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The drill pipe model described by the wave equation with boundary conditions is reduced through the
d’Alembert transformation to a difference equation model. Assuming that the boundary condition at

the bottom is perturbed by bounded additive noise, an ultimate bound for the velocity at the bottom of the
pipe is obtained. The proposal of a Lyapunov functional for the distributed model allows to provide an

ultimate bound for a measure of the distributed variables describing the system in terms of linear matrix
inequality conditions. The two approaches are compared through an illustrative example.
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1. Introduction

Drilling systems with actuator at the bottom are efficient but have a high risk of collapse and subsequent<
loss of the tool and of the perforation itself. This is why, even in deep perforations, the application
of the torque at ground level is preferred. In this case, the distributed parameter nature of the systemyj
cannot be neglected. It should also be mentioned that a full description covering all relevant phenomena
such as bit bouncing, whirling or stick slip is not reasonable in practice and authors usually study suchQ
mechanisms individually and simplifications are common for stability analysis purposesh&kemel
(2000),Fliesset al. (1995) andRouchon(1998).

In particular, although the dimensional parameters of the plant are known, the linearization of the
behaviour of the torque at the bottom hole boundary introduces uncertainty. Moreovet, it is reasonabl%’
to consider the presence of a bounded additive noise sigftalat the bottom in order to account for ©
external disturbances and modelling errors.

It is clear that under these circumstances, exponential or asymptotic stability cannot be achieved,
and we will seek instead ultimate boundedness of the solukibalil, 1992).

The problem is first treated, after appropriate simplifications, as a difference equation model that
describes the angular velocity at the bottom of the pipe, which is the main variable of interest from an
engineering view point. Then, the problem is addressed in the framework of distributed parameter sys-
tems as a special case of a wave equation and linear matrix inequality (LMI) type conditions for ultimate
boundedness are derived from an appropriate energy function and Lyapunov functional following the
ideas introduced iNicaise & Pignotti(2008) and~ridman & Orlov(2009).
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The paper is organized as follows: The distributed parameter model of the drill pipe and the ultimate
boundedness problem formulation are introduced in Section 2. In S&timifference equation de-
scription is obtained after simplifications and the corresponding ultimate bounds are found. In &ection
ultimate boundedness conditions are derived from the proposal of an energy function for the distributed
parameter model. The contribution ends with a comparison of the two approaches in the context of an
example. A conference version of the paper has been preseradtiimaret al. (2009).

2. Problem formulation
2.1 Drill pipe model

A sketch of a simplified drillstring system is shown on Fig.

The main process during well drilling for oil is the creation of borehole by a rock-cutting tool called
a bit. The drillstring consists of the bottom hole assembly (BHA) and drillpipes screwed end-to-end to
each other to form a long pipe. The BHA comprises the bit, stabilizers (at least two spaced apart) which
prevent the drillstring from balancing, and a series of pipe sections that are relatively heavy known as
drill collars. While the length of the BHA remains constant, the total length of the drill pipes increases as
the borehole depth does. An important element of the process is the drilling mud or fluid which among
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FiG. 1. The drilling system.
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others has the function of cleaning, cooling and lubricating the bit. The drillstring is rotated from the

surface by an electrical motor. The rotating mechanism can be of two types: a rotary table or a top drive.
The drill pipe is considered here as a beam in torsion. A lumped inlgrichosen to represent the

assembly at the bottom hole and a dampfng 0, which includes the viscous and structural damping,

is assumed along the structure. The speed of the suifaee)) is restricted to a constant val. The

other extremity (= L), which symbolizes the bit, is subject to a torgiewhich is a function of the

bit speed. The mechanical system is described by the following equations:

B 520 ov
GImE - 175E - p5 (D=0, ¢eOL).t>0,
v(0,1) = Qt,
2

o0“v ov
— (L, H)==T(=—(L,1),
T2y ( a ))
whereo (&, 1) is the angle of rotation, is the inertia,G is the shear modulus antlis the geometrical
moment of inertia.

The existence and uniqueness of the solution is assumed for all the initial conditions. The stationar
solution of this system is

ov
GJ—(L,t |
ag( , D+ 1

T@ |

GJ GJ <+t

0 B AR .,
vo(&, 1) = Qt ( L) ZGJg'
Thechange of variable(&, t) = v (£, t) — 09(&, t) leads to an equivalent autonomous system for which
the functionz%(¢, t) = 0 is a solution. Non-linear phenomena at the bottom extremity such as stick slip
and noise due to the bit interaction are modelled with the additive bounded disturbéncaich that
lw(t)|] < wt € (0,00). This additive noise is consistent with the model of the stick slip introduced in
Navarro & Corés(2007) in which an additive non-linear dry friction term is considered to approximate

the rock-bit contact.

622 822 0z ) )
GImE - 175D -p7 (D=0, ceOL).

2(0,t) =0,

0%z

0z 0z
GJ%(L,t) +leoL.)=T@)-T (.Q + a(L,t)) + w(t).

The end¢ = 0 is now fixed and the wave propagation has not changed. The stability of the trivial
solutionZ’(¢, t) is equivalent to the stability of the equilibriun?(&, t).
We consider a linearization of the torqtie

T(Q)-T(Q +z(L,t) =-T(2 +0z(L,t)z(L,t), 6e(0,1).
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For the sake of simplicity, we introduce the normalized rod lemgth £/L. The normalized drill pipe
model is then:

GJ é%z 0%z oz
T2 @ =15 = (D=0, oec(0.1), (2.1)
z(0,t) =0,
GJ oz 02

>+ |BR§(1,t) — _T(Q +07(L, 1)z(L,t) + w®), 0 e 0,1),
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with initial conditions

2(0,0)= (), Z(0,0)=((0) € L2(0,1),
z(0,0) = ¢1(0) € L2(0,1). (2.2)

2.2 Usefulinequalities

When the disturbance term(t) is not identically zero, one cannot prove exponential stability of the
solution. However, one can prove ultimate boundedness of the solutions for bowee w. We
introduce the following technical lemma.

LEMMA 2.1 (Fridman & Dambrine2009). LetV: [0, oo) — R* bean absolutely continuous function.
If there existsy > 0,b > 0 such that the derivative &f satisfies almost everywhere the inequality

d
5tV O +20V (0 = bw*(t) <O,
thenit follows that for all|w(t)| < w,
V(t) < 6_25(t_t°)V(to) +@A- e_25(t_t0))2_b552'

Proof. Multiplying by e~V theinequality &V + 20V < bw? andintegrating further frontg to t,
we have
td

t
0 (€0 (6))do < b / e?0-Y,2(9)do,
to

fo

and thus

V(t) _ e—Z(S(I—IQ)v(tO) < B(l _ e—25(t—t0))52.

20
O
For later use, we recall the following.
LEMMA 2.2 (Wang 1994). Letz e W1-2([a, b], R) bea scalar function wittz(a) = 0. Then,
b
max z°(¢) < (b — a) / (Z(6))%do. (2.3)
oelah] a

3. A difference equation approach

We assume in this section that is constant. Under the assumptions that the damping and the lumped
inertia are negligible (i.e8 = Ig = 0) the model reduces to

%z 0%z
P(G,t) = aﬁ(ﬂ,t), o € (0,1), t>0, (31)
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2(0,t) = 0, (1 t) = —k (1 t) + rw(t), (3.2)

_GJ _ LT L
wherea = k= <7 andr = GJ e R.

Note that nelther the assumption of a constant torque derivative nor that of a negligible lumped
inertia g areneeded to apply the d’Alembert transformation. Nevertheless, such simplifications make
it possible to reduce the distributed parameter model to a difference equation.

We use for this purpose the general solution of the 1D wave equation that may be written as

Z(o,t) =¢p(t+sSo)+y(t —s0), t>0,

whereg, w are continuously differentiable real-valued functions of one variablesaﬁq/g. We find

0z . .

E(U, t)y=¢(t+5so)+ w(t —so),

0z . .

5(0,'[):5(;5('[—}—80) —Sy(t —so). (3.3)
The initial conditions have the form

(0, 0)=(1(0) = ¢(s0) + w(—s0),
Z;(0,0)=((0) = sp(so) — sy (—s0). (3.4)
Hence,
$(so) = 05[¢1(c) + {(0)/s],
y(=so) = 05[¢c1(0) — £ (0)/s]. (3.5)

The boundary conditions can be presented as

20,t)=¢(t) + w(t) =0, t>0, (3.6)
ZAn=5pt+9 -sjt -9
=—K[¢(t +s)+ w(t —s)] +rw(t). (3.7)
It follows from (3.6) that
pt) =—w(), t>0, (3.8)

and thus (3.7) takes the form
[s+ Kyt +9s)+[s—Ky(t—s) =—-rwt). (3.9)

This expression can be rewritten as

y(t+3) =—cop(t—s)—cuw(t), t>0, (3.10)
with ¢g = % andc; = (S+k)
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From(3.5) and (3.9), we obtain the following initial condition:

y(t) = —05[c1(t/s) +(t/s)/s], te(0,9),
$(t) =05[z1(t/s) — £ (t/s)/s], te(0,9). (3.11)

It appears that3.10) and 8.11) can be treated using difference equation techniqueg. +ets + ¢,
¢ e [-s,0]. Iteratingl times (3.10), we obtain that for= 1,2, .. ., the solution is described by

1-1
w(@s +&) = (—c) p (&) — a1 Y (—co) w(@1 =) — Ds + &),
i=0
-1 )
p@s+s+&) = (—co) y(s+&) —c1 Y (=) w((2( —i)s+9).

i=0

Taking into accountcy| < 1 and settingl = — In(|col), we arrive to](—co)i| < e 4 Hence, from
w(t) < w,t > 0,it follows that for& € [—s, 0]

-1
ly@s+oI<e ™y @) +lcafw Y e,
i=0
) -1
ly@s+s+o)l<eys+9)+ |cl|wZe—’
i=0

Note that 3.11) implies|y (¢)| < 0.5[|c1(E/9)| + 1£(E/9)|/s] for —s < ¢ < s. Moreover, from
iZoe < L itfollows that

_/Ly

9@+ )1 <056 N1/ +IEE/9N/S) + o,

el _

e—/l

ly(2s +s+&) <05 [|c1E/9)] + £ (E/9)1/9] t e
Since e/ = e~ §(t=9) < e~ <t we obtain

/@15 + 0| <05 Ial/9N + /98] + oD,

1§25 45+ O OB/ + EE/IN/S] + 1ot

Then, fort > 0,

C1|E
—e 4

(O] <05 <1 (/9] +1EE/9)1/s) +

(3.12)

Furthermore, from (3.8), it follows thdt(t)| satisfies the same upper bound|ast)| fort > —s.
Therefore, we obtain fronB(3) and from (3.4) that

12 (L0 < SeH /SN + EESS + 1o (3.13)
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Finally, we find an ultimate bound for the variable of main interest, the angular velocity at the bottom
z:(1,1). It follows from (3.3) thatg—tz(l,t) = ¢t + )+ w(t —9). Inview of (3.8), |4 (1) and|w (1)]
satisfy the same boun@.(L2). It follows straightforwardly that
| _

2|c1
— 7 0 (3.14)

12(L01 < e S NaE/9N + IEE/SN/S] +

We now summarize the above results:

THEOREM 3.1 Solutions of the boundary value probleX), (3.2) with initial conditionsZ.2) satisfy
the inequalities3.13) and (3.14).

4. A wave equation analysis

The difference equation description of the model provides an estimate of the behaviour at the bottom o
the pipe. For a comprehensive estimate, we treat in this section the problem as a distributed paramet
system. The lumped inertigs is considered to be negligible but, unlike in the previous section, the
dampingp is not. We assume in this section th&tis bounded: 0< Tp < T’ < Ti1. We have the
following equation:

zit(o,t) = az,;(0,t) + dz(o,t), t>ty, O<o <1, (4.1)
with the boundary conditions

2(0,t) = 0,
z,(1,t) = —kz(1,t) +rw(t), t> 0, (4.2)

wherea = 2%,d = 7% < 0,r = &y andk = &7, satisfying 0< ko < k < ky with ki = &}, i =
0, 1. The initial conditions are given by

2(0,0) = ((0), Z(0,0)=((0) € L2(0,1),
2(0,0) = (,(0) € L2(0,1). (4.3)

Now, we look for conditions such that the inequalﬁN + 26V — bw? < 0 holds. To this end,
consider the Lyapunov functional

0T0Z 'TE 1390100 U0 ALISHIAINN AIAY 131 Je Biospeunolpioxooweu® widhy pspeojumod

1 1 1
V(Z (1), z(, 1) = IO/ az’ (o, t)do + P/ Z (o, t)do + 2){/ 025 (0, 1)z (0, t)do
0 0 0

proposed iNicaise & Pignotti(2008) with constantp > 0 and small enough. In Fridman & Orlov
(2009), the following LMI

ap x
|:X p]>0 (4.4)

was introduced to guarantee that- 0 forfol[z§ (o,0) + th(a,t)]do > 0.
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THEOREM4.1 Givend > 0, let there exisp > 0 andy > 0 such that (4.4) and two LMIs

—2akp+y O 0 —aykir +apr aky
* w2 (20+d)y 0 0
* * w3 0 0 <0, i=0,1, (4.5)
* * * —b+ ;(arz 0
* * —ay
where
= —ay + 2dap,
w2 X p (4.6)

w3 = —y +2pd+ 20p
are feasible. Then solutions of the boundary value problém),( @.2) with initial conditions (4.3)
satisfy the inequality

1 1 b
2 t</ 2, t 20, t <Q—zé(t—to)/ 2 2 2
max z (o,1) A [z; (0, t) + Z (0, V)]do e A [¢1(0) +%(o)]do + s

4.7)

where

0
a1 = imin [aop p] 5 a2 = ﬂmaxI:aXp )f):| . (48)

Proof. As the LMI ;E Xg} > 0 is affine inc € [0, 1], it follows from Schur complements and

Rayleigh’s Theorem that

1 1
” / [2(0,1) + (0, O)]do < V (2, (). 21 1)) < a2 / [2(.,t) + 2. 0)do,  (4.9)
0 0

with a1 anda> satisfying(4.8).
Next, we find%V. Following Fridman & Orlov(2009), we derive

d 1 1 1
— 2/ 0%z, do | = 2/ 0ZitZy d0+2/ 0ZtZ,t do
dt 0 0 0

1 1

1
= Za/ 0Z54(0,1)Z5 da+2/ UZtZJtda—I—Zd/ 0z (o, 1)z, do.
0 0 0

Integration by parts gives

1 1 1
2/ 22,1 do = —2/ 62,12 do — 2/ Zdo + 2Z2(1,1),
0 0 0
and

1 1
2/ 0221 do = —/ Zdo + Z2(1,1).
0 0
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Similarly,

1 1
2/ azm(a,t)zgdaz—/ 22 do + Z2(1,1).
0 0

Substitutionof the boundary condition yields

1 1
2% (/ 022, da) = _/ (2 + az2)do + Z2(1,1) + a(—kz (1, 1) + r w(t))?
0 0
1
+2d/ 0z (o,1)z; do.
0

Thus, differentiating/ along @.1), we obtain

1 1 1
dy —2p / 8z, (6, )2, (o, )do + 2p / 2(0, V(0. A + 27 / o272, do
dt 0 0 dt\ Jo

1
— 2p /0 (82, (0,12t (0, ) + 82 (0, V) 200 (6, D)]do

1 1
+2pd/ zi (o, )z (o, t)da+2)(g(/ 0ZtZ, da).
0 dt \ Jo

Then,integrating by parts and substituting the boundary conditio®)( we obtain

1 1
/ 26, 1) 290 (0, ) = 20(0, )2, (0, 1) — / 20 (0, 1)2, (0, VYo
0 0

1
— 2(L)(—kz (L, 1) + rw(t)) — / 20 (0, 1)2, (0, 1Yo,
0
Therefore,

1
%V = —2apk42(1,t) +2apz (1, t)rw(t) + 2pd/ zi (o, )z (0, t)do
0

1 1
+ [—/ (22 + az2)do + Z2(1, t) + az2 (1, t)+2d/ 02(o, )z, da:|.
0 0

It follows that

1
%v + 20V — bw? = —2apkZ(1,t) + 2apz (1, t)rw(t) + 2pd/ z (0o, )z (o, t)do
0

1
+x [— / (Z +az?)do + Z2(1,t) + a(—kz(1,1) + rw(t))?
0
1
+2d/ 0z(o,t)z; do
0

1
+ / 20[apZ (o, 1) + 2502, (0, )21 (0, 1) + pZ (0, H)]do — bw?.
0
(4.10)
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By settingd T (o, t) = [z (1,1) Z, (0, t) Z: (0, t) w(t)], we conclude that

d 1
av+25V—|ow2=/ 9T (o,1) P9 (o, t)ds <0
0

—2akp+ (1+ak?)y 0 0 —aykr +apr
_ * vy (20+d)yo 0
Y = . . va 0 <0, (4.11)
* * * —b+ Xarz

with notations given in4.6). Applying Schur complements &k?y in (4.11) and using the affinity of
the resulting LMl ing € [0, 1] andk e [ko, k1], it is easy to see tha#i(11) holds if (4.5) is feasible.
Then, if (4.5) is feasible, it follows from4(9) and Lemma.1that

1
@ /O [2(0,1) + 2o, Dldo < V(2o (40,2, 1))
; b
<V (25 (to). 21 10)) ™20 (1 — &2 70)) 5
1
< ape 20 / [:£(0) + (P(o]do + 2%(1 — g 20052,
0

In addition, it follows from @.3) that

c€[0,1]

2 ! 2 ! 2 2
max 2(c,t) < /O (2, (0, 1))%do < /O [Z(0.1) + Z(0. )]do. .

REMARK 4.1 We note that inequality4(.7) means thati(1), @.2) is input-to-state stable. The conditions
for exponential stability of the disturbance free system that follow from Thedré&moincide with the
ones fromFridman & Orlov(2009).

4.1 Stick-slip oscillations and the non-growth of the energy

In this subsection, we give a new look at the problem. We leave out the bounded additive noise signal
w(t) taken into account for external disturbances in previous analysis and we introduce a model for the
torque on the biT that allows us to perform a dissipativity analysis.

The drillstring interaction with the borehole gives rise to a wide variety of non-desired oscillations
that are classified depending on the direction they appear. Three main types of vibrations can be distin-
guished: torsional (stick-slip oscillations), axial (bit bouncing phenomenon) and lateral (whirl motion
due to the out of balance of the drillstring). Torsional drillstring vibrations appear due to downhole con-
ditions, such as significant drag, tight hole and formation characteristics. It can cause the bit to stall
in the formation while the rotary table continues to rotate. When the trapped torsional energy (similar
to a wound-up spring) reaches a level that the bit can no longer resist, the bit suddenly comes loose,
rotating and whipping at very high speeds. This stick-slip behaviour can generate a torsional wave that
travels up the drillstring to the rotary top system. Because of the high inertia of the rotary table, it acts
like a fixed end to the drillstring and reflects the torsional wave back down the drillstring to the bit. The
bit may stall again, and the torsional wave cycle repeats as explaifdéalvarro & Siarez(2004). The
whipping and high speed rotations of the bit in the slip phase can generate both severe axial and lateral
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vibrations at the bottom-hole assembly. The vibrations can originate problems such as drill pipe fatigue

problems, drillstring components failures, wellbore instability. They contribute to drill pipe fatigue and

are detrimental to bit life.

The following switched equation is introducedNtavarro & Corés(2007) that allows to approxi-

mate the physical phenomenon at the bottom hole

T = cpze(1,t) + WobRoun(zt(1,1))sgn@ (1,1)), (4.12)

wherethe termcyz (1,1) is a viscous damping torque at the bit that approximates the influence of the
mud drilling and where the tertiopRpupsgné: (1,1)) is a dry friction torque modelling the bit-rock
contact.R, > 0 is the bit radius and\y, > 0 the weight on the bit. The bit dry friction coefficient

1p(z:(1,1)) is modelled as follows:

bz (1.0)]

bz (1,1)) = peb + (usb— co)e ! (4.13)

where usp and ucp € (0,1) arethe static and Coulomb friction coefficients and<0y, < lis a

constant defining the velocity decrease rate. The constant velgcityQ is introduced in order to have

appropriate units.

The friction torque 4.12)—(4.13) leads to a decreasing torque on bit with increasing bit angular
velocity for low velocities which acts as a negative damping (Stribeck effect) and is the cause of
stick-slip self-excited vibrations. The exponential decaying behaviotliragincides with experimental

torque values.
The boundary conditions of the drilling system described by the wave equéatirafe then

Zt(oat)zoa (4 14)
z; (1,t) = —kz(1,t) — qun(z(1,1))sgn@ (1,1)) — hz(1,t), t>0, '
wherek = %5, q = el andh = It
Considetthe energy function
1 1
E(t) = / az2 (o, t)do + / Z(0,t)do 4+ ahZ(1,1). (4.15)
0 0

DifferentiatingV along (4.1), yields

d 1
—E(t) = 2/ az;(o,t)z, (0, t)do
dt 0

1
+2 / 2(0, Y211 (0, ydo + 2ahz (1,2 (L, 1)
10
= 2/ [aza (0,25 (0, 1) +az(o, 1)Z5, (o, t)]da
0

1
+2d/ Zt (O', t)Z[ (O', t)dO‘ + 2ahz(1,t)ztt(1,t).
0

0TOZ ‘T€ 1890100 U0 ALISHIAINN AIAY 3L Ye Bio sjeunolpiojxo owewt woly papeojumoq


http://imamci.oxfordjournals.org/

120of 14 E.FRIDMAN ET AL.

Integrating by parts and substituting the boundary condition, (4.14) gives

1 1
/0 2(0, 0200 (0, do = 2(0, )2, (0, Y[} — /O 20 (0, 1)2, (0, )

=z(1,t)(=kz(1,t) — qup(z:(1,1))sgn (1,1)) — hz(1,1))
1
_/ Zi5 (0-9 t)ZU(O', t)dO'
0

Hence,

d 1
P Et) = 2/0 az; (o, 1)z, (0, t)do + 2az (1, 1) (—kz(1,t) — qun(z:(1,1))sgn: (1,1))

1
~hzx(1.) 28 | 20,02 (0. O)lo
0
1
+2d/ zi(o, 1)z (0, t)do + 2ahz (1, t)z: (1, 1).
0
Sinceup(z(1,1))sgn (1,1))z(1,t) = up(z:(1,1))|z(1,1)], we have
1
%E(t) = —2akZ(1,t) — 2aqup(z(1,1))|z (1, t)| + 2d/ Z*(o, t)do.
0

Taking into account thatp(z(1,t)) > 0 and thad < 0, we find that% E() < —2akzt2(1,t) < 0.The
non-growth of the energy of the drilling system (which reflects the oscillatory behaviour of the system)
is established.

ProPOSITION4.1 For all solutions of 4.1) under the switched boundary condition (4.14), the energy
given by @.15) does not grow.

5. Numerical results

The numerical results presented below are for the parameter values givaallamel(1999):

G=793x 10°N/m?, | =0.095kg-m,
T'=3000N-m, J=119x 10°m?,
L =3145m,

and the case where the damping is neglecfed: Q).

5.1 A difference equation approach

In this casecg = —0.8185,c; = 3.0011x 1074, s = 0.9979and. = — In(|co|) = 0.2002.Substituting
thesevalues into (3.13) and3(14) yields

1z, (1,1)] < 0.9979e~ 92908 - (£/0.9979) + 1.0021} (¢/0.9979)] + 0.0033w,
1zt (1,1)] < e 02008 -1 (£/0.9979) + 1.0021f (¢/0.9979)] + 0.0033w
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5.2 A wave equation approach

For the wave equation approach, the LMI conditions of Theotehtead to the following pairgs, b).

Case 1 2 3 4 5

0 0.08 0.06 004 001 00001
b 3.2521 10707 12145 15221 17951
o1 5.0009 1.0934 12657 16273 19328
o2 59854  1.3019 15074 19383 23023

For 6 = 0.04 and initial conditions, (o, tg) = ( zi(o,t0) = (1(o), the expression4(7) in
Theoremd.1 provides the following ultimate boundedness condition:

1 1
/ [Z2(0, 1) + Z2(0,1)]do < 1.1909 g 008 / [C2(0) + (%(0)]do + 11994477,
0 0

Thewave equation approach also provides an ultimate bound when the dagisingt negligible.
Forp =01N-s,itis

1 1
/ [22(0,1) + Z2(0, 1)]do < 1.1854 008 / [2(0) + {%(0)]do + 1886547F.
0 0

It appears that the two approaches complete each other: the difference equation approach leads to
ultimate bound for the main variable of interest, the angular velocity at the drill batt@int), while
the wave equation model provides an ultimate bound for the me4§{zﬁ(a, t) + th(a, t)]do of the
distributed behaviour nature of the system.

ISYIAINN AIAY 13%\9 6.10°s[euInolpIoyxo" IoWewW! Woi) papeojumod

6. Concluding remarks

Ultimate bounds for a distributed drill pipe model are obtained through an analysis based on a differ- 2
ence equation model and on a wave equation description. Note that the estimate for the difference equ&
tion is obtained via direct computations while the estimate for the wave equation is achieved throughg
direct Lyapunov method that usually involves some conservatism. It should be pointed out that the wave>
equation approach addresses a more general case where the damping is not neglected.
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