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the topic.

Time-delay naturally appears in many control systems, and it is frequently a source of instability.
However, for some systems, the presence of delay can have a stabilizing effect. Therefore, stability and
control of time-delay systems is of theoretical and practical importance. Modern control systems usually
employ digital technology for controller implementation, i.e. sampled-data control. A time-delay
approach to sampled-data control, where the system is modeled as a continuous-time system with
the delayed input/output became popular in the networked control systems, where the plant and the
controller exchange data via communication network. In the present tutorial, introduction to Lyapunov-
based methods for stability of time-delay systems is given together with some advanced results on

© 2014 European Control Association. Published by Elsevier Ltd. All rights reserved.

1. Introduction

Time-delay systems (TDSs) are also called systems with after
effect or dead-time, hereditary systems, equations with deviating
argument or differential-difference equations. They belong to the
class of functional differential equations which are infinite-dimen-
sional, as opposed to ordinary differential equations (ODEs). The
simplest example of such a system is
x(t)= —x(t—h), x({t)eR,
where h > 0 is the time-delay.

Time-delays appear in many engineering systems - aircraft,
chemical control systems, in laser models, in Internet, biology,
medicine [31,41]. Delays are strongly involved in challenging areas
of communication and information technologies: stability of
networked control systems or high-speed communication net-
works [62].

Time-delay is, in many cases, a source of instability. However,
for some systems, the presence of delay can have a stabilizing
effect. In the well-known example

JyO+y® -yt -h)=0,

the system is unstable for h=0, but is asymptotically stable
for h=1. The approximation y(t)=~ [y(t)—y(t—h)]h’1 explains
the damping effect. The stability analysis and robust control of
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time-delay systems are, therefore, of theoretical and practical
importance.

As in systems without delay, an efficient method for stability
analysis of TDSs is the Lyapunov method. For TDSs, there exist two
main Lyapunov methods: the Krasovskii method of Lyapunov func-
tionals [43] and the Razumikhin method of Lyapunov functions [61].
The two Lyapunov methods for linear TDSs result in Linear Matrix
Inequalities (LMIs) conditions. The LMI approach to analysis and
design of TDSs provides constructive finite-dimensional condi-
tions, in spite of significant model uncertainties [1].

Modern control systems usually employ digital technology for
controller implementation, i.e. sampled-data control. Consider a
sampled-data control system

X(t) = AX(t)+BKX(ty), t e[ty tes1), k=0,1,..., (1)

where x(t) e R", A,B,K are constant matrices and limy_, .t = co.
This system can be represented as a continuous system with time-
varying delay z(t)=t—t; [52,6]:

X() =Ax(t)+BRx(t—7(1)), t €[t tyy1), 2

where the delay is piecewise-linear (sawtooth) with 7 =1 for
t # t;.. Modeling of continuous-time systems with digital control in
the form of continuous-time systems with time-varying delay and
the extension of Krasovskii method to TDSs without any con-
straints on the delay derivative [20] and to discontinuous delays
[18] have allowed the development of the time-delay approach to
sampled-data and to network-based control.

Bernoulli, Euler and Concordet were (among) the first to study
equations with delay (the 18-th century). Systematical study
started at the 1940s by A. Myshkis and R. Bellman. Since 1960
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there have appeared more than 50 monographs on the subject
(see e.g. [5,28,31,41,57] to name a few). The beginning of the 21st
century can be characterized as the “time-delay boom” leading to
numerous important results. The emphasis in this Introduction to
TDSs is on the Lyapunov-based analysis and design of time-delay
and sampled-data systems.

The paper is organized as follows. Two main Lyapunov
approaches for general TDSs are presented in Section 2. For linear
systems with discrete time-varying delays, delay-independent and
delay-dependent conditions are provided in Section 3. The section
starts from the simple stability conditions and shows the ideas and
tools that essentially improve the results. Section 3.3 presents
recent Lyapunov-based results for the stability of sampled-data
systems. Section 4 considers general (complete) Lyapunov func-
tional for LTI systems with discrete delays corresponding to
necessary stability conditions, and discusses the relation between
simple, augmented and general Lyapunov functionals. Stability
conditions for systems with distributed (finite and infinite) delays
are presented in Section 5. Section 6 discusses the stability of some
nonlinear systems. Finally the input-output approach to stability
of linear TDSs is provided in Section 7 showing the relation of the
input-output stability with the exponential stability of the
linear TDSs.

Notation: Throughout the paper the superscript ‘T stands for
matrix transposition, R" denotes the n dimensional Euclidean space
with vector norm | - |, R™™ is the set of all n x m real matrices, and
the notation P >0, for Pe R™" means that P is symmetric and
positive definite. The symmetric elements of the symmetric matrix
will be denoted by =. The space of functions ¢ : [—h, 0]— R", which
are absolutely continuous on [—h, 0], and have square integrable
first order derivatives is denoted by W[-h,0] with the norm

Il llw =maxg . _nolp©) +[f9h lp(s)2 ds]'/2. For x:R—R" we
denote x.(0) £ x(t+0), O [—h,0].

2. General TDS and the direct Lyapunov method

Consider the following TDS:
x(O)=f(t.x), t=to, 3)

where f : R x C[—h, 0]— R" is continuous in both arguments and is
locally Lipschitz continuous in the second argument. We assume
that f(t,0)=0, which guarantees that (3) possesses a trivial
solution x(t) = 0.

Definition 1. The trivial solution of (3) is

® uniformly (in tp) stable if Vtpe R and Ve > 0, there exists a
6=0(e) >0 such that lixllc <d(e) implies |x(t)|<e for all
t > to;

® uniformly asymptotically stable if it is uniformly stable and there
exists a 64 > 0 such that for any # > 0 there exists a T(J4,7) such
that lix, llc <0, implies |x(t)| <n for all t>ty+T(dq,77) and
to e R.

® globally uniformly asymptotically stable if 6, can be an arbitrarily
large, finite number.

The system is uniformly asymptotically stable if its trivial
solution is uniformly asymptotically stable.

Note that the stability notions are not different from their
counterparts for systems without delay [36]. In this tutorial we
shall only be concerned with uniform asymptotic stability, that
sometimes will be referred as asymptotic stability.

Prior to N.N. Krasovskii's papers on Lyapunov functionals and
B.S. Razumikhin's papers on Lyapunov functions, LE. El'sgol'tz

(see [5] and references therein) considered the stability problem of
the solution x(t)=0 of TDSs by proving that the function
V(t)=V(x(t)) is decreasing in t, where V is some Lyapunov
function. This is possible only in some rare special cases. We shall
show this on the example of the scalar autonomous Retarded
Differential Equation (RDE)

x(t) =f(x(®),x(t—hy), f(0,0)=0,

where f(x,y) is locally Lipschitz in its arguments. Let us assume
that V(x) = x2, which is a typical Lyapunov function for n=1. Then
we have along the system

d .
E[V(X(f))] = 2x(D)X(t) = 2X()f (X(£), X(t — h)).

For the feasibility of inequality (d/dt)[V(x(t))] < 0, we need to require
that

X(Of (x(t), x(t—h)) <0

for all sufficiently small |x(t)| and |x(t —h)|. This essentially restricts
the class of equations considered. For example,

x(t)= —x(t)x*(t—h)

is stable by the above arguments.

2.1. Lyapunov-Krasovskii approach

Let V:R x C[—h,0]1-R be a continuous functional, and let
X:(t, ¢) be the solution of (3) at time 7 > t with the initial condition
X; = ¢b. We define the right upper derivative V(t,¢) along (3) as
follows:

. . 1
V(t,¢)=1lim sup —[V(t+ALx, aclt, P)—V(E, P)].
Intuitively, a non-positive V(t,x,) indicates that x, does not grow
with t, meaning that the system under consideration is stable.

Theorem 1 (Lyapunov-Krasovskii Theorem, Gu et al. [28]). Suppose
f:RxC[—h,0]-R" maps Rx (bounded sets in C[—h,Q]) into
bounded sets of R" and that u,v,w:R, —»R, are continuous
nondecreasing functions, u(s) and v(s) are positive for s> 0, and
u(0) = v(0) = 0. The trivial solution of (3) is uniformly stable if there
exists a continuous functional V :R x C[—h,0]—-R™", which is
positive-definite, i.e.

u(lpO)) < V(t, @) <v(liglic), 4)
and such that its derivative along (3) is non-positive in the sense that
V(t.¢) < —w($(O))). )

If w(s) > 0 for s > 0, then the trivial solution is uniformly asympto-
tically stable. If in addition limg_ . u(s)=oo, then it is globally
uniformly asymptotically stable.

In some cases functionals V(t, x, X;) that depend on the state-
derivatives are useful (see [41, p. 337]). Denote by W[—h, 0] the
Banach space of absolutely continuous functions ¢ : [—h, 0] > R"
with ¢ e L,(—h, 0) (the space of square integrable functions) with

the norm
0o 1/2
/ . p(s)I” ds} :

Theorem 1is then extended to continuous functionals
V:Rx W[-h,0] x Ly(=h,0)>R,,

e llw =Ser?_a;1<0]\¢(5)|+

where inequalities (4) and (5) are modified as follows:

u(IX(@®)1) < V(t,Xe, Xe) < V(lixe llw) (6)
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and
V(t.xe, X)) < —W(IX (D). (7

Note that the functionals V(t,x;,X;) can be applied to solutions of
RDEs with the initial functions x, from W[— h, 0]. However, for RDE
the stability results corresponding to continuous initial functions and
to absolutely continuous initial functions are equivalent [5].

2.2. Lyapunov-Razumikhin approach

To give a precise formulation of Razumikhin method, we
consider a differentiable function V: R x R" >R, and define the
derivative of V along the solution x(t) of (3) as

oV (t,x(t)) oV(t,x(t
CXO)  HEXO,

. d
V(t, x(t)) = aV(t, x(t)) =

Theorem 2 (Lyapunov-Razumikhin Theorem, Gu et al. [28]). Sup-
pose f : R x C[—h,0]—R" maps Rx (bounded sets in C[—h,0]) into
bounded sets of R" and that u,v,w:R, -»R, are continuous
nondecreasing functions u(s) and v(s) are positive for s>0 and
u(0)=v(0)=0, v is strictly increasing. The trivial solution of (3) is
uniformly stable if there exists a differentiable function V :Rx
R" - R™*, which is positive-definite, i.e.

u(lx]) < V(t,x) < v(|x]), ®
and such that the derivative of V along the solution x(t) of (3) satisfies
V(t,x(t) < —w(x(t)]) if V(t+0,x(t+60)) < V(t,x(t)) YOe[—h,O0].

If, in addition, w(s) >0 for s> 0, and there exists a continuous
nondecreasing function p(s)>s for s> 0 such that condition (9) is
strengthened to

V(t,x(t)) < —w(x(t)]) if V(t+0,x(t+6)) <pV(t,x(t)) YO e[—h,0],
)

then the trivial solution of (3) is uniformly asymptotically stable. If,
in addition, lims_, .. U(S) = oo, then it is globally uniformly asympto-
tically stable.

3. Stability of linear systems with discrete delays

Consider a simple linear TDS
Xx(t) =Ax(t)+Ax(t—1(t)), t=>to, (10)

where x(t) e R", 7(t) € [0, h] is a bounded time-varying delay. Here A
and A; are constant n x n-matrices. In this section, delay-
independent and delay-dependent conditions will be presented.
For simplicity only we consider a linear system with a single
discrete delay. The results can be easily extended to a finite
number of discrete delays.

3.1. Delay-independent conditions

The choice of Lyapunov-Krasovskii functional (that we will also
call Lyapunov functional) is crucial for deriving stability criteria.
Special forms of the functional lead to delay-independent and
delay-dependent conditions. In this section we consider the
delay-independent (i.e. h-independent) conditions for systems
with time-varying delays.

A simple Lyapunov functional for (10) has the form
t

V(t,x¢) = xT (OPx(t)+ /

t—17(t

xT(s)Qx(s) ds, (11)
)

where P>0 and Q >0 are n xn matrices. Note that V of (11)
depends on t because of 7(t). Note that in the case of constant
delay 7 = h, the functional in (11) is time-independent (i.e. V(x;)).
We further assume that the delay 7 is a differentiable function

with 7 <d < 1 (this is the case of slowly varying delays). It is clear
that V satisfies the positivity condition f|x(t)|? < V(t, x,) (for some
> 0). Then, differentiating V along (10), we find

V(t, %) = 2xT ()Px(t) +xT (£)Qx(t)
— (1=t (t—1)Qx(t—7).

We further substitute for x(t) the right-hand side of (10) and arrive at

. X(t)
V(t.x) < [X'(t) X (t—)W {X(t(_ 1)] < —elx®f
for some & > 0 if
ATP+PA+Q PA
= 0. 12
ATP —(1—d)Q} - 1

The LMI (12) does not depend on h and it is, therefore, delay-
independent (but delay-derivative dependent). The feasibility of
LMI (12) is a sufficient condition for the delay-independent
asymptotic stability of systems with slowly varying delays. The
feasibility of (12) yields the following:

(i) A and A+ A; are Hurwitz matrices,
(i) A~'A;/v/1=d is a Schur matrix, meaning that all its
eigenvalues are inside the unit circle [8].

From (i) it follows that the delay-independent conditions
cannot be applied for stabilization of unstable plants by a feedback
with delay. For such systems delay-dependent (h-dependent) con-
ditions are needed.

We next derive stability conditions by applying Razumikhin's
method and using the Lyapunov function V(x(t)) = x” (t)Px(t) with
P> 0, that satisfies the positivity condition (8). Consider the
derivative of V along (10). We will apply the Lyapunov-Razumi-
khin theorem with p(s)=p -s, where the constant p > 1. When-
ever Razumikhin's condition

pxT(HPx(t)—x(t—7(1)) Px(t—7(t)) = 0

holds for some p=1+¢ (e>0), we can conclude that, for any
q > 0 there exists a > 0 such that

V(x(t)) = 2xT (H)P[AX(t) + A1 X(t — 7(t))] < 2xT (H)P[AX(£)+ A1 X(t — 7(t))]
+q[pxT (HPx(t) —x(t —7(0)) Px(t —7(1))] < — alx(t)[?

if
ATP+PA+qP PA
ATP _qp| =% (13)

The latter matrix inequality does not depend on h. Moreover, it
does not depend on the delay derivative bound. Therefore, the
feasibility of (13) is sufficient for delay-independent uniform
asymptotic stability for systems with fast-varying delays (without
any constraints on the delay-derivatives).

The Krasovskii-based LMI (12) for d=0 is less restrictive than
the Razumikhin-based condition (13): the feasibility of (13)
implies the feasibility of (12) with the same P and with Q = qP.
Another advantage of the LMI (12) is that it is linear in the decision
variables P and Q, whereas (13) is bilinear in g and P. The latter
makes computation more difficult. One can treat (13) as an LMI
with the tuning parameter g > 0. However, till now only Razumi-
khin method provides delay-independent conditions for systems with
fast-varying delays.

Halanay's inequality [30, 1960] that extends the Razumikhin
method to the exponential stability can also lead to delay-
independent conditions for systems with fast-varying delays:

Let V :[to—h, +c0)—> R be bounded on [to—h, tp] and locally
absolutely continuous on [tg, c0). Assume that for some positive
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constants 6 < dg the following inequality holds:

Hal 2 V(t)+28,V(t)—25; sup V(t+60)<0,

-h<6<0

t>to.

Then

V(t)y<e 25t=t) sup V(ty+6),

-h<6<0

t>top,

where 6>0 is a unique positive solution of the equation
o= 50 —5] €26h.

We recover now the delay-independent stability condition (13)
by using Halanay's inequality. Choose V(t) = X" Px(t)(P > 0), where x
(t) satisfies (10), 261 =q > 0 and 269 = q(1+¢€)(e > 0). Then

Hal < V(t)+280V(t)— 26, V(t—1(t)) = 2xXT (t)P[AX(t) + A1 x(t — 7(1))]
+q(1+exT (HPx(t) — gx(t — 7(t))T Px(t — 7(t)).
Therefore, the feasibility of (13) guarantees that for small enough &

the Halanay inequality Hal < 0 holds meaning that the system (10)
is exponentially stable.

3.2. Delay-dependent conditions

The first delay-dependent (both, Krasovskii and Razumikhin-
based) conditions were derived by using the relation
t

X(t—7(1) = X(t) — /

Jt—z(t)

x(s)ds (14)

via different model transformations and by bounding the cross
terms [44,59,42]. The widely used 1st Model Transformation,
where (14) is substituted into (10) with x(s) substituted by the
right-hand side of (10), has the form

t
X(t) =[A+A1x(t) —Aq /t (U[AX(S)+A1X(S—T(S))] ds. (15)

Note that this transformation is valid for t—7(t) > to. The latter
system is not equivalent to the original one possessing some
additional dynamics [29,38]. The stability of the transformed
system (15) guarantees the stability of the original one, but not
vice versa.

The first delay-dependent conditions treated only the slowly
varying delays with 7 <d <1, whereas the fast-varying delay
(without any constraints on the delay derivative) was analyzed
via Lyapunov-Razumikhin functions.

For the first time, systems with fast varying delays were
analyzed by using Krasovskii method in [20], via the descriptor
model transformation introduced in [7]:

t
XO=y(0, 0= —yO+A+AxO-A [y ds 16)

The descriptor system (16) is equivalent to (10) in the sense of
stability. In the descriptor approach, x(t) is not substituted by the
right-hand side of the differential equation. Instead, it is consid-
ered as an additional state variable of the resulting descriptor
system (16). Therefore, the novelty of the descriptor approach is
not in V = xT(6)Px(t)+---(P > 0), but in V, where (d/dt) [x" (t)Px(t)] is
found as

%[XT(t)Px(t)] =2x"(t)Px(t)+ 2[x" ()P} + X" (t)P}]
t
x| %O+ (A+ADX(O) — Ay /

t—1

Xx(s) ds}, a7
(

and where P, e R™" and P; € R™" are “slack variables”. This leads
to V < —e(1x(t)> + |x(1)|?), €> 0.
The advantages of the descriptor method are

® |ess conservative conditions (even without delay) for uncertain
systems,

® “unifying” LMIs for the discrete-time and for the continuous-
time systems, having almost the same form and the same
advantages [21],

® simple conditions in terms of LMIs can be derived for neutral
type systems (these are systems with the delayed highest-order
state derivative), where the LMIs imply the stability of the
difference operator [8],

e efficient design is obtained for systems with state, input and
output delays by choosing P3=e&P, with a tuning scalar
parameter € [70],

® simple delay-dependent conditions can be derived for diffusion
partial differential equations [17].

Most of the recent Krasovskii-based results do not use model
transformations and cross terms bounding. They are based on the
application of Jensen's inequality [28]:

OdJT Rep(s) d. —1 Og{)T dsR ’ d
>
./711 (S)RP(s) S_h,/,h (s)ds ./7h¢(s) s,
V¢ el[—h,0], VR>0. (18)

3.2.1. Simple delay-dependent conditions

First Krasovskii-based LMI conditions for systems with fast-
varying delays (without any restrictions on the delay-derivative)
were derived in [20] via the descriptor method. We differentiate
xT(t)Px(t) as in (17). To “compensate” ff_m))k(s) ds consider the
double integral term [20]:

Vi) = / ’ / " XT(R%() ds db, R >0, (19)
~hJe+o
The term Vi can be rewritten equivalently as
Vilke) = /t [h(h+s—t))'<T(s)R>'<(s) ds. 20)
Differentiating Vr(x;), we obtain

t
%VR(X[)=— / xT(s)Rx(s) ds+ hxT (t)Rx(t)
Jt—h
ot
=— / xT(s)Rx(s) ds+hx" (t)Rx(t)
Jt—1(t)

t—1(t)
- / xT(s)Rx(s) ds . 21
Jt—h

will be ignored

We apply further Jensen's inequality

ot ot ot
- / xT(S)Rx(s)ds < 1 / xT(s) dsR X(s) ds.
Jt—z hJe—ze

Jt—z(t)
Then, for the Lyapunov functional
V(x(0), %) = X (OPX(t) + Vr(%c)

we find

%V(x(t),xt) < 2x"(HPx(t) +hx" (HRX(t)

t t
_1 xT(s)dsR Xx(s) ds
h, t—1(t) Jt—1(t)
t
+2[XT (OPL+XT(OPIIA+ADx(H) — Ay / x(s) ds
t—71

—XO1 <" (Ot < —e(x®+1X(1)?), €>0,
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where 7(t) = col{x(t), X(t), (1/h) [} X(s) ds}, if

® P-PY+(A+A)'P; —hPiA,
Vo= = —P3;—PY+hR  —hPiA; | <O,
* * —hR
® =Py A+A)+(A+A) P, (22)

As it was understood later [17,25,69] the equivalent delay-
dependent conditions can be derived without the descriptor
method, where x is substituted by the right-hand side of (10)
and the Schur complement is applied further.

Note that ¥, <0 yields that the eigenvalues of hA; are inside
the unit circle. In the example x(t) = —x(t —7(t)) with A; = —1, the
simple delay-dependent conditions cannot guarantee the stability
for h > 1, which is far from the analytical bound 1.5. This illustrates
the conservatism of the simple conditions.

3.2.2. Improved delay-dependent conditions

The relation between x(t—7(t)) and x(t—h) (and not only
between x(t—z(t)) and x(t)) has been taken into account in [32].
The widely used by now Lyapunov-Krasovskii functional for delay-
dependent stability has the form

t
V(t, xe, X¢) = xL(H)Px(t) + / th(s)Sx(s) ds
t—

t

0 t
h <" (5)Rx(s) ds dO T ds,
+ /_h/Hex (S)Rx(s) ds +/t_m)x (5)Qx(s) ds
(23)

where P>0,R>0,5>0,Q >0. This functional depends on the
state derivative. Moreover, this functional with Q=0 leads to
delay-dependent conditions for systems with fast-varying delays,
whereas for R=S=0 it leads to delay-independent conditions
(for systems with slowly varying delays) and coincides with (11).
The above V with S=0 was introduced in [20], whereas the
S-dependent term was added in [32].
Differentiating V given by (23), we find

%v < 2xT(t)Px(t)+ WX (R (1)

ot
—h / xT(5)Rx(s) ds+xT(H[S+ QIx(t)
Jt—h
—xT(t—h)Sx(t —h) — (1 —d)x" (t —7(£))Qx(t — 7(t)) (24)
and employ the representation

t t—1z(t)
—h/t_h)'cT(s)R)'c(s) ds = —h/t_h xT(s)RX(s) ds

¢
—h

t—1(t)

xT(S)RX(s) ds. (25)
Applying Jensen's inequality (18) to both terms in (25) we arrive at

t
—h/ xT(s)Rx(s) ds < ———elRe; —
t—h

h T
0 e,Re;, (26)

h
h—1(t)
where
e =X(t)—x(t—7(t)), ey =x(t—7(t))—x(t—h).

Here, for 7=0 and 7 = h, we mean the following limits:

o h oo T o
1(1[1>T0%61Rel = hr(ltl)rilor(t)x (HRx(tH)=0
and

. h 4
A= Ree =0
Further, in [32] the right-hand side of (26) was upper-bounded

by —elRe; —elRe; that was conservative. The convex analysis of [60]
allowed to avoid the latter restrictive bounding. Similar to [65],

we reformulate the result of [60] in a more convenient form for the
Lyapunov-based analysis:

Lemma 1. Let Ry e R™*™ ... Ry e R™*™ be positive matrices. Then
for all ey e R™,...,ey e R™, for all a; >0 with Ya; =1 and for all

SjeR™ M i=1,.. N, j=1,...,i—1 such that
RSl 27
% R| = @7
the following inequality holds:
er7"[Ri Siz - Sinjr[e
N1, ey ¥ Ry - Son|| e
gl Rie=1 * % . Dl 28)
en sk ES -+ Ry en

By using Lemma 1 we arrive at the following statement:

Proposition 1. Given h>0, d [0, 1). If there exist n x n matrices
P>0,5>0,Q>0, R>0 and Sy, such that the following LMIs are
feasible:

ATP+PA+S+Q—-R Si  PA{+R—-S;», hA'R
. _c_ _cT
% S—R  R-SI, oT “o 29
£ & (1533 hAlR

L * * * —R

R Si»

P >0, (30)

where @33 = —(1-d)Q—2R+S1, +S¥2, then the system (10) is
uniformly asymptotically stable for all delays z(t) € [0, h] such that
7(t)<d. Moreover, if the above conditions hold with Q=0 (or,
equivalently, with d=1), then the system is uniformly asymptotically
stable for all fast varying delays t [0, h].

Proof. Differentiating V given by (23), we find (24). Let the LMI
(30) be feasible. Then by Jensen's inequality and Lemma 1

t
—h/t_hXT(s)R)'c(s) ds
€1 ! %R 0 €1
=" e, % h%%R e
T
e R Sipl|er
_[ez} [* RHez], 31)

Denote 7(t) = col{x(t), x(t —h),x(t —z(t))}. Then employing (24),
(31) and substituting for x(t) the right-hand side of (10), we arrive at

IA

d
a =n'O®n
+nT(t)[hRA O hRA;JR™'[hRA 0 hRA{15(t) 32)
where
ATP+PA+S+Q—R 0 PA;+R
D= % —S—R R )
% % —(1-d)Q—-2R

Applying the Schur complement to the last term in (32), we find that
(d/dt)V < —eg|x(t)|?> for some & > 0 if (29) is feasible. ©

3.2.3. Interval or non-small delay

The above conditions guarantee the stability for “small delay”
7(t) € [0, h]. Many applications motivate the stability analysis for
interval (or non-small) delay z(t) € [hg, h1] with hg >0 (see e.g.
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[10,32,39]). Keeping in mind that (10) can be represented as

t—ho

X(t):Ax(t)+A1x(t—h0)—A1/ x(s) ds,

t—1(t)
the stability of (10) can be analyzed via Lyapunov functionals of
the form [10]

V(t, X, X)) = Vn(Xe, X))+ V1 (8, Xe, Xo),

where V, is a “nominal” functional for the “nominal” system with
constant delay

X(t) = Ax(t) +A1x(t — hg)

and where

t—ho
V= / xT(5)S1x(s) ds+ /
t—hy t

t—ho
xT(5)Q1x(s) ds
—17(t)

“hy gt
+(h1*ho)/ / xT(s)Ryx(s) ds d@,
J—hy Jt+0
S1>0, Q;>0, R;>0.

In the case where the nominal system is stable for all constant
delays from [0, hg], V,, can be chosen in the form of (23), where
h = hy and Q=0. Then the stability conditions in terms of LMIs can
be derived by using arguments of Proposition 1.

3.3. Time-dependent Lyapunov functionals for sampled-data systems

Consider the sampled-data system given by (1), i.e.
x(t) =Ax(t)+A1x(ty), x(t)eR", k=0,1,..., (33)

where A; = BK. It is assumed that the sampling intervals may be
variable and uncertain (e.g. due to packet dropouts in networked
control systems). However, it is assumed that t; ., —t, <h, where
h >0 is a known upper bound.

Till [12] the conventional time-independent Lyapunov func-
tionals V(x¢, x;) for systems with fast-varying delays were applied
to sampled-data systems [18]. These functionals did not take
advantage of the sawtooth evolution of the delays induced by
sampled-and-hold. The latter drawback was removed in [12],
where time-dependent Lyapunov functionals (inspired by [56])
were introduced for sampled-data system.

Lemma 2. Let there exist positive numbers a, # and a functional V :
R x W[—h,0] x L[—h,0]- R, such that

alpO)? <V(t,p.p) < Bl PII},.

Consider the function V(t) = V(t, X, X;), which is continuous from the
right for x(t) satisfying (33), absolutely continuous for t+t, and
which satisfies

Jim V(t)y=V(ty). (34)
~h

Ifalong (33) (d/dbt)V(t) < —elx(t)?, t # t; for some scalar € > 0, then
(33) is asymptotically stable.

Consider the following simple Lyapunov functional:

Vs(t, x(t), X¢) = V(t) = xT (6)Px(t)+ Vy(t, %), P>0, (35)
where
t
Vot %0) = (h—7(t)) / T (S)UK(s) ds,
Jt—1(t)
T(t):t—tk, U=>0. (36)

The discontinuous term Vy does not increase along the jumps
since Vy >0 and Vy vanishes after the jumps because x(t);_, =
X(t=7(t) ., i-€. (34) holds.

Since (d/dt)x(t—z(t)) = (1 =7 (t))x(t —7(t)) = 0, we find
t
ﬂvu(t,xt) =— / xT($)Ux(s) ds+ (h—t(t)x" (HUX(L)
dt t—17(t)
and thus

d— T t
g7/ (O = 2% (OPx(D) - /

Jt—1(

xT($)Ux(s) ds—+(h—z(t)xT (UX(L).
)

(37)
Denoting
t
- % t—1(t)

we understand by vy - the following: limg ., ovi=x(t).
We apply further Jensen's inequality

2 x(s) ds,

t
/ xT(9)Ux(s) ds = z(t)v] Uvy,
t

—7(t)
and the descriptor method, where
0 =2[x" (OP; +X (OPIIA+ADX(O — (DA v —X (D)),

with some n x n matrices Py, P3, is added to (37). Setting #,(t) =
col{x(t),x(t),v1}, we obtain that (d/dt)V(t)<ni(®)¥sn(t) < —
e|x(t)|? for some & > 0 if

QD]] P—Pg—‘r(A—i—A] )TP3 —T(t)PgAl
Yi=| % —P3—Pl+(h—7(t)U —7(t)PIA; | <O,
* * —7(HU

where @q; :Pg(A+A1)+(A+A1)TP2. The latter matrix inequality
for 7(t)—0 and 7(t)— h leads to two LMIs:

@11 P—Py+(A+A1)Ps

0
«  —Ps—Plynu |~

@11 P—PL+(A+A))'Ps —hP}A,

% —P3—P} —hPiA; | <O. (38)
% % —hU

We arrived at the following:

Proposition 2. Let there exist n x n matrices P> 0, U > 0, P, and P;
such that the LMIs (38) are feasible. Then (33) is asymptotically stable
for all variable sampling instants t;, 1 —t; <h.

The conditions of Proposition 2 cannot be applied to (33) with
A; from uncertainty polytope, since in the matrix ¥; the matrix A;
is multiplied by z(t). Moreover, additional terms in the Lyapunov
functional may further improve the results. See [12,63] for various
time-dependent construction of V. A different discontinuous in
time Lyapunov functional was suggested in [46] which is based on
Wirtinger's inequality [49]:

Let z(t): (a,b)—R" be absolutely continuous with zZ e L;[a, b]
and z(a) = 0. Then for any n x n matrix W > 0 Wirtinger's inequal-
ity holds:

b 4b—ay? [P, .
[ #ewae de <0 [T owze de (39)
a a
Consider the following Lyapunov functional:
VIt xe, %0 =X (OPXO) +Vw(txe, %), P>0,

where the Wirtinger-based term is given by

t
Vi (t, xe, %) = b / xT(s)Wx(s) ds

Ly

][2 t T
T | =X Wik —xtu) s,
k
W >0, [k <t<tpin, k=0,1,2,...
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Since [x(s)—X(ty)];s = ¢, = 0, by Wirtinger's inequality (39) Vy > 0.
Moreover, Vi vanishes at t = ¢, i.e. the condition (34) holds.
Setting v(t) = x(t;) —x(t) and differentiating Vi, we have
2
%vw — 2T (O Wx(t) f%vT(t)Wv(t).

Then we arrive at the following stability condition (that recovers
result of [49,53] derived via the small-gain theorem):

PA+AN+A+AD'P 2PA;  (A+AN'W
% W %A?R <0, P>0, W>0.
% sk -Ww

Example 1. Consider the scalar system
X(t): —X(ty), kat<tk+], ’(:O,l,... (40)

We remind that the system x(t) = —x(t—7(t)) with constant delay
7(t) is asymptotically stable for 7(t) < /2 and unstable for z(t) > 7 /2,
whereas for the fast varying delay it is stable for 7(t) < 1.5 and there
exists a destabilizing delay with an upper bound greater than 1.5 [41].
The latter means that all the existing methods, that are based on time-
independent Lyapunov functionals, corresponding to stability analysis
of systems with fast varying delays, cannot guarantee the stability for
the samplings which may be greater than 1.5. Conditions of
Proposition 1 guarantee asymptotic stability for all fast varying delays
from the interval [0, 1.33].

By using discretization it can be easily found that the system
remains asymptotically stable for all constant samplings less than
2 and becomes unstable for samplings greater than 2. By Wirtinger-
based LM, for all variable samplings up to 1.57 the system remains
asymptotically stable. By Proposition 2 for all variable samplings up to
1.99 the system remains asymptotically stable.

The Wirtinger-based LMI is a single LMI with fewer decision
variables than (38). More important, differently from the Lyapunov
functionals of [12,63], the extension of the Wirtinger-based
Lyapunov functional to a more general sampled-data system [46]

X(t) = Ax(t)+BKx(t, —1), t e[ty tiiq) (41)

with a constant delay 7 > 0 leads to efficient stability conditions
[46]. Note that taking into account (in an elegant and efficient
manner) the special structure of delay in (41) with variable 1 =1,
is still an open problem. Such kind of systems arises in networked
control systems [23,45].

Discontinuous in time Lyapunov functionals appeared to be
efficient for hybrid TDSs [47,48].

4. General Lyapunov functionals for LTI TDSs

A necessary condition for the application of the simple Lyapu-
nov-Krasovskii functionals considered in the previous sections is
the asymptotic stability of (10) with 7=0. Consider e.g. the
following system with a constant delay:

1 t 00 t—h t) e R?
]X(H[l O}X(f ), X(t) e R”.

X = {—2 0.1

This system is unstable for h=0 and is asymptotically stable for
the constant delay h e (0.1002,1.7178) [28]. For analysis of such
systems (particularly, for using delay for stabilization) the simple
Lyapunov functionals considered in the previous sections are not
suitable. One can use a general Lyapunov functional

0
Vi) = x(O P()+ 247 (6) [ QN+ dE

0 0
+ / / X' (t+5)R(s, Ex(t+&) ds d& (42)
—nJn

(that corresponds to necessary and sufficient conditions for
stability). However, this leads to a complicated system of PDEs
with respect to P, Q, R (see e.g. [50]). LMI sufficient conditions via a
general Lyapunov functional and discretization were found by
Gu et al. [28]. See also recent results via augmented Lyapunov
functional and improved integral inequality by Seuret and
Gouaisbaut [64].

4.1. Necessary stability conditions and general Lyapunov functionals

Let the system with a constant delay h > 0
X(t) =Ax(t)+A1x(t—h), x(t)eR" (43)

be asymptotically (and thus exponentially) stable. Given an n x n
matrix W > 0, we look for Vi, such that

%Vw(x[) = —x"(OWx(), W >0, (44)

and Vy(0)=0, where x(t)=x(t,¢p) is a solution of (43) with
Xo = ¢ € C[—h,0]. Note that

0
XO=XOPO+ [ X(t—0—h®) do.

where X(t) is the fundamental matrix of (43). The latter matrix
satisfies (43) and also

Xt =XMOA+X(t—hA;, XO)=I, X({t)=0 (t<O0).

Since (43) is exponentially stable, the fundamental matrix expo-
nentially converges to zero in the sense that |X(t)| < ce ~ %t for some
c>1and a>0.

Then

'/0 aVW(xr) dt = _/o x (H)Wx(t) dt.
Since Vi (xo) =0, we obtain [;°(d/dt)Vw(x;) dt = —Vw(¢) and
0< V()= / ” xT(OWx(t) dt
0
=" (O Uw(0)h(0)
0
2470 [ - U(=h—0)Aip(6) o

0 0
+/ ¢T(92)A¥/ Uw (62 —601)A1(01) dO; d6s,
—h —h

where

Uw(0) = /0 ” XT(OWX(t+6) dt < co. (45)

Note that the latter integral converges due to the exponential
convergence of X(t) to zero.

Since for the autonomous system (43) x(s+t, ¢p) = X(s, x(t+-, P)),
we have

Ve = [+ pWKs ) ds
_ / X0, pyWx(O, ) d.
t

Differentiating in t the latter equation we derive (44). Given W > 0,
it is easily seen that Vyy is quadratically upper bounded: there exists
B> 0 such that Vy(¢h) <BlpliZ for some > 0. However, as was
shown in [33], this functional has a cubic lower bound.

A more general Lyapunov functional was introduced in [40]

V(xe) = —xT(O)W1x(t) — X" (t — h)Wox(t — h)

0
- / X (t+5)Wsx(t+5) ds (46)
“h
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with some W;>0, i=1,2,3, leading to the following complete
Lyapunov functional

0
V() = ¢ OU0)h(0) + 29" (0) / U(=h=6)1h6) d6
0 0
+/ ¢T(92)A¥/ U@, —61)A1¢(61) O, db,
—h —h
0
+ / §TOWa (h+OWs)pe6) do, @7

where U() =Uw, 4w, +nw, (©)-

It was proved in [40] that if the system (10) is asymptotically
stable, then the complete Lyapunov functional has a quadratic
lower bound V(¢)=> e|¢(0)|> for some £>0 and satisfies the
derivative condition (46). Moreover, the Lyapunov matrix Uy can
be found from the boundary value problem for a matrix linear
ODE. Therefore, the complete Lyapunov functional can be found by
fixing some nxn matrices W;>0,i=1,2,3, and solving the
resulting boundary value problems for the ODE and substituting
the resulting U into (47).

In the case of multiple discrete delays, the complete Lyapunov
functional has a form similar to (47). However, only in the case of
commensurate delays the corresponding Lyapunov matrices can
be found from the boundary value problems for ODEs.

Remark 1. The complete Lyapunov functional can be used for the
robust stability analysis of linear uncertain systems provided the
nominal LTI delayed system is asymptotically stable. See [40] for
systems with uncertain matrices, [39] for systems with non-small
slowly varying delays, and [11,16] for systems with non-small fast-
varying delays. Note that for application of complete Lyapunov
functionals one has to fix some matrices (like W; and W, above),
which may lead to conservative results. An interesting application
of complete Lyapunov functional to explicit necessary and suffi-
cient stability conditions was suggested recently in [54]. See [37]
for exhaustive treatment of complete Lyapunov functionals.

4.2. About the discretized Lyapunov functional method

As follows from the previous subsection, a general quadratic
Lyapunov functional corresponding to necessary stability condi-
tions for (43) with a quadratic lower bound has a form of

0
Vi) = X (0)PX(E)+ 247 (6) / QX+ dE

0 0
T
+/4/43< (t+95)R(s, &) ds x(t+ &) dE

0

[ Ao de. (48)
h

where 0 < P e R" and where n x n matrix functions

QO.REM=R"1.&) and SE) =5

are absolutely continuous. For the sufficiency of (48), one has to
formulate conditions for V > ag|x(t)|2, ag >0 and V < —a|x(t)%,
a>0.

LMI sufficient conditions via general Lyapunov functional of
(48) and discretization were found in [26], where Q(&),R(&,n) =
RT(5,£) and S(&) =ST(£) e R™" were continuous and piecewise-
linear matrix-functions. The resulting LMI stability conditions
appeared to be very efficient, leading in some examples to results
close to analytical ones. For the discretized Lyapunov functional
method see Section 5.7 of [28].

Till [9] no design problems were solved by this method due to
bilinear terms in the resulting matrix inequalities. The latter terms
arise from the substitution of x(t) by the right-hand side of the
differential equation in V. The descriptor discretized method

suggested in [9] avoids this substitution. The descriptor discretized
method was applied to state-feedback design of H,, controllers for
neutral type systems with discrete and distributed delays [22] and
to dynamic output-feedback H,, control of retarded systems with
state, input and output delays [71]. For differential-algebraic systems
with delay, the corresponding general Lyapunov-Krasovskii func-
tionals were studied in [27].

4.3. Simple, augmented and general Lyapunov functionals

Consider a modified complete Lyapunov functional as suggested
in [13]

0
V(x) = —x (OW;x(t)—x"(t — h)Sx(t—h) — / xT(t+5)Rox(t+5) ds
h

(49)

with some W, > 0,S > 0,Rq > 0, where x(t+5) in the integral term
of (46) is replaced by x(t+s) and W3 = Rq. This functional is defined
for solutions of (43) with absolutely continuous initial functions
¢ € W[—h, 0]. By changing the order of integrals we have

%) 0
/ / K (t+$)RoX(t+5) ds dt
0 —h
) 0
—h / XT(5)RoxX(s) ds+ / (s+ X" (S)RoX(s) ds.
0 —h
The form of the functional

Vi, () = /0 &7 (s, pYRoX(s. ) dis (50)

can be found by following the arguments of [11].
Denote

Uy (@) & /O "X (ORoX (£+6) dt
_ / CIATXT (6 + ATXT (6 — B)RoX(E+ DA+ X(E+O— Ay dt,
0

OeR.
Let Ug, be defined by (45) with W = Ry. It can be shown that

Vi, (@) = /0 &7 (s, RoX(s. ) dis
0
= ¢ OUL0)p(0)+24"(0) / Ui~ h-0 ) dO
-0 T -0 - ~
+ / & (O)AT / U (02— 00)A1p(0r) dO; dO,+ V.,
—h —h

where
0
V= [ #7OA7R [A1h02)+ 20" P 0)
S
+ / APC=O0A, () d¢91]} d6,.
—h
Thus the functional defined by (49) has a form
0
V)= 4" OUOPO+24"0) [ U(~h-0116) o
0 T T 0 N
[ #7OA] [ UO:—00m1061) 461 o,
“n “h

0 0 (0. . _
n / " (O)Sp(O)dO + / / $" (S)Roh(s) ds dO+hV,
—h —~hJO
(51)
where U(0) = Uy, +s(0)+hU; (). The following can be proved [13]:

Proposition 3. Let the system (43) be asymptotically stable. For all
n x n matrices W1 > 0,S > 0 and Rq > 0, and for small enough & > 0,
the Lyapunov functional (51) satisfies (49) and V(¢) > €|¢(0)|%.
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A general quadratic Lyapunov functional corresponding to (51)
has a form of

0
Vi) =X (0Px(0)+ 247 (1) [ QX+ dE

0o ,0 "
o[ FersRs o xerdes [ A5 dg

0 t
* /_ , /t +05‘T(5)Rof<($) ds do, (52)

where P>0,S>0,Ry>0. Matrix-functions Q(&)eR™" and
R, 1) =R"(n,&) e R™" are absolutely continuous. For the sufficiency
of (52), one has to formulate conditions for V > B|x(t)?, #> 0 and
V < —ax®)?, a>0.

Choosing in (52) R=Q =0 and replacing Ry by hR we arrive at
the simple Lyapunov functional (23), where Q=0.

Consider now (52) with constant R=Z and Q, and replace Rqg by
hR. Then we arrive at the augmented Lyapunov functional of the form

‘ x 1'rp Q x(0) t
V(X¢,Xt) = ,['fhx(s)ds] L{ Z}[,f}thx(s)ds +/t7hXTSXdS
0
+h/h/t0xT(s)R5<(s) ds dé,
—hJt+
P Q
L{ Z}>0’ S>0, R>0. (53)

Note that the term Q # 0 in (53) allows us to derive non-convex
in h conditions that do not imply the stability of the original
system with h=0. A remarkable result was obtained by Seuret and
Gouaisbaut [64] for systems with constant discrete and distributed
delays: by deriving an extended integral inequality, which includes
Jensen's inequality as a particular case, and applying the augmen-
ted Lyapunov functional (53) the authors arrived at LMIs that may
guarantee the stability of systems which are unstable with the
zero delay (i.e. in the case of “stabilizing delay”).

5. Lyapunov functionals for systems with distributed delays
Consider a linear system with the distributed delay
0
)'c(t):Ax(t)+Ad/ Xx(t+s)ds, x(t)eR", hy>0, (54)
—hg

where A and Ay are constant n x n matrices, hy <oco. We study
stability in two cases: (1) A and A+hyA; are Hurwitz, (2) A or
A+hyA,4 are Hurwitz.

In the 1st case the delayed term can be treated as a disturbance
by using the following Lyapunov functional:

Vo(xe) =x"(OPX()+ Vg, (X0),
0 t
Vg, () = hy / / x'(t)Ryx(t)dr d, P> 0,R;>0.
—hg Jt+6

In the 2nd case, keeping in mind that (54) can be represented in
the following form:

t
X() = (A+hgAg)x(t)+Aq /ti \ [x(s)—x(0)] ds, (55)

we have to “compensate” the perturbation given by the integral
term in (55). This can be done by adding to Vj a triple integral term
as suggested in [2,68]

V(xe, Xe) = Vo(xe)+ Vzd (X¢),

-0 0 pt
Va, (o) = / / / X1(5)Z4%(s) ds dA d6, Zy> 0.
J—hg JO Jt+A

Then after differentiation we have

2
%V(xf, xp) = 2xXT(OPX(t) + h3x" (HRx(t)+ %xT(r)zdx(t)

t 0 t
—hy / xT()Ryx(s) ds — / / x7(5)Zyx(s) ds dO
t—hy —hy Jt+6

Application of Jensen's inequality to f[ﬁ hy xT(s)Rgx(s) ds and the
extended Jensen's inequality to the double integral term [68]

0 t
- / / xT(s)Zyx(s) ds dO
—hy Jt+0
2 0 t T 0 t )
- dsdf |Z ds do
= hﬁ(/—hd/m-ex () s ) d(/_hd/t+9x(s) ’ >

2 't 't
— 2hxro- [ W d)Z(h - d)
h§< &) ./tfhd"(s) 5) 24 ( haxct) /de(s> s

leads to the LMI stability condition for the distributed delay
system (54):
PA+ATP+hiR;—2Zy PA+EZs  A'Z4
* ~Ri—3Za AiZs | <0, (56)
d
% % —h%Zd

Example 2. Consider the system (54) with

4_[02 07 , -1 0 57
_{0.2 0.1}’ "’_{—1 —1}’ (57)

where A is not Hurwitz. Here A+ hyA, is Hurwitz for hy > 0.2. By
the LMI condition (56) the system (57) is asymptotically stable for
any hy €[0.2001,1.6339].

Remark 2. Lyapunov functional constructions of this section can
be easily extended to systems

0
X(t):Ax(t)+/ Ag(S)X(t+s)ds, x(t)eR", hy>0
—hyg

with variable n x n matrix kernels A € L1(0, hy). Thus, the following
Lyapunov functional with a double integral term can be used [19]:

0 t
V(x) = x"(t)Px(t)+ hy / . /[ X" (D)AL(S)R4A4(s)x(7) dr ds,
—Ng +s

where P > 0,R; > 0, leading to the following LMI:

PA+ATP+hy [°) Aj(5)R4As(s)ds P } 0
< U.
% —Ry

In the latter LMI the decision variable R; appears inside the integral.
In order to verify the feasibility of this LMI by using MATLAB, one can
assume that R; = ryl (which is restrictive), where r4 > 0 is a scalar.
Another solution for the stability analysis in the case of variable
kernels has been suggested in [67], where it is assumed that
Aq(s)= X" ,AgKi(s) with constant matrices Ag € R™" and scalar
kernel functions Ki(s).

5.1. Systems with infinite delays

A linear system with infinite delay has a form
X(6) = AX(E) + Ag /O " KOx(t—6) db. (58)
where x(t) e R" , A,Aq € R™"™ are constant matrices. It is supposed

that the scalar kernel function K € L]0, co) satisfies the inequality
Jo~ IK(0)] dO < co. A solution of (58) is uniquely determined for the
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uniformly continuous initial function ¢ € C(—oo,0]. This solution
continuously depends on ¢ (see [41, Theorem 3.2.3]).

Assume that A or Ag=A+Ay J; K(6)d6 are Hurwitz. The
following Lyapunov functional can be applied to stability analysis
of (58) [67]:

V(t) = Vp(t)+ Vg, (D) +Vz,(0),
with

Vp(t) = xT(OPx(t) (59)

fe's) t
Ve= [ [ KO ©Rxs) ds db,

oo pO+1 gt
Vz,(t) = ' /0 ' /0 [ B IK(O)1XT(5)Z4%(s) ds dA dé,

where P,R; and Z; are positive n xn matrices. Application of
appropriately extended Jensen's inequalities leads to efficient
LMI stability conditions [67].

A particular class of systems with infinite delays are systems
with gamma-distributed delays K(0) = AR JTN(N—1)!, where
T>0 and N=1,2,... are parameters of distribution. Note that
JooK(§)dé=1. The corresponding average delay satisfies [;° &K
(§) d§ =NT.

Gamma-distributed delays can be encountered in the problem
of control over communication networks, in the population
dynamics [4] and in the traffic flow dynamics [51]. For gamma-
distributed delays by using augmented Lyapunov functionals, LMIs
for the case of “stabilizing delays”, where A and Ag may be non-
Hurwitz, have been derived in [67]. The latter stability problem is
motivated e.g. by the traffic flow model on the ring [55], where
A=0 and where the zero eigenvalue of Ay corresponds to the
vehicles moving with the same velocity.

6. Stability of nonlinear systems

Till now the stability conditions for linear TDSs have been
derived. This section discusses stability results for some classes of
nonlinear systems.

Consider the following autonomous RDE:

X(t)=Lx +g(x:), x()eR", t>0, (60)

where L : C[—h,0]—R" is a linear bounded functional, g : C[—h, 0]—»R"
is a locally Lipschitz continuous function that satisfies

g <pllylic)iylc YyeCl—h,0],

where /3 is continuous and /(0) = 0.
The linear system

x()=Lx;, t>0 (61)

is called the first approximation with respect to the original
system (60). In fact, the linear system (61) can be considered as
a linearization in the neighborhood of the trivial solution of the
nonlinear system x(t) =f(x;) with a smooth f such that f(0)=0.
As for non-delay systems, the stability of the nonlinear TDS with
the asymptotically stable first approximation can be derived either
by the (first) Lyapunov method with the quadratic Lyapunov
function/functional or by using Gronwall's inequality. By using
Gronwall's inequality the following can be proved [13, Proposition
3.17]:

Proposition 4. If the linear system (61) is asymptotically stable,
then the nonlinear system (60) is asymptotically stable.

In the critical case, where some characteristic roots of (61) are
on the imaginary axis, whereas all the others have negative real
parts, either the direct Lyapunov method or the center manifold
theory can be applied [31]. Thus, in the system

x(t)= —ax>(t)—a;x*(t—h), a>0

the first approximation x(t) = 0 has the zero eigenvalue. This is the
critical case, where no conclusion can be done from the analysis of
the first approximation. Application of the Lyapunov functional

ot
V(xe) = XZ—(;)+ /tih X5(s) ds
leads to the following result [31]: the system is asymptotically
delay-independently stable for |a;| < a.

Lyapunov-based methods for asymptotic stability of linear
systems considered in this paper can be usually extended to some
quasilinear systems with e.g. Lipschitz nonlinearities. For example,
consider the system

X(t) = Ax(t) +A1x(t —7(b)) +g(t, x(t), Xx(t —7(t)), x(H)eR", t>0,

(62)

with a continuous g : R x R" x R"—R", which is locally Lipschitz
continuous in the second and the third arguments and satisfies for
all t the inequality

X
lg(t,x,y)1* < [XT yT}M[y] VXY e R, (63)

where 0 <M e R™" and M < fy1, B, € R.;. Then, by using S-proce-
dure together with the inequality (63) one can arrive to LMI
condition for the global asymptotic stability of the quasilinear
system (62).

Delay-dependent conditions have been extended to some
classes of nonlinear systems (see e.g. [14]) Consider next a class
of systems, affine in control u(t) e R™

X(6) = AX(O)X(t)+Bx(O)u(t), (64)

where x(t) e R", A and B are continuously differentiable matrix-
functions. Given a state-feedback

u(t) = Kx(t—1(t)), KXx)=kx)x, (65)

where k : R" - R™" is a continuously differentiable function and
where 7(t) € [0, h] is the unknown piecewise-continuous delay that
often appears in the feedback. We extend the relation x(t —z(t)) =
x(t)— _]'LT([) X(s) ds to the nonlinear case as follows:

ot
Kx(t— () = K(x(t) — /

—17(

Kx(x(s))x(s) ds,
t)

where Ky =[(d/dx1)K...(0/dx,)K], and represent the closed-loop
system (64)-(65) in the form

t
X(t) = AX()X(t) + B(X(£)K(x(t)) — B(x(t)) /t o Kx(x(s)x(s) ds.  (66)

Note that (66) is equivalent to (64)-(65). The following Lyapunov
functional

V(e %0) = X (OPX(D) + /t " Dis xe, k) ds,

D(s, X, X¢) & / th(§>1<§ (X(ENRK(X(E))X(E) dE, P>0, R>0

S

leads to a state-dependent matrix inequality [14]. The feasibility of
state-dependent LMIs may be studied by using a convex optimiza-
tion approach (sum of squares) for nonlinear systems [58].

If a nonlinear system is locally (not globally) stable, it is of
interest to find a domain of attraction. The direct Lyapunov
method provides constructive tools for finding estimates on the
domains of attraction of nonlinear TDSs [3].

7. The input-output approach to stability

Till now we have applied the direct Lyapunov approach to
the stability analysis of (10). An alternative approach is the
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input-output approach that is based on the representation of the
original system as a feedback interconnection of some auxiliary
systems with additional inputs and outputs and application of the
small-gain theorem. These two approaches sometimes lead to
complementary results, improving each other and giving ideas for
further improvements. The input-output approach was introduced for
nonlinear time-varying finite-dimensional systems by Zames [72], it
was extended to continuous-time linear systems with constant delays
in [34,73] and with slowly varying delays in [28]. This approach was
generalized to linear continuous-time with fast-varying delays and to
discrete-time systems in [21,35,66].

The input-output approach is applicable to stability and to
L»-gain analysis. Note that in the feedback interconnection of the
systems, the initial conditions are supposed to be zero. Therefore,
this approach cannot be directly applied to the bounds on the
solutions of the original system, where the initial state may be
non-zero (see e.g. [15] for related solution bounds depending on
the initial conditions). For solution bounds the direct Lyapunov
method seems to be preferable.

Consider first the delay-independent conditions, where the
delayed state x(t—z(t)) is treated as a disturbance. This corre-
sponds to the presentation of (10) as the following forward system

x(t) =Ax(t)+A: X~ 'u(t),

(&) = Xx(t) (67)
with the feedback
u(t) = y(t —(t)). (68)

Here X e R™" is a non-singular scaling matrix. Indeed, substituting
(68) and y(t) = Xx(t) into the differential equation (67), we obtain
(10). Assume that A is Hurwitz and y(t)=0 for t <O0.

In the simple delay-dependent conditions for z(t) [0, h], the
presentation
t

X(6) = (A+ADX(O) A, / X(s) ds

Jt—1(t)

is used, where ff_f(t)f((s) ds is treated as a disturbance. This
corresponds to the presentation of (10) as the following forward
system

X(t) = (A+ADX(t)+A X~ Tu(t),
Y(t) = Xx(t) = X[(A+ADX()+A X~ u(t)] (69)

with the feedback

ot
u(t)y= — / y(s) ds. (70)
t (t)

— Tl

Here it is assumed that A+A; is Hurwitz and y(t) =0 for t <O0.

In both cases the forward system can be presented as y = Gu
and the feedback as u=Ay, where G: L;[0,00)—L,[0,00) and
A : [5[0, 00)— L]0, 00). The system G : L,[0, oo) — L[0, oco) is said to
be input-output stable if it has a finite gain y,(G) defined by

7o(G)=inf{y : IGull, <ylully, YueL,[0,0c0)}.

The small gain theorem claims that the interconnected system
feedback (G,A) is well defined and input-output stable if
7o@)yo(G) < 1.

The following lemma provides upper bounds on the gains of
the feedback systems (68) and (70):

Lemma 3 (Lemma 3 [28,35]). For A given by (68) and for slowly
varying delays with © <d <1 the following holds:

1
A . 71
Yo(4) < T—d (71)

For A given by (70) and fast-varying delays 7 [0, h] the following
holds:

Yod)<h. (72)

Since y4(G) = IIGll«, by the small-gain theorem, the feedback
interconnection given by (67), (68) and (69), (70) is input-output
stable if Gl < 1/yo(A). Deriving further LMI conditions for the
last inequality, i.e. for

1
r§4)
by using V(x)=x"Px, 0<PeR™" xecR" we can recover the

delay-independent and simple delay-dependent conditions of
Section 3.

V4+yly— uu<0 vu#0

7.1. Stability of systems with non-small delays

We consider (10), where we assume that the uncertain delay
7(t) has a form

o(t)=h+n(0),

Here h is a known nominal delay value and y is a known upper
bound on the delay uncertainty. The delay is supposed to be either
differentiable with 7 <d, where d is known, or piecewise-
continuous (fast-varying). In the latter case we will say that d is
unknown (though 7 may be not differentiable).

Assume that the nominal system

X(t) = AX(t) +A1x(t—h),  x(t) e R (74)

Ol <pu<h. (73)

is asymptotically stable.
We represent (10) in the form of the forward system

X(t) = AX(t)+A1x(t —h)+A; X~ Tu(b),
y(t) = Xx(t), (75)
with the feedback

—h

u(t) = (Ay)(t) = / Y(t+s) ds, (76)

—h—n(®
where X is a scaling non-singular matrix.
Bounds on y,(4) for 7 <d with d > 1 were found in [66]:

Lemma 4. For the operator u = Ay given by (76) with y(s)=0, s<0
the following holds:

1 if —co<d<1,
2d-1 if1<d<?2,
Yold) < pu/F(d), F(d)y={ 7d—8 if d=2. 7
4d—-4
% if d is unknown.

Note that F is an increasing continuous function satisfying for
d > 1 the following inequalities:

1=F()<F@d)< dlim]-'(d): 1.75.

The value of 1 cannot be improved. Moreover, the value 1.75 for
F(o0) is not far from an optimal one, and it cannot be less than 1.5.

LMI conditions that guarantee the input-output stability of (10)
can be derived by using some Lyapunov functional V, that
corresponds to the nominal system (74) and that satisfies along
(75) the following inequality:

WaV +yly—pu2F Y du'u<0 vu=0.
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7.2. Relation between input-output and exponential stability

We will show below that input-output stability of LTV TDSs
implies the exponential stability of these systems. This implication
is based on Bohl-Perron principle that was generalized to TDSs
(see [24]). Consider the following linear homogenous system:

m h
XO= 3 AlOXE—T(t)+ /0 Ag(tOx(E—0) dO,
k=1 .
X(S)=¢(s), se[—h,0], peC[—h,0] (78)

with discrete and distributed delays. Here 79 =0, A, and A, are
n x n matrices that are piecewise-continuous in their arguments,
piecewise-continuous delays 7, are bounded by h: 0<t,<h.
Assume further that

m h
sup{ 2 1A+ / 1Aq(t, ) de} <oo. (79)
t>0 k=1 0

Consider next the corresponding non-homogeneous system
with the zero initial condition:

m h
X0= 3 AdOXE-7(0)+ /0 Ad(t, Ox(t—0) dO+(1),

X(s)=0, se[—h,0], (80)

where f(t) € Lp[0, 00) (1 <p < o0). For the existence of a solution
X € Lp[0,00) to (80) with the zero initial condition see [24]. The
following result is obtained (see [24] for the proof):

Theorem 3 (Bohl-Perron principle). If for a p>1 and any
f€Lp[0,00), the non-homogeneous system with the zero initial
condition (80) has a solution x € L,[0, 00), and condition (79) holds,
then the homogeneous system (78) is exponentially stable.

We shall apply the Bohl-Perron principle with p=2. Consider
the linear homogeneous system (10) with an uncertain delay
7(t) € [0, h], where the following condition
Gl <1, G(s)=sX(sI—Ag—A1)~ 'uA; X! (81)
guarantees the input-output stability of (10). Consider also the
perturbed system
() = AX(O) +AX(E—T(E) +y WD),

z(t) = ex(t),
x(5)=0, s<0,

where the positive scalars & and y~!

inequality (81) implies

1yl < 1,

sX -1 -1 In
Gr91= | oy |51 Ao —A0) {umx 7}

are small enough. The

for some small enough ¢ and y~!. The latter means that for

all f=ywel,[0,00) the solution x(t) of (10) has a bounded L,-
norm lxl, <(1/e)llwl,, ie. xeL,[0,00). Therefore, from the
Bohl-Perron principle it follows that the condition (81) satisfied
for some X and p implies the exponential stability of (10) with a
non-zero initial condition ¢ e C[—h,0]. By the same arguments,
other conditions for the input-output stability discussed in this
section guarantee the exponential stability of the corresponding
linear homogeneous system.

8. Conclusions

The methods presented in this tutorial for retarded type
systems have been extended in the literature to neutral systems,
to descriptor TDSs and to discrete-time TDSs. Lyapunov-based

methods appeared to be efficient for the performance analysis of
TDSs, as well as for control design in the presence of state, input or
output delays. For detailed introduction to TDSs with applications
to sampled-data and network-based control see [13].

There are a lot of open problems related to stability and control
of TDSs. For example (to name a few), sufficient stability condi-
tions taking into account a particular form of z(t) or analytical
stability bounds and necessary Lyapunov-based stability condi-
tions for some classes of systems with time-varying delays.
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