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An infinite horizon H,, state-feedback control problem for singularly perturbed
linear systems with a small state delay is considered. An asymptotic solution of the
hybrid system of Riccati-type algebraic, ordinary differential, and partial differen-
tial equations with deviating arguments, associated with this problem, is con-
structed. Based on this asymptotic solution, conditions for the existence of a
solution of the original H, problem, independent of the singular perturbation
parameter, are derived. A simplified controller with parameter-independent gain
matrices, solving the original problem for all sufficiently small values of this
parameter, is obtained. An illustrative example is presented. ~ © 2000 Academic Press

1. INTRODUCTION

For many years, controlled systems with disturbances (uncertainties) in
dynamics have been extensively studied (see e.g. [20] and the list of
references therein). One of the main problems in this topic which has been
solved is constructing a feedback controller independent of the distur-
bance, which provides a required property of the closed-loop system for all
realizations of the disturbance from a given set. Two classes of distur-
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bances are usually distinguished: (1) disturbances belonging to a known
bounded set of Euclidean space; and (2) quadratically integrable distur-
bances. In this paper, we deal with the second class of disturbances. For
controlled systems with quadratically integrable disturbance, the H,, prob-
lem is frequently considered (see e.g. [1, 4.

The H,, control problem has been considered for systems without and
with delay in the state variables (see e.g. [1, 3, 4, 9, 15]). For both types of
systems, the solution of the H, control problem can be reduced to a
solution of a game-theoretic Riccati equation. In the case of undelayed
systems, the Riccati equation is finite dimensional, while in the case of
delayed systems it is infinite dimensional. The infinite dimensional Riccati
equation can be reduced to a hybrid system of three matrix equations of
Riccati type. Solving this system is a very complicated problem.

In various fields of science and engineering, systems with two-time-scale
dynamics are often investigated. Mathematically, such systems are mod-
elled by singularly perturbed equations (see e.g. [13, 29]). Control problems
for singularly perturbed equations have been extensively investigated for
many years (see [2, 18, 19, 21, 26, 28] and the references therein). However,
most of these (and more recent) publications are devoted to problems with
undelayed dynamics. Singularly perturbed control problems for systems
with delays are less investigated. As far as is known to the authors, there
are only few publications in this area [7, 8, 10-12, 24, 25].

In the present paper, we consider an infinite horizon H,, state-feedback
control problem for singularly perturbed linear systems with a small state
delay. The H, control problem for singularly perturbed systems without
delays has been studied in a number of papers [5, 17, 22, 23, 27, 30].
However, as far as is known to the authors, the H, control problem for
singularly perturbed systems with delays has not yet been considered in the
open literature. The main results, obtained in this paper, are:

(a) an asymptotic solution of the hybrid system of Riccati equations,
associated with the singularly perturbed H, control problem with a small
state delay;

(b) conditions for the existence of a solution of this H, problem
independent of the singular perturbation parameter & > 0;

(c) the design of a simplified controller with e-independent gain
matrices, which solves the H,, problem for all sufficiently small ¢ > 0.

The approach proposed in this paper is valid for both standard and
nonstandard forms of singularly perturbed delayed dynamics of the H,
control problem. These forms are an extension of the ones considered for
singularly perturbed dynamics without delay in [16].
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The paper is organized as follows. In Section 2, the H,, control problem
for a singularly perturbed linear system with a small state delay is formu-
lated. The hybrid system of Riccati equations, associated with this prob-
lem, is written out. In Section 3, the formal zero-order asymptotic solution
of this system of equations is constructed. Reduced-order (slow) and
boundary-layer (fast) H, control problems, associated with the original
one, are obtained, and their connection with the zero-order asymptotic
solution is established. In Section 4, it is verified that the zero-order
asymptotic solution is O(&)-close to an exact solution. In Section 5, two
controllers, solving the original H, problem, are obtained. In Section 6, an
example illustrating the results of the previous sections is presented. In
Appendix, the auxiliary lemma, applied in the verification of the zero-order
asymptotic solution, is proved.

The following main notations are applied in this paper: (1) E”" is the
n-dimensional real Euclidean space; (2) L,[b, ¢; E"] is the space of n-di-
mensional vector functions quadratically integrable on the interval (b, ¢);
(3) CIb, c; E"] is the space of n-dimensional vector-functions continuous
on the interval [b,c]; (4) |- || denotes the Euclidean norm either of the
matrix or of the vector; (5) ||-[l,, denotes the norm in L,[b,c; E"];
(6) |I-llc denotes the norm in C[b,c; E"]; (7) col{x, y}, where x € E",
y € E™, denotes the column block-vector with upper block x and lower
block y; (8) I, is the n-dimensional identity matrix; (9) Re A denotes the
real part of a complex number A; (10) x(¢) £ dx(¢)/dt; (11) x, = x(t + 6),
where x € E", t >0, 6 € [—b,0] (b > 0).

2. PROBLEM FORMULATION

Consider the system

x(t) =Ax(t) + A,y(t) + Hix(t — eh) + Hyy(t — ¢h)

+Bu(t) + Fw(t), t>0, (2.1)

ey(t) = Asx(t) + Ayy(t) + Hyx(t — eh) + Hyy(t — ¢h)
+B,u(t) + F,w(t), t>0, (2.2)
v(t) = col{Cyx(1) + Coy(1),u(t)}, >0, (2.3)

where x € E” and y € E™ are state variables, u € E” is a control, w € E?
is a disturbance, v € E? is an observation, 4;, H,, B;, F,, C; (i=1,...,4
j = 1,2) are constant matrices of the corresponding dimensions, ¢ > 0 is a

small parameter (¢ < 1) and & > 0 is some constant.
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Assuming that w(t) € L,[0, +o; E?], we consider the performance
index

Iu,w) =l 12, = vIw(n) L., (24)
where y > 0 is a given constant.

The H, control problem for a performance level vy is to find a controller
u*[x(+), y(-)] that internally stabilizes the system (2.1), (2.2) and ensures the
inequality J(u*,w) < 0 for all w(z) € L,[0, +; E7] and for x(¢) = 0,
y(#) = 0, t < 0. Consider the matrices

4 - A, A, ) H - ( H, H, )
‘ (1/e)A4; (1/‘9)144’ ° (1/e)H; (1/&)H, |’

(2.52)
S,=vy ’EF —BB, F= A I R
’ oo © (/e F, ©\(1/e)B,
(2.5b)
D=C'C, C=(C,C), (2.5¢)

where the prime denotes the transposition.
Consider the following hybrid system of matrix Riccati equations for
P,Q(7) and R(7, p) in the domain (1, p) € [—&h,0] X [—&h,0],

PA,+ AP+ PSP+ Q(0) + Q'(0) + D =0, (2.6)
dQ(7)/dr=[A, + PS,]10(7) + R(0,7), Q(—¢&h)=PH, (2.7)

(3/dm+ d/dp)R(7,p) = Q'(7)S,.0(p), 28)
R(—¢h,7) = R'(7, —eh) = H.Q(7). '
A solution of (2.6)-(2.8) is a triple of (n + m) X (n + m)-matrices
{P, Q(7), R(7, p)}, (7,p) €[—&h,0] X [—&h,0], satisfying (2.6)—-(2.8),
where Q(7) is continuously differentiable; R(r, p) is continuous; and
dR(7, p)/dt and IR(r, p)/dp are piecewise continuous, while (d/d7 +
d/dp)R(7, p) is continuous.
Consider also the linear systems

z(t) =[A, — B,B.P|z(t) + H,z(t — ¢h)
~BB.[" Q(r)z(t+7)dr, 1>0, (2.9)
—¢ch
z(t) =[A, + S,Plz(t) + H,z(t — €h)

+5,[" 0(r)z(t+7)dr,  1>0. (2.10)
—eh



SINGULARLY PERTURBED H, CONTROL PROBLEM 53

From [9] we obtain the following: if, for some & > 0, the problem (2.6)—(2.8)
has a solution P(e), Q(7, ¢), R(7, p, €) such that the systems (2.9) and
(2.10) with P = P(&), Q = Q(r, &) are asymptotically stable, then, for this
g, the controller

W OOI0 = =8Pz + [ 0oz + 7 arl,

z = col{x,y}, (2.11)

solves the H,, control problem (2.1)—(2.4).
The objectives of the present paper are:

1. To establish conditions (independent of &) which ensure the
existence of solution (2.11) of the H, control problem (2.1)-(2.4) for all
sufficiently small ¢ > 0.

2. To derive a controller much simpler than (2.11), which is con-
structed independently of & and solves the H, control problem (2.1)—(2.4)
for all sufficiently small & > 0.

The key point in reaching these objectives is the construction of a
zero-order asymptotic solution to the problem (2.6)—(2.8).

3. ZERO-ORDER ASYMPTOTIC SOLUTION OF THE
PROBLEM (2.6)-(2.8)

3.1. Transformation of (2.6)—(2.8) and Formal Zero-Order
Asymptotic Solution

Let us transform the problem (2.6)—(2.8) to an explicit singular perturba-
tion form. Following [10], we shall seek the solution of this problem in the
form

P(e) eP,(¢)

_ _ Oi(7,e) 0Oy(7,¢)
P = opye) aP3(s))’ o) (Q3(T,s) Q4(w))’
(3.1
R(7,p, ¢ R,(7,p, &

where P(e) and R/(7, p, &) (i = 1,2,3) are matrices of the dimensions
n X n, nXm,and m X m respectively; Q;(, ¢) (j = 1,...,4) are matri-
ces of the dimensions n X n, n X m, m X n, and m X m respectively;
P(g)=Pe), R(7,p, &) =R, (p,7,¢) (k=1,3).



54 GLIZER AND FRIDMAN

Substituting (2.5), (3.1), and (3.2) into the problem (2.6)—(2.8), we obtain
the following system in the domain (7, p) € [—&h,0] X [—&h,0] (in this
system, for simplicity we omit the designation of the dependence of the
unknown matrices on &).

P,A, + P,A; + AP, + AP, + P,S,P, + P,S, P,
+ P,S, P, + P,S; P, + Q(0) + Q1(0) + D, =0, (3.3)
P A, +P,A, + eA\ P, + A3 P; + ¢P,S,P, + ¢P,S, P,
+ P,S, P, + P,S;P; + 0,(0) + Q5(0) + D, =0, (3.4)
ePy A, + PyA, + eA, P, + A, Py + £*PyS,P, + eP;S, P,
+ &PyS, Py + P3S; Py + Q,(0) + Q4(0) + Dy =0,  (3.5)
edQy(7)/dr = e( Ay + PiS; + P,8,)0(7)
+(A5 + PSS, + P,S;)05(7) + Ri(0,7), (3.6)
edQy(7)/dr = e( Ay + P,S; + P,83)0,(7)
+(A5 + PSS, + P,S3)0,(7) + Ry(0,7), (3.7)
edQs(7) /dr = e( A, + ePyS, + P;5,)0(7)
+( Ay + ePsS, + P;S;)05(7) + Ry(7,0), (3.8)
edQ,(7)/dr = e( A,y + &Py S, + P35,)0,(7)
+(Ay + ePyS, + P3S;)0.4(7) + R;(0,7), (3.9)
(3/d1+ 3/p)R\(7, p) = *Q\(7)5,Q1(p) + £Q5(7)S5Q:( p)
+ e01(7)85,05(p) + O5(7)S;05( p),
(3.10)
£(3/91+ /dp)Ry(7, p) = &?Q\(7)5,Q2( p) + £Q3(7)S50,( p)
+801(7)8,04(p) + Q35(7)S304( p),
(3.11)
e(d/dt+ d/dp)Rs(7,p) = SZle(T)Sle( p) + eQy(7)S,0,( p)
+05(7)8,04( p) + Qu(7)S5:04( p),
(3.12)
Ow(—¢h) = P\H, + P,H, ., (k= 1,2),
Q,(—¢eh) = eP}H,_, + P;H, (I = 3,4),
Ri(—eh,7) = eH{Q(7) + HiQy,»(7)  (k=1,2), (3.14)

(3.13)
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Ry(7, —eh) = eQ\(7)H, + O53(7) Hy,
Ry(—eh,7) = eH;0,(7) + H;Q4(7),
where S, = y *F,F, — B|B), S, =y *F,F, — B|B,, S;= vy *F,F; —
B,B,, D, = C|C,, D, = CiC,, D; = C,C,.
The problem (3.3)-(3.15) has the explicit singular perturbation form.
Now, let us construct the zero-order asymptotic solution of this problem.

Similarly to [10], we shall seek the zero-order asymptotic solution of the
problem (3.3)—(3.15) in the form

ISiO7Qj0(n)7 Rio(”’laX)a n=r1/e,x=p/¢e (i =1,2,3;)= 1,~--,4)-
(3.16)

(3.15)

Substituting (3.16) into (3.3)—(3.15) and equating coefficients of £° in
both parts of the resulting equations, we obtain the following system in the
domain (5, x) € [—h,0] X [—A,0].

Py A, + Py Ay + A\ Py + Ay Py + Py S, Py + Py Sy Py

+ Py S, Py + PyyS3 Py + 044(0) + Q1(0) + D, =0, (3.17)
Py A, + Py A, + APy, + PyyS, Py + PyyS, Py

+ 0,(0) + Q%(0) + D, =0, (3.18)
Py Ay + Ay Py + Py S3 Py + Qu0(0) + Qlg(0) + D3 =0, (3.19)
dQyo(m)/dn = (A,3 + PS, + onsa)Qm(n) + Ryy(0,m), (3.20)
dQy(m)/dn = (Ala + P8, + 132053)Q40(”’7) + Ry5(0,7m), (3.21)
dQs(n)/dn = (A'4 + 133053)Q30(77) + R (,0), (3.22)
dQy(m)/dn = (A'4 + 133053)Q40(”’7) + R;3(0,m), (3.23)

(d/9n+ d/dx)Rig(m, x) = Q3(m)S3030( x), (3.24)
(9/9n+ d/dx)Ra(m, x) = Qs0(1)S3Qu( x), (3.25)
(9/dm + 3/dx)Ryp(m, x) = Quo(1)S3Q40( X)» (3.26)
Qio(—h) =P H, + PyyH,,, (k=1,2), (3.27)
Q,(—h) =P, H, (l=3,4), (3.28)

Rko(_ha n) = HéQlﬁ—z,O(n) (k = 1’2)’ (3'29)
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Ryy(n, —h) = Q%(n) H,, (3.30)
Ry (—h,m) = HiQ,(n). (3.31)

Remark 3.1. The problem (3.17)-(3.31) can be divided into four simpler
problems solved successively:

(i) The First Problem consists of (3.19), (3.23), (3.26), (3.28), with
[ = 4, and (3.31).

(ii)) The Second Problem consists of (3.22), (3.25), (3.28), with [ = 3,
(3.29), with k = 2, and (3.30).

(iii) The Third Problem consists of (3.24) and (3.29) with k = 1.

(iv) The Fourth Problem consists of (3.17), (3.18), (3.20), (3.21), and
(3.27).

3.2. The First Problem and the Boundary-Layer H,, Control Problem
We assume that:

Al. The First Problem has a solution P35, Quo(m), Ry(n, x), (0, x)
€ [—h,0] X [—h,0], such that Py, = P},, R;(n, x) = R x,n).

A2. All roots A of the equation
_ 0
det[)\lm — Ay — S3P3 — Hyexp(—Ah) — Ss_/;th(”’l)eXp( An)dn| =0

lie inside the left-hand half-plane.
A3. All roots A of the equation

det[)\[m — A, + B, By Py, — H, exp( —Ah)

+8,8[" Qu(mesp(im) dn| = 0

lie inside the left-hand half-plane.

LeEMMA 3.1.  Under the assumptions A1-A3, the matrix

pso Q40( X)
(M) Ra(n, x)

it is the kernel of linear bounded self-adjoint nonnegative operator mapping the
space E™ X L,[—h,0; E™] into itself.

Proof. The statement of the lemma is a direct consequence of results
of [9] (see Lemma 1 and its proof). |
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The First Problem is the hybrid system of matrix Riccati equations
associated with the H, control problem

dy(o)/do=A,5(0) + Hyy(o = h)
+B,i(o) + F,w(o), o> 0; (3.32)
§(0) =0, <0,
K w) =8z, = »w(o) I,
5(0) = col{C,5( o). d(a)}, o> 0,

where J, ii, w, and 0 are state, control, disturbance, and observation
respectively. In the following we shall call the problem (3.32), (3.33) the
boundary-layer (fast) problem associated with the original H, control
problem (2.1)-(2.4).

(3.33)

LEMMA 3.2.  Under the assumptions A1-A3, the controller i*[j(-)(o") =
B[Py 5(a) + [}, Qu(mF(o + m) dn] solves the problem (3.32), (3.33),
ie., J@*,w) < 0Vw(o) € L,[0, +o; E].

Proof. The statement of the lemma directly follows from [9, Lemma 1].

3.3. The Second and the Third Problems

LeEMMA 3.3.  The Second Problem and the Third Problem have the unique

solutions {Q5,(m), Ry(n, x)} and R,\(m, x), respectively, for (n, x) €
[—h,0] X [=h,0]. Moreover, the matrices R, y(n, x) (k =1,2) have the

form
Rio(m, x) = ®p(m — x)

T’ /
+ 05 (5) 830k 42,0(s —m+ x) ds
max(n—x—h, —h)
(k=1,2), (3.34)
where
HiQp s o(—0 —h), —-h<ox<0,
(o) =4 o 0 . (339
(o YH, >, <oc<h,

and Q4,(n) is a unique solution to the linear integral-differential equation

dQs(m)/dn = (A/4 + 133053)Q30(77) + Q4(—m — h) H,

n
+/_tho(S — m)S83Q05(s) ds (3.36)
satisfying the initial condition (3.28) (I = 3).
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Proof. The lemma is an immediate consequence of the results of
[10, Lemma 4.2]. 1

3.4. The Fourth Problem and the Reduced-Order H,, Control Problem

Similarly to [10, pp. 498-499], one can rewrite the Fourth Problem in the
equivalent form

PyA+AP,+P,SP,+D =0, (3.37)
_ — 0
Py = — (PloNl + N, + f_tho(n) dn), (3-38)
Oo(m) = PyH, + PyH, ,,

= = m
+( Ay + Py, + P2°S3)f,th+2’0(s) ds
n
+f Ri(0,5)ds  (k=1,2), (3.39)
—h

where
A=A, —N Ay, — S,N; + N,S;Nj, (3.40)

S=y?*FF —-BB', F=F —NJF,, B=B, —NB,, (341)
D =D, — NyAy;; — Ay3 Ny + N,S; N3, (3.42)
Ny = (Ayy + S,G)M ', N, =(Ay;G+D,)M ™", (3.43)

— 0
M=A,, + 585G, G=Py+ f,hQ“O(") dn, (3.44)

AHi=Ai+Hi (l=1,,4)

From the assumption A2 we directly obtain that the matrix M is invertible.
In the following, we assume that:

A4. The equation (3.37) has a symmetric positive semidefinite solu-
tion P,,.

AS.  All eigenvalues of the matrix (4 + S P,;) lie inside the left-hand
half-plane.

A6. All eigenvalues of the matrix [4 + A, + (BB’ + Az)P,,] lie
inside the left-hand half-plane, where A, = y 2FF5[N; + GM (A5 +
B,B,N)l, Ay = v *FF,GM 'B,B', M = A, — B, B,G.



SINGULARLY PERTURBED H, CONTROL PROBLEM 59

From the assumption A3 we directly obtain that the matrix M is
invertible.

Now, let us present an interpretation of Eq. (3.37) and the assumptions
A4-A6. Setting £ = 0 in (2.1)-(2.4), one obtains the H, control problem
for the descriptor (algebraic—differential) system

Ez(t) = A, Z(t) + Bu(t) + Fw(t),t >0,  EZ(0) =0, (3.45)
J(@,w) =[o(0)i, = W)L, o(r) = col{ C2(1), (1)}, t > 0,
(3.46)

where Z, u, w, and U are state, control, disturbance, and observation,
respectively, and

E=(In 0)’ A, = Am A ’ B - B, ’ F- F '
0 0 Aps Ay B, F,
(3.47)

In the following, we shall call this problem the reduced-order (slow) one
associated with the original H, control problem (2.1)-(2.4).

Consider the generalized Riccati equation associated with the problem
(3.45), (3.46)

KAy +AyK+K'SK+D =0, EK =K'E, (3.48)
where S = vy 2FF' — BB'.
LEMMA 3.4. Under the assumptions Al, A2, A4, and AS, the matrix

P, O

B&=ls ¢
1

b

where G, 2 Py + [, Qs3(n)dn = —(N|P,, + N}), satisfies (3.48), and
EK, is positive semidefinite.

Proof. The lemma is proved by direct substitution of K, into (3.48),
applying the block expansion of (3.48) (see [27]), and taking into account
that G satisfies the Riccati equation G' A, + A,,G + G'S;G + D; =0
(see [10D). 1

Note that (3.37) can be obtained from (3.48) by eliminating the lower
left- and right-hand blocks of the matrix K of the dimensions m X n and
m X m respectively.
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LEMMA 3.5. Under the assumptions Al, A2, and A4, the system
Ez(t) = (Ay + SK,)z(1) (3.49)

is asymptotically stable iff the assumption AS is satisfied.

Proof. Let x and y be the upper and lower blocks of the vector z of
the dimensions n and m respectively. Since the matrix M is invertible
(due to A2), one can rewrite (3.49) in the equivalent block form

#(1) = (A + 3Py )R(r),  §(1) = =M"(Ays + Sy Py, + 8,G,)%(1).
(3.50)

Now, the statement of the lemma directly follows from A5. |

LEMMA 3.6. Under the assumption Al, A2, A3, and A4, the system
Ez(t) = (Ay — BB'K,) 2(t) (3.51)

is asymptotically stable iff the assumption A6 is satisfied.
Proof. The lemma is proved similarly to Lemma 3.5. ||

LEMMA 3.7. Under the assumptions Al-A6, the controller u*[z()] =
—B'K,Z(¢t) solves the H,, problem (3.45), (3.46), i.e., J(u*,w) < 0 Vw(¢) €
L,[0, 4+ E7].

Proof. The lemma is a direct consequence of Lemmas 3.4-3.6, and it is
proved similarly to [9, Lemma 1], applying the functional V(2) = z'EK,Z.
1

Thus, we have shown that Eq. (3.37) and the assumptions A4—-A6 are
associated with the reduced-order H, control problem (3.45), (3.46) by
conditions of the existence of its solution.

We have completed the construction of the zero-order asymptotic solu-
tion to the problem (3.3)—(3.15) and, hence, to (2.6)—(2.8). It is clear that
the asymptotic approach to the problem (2.6)—(2.8) essentially simplifies a
procedure of its solution. The original problem is reduced to three prob-
lems of lower dimensions solved successively. These problems are the First
Problem, the problem (3.36), (3.28) (I = 3), and the equation (3.37). Note
that these problems are independent of . The other components of the
zero-order asymptotic solution are obtained from the explicit expressions
(3.34), (3.38), (3.39).

In the next section, we shall verify the zero-order asymptotic solution to
the problem (3.3)—(3.15) constructed in this section.
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4. VERIFICATION OF THE ZERO-ORDER ASYMPTOTIC
SOLUTION OF THE PROBLEM (3.3)-(3.15)
4.1. Auxiliary Results

In this subsection, we shall present some auxiliary results which will be
applied in the verification of the zero-order asymptotic solution to the
problem (3.3)—-(3.15).

Consider the system

(1) = A(2) e(1) + H(e) (i — sh) + [fhé(n, &) e(t + en) dn,

t>0,0€E"™M  (4.1)

where

iy - | A® Ay(e) )

(1/e)As(e)  (1/)Ay(e) w2
g(8)=( (<) ()

(1/e)Hy(e) (1/&)H(e) ]|

~ Gl(n"‘;) Gz(n,a)
G(n,¢e) = - - , 4.3
(=1 (1016, o) <1/e>G4<n,a)) 4

the blocks A~l(§), H/(&),G (n, &) are of dimension n X n, and the blocks
A(e), H(&),G,(n, &) are of dimension m X m.
We assume that:

A7. A(e), H(e),and G(n, £) (i = 1,...,4) are differentiable func-
tions of & and (n, &) for n € [—h,0] and all sufficiently small & > 0.

A8. The reduced-order subsystem associated with (4.1),
o(t) =Qg(t), t>0,9 €E", (4.4)
where
Q=0,-0,0;'0;,

Q, = A,(0) + H,(0) +[° G(nOydy (i=1,...4 &)
—h

is asymptotically stable.
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A9. The boundary-layer subsystem associated with (4.1),
dgy(o)/do = A~4(0) ¢,(0) + ﬁ4(0) @y(0 —h)

0 A o ~ m
+/ hG4(n,0)g02(a' + n) dn, o>0,p, €E", (4.6)

is asymptotically stable.
Let ®(¢, &) be the fundamental matrix of the system (4.1), i.e., it satisfies
this system and the initial conditions

®0,e) =1,,,; ®(t,e)=0,1<0. (4.7)

LEMMA 4.1. Let ®(t, &), ®,(t, &), P,(¢t, &), and D(t, €) be the upper
left-hand, upper right-hand, lower left-hand, and lower right-hand blocks of
the matrix ®(t, &) of the dimensions n X n, n X m, m X n, and m X m
respectively. Under the assumptions A7-A9, for all t > 0 and sufficiently
small & > 0, the following inequalities are satisfied:

[®.(t, )| <aexp(—at) (k=1,3), [ ®,(z, &) < aeexp(—at),
[@i(2, &) | < aexp(—at)[ e+ exp(—Bt/¢)],

where a > 0, o > 0, and B > 0 are some constants independent of &.

For a proof of the lemma, see Appendix.
Consider the particular case of the system (4.1) with the coefficients

A(e) =A,+ S, P(e), H(e)=H,,

- (4.8)
G(m, &) = ¢[S,00(n) +A,],
where

}_)10 ‘5'}_)20 O(m)  Ox(m)
Py(e) =| - | = , (4.9
(=) ePy, &Py, Co(m) O3(n)  Qs(m) ) (49)
.= S:PuHy 5:PaH, (4.10)

(1/3)53P50H1 (1/8)53P50H2

Let ¥(¢, &) be the fundamental matrix of the system (4.1), (4.8). Let
W (1, ), W,(1, &), W,(¢t, ), and V,(¢, &) be the upper left-hand, upper
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right-hand, lower left-hand, and lower right-hand blocks of the matrix
W(t,&) of the dimensions n X n, n X m, m X n, and m X m respectively.

LEMMA 4.2.  Under the assumptions Al, A2, A4, and AS, the inequalities

[V (t, e)|| < aexp(—at) (k=1,3), [W,(2, &) || < ae exp(—at),
[W,(2, &) || < aexp(—at)[e + exp(—Bt/e)],

are satisfied for all t > 0 and sufficiently small ¢ > 0; where a > 0, a > 0,
and B > 0 are some constants independent of &.

Proof. Let us construct the reduced-order and the boundary-layer
subsystems, associated with the system (4.1), (4.8), and show the asymptotic
stability of these subsystems. From (4.2), (4.3), and (4.8) one has

A~1(3) =4, + Slpw + Szﬁéo’ A~2(3) =4, + ‘951F20 + Szﬁw’
(4.11)

Ay(e) = Ay + Sy Py + Sy Py, A~4(8) = A, + Sy Py + Sy Py,
(4.12)

ék(”’l’ g) = &85,0k0(n) + 8:0,.20(n) + &S, Py H, (k=1,2),
(4.13)

él(”’l’ g) = &850, 5 o(m) + S30,(n) + eS;PyH, (I=3,4).
(4.14)

The block representation of the matrix H_ is given in (2.5a).

Substituting (4.11)—(4.14) into (4.5), one obtains the matrix Q of coeffi-
cients of the reduced-order subsystem (4.4) associated with the system
4.1, 4.9),

Q=A,, +S,P,+8S,G, — Ny(Ay; + §yPyy + S5Gy).  (4.15)

Under the assumption A2, the matrix M in the expression for N, is
invertible. Substituting the expression for G, (see Lemma 3.4) into (4.15)
yields, after some rearrangement, Q = A4 + SP,,, which implies, along
with the assumption AS, the asymptotic stability of the reduced-order
subsystem, associated with the system (4.1), (4.8).

Replacing in (4.6) A ,(0) with its expression from (4.12), H,(0) with H,,
and G,(n,0) with its expression from (4.14), we obtain the boundary-layer
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subsystem, associated with the system (4.1), (4.8):
dg,(o)/do = (A4 + 53F30)¢2(U) + H,¢,(0 —h)

+f0 S3040(m) ¢2(0 + m) dn,
—h

o>0,3, €E". (4.16)

The assumption A2 directly implies the asymptotic stability of the bound-
ary-layer subsystem (4.16). Now, the statement of the lemma is an immedi-
ate consequence of Lemma 4.1. i

4.2. Estimation of the Remainder Term Corresponding to the Zero-Order
Asymptotic Solution

THEOREM 4.1. Under the assumptions Al, A2, A4, and AS, the problem
(3.3)-(3.15) has a solution P(£),Q(r,&),R(7,p,e) (i=1,23; j=
1,...,4) for all sufficiently small &> 0, and this solution satisfies the
inequalities

P(e) = Pyl <ae,  |Qi(r. &) — Qu(1/¢)| < ae,
”Ri(T’ p,&) — Ry(7/&, p/a)" <ae,

where (1, p) € [—eh,0] X [—¢eh,0]; P_’io, Q,-o(TI) and R;(n, x) are defined
in Section 3; and a > 0 is some constant independent of &.

Proof. Let us transform the variables in the problem (3.3)-(3.15) as

P(&) =P+ 0p(e)  (i=1,2,3), (4.17)
Ou(7,8) = Oo(7/8) + OQk(T"S)’
O/(.8) = Qu(7/€) + &Py H,_, + /(7. €), (4.18)

(k=1,2;1=3,4),

Ry(7,p,8) = Ry(7/2,p/e) + e[ H{Qi( p/&) + H; Py H, ]
+ GRl(Ta p>‘9)7 (419)

Ry(7, p, &) = Ry(7/2,p/¢)

+ 8<HI[Q20( p/e) + PyH, — Oy (—h)] + Q’m(T/f‘/‘)Hz}
+ Ogo(7, ps ), (4.20)

Ry(7,p, &) = Ryy(7/2,p/e) + e[ H}Qu( p/&) + Hi Py H,]
+ Ogs(7, p, ). (4.21)
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The transformation (4.17)-(4.21) yields the following problem for the new
variables 6p,(&), QQJ(T, g), and Oz(7,p, &) (i = 1,2,3; j = 1,...,4) in the
domain (7, p) € [— &h,0] X [—&h,0].

0p(e)A(e) +A'(£)0(e) + (0, &) + 6,(0, &)
+Dp(&) + 0,(2)S,0,(e) =0, (4.22)
dOy(7, &) /dr=A'(£)0y(7, ) + (1/)0,(£)G(7/¢, )
+ 0x(0,7,¢8) + DQ(T,s) + OP(S)SEOQ(T,{;‘), (4.23)
(‘9/’97 + ﬁ/(?p)OR(T, P> ‘9)
= (1/&)0y(7,)G(p/e, &) + (1/2)G'(7/,2)0( p. &)
+ Dp(7,p, &) + 05(7,€)S,.0,(p, ), (4.24)
Op(—¢eh, &) = 0p(e)H,,

(4.25)
Og(—¢eh, 7, &) = Og(7, —¢h, &) ZH;GQ(TNC")’

where A(e) and G(n, g) are defined by (4.8). Also in (4.22)—(4.25),

Opi(€)  &0py(&) )
ebpy(e)  efps(e) |

OQI(T, ) OQZ(T, ) )

Op(e) = (

0Q3(T, €) 0Q4(T, )

Ori(7sps ) Ora(T,p, &)
0}’22( paTaé‘) GRS(T’ p’g) ’

0p(7, &) = (

BR(T’ P 8) = (1/8)(

0 Dp,y( &)
Dy(e) = Dp,(&) Dps(e) ]|
Dyy(7,2)  Dgy(7,¢)
Dy(7,¢) = Dys(7,8)  Dyy(r, #) )
Dri(7,p,€) Dgy(7,p, )
DR(T,p,é‘) - (D;u( p,T,S) DR3(T’ p,g))'

The matrices Dp; (&), Dy(7, &), Dg/(7, p, &) are known functions of Py,
QjO(T/S), and R,(1/e,p/e) (k=2,3; i =1,2,3; j=1,...,4). These
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matrices are continuous in (7, p) € [—eh,0] X [—&h, 0], and for all suffi-
ciently small & > 0 they satisfy the inequalities

IDpi(e) || < ae, || Dgi(7, &) || < a, || Dai(7. p, &) | <a/e
(k=2,3;j=1,...,4;i=1,2,3), (4.26)

where a > 0 is some constant independent of &.
Denote

Ip(0p)(8) = Dp(2) + 0p(2)S.0,(2), (4.27)
To(0p,0,)(7,6) =Dy(7,8) + 0,(£)S,.0,(7, ¢), (4.28)
Tr(0)(7, p, &) = Dp(7,p, &) + 05(7,2)S,60,(p,e), (429)

‘i’(t,T, g)=V(t— 71— ¢h,e)H,
+(1/3)/8h\lf(t —1—p,8)G(—p/e, &) dp. (4.30)

Applying Lemma 4.2, one can directly show that the matrix W(z, 1, &)
satisfies the inequalities for all ¢ > 0, 7 € [— eh, 0], and sufficiently small
e>0,

||\ifk(t, T,8) ” <aexp(—at),
1B, (1,7, )| < aexp(—ar)[1 + (1/¢)exp(—Bt/¢)],

where (k= 1,2; ] = 3,4) ‘ifj(t, 7,&e)(j=1,...,4) are the upper left-hand,
upper right-hand, lower left-hand, and lower right-hand blocks of this
matrix of the dimensions n X n, n X m, m X n, and m X m respectively;
a>0, «>0,and B> 0 are some constants independent of . Applying
results of [10, pp. 501-502], we can rewrite the problem (4.22)—(4.25) in the
equivalent form

(4.31)

0p( &) = f()+w[\lf’(z,a)rp(ap)(a)qf(t,g)
+fih‘1”(n £)lo(0p, 0p) (7, £)W(t + 7,8) dr
+flh‘1”(f + 7, 8) (05, 0)(7, £) (1, &) dr
S W ()7 )

XWP(t+p,e¢) dep}dt, (4.32)
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.0 = [t T ()
#0000 ) E(1+ o7, e) dp
+f_0 V(1 + p, &)y 0p, 0p)( P, 8)W(1,7,8) dp
[0 [0 W p o) T(8) (oo o)

—ch

X‘i’(l + p,7,8)dp dpl} dt
T+eh ,
+/; [\If (t,a)FQ(GP,BQ)(T—t,s)

+ 1 W+ . e)T(6y)(pom— t.e) dp|dr, (433)
—&h
GR(T’ p,é‘)
+oo| _ ~
- [ F e om0

0 = -

+f7 hq,,(t’T’s)rQ(eP’ 0p)( P> &)W (1 + py,p) dp,
0 =, ’ T

+/_ W (t+ py,7,8)TH(0p,00)(pr>e)V(L, p, ) dp,

+ v'(t+ py, Lr (0, > P2
fighffsh (1 + p1s7,2)R(6p)(p1s P2 ©)

><{I',\(l‘ + P25 P> 8) dpl de dt
T+ ¢eh , ~
+j; [I‘Q(OP,HQ)(T—t,a)\lf(t,p,a)
+f ®(00)( p1sT t,a)‘i’(t+p1,p,8)dp1]dt
+/;)p+8h[\P (t,7,8)[, (OP,HQ)(p —t,€)
0 ~/
+[ h‘If(t+p,,T,a)FR(GQ)(p],p—t,a‘)dpl dt
+fmin(7+gh,p+gh)

Tr(Op)(T—t,p—t, &) dt. (4.34)
0
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It is obvious that

0 <min(7+ eh,p + eh) < eh (7,p) € [—&h,0] X [—¢h,0].
(4.35)

Now, applying the procedure of successive approximations to the system
(4.32)-(4.34) and taking into account Lemma 4.2, the equations
(4.27)-(4.29) and the inequalities (4.26), (4.31), (4.35), one directly obtains
the existence of the solution 6,(&), 6,(7, &), Oz(7, p, £) of the problem
(4.32)-(4.34) (and, consequently, of the problem (4.22)—(4.25)), satisfying
the inequalities for all sufficiently small &> 0 and (7, p) € [—¢&h,0] X
[—eh,0],

[65:(£)|| < ae, ||9Qj(7a8)” =ae, [ 6r:(7, p, &) | < ae

(i=1,2,3;j=1,...,4), (436)

where a > 0 is some constant independent of e.
The inequalities (4.36) along with the equations (4.17)-(4.21) immedi-
ately yield the statements of the theorem. [

COROLLARY 4.1. Under the assumptions Al, A2, A4, and AS, the system
(2.10), where P = P(&) and Q(7) = Q(7, ¢) are defined in Theorem 4.1, is
asymptotically stable for all sufficiently small & > 0.

Proof. The corollary is an immediate consequence of Theorem 4.1 and
Lemma 4.1. It is proved similarly to Lemma 4.2. |

5. H, CONTROLLERS FOR PROBLEM (2.1)-(2.4)
Consider the controller u*[x(-), y()I(¢) of the form (2.11), where P(¢)
and Q(r, &) are defined by (3.1), and P(e) and Qj(T, g) i=1,2,3;
j=1,...,4) are components of the solution to the problem (3.3)-(3.15)

mentioned in Theorem 4.1. Consider also the following controller with
e-independent gain matrices:

uﬁ[x(-),y(-)](t) = _(B;ﬁm + BéGl)x(t)

- B Py (o) + [ Qumy (st eny dn|- (1)
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LEMMA 5.1.  Under the assumptions A1-A6, the controller uj[ x(+), y()1(2)
internally stabilizes the system (2.1), (2.2) for all sufficiently small & > 0.

Proof.  Substituting (5.1) into (2.1), (2.2) and setting w(¢) = 0, we obtain
the system

%(t) = Ax(t) + Ay y(t) + Hx(t — sh) + Hyy(t — £h)
+[" Gyt + emydn, 1> 0, (5.2)
—h
ey(t) = Ayx(t) + A,y(t) + Hyx(t — eh) + H,y(t — gh)
+ M Go(my(t+ enydn, 1>, (5.3)
—h

where

A=A, — BlBiPm - B,B;G,, A, =4, - BlB’21330,

A (54)
G1(77) = _B1B/2Q40(”’1)’

Ay =A; - BzBiﬁw - BzB/sz Ay =Ay - BzB/zﬁm’

. (55)

Gy(n) = =B, B,Qy(m).
Thus, in order to prove the lemma, one has to prove the asymptotic
stability of the system (5.2), (5.3) for all sufficiently small & > 0. Let us
show the asymptotic stability of the reduced-order and the boundary-layer
subsystems, associated with the system (5.2), (5.3). Setting £ = 0 in (5.2),
(5.3), we obtain a system, coinciding with the system (3.51). Hence, due to
Lemma 3.6, the reduced-order subsystem, associated with (5.2), (5.3), is
asymptotically stable. The asymptotic stability of the boundary-layer sub-
system, associated with (5.2), (5.3), is an immediate consequence of the
assumption A3. Hence, by Lemma 4.1, the system (5.2), (5.3) is asymptoti-
cally stable for all sufficiently small ¢ > 0. |

From Theorem 4.1 and Lemma 5.1 we obtain the following corollary:

COROLLARY 5.1.  Under the assumptions A1-A6, the controller u*[x(-),
y(OI(¢) internally stabilizes the system (2.1), (2.2) for all sufficiently small
e> 0.

THEOREM 5.1. Under the assumptions Al-A6, the controller
u¥[x(), y(OI(#) solves the H,, control problem (2.1)—~(2.4) for all sufficiently
small & > 0.
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Proof.  For all sufficiently small & > 0, the theorem follows from [9] and
Corollaries 4.1 and 5.1. 1

THEOREM 5.2. Under the assumptions Al-A6, the controller
uf[x(), y(OI(2) solves the H,, control problem (2.1)—~(2.4) for all sufficiently
small & > 0.

Proof.  Substituting u}[x(-), y()I(¢) into (2.1)—(2.4), one has

%(1) = Ayx(t) + A, y(t) + Hx(t — gh) + Hyy(t — £h)

+%f_0€hél(f/8)y(t + 1) dr + Fow(t), (5.6)

£3(1) = Aux(t) + Auy(1) + Hyx(t — oh) + Hyy(1 = oh)
¥ E[_Ogh@zwg)y(t + 1) dr+ Fyw(r), (5.7)
vE(t) = col{Cz(t),u[x(-), y()] (1)}, t>0, (5.8)

i) =l I, = v Iw )z,
=[O+ B)r) + 200 (D, + D))
+3(1)(Ds + Dpa)y(1)
+2x'(z)[_°€h15Q1(7, e)y(t + 1) dr
+2y'(t)/_°€h15Q2(7, &)y(t + 7) dr

0 0 A
+f / y'(r+ T)DRl(Ta P, 8))/(t + ,0) drdp|dt
—¢eh’ —¢h

- y2f0+°°w'(t)w(t) dr, (5.9)

where

D,, = (P,yB, + GB,)(B|P,, + B,G,),
APl (_10 1 1 2)( 1_10 2 1) (5.10)
Dp, = (PIOBI + G&Bz)Brzpmb
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ﬁm = }_’30B23’21330, lﬁQl(T’ §) = (1/3)(131031 + G’le)B’sz(T/s),
(5.11)

ﬁgz(Ta ‘9) = (1/8)FaoBzBle4o(T/€)a

Dyi(7.p, &) = (1/82)Ql(7/&) By ByQy( p/€).

Note that, according to Lemma 5.1, the system (5.6), (5.7) is internally
asymptotically stable for all sufficiently small & > 0.

Thus, in order to prove the theorem, we have to show that for all
sufficiently small & > 0

Ji(w) <0 forallw(t) € L,[0, +; E7]
and for x(¢t) =0, y(¢t) =0, < 0. (5.13)

(5.12)

Consider the block matrices

. A, A, . 0 (1/8)G\(7/¢)
A, = N ~ | G(r,¢e) = A ,
(1/e)A; (1/&)A, 0 (1/8 )Gz(T/“J)
(5.14)
. Dy D R 0 Dy,
sy 5] PO, ﬁgl((T )) ’
P2 P3 02\T, € (5.15)

b B 0 0
R(77 Paé') - O DARI(T,p,S) s

and the hybrid system of matrix Riccati equations for P, O(r), and R(r, p)
in the domain (7, p) € [—&h,0] X [—&h, 0],
PA,+ AP+ PS,P+ Q(0) + 0'(0) + D + D, =0, (5.16)
dO(r) /dr = | A, + BS,|0(7) + PG(r. ) + R(0.7) + Dy(7. &),

(5.17)

(3/9r+ d/dp)R(7, p) = G'(7,2)0(p) + O'(7)G(p, ¢)
+0'(1)S,0(p) + Dg(r,p, &), (5.18)
O(—&h) =PH,, R(—sh,7) =R'(r,—sh) =H.O(r), (5.19)

where S, = y 2F,F..
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Consider also the system

i(0) = | A, + $.P|2(1) + H,z(1 - eh)

—l—f_ogh[iQA(’r) + G(1/s, s)]z(t +1)dr, t>0. (5.20)

Similarly to [9], one can obtain the following: if for some & > 0, such that
(5.6), (5.7) is internally asymptotically stable, the problem (5.16)-(5.19) has
a solution P(&),0(r, &), R(r, p, &), and the system (5.20) with P = P(¢),
O(r) = O(r, £) is asymptotically stable, then the inequality (5.13) is satis-
fied for this e.

We shall seek the solution of the problem (5.16)—(5.19) in the form

131(3) 3152(8)

A A Ql(T’e) QZ(T’g)
P(e) = R R O(r,e) =1 & A
R DY T TS (Qg(r,s) Q4(T,e))
(5.21)
. Iél T,p, & Iéz T,p, &
R(r.p.e) = (1/¢) @Epi 8)) }éET z 81) (5.22)

where the matrices }il( ), Q:l('r, g), and I§1(T, p, €) are of the dimension
n X n; the matrices Py(&), Q,(1, ¢), and R,(7, p, &) are of the dimension
m x m; P(e) = P/(&), and R (7, p, &) = R (p,7,¢&) (k =1,3).

Similarly to Theorem 4.1, it can be verified that, for all sufficiently small
g > 0, the problem (5.16)—(5.19) has the solution in the form (5.21), (5.22)
satisfying the inequalities

”131(‘9) —Fionﬁaga ”QA]‘(T"Q)_Q]'()(T/«‘J)”SQS,

”1%5(747’ g) — Rio(T/S’P/“?)” =ae,

where (1, p) € [—eh,0] X [—&h,0] (i = 1,2,3; j=1,...,4); P, Q;(n)
and R,y (7, x) are defined in Section 3; and a > 0 is some constant
independent of ¢.

Now, similarly to Corollary 4.1, we have that the system (5.20) with
P = P(&), O(r) = O(r, &) is asymptotically stable for all sufficiently small
& > 0 which completes the proof of theorem.
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6. EXAMPLE

Consider an example of the problem (2.1)—(2.4) with the following data:
n=m=r=gq=1and

A =3,4,=1,A,=1,A,= —2,H =2, H,=1,H, = —1,H, = 1,
(6.1)
B, =6,B,=1,F,=2,F,=05,C;, =2,C,=1,y=05. (62)

In order to save the space, we do not rewrite the problem (3.3)—(3.15) with
the data (6.1), (6.2). Applying the results of Section 3, we shall construct
the asymptotic solution to this problem. Under Egs. (6.1), (6.2), the First
Problem (see Remark 3.1) becomes

—4Py +20,(0) + 1 =0, (6.3)
dQ,(m)/dn = —20,(n) + Rs3(0,7),
n€[—h,0],0,(—h) =Py, (6.4)
(d/dm + 3/dx)Ry(m, x) =0,
(m, x) € [=h,0] X [=h,0], Rsp(—h,m) = Qup(m). (6.5)
Solving (6.5), one directly has

Qu(x —m—h), if —h<n<x<0,

6.6
Qup(n—x—h), if-h<y<n<O. (6.6)

R30(77a X) =

Substituting (6.6) into (6.4), we obtain the functional-differential equation
for Q,y(n),

dQ40(77)/d77 = _2Q40(”’7) + Q40(_77 - h)»
n € [—h,0], Qy(—h) = Py. (6.7)
This equation has a unique solution
Qu(m) = Fao“’(”l)a
“’(”fl) = [f1(h)eXP(\/§”fl) +f2(h)eXP(_\/§77)]/fo(h)a ne [_h>0]7
(6.8)

where f(h) = V3 — 2 + exp(V3h), f,(h) =3 + 2 — exp(— V3 h), and
folh) = 2 + V3)exp(Y3h) — (2 — V3 )exp(— V3 h). It is obvious that

fi(h) >0 VYh>0(k=0,1,2). (6.9)
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Standard analysis of the function w(n) yields

max w(7n) = w(—h) =1 Vh > 0. (6.10)
nel—h,0]

Substituting (6.8) into (6.3) and solving the resulting equation with respect
to P;,, we have

1_)30 = _fo(h)/f(h)a (6-11)

where f(h) = 4Y3 — (6 + 4V3)exp(3 h) + (6 — 4V3 Jexp(— V3 h).
Some easy analysis shows that f(h) < 0 Vi > 0 and, therefore,

P,y >0 Vh=>0. (6.12)

Moreover, it can be shown that

max Py, = Pyyly—o = 0.5. (6.13)
h>0

Using (6.8), (6.9), and (6.12), one directly has
Qup(n) >0, mne[-h0],h=0. (6.14)

Let us show that the assumptions A2 and A3 are satisfied. Begin with A2.
Using the data (6.1), (6.2), we obtain the equation in A2, A((A) £ A + 2 —
exp(— Ah) = 0. Further, we have for any & > 0,

Re[A(A)] =2+ Re A — Re[exp(—Ah)] > 1+ Rer > 1
VA:Re A > 0. (6.15)

Hence, all roots A of the equation A,(A) = 0 lie inside the left-hand
half-plane for all # > 0. Now, let us proceed to A3. The equation in A3 is

As(A) 2 A+ 2+ Py — exp(= M) — [ Qu(m)exp(An) dn = 0.
(6.16)
Taking into account (6.8), (6.10), (6.12), and (6.14), we have from (6.16)
Re[A,(A)] =2 + Py, + Re A — Re[exp(—Ah)]
=" Qu(mRelexp(am)] dn

>1+(1—h)Py + ReA  VA:ReA=0. (6.17)
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Consider the inequality with respect to 4 > 0,
1+ (1—h)Py > 0. (6.18)
The solution of this inequality is
0 <h <4.4632. (6.19)

Now, using (6.17)-(6.19), one has that all roots A of the equation (6.16) lie
inside the left-hand half-plane for all /4 satisfying (6.19). Hence, the
assumption A3 is satisfied for all 4 satisfying (6.19).

Proceed to the Second and the Third Problems (see Remark 3.1). In
order to obtain the solutions to these problems, one has (according to
Lemma 3.3) to solve the equation (3.36) with the initial condition (3.28)
(I = 3). Under the data (6.1), (6.2), the problem (3.36), (3.28) (I = 3)
becomes

dQsy(m)/dn = =2Q5(n) = Qu(—m —h),
n € [—h,0], Qs5(—h) = —P5,. (6.20)
Solving (6.20), we obtain
Qs(m) = =Py[ fs(Mexp(V3m) + fu( Wexp(—V3m)] /fu( ),
ne[—h,0], (621)
where
f5(h) = fo(h)exp(V3h) /(2 + V3),
fu(h) = fi(h)exp(—V3h)/(2 = V3).
Using (3.34), (3.35), we obtain for k = 1,2
—Qpi20o( X —m—h), if —h<n<x<0,

K . (6.22)
(—=1)"Qs(m— x — h), if —h<x<mn<0,

Rko(n’ X) =

Now, let us proceed to the Fourth Problem (see Remark 3.1). In Section
3, this problem has been reduced to the equations (3.37)—(3.39). In order
to solve these equations, we have to calculate the matrices defined in
(3.40)—(3.44). Under the data (6.1), (6.2), these matrices become

N, =2(G—-1),N,=-2,F=3-G,B=2(4-G), (6.23)
A=1,5=42G-17),D =4, (6.24)
where G is defined in (3.44). It is clear that G > 0 VA > 0.
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Using (6.8), (6.10), and (6.12)-(6.14), one has for all 4, satisfying (6.19),
G < (1 + h)P;, < 2.7316. This inequality along with the expression for §
(see (6.24)) yields

§<0 Vhe[0,4.4632). (6.25)
Substituting (6.24) into (3.37), we obtain after some rearrangement
2(2G = T)P} + Py + 2 = 0. (6.26)

The inequality (6.25) implies that (6.26) has the single positive solution for
all h, satisfying (6.19)

Py = [1+ /1= 4(8G - 28) | /[4(7 - 2G)]. (6.27)
By direct calculation we have
A+ SP,<0 Vhe[0,4.4632). (6.28)

Hence, the assumption AS is satisfied for all such A.
Now, let us verify that the assumption A6 holds. Calculating the matri-
ces A, and Ay, one has

Ay =4G-3)/(G+1), Ay=—4G-3)(G-4)G/(G+1).
(6.29)

Substitution 4 = 1, B = 2(4 — G), and (6.29) into the matrix of A6 yields

A+ A, + (BB +Az)Py = (56 — 11 +16(G — 4)P,y) /(G + 1).
(6.30)

Some easy analysis shows that the expression in the right-hand part of
(6.30) is negative for all h, satisfying (6.19). Hence, the assumption A6 is
satisfied for all A, satisfying (6.19).

Substituting the expressions for N; and N, (see (6.23)) into (3.38) yields

on =2(1- G)FIO - f_OhQso(”’)) dn + 2. (6.31)
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Using (6.1),(6.2) and (6.22),(6.31), one obtains from (3.39)

— 0 — n
0iy(m) = 2GPy + [ Ou(s) ds =2+ (1= 2Py) [ Ou(s) ds
—/thw(—s — h) ds, (6.32)
— 0 — n
Qxn(n) = (3 —-2G)P, — f,th(s) ds +2 + (1 - 2P10)'/;hQ4o(s) ds

+f_"hQ30(—s — h) ds. (6.33)

Thus, we have completed the construction of the zero-order asymptotic
solution to the problem (3.3)-(3.15) for the data (6.1), (6.2). Having this
asymptotic solution, one can construct the controller ufj[x(-), y(-)], given
by (5.1), which solves the H,, control problem (2.1)-(2.4) for all sufficiently
small & > 0. Giving any value of &, satisfying (6.19), one can obtain the
numerical expression for u§[x(-), y(-)I(¢). Thus, for & = 0.4, we find

ui[x(:), y()](2)
= —5.1643x(1) — 0.3780y(t)
_.[_00.4[0-0893 exp(V3 ) + 01667 exp(—V3 )] y(z + em) d.
(6.34)
For h = 0.6, we find

wi[x(+), y()1(0)
= —5.1643x(1) — 0.3491y(r)

_foo 6[0.0854exp(\/§77) +0.1128 exp(—\/gn)]y(t + en) dn.
(6.35)

APPENDIX: PROOF OF LEMMA 4.1

Proof of Lemma 4.1 is based on the decoupling transformation of a
singularly perturbed system with a small delay (4.1). Such a transformation
was introduced in [8] in the case when ﬁk =0, G'k =0 (k=13). In
Sybsqction A.1 we will generalize the results of [8] to the case of nonzero
H,, G, (k=1,3).
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A.1. Slow—fast Decomposition of System (4.1)

For each &> 0 denote by T(¢): C[—¢&h,0; E"] - C[—¢h,0; E"] and
S(t, £): Cl—¢&h,0; E™] > C[—¢&h,0; E™], t = 0, the semigroups of the
solution operators, corresponding to the linear equations

#(1)=0,620, x(8) =x,(8), 60€[—eh0], (Al

and
ey(t) =Ayy,, Ayy,
= A,(0)y(1) + Hy(0)y(t — sh)
0 . (A2)
+/ Gy(n,0)y(t + em) dn, t>0;
—h
y(0) =yo(9), 96[_‘9}1’0]’
defined by

T(t)x,(0) =x(t + 0) and S(t, £)y,(0) =y(t + 0), 0 [—eh,0],

where ¢ > 0 is considered as a parameter and x,(6) and y,(6) are
continuous for 6 € [— ¢h, 0].

Let Y(¢, £), t € [— eh, ) be the fundamental matrix of (A.2), Y,(0) = I,,;
Y,(6) = 0, 6 < 0. Denote S(z, £)Y,(0) = Y(t + 6,£)(t = 0,6 € [— &h, 0)).
Let X(t1) =1,,t>0, X(1)=0,t<0,and T(1))X,(6) = X(¢t + 6) (+ > 0,
6 € [—&h, 0], where X,(0) =1,, X,(0) =0, 6 <0.

Introduce the new variable

z,=x,—x(t),z, €@ ={¢(0) € C[—&h,0; E"]: $(0) =0} Vi=>0.

Evidently @ is invariant with respect to 7(¢). Under the assumption A7,
we can represent the right-hand part of (4.1), where ¢(t + &n) =
col{x(¢ + &m), y(t + &m)}, in the form

Ay(e) Ap(e) (X,)’ (A3)
(1/2)Ay(e) Ap(e) |\ X
where A;,(¢) (i = 1,2, j = 1,2) are linear operators on C[—&h,0; E"] and
Cl—¢&h,0; E™].

Applying the variation of constants formula [14] to (4.1) with the initial
condition col{x,(6), y,(0)}, we obtain the equivalent system of differential

0
( (1/‘9)Abyz) *
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and integral equations with respect to x(¢), z,, and y,,
x(1) =Ay(e)(x(1) +z,) +Ap(e)y, x, =x(1) +z,
t
2= T()z + [T(t=s)(Xo —1,)
0

X [An(s)(x(s) +z,) +A12(‘9)y5] ds, (A4)

v = S(te)yo + (1/6) [S(1 =5, 0)Y,
X[Ax(e)x, + eAy(e)y,] ds,

where z, = z,|,- 0.

Note that (4.6) corresponds to (A.2) written in the fast time o =1¢/e.
Then the asymptotic stability of (4.6) implies the following inequality for
all + > 0 and sufficiently small & > 0:

[8(2, &) yolle < aexp(—Bt/e)lyllc,

sup  [[S(¢, &)Y, || < aexp(—Bt/e),
o[- ¢&h,0]

a>0,B>0. (A5)

Since T(t)z, = 0 and T(t)X(X, — I,) = 0 for t > ¢h, and z, € @, we have
for all ¢+ > 0 and sufficiently small & > 0
IT()z0llc < aexp(=Bt/2)lzllc,

sup [|T(¢)(X, — 1) || < aexp(—pBt/z),
o[- ¢eh,0]

a>0,B8>0. (A.6)

By a standard argument for the existence of invariant manifolds (see e.g.

[14, 6]), the system (A.4) has the center manifold for all sufficiently small
e> 0,

z,=Z(e)x(1),  y =A(e)x(1), (A7)

where ¥(¢): E" - @, % (&): E" = C[—¢&h,0; E™] are linear bounded
operators. The flow on the center manifold is governed by the equation

x(t) = [An(e)(1, +Z(&)) + Ap(8)Z(£)]X(1). (A8)
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For continuously differentiable functions ¢ € C[—¢&h,0; E"], ¢
C[—¢&h,0; E™], denote

Md):{(i), it 0 €[~ sh,0),

0, if 9 =0,
B(e) = v, it 9 €[—sh,0),
MW\ yeya,w,  ife=o.

The latter operators are extensions of infinitesimal generators of the
semigroups 7(¢) and S(¢, £) to the space of continuously differentiable
functions [14]. Similarly to [6], the following proposition can be proved:

PROPOSITION A.1. Under the assumptions A7 and A9, for all sufficiently
small & > 0:

1. the continuously differentiable in 6 € [—eh,0] (n X n)- and
(m X n)-matrix functions Z(&) =0, e) and Z)(&) =£,(0, ¢), such
that Z(0, &) = 0, determine the center manifold (A.7) iff for every 6 €
[— eh, 0] they satisfy the equation

(fzq(s)
Z(e)
:( JZ(e) + (X, — In)[All(g)(In +31(8)) +A12(‘9)32(‘9)]

B(e)Zy(e) +(1/e)Yo[ An(e) (I, +Zi(€)) + eAp(e)ZL(e)]
(A.9)

[An(a)(ln +31(‘9)) +A12(3)32(8)]

2. the matrix O, defined in (4.5), is nonsingular and the approximation

(31(8)) [0

B (yzo

+ O(¢), P = —Q;10,, A.10
32(8) ( ) 20 4 3 ( )

where Q5 is given in (4.5), holds for all 6 € [—&h,0].
Changing the variables in (A.4)
§=z,—Z(e)x(1) ({ € @), &=y —L(e)x(1),
and using results of [14, Eq. (4.8)], we obtain the system

i(t) = [Ay(e)(1, +Z(8)) + Ap(e)Z(e)]x(1)
+A;(e)d +An(e)é, (A.11)
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L=T(0& = [T(t=9)[F(e) + (1, = Xy)]
X[Ay ()4 + Ap(e)é] ds, (A.12)
&=S(t,e)é — (1/3)£)t5(t —s,e){eA(8)[An(e) ¢ + An(8)E]

—YO[AZ](g)é’J + 8A22(8)§S]} ds, (A.13)

where = {li—0, & = &li=0.

From (A.5) and (A.6) one can derive the following exponential bounds
on the solutions to (A.12) and (A.13) for all ¢+ > 0 and sufficiently small
e>0:

IZlle + 1€ llc <aexp(—Bt/e)(14lle +1&llc), a>0,8>0.
(A.14)

Similarly to [6], one can show that the system (A.11)-(A.13) has the stable
manifold for all sufficiently small ¢ > 0,

x(t) = e\ (&), + ety(€)&, (A.15)

where #(¢): @ - E", #,(¢): C[—&h,0; E™] - E" are linear bounded
(uniformly in &) operators. Similarly to [8], we can show that after the
following change of variables x(¢) = x(¢) — e#\(e){, — e#,(£)¢, we ob-
tain the decoupled system of (A.8) and (A.12), (A.13). Expressing x(¢), z,,
and y, by x(¢), £, and &, we obtain the following lemma.

LEMMA A.1. Under the assumptions A7 and A9, for all sufficiently small
& > 0 there exists an invertible operator (). E" X @ X C[—¢&h,0; E™] -
E" X @ X C[—¢&h,0; E™], given by

col{x(1), z,, y,} = F(&)col{Z(1), ,, £},

1, e (€) ey &)
I(e) = (L) I, + L (&) #(¢) eZ\(e)M,(€) , (A.16)
Z (&) ez (&) M) L, + eZ(e)#y(€)
and
T !(e)

I, + et \(e)ZL\(&) + ety(e)Lr(e) —ei(e) —edy(e)
= -%(¢) 1 0

n >

-%(¢€) 0 I

m
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which transforms (A.4) to the purely slow system (A.8) and the purely fast
system of (A.12) and (A.13). Here, I, and I, denote the identity operators on
the corresponding spaces.

A.2. Proof of Lemma 4.1
From (A.10) it follows that (A.8) can be rewritten in the form
#(1) = [Q + 0()] 2(1),

where Q is given by (4.5). Therefore, under the assumption AS8, the
solution of (A.8) satisfies the following inequality for all ¢+ > 0 and suffi-
ciently small & > 0,

[X(t)| < aexp(—at)||%(0)|, a>0,a>0. (A.17)

Lemma A.1 and the inequalities (A.14) and (A.17) imply that the solution
to (4.1) with the initial condition ¢, € C[—¢&h,0; E""™] satisfies the
following inequality for all # > 0 and sufficiently small & > 0:

le()|| <aexp(—at), a>0,a>0.

The latter inequality immediately implies the exponential bound for the
fundamental matrix ®(¢, &) for all ¢ > 0 and sufficiently small & > 0,

|®(t,e)| <aexp(—at), a>0,a>0. (A.18)

Thus the inequalities for ®, and ®; of Lemma 4.1 are satisfied. Now, let
us prove the inequalities for ®, and ®,. Denoting

d,(1, ¢) )

I(t,e) = (1, 5)

and using (4.1), (4.7), we obtain the equation for T'(¢, &)
dT(t,&)/dt = A(e)T(t, ) + H(&)T(t — h, &)

+/-0 G(m, &)T(t + &m, &) dn, t>0, (A.19)
—h
and the initial conditions

0, ¢) = (,?n); r(9,e) =0, 6<O0. (A.20)
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Let the (m X m)-matrix O(z, ¢) satisfy the equation

£dO(t,s)/dt = A,(£)O(t, &) + H,(£)O(t — sh, &)
+/0 G,(m,&)0(t + en, €) dn, t>0, (A21)
—h

and the initial conditions
00,¢) =1,; 0(0,¢) =0,6<0. (A22)

Consider the equation

det| AL, — A,(&) — H,(&)exp(—Ah) — /Oh(§4(n, g)exp(An) dn| = 0.

(A.23)

Taking into account the assumptions A7 and A9, and applying results of
[10, Proposition 4.3], one obtains that all roots A of (A.23) lie inside the
left-hand half-plane for all sufficiently small & > 0. Moreover, similarly to
this result of [10], it can be shown that

ReA< —2B8, f>0 (A.24)

for all sufficiently small &> 0. Assumption A7 and (A.24) yield the
following inequality for the solution to (A.21), (A.22) for all £ > 0 and
sufficiently small ¢ > 0:

[O(t,&)| <aexp(—pBt/e), a>0,B>0. (A.25)
Changing the variable T in (A.19), (A.20) as

T(t,e) =T(t,e) +3(t,8), S(t,e) = (6(2 5) ) (A.26)

we obtain the problem
di(t,&)/dt = A()T(t, ) + H(e)T(t — h, &)
+[" G(n. )T (1 = em. &) dn + A(1. ), (A27)
—h
(6,e)=0, 6<0, (A.28)

where

Al‘(t?g)

Ay(£)0(1, &) + Hy(£)O(t = sh, &) + [, Gy(m, £)O(t + em, &) dn |
0
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From (A.25), we have for all ¢ > 0 and for sufficiently small & > 0,
[Ar(t,&)| <aexp(—Bt/e), a>0,p>0. (A.29)
Rewriting the problem (A.27), (A.28) in the equivalent integral form,

'(t, ¢) =f0t<1>(t—s,a)AF(s,s)ds, >0,

and using the inequalities (A.18) and (A.29), one obtains for all # > 0 and
sufficiently small ¢ > 0 that

||f(t, 8)” <acexp(—at), a>0,a>0. (A.30)

The equation (A.26) and the inequalities (A.25), (A.30) yield the inequali-
ties for ®@,(¢, &) and ®(¢, ¢) claimed in Lemma 4.1. Thus the lemma is
proved. |
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