117906010012


 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

DECOMPOSITION OF SINGULARLY PERTURBED DELAY SYSTEM 273

[9] P. B. Reddy and P. Sannuti, Optimal control of a coupled-core nuclear reactor by singular
perturbation method, IEEE Trans. Automat. Control, 20 (1975), pp. 766–769, https://doi.
org/10.1109/TAC.1975.1101096.

[10] M. L. Pena, Asymptotic expansion for the initial value problem of the sunflower
equation, J. Math. Anal. Appl., 143 (1989), pp. 471–479, https://doi.org/10.1016/
0022-247X(89)90053-X.

[11] C. G. Lange and R. M. Miura, Singular perturbation analysis of boundary-value problems
for differential-difference equations. V. Small shifts with layer behavior, SIAM J. Appl.
Math., 54 (1994), pp. 249–272, https://doi.org/10.1137/S0036139992228120.

[12] N. Stefanovic and L. Pavel, A stability analysis with time-delay of primal-dual power control
in optical networks, Automatica J. IFAC, 45 (2009), pp. 1319–1325, https://doi.org/10.
1016/j.automatica.2009.01.005.

[13] N. Stefanovic and L. Pavel, A Lyapunov-Krasovskii stability analysis for game-theoretic
based power control in optical links, Telecommun. Syst., 47 (2011), pp. 19–33, https://doi.
org/10.1007/s11235-010-9299-x.

[14] L. Pavel, Game Theory for Control of Optical Networks, Birkhäuser, Basel, 2012.
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