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a b s t r a c t

Time-delay naturally appears in many control systems, and it is frequently a source of instability.
However, for some systems, the presence of delay can have a stabilizing effect. Therefore, stability and
control of time-delay systems is of theoretical and practical importance. Modern control systems usually
employ digital technology for controller implementation, i.e. sampled-data control. A time-delay
approach to sampled-data control, where the system is modeled as a continuous-time system with
the delayed input/output became popular in the networked control systems, where the plant and the
controller exchange data via communication network. In the present tutorial, introduction to Lyapunov-
based methods for stability of time-delay systems is given together with some advanced results on
the topic.

& 2014 European Control Association. Published by Elsevier Ltd. All rights reserved.

1. Introduction

Time-delay systems (TDSs) are also called systems with after
effect or dead-time, hereditary systems, equations with deviating
argument or differential-difference equations. They belong to the
class of functional differential equations which are infinite-dimen-
sional, as opposed to ordinary differential equations (ODEs). The
simplest example of such a system is

_xðtÞ ¼ �xðt�hÞ; xðtÞAR;

where h40 is the time-delay.
Time-delays appear in many engineering systems – aircraft,

chemical control systems, in laser models, in Internet, biology,
medicine [31,41]. Delays are strongly involved in challenging areas
of communication and information technologies: stability of
networked control systems or high-speed communication net-
works [62].

Time-delay is, in many cases, a source of instability. However,
for some systems, the presence of delay can have a stabilizing
effect. In the well-known example

€yðtÞþyðtÞ�yðt�hÞ ¼ 0;

the system is unstable for h¼0, but is asymptotically stable
for h¼1. The approximation _yðtÞC yðtÞ�yðt�hÞ� �

h�1 explains
the damping effect. The stability analysis and robust control of

time-delay systems are, therefore, of theoretical and practical
importance.

As in systems without delay, an efficient method for stability
analysis of TDSs is the Lyapunov method. For TDSs, there exist two
main Lyapunov methods: the Krasovskii method of Lyapunov func-
tionals [43] and the Razumikhinmethod of Lyapunov functions [61].
The two Lyapunov methods for linear TDSs result in Linear Matrix
Inequalities (LMIs) conditions. The LMI approach to analysis and
design of TDSs provides constructive finite-dimensional condi-
tions, in spite of significant model uncertainties [1].

Modern control systems usually employ digital technology for
controller implementation, i.e. sampled-data control. Consider a
sampled-data control system

_xðtÞ ¼ AxðtÞþBKxðtkÞ; tA ½tk; tkþ1Þ; k¼ 0;1;…; ð1Þ
where xðtÞARn, A;B;K are constant matrices and limk-1tk ¼1.
This system can be represented as a continuous system with time-
varying delay τðtÞ ¼ t�tk [52,6]:

_xðtÞ ¼ AxðtÞþBKxðt�τðtÞÞ; tA ½tk; tkþ1Þ; ð2Þ
where the delay is piecewise-linear (sawtooth) with _τ ¼ 1 for
tatk. Modeling of continuous-time systems with digital control in
the form of continuous-time systems with time-varying delay and
the extension of Krasovskii method to TDSs without any con-
straints on the delay derivative [20] and to discontinuous delays
[18] have allowed the development of the time-delay approach to
sampled-data and to network-based control.

Bernoulli, Euler and Concordet were (among) the first to study
equations with delay (the 18-th century). Systematical study
started at the 1940s by A. Myshkis and R. Bellman. Since 1960
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there have appeared more than 50 monographs on the subject
(see e.g. [5,28,31,41,57] to name a few). The beginning of the 21st
century can be characterized as the “time-delay boom” leading to
numerous important results. The emphasis in this Introduction to
TDSs is on the Lyapunov-based analysis and design of time-delay
and sampled-data systems.

The paper is organized as follows. Two main Lyapunov
approaches for general TDSs are presented in Section 2. For linear
systems with discrete time-varying delays, delay-independent and
delay-dependent conditions are provided in Section 3. The section
starts from the simple stability conditions and shows the ideas and
tools that essentially improve the results. Section 3.3 presents
recent Lyapunov-based results for the stability of sampled-data
systems. Section 4 considers general (complete) Lyapunov func-
tional for LTI systems with discrete delays corresponding to
necessary stability conditions, and discusses the relation between
simple, augmented and general Lyapunov functionals. Stability
conditions for systems with distributed (finite and infinite) delays
are presented in Section 5. Section 6 discusses the stability of some
nonlinear systems. Finally the input–output approach to stability
of linear TDSs is provided in Section 7 showing the relation of the
input–output stability with the exponential stability of the
linear TDSs.

Notation: Throughout the paper the superscript ‘T’ stands for
matrix transposition, Rn denotes the n dimensional Euclidean space
with vector norm j � j, Rn�m is the set of all n�m real matrices, and
the notation P40, for PARn�n means that P is symmetric and
positive definite. The symmetric elements of the symmetric matrix
will be denoted by n. The space of functions ϕ : ½�h;0�-Rn, which
are absolutely continuous on ½�h;0�, and have square integrable
first order derivatives is denoted by W ½�h;0� with the norm

JϕJW ¼maxθA ½�h;0�jϕðθÞjþ½R 0�h j _ϕðsÞj2 ds�1=2. For x : R-Rn we
denote xtðθÞ9xðtþθÞ; θA ½�h;0�.

2. General TDS and the direct Lyapunov method

Consider the following TDS:

_xðtÞ ¼ f ðt; xtÞ; tZt0; ð3Þ
where f : R� C½�h;0�-Rn is continuous in both arguments and is
locally Lipschitz continuous in the second argument. We assume
that f ðt;0Þ ¼ 0, which guarantees that (3) possesses a trivial
solution xðtÞ � 0.

Definition 1. The trivial solution of (3) is

� uniformly (in t0) stable if 8 t0AR and 8ϵ40, there exists a
δ¼ δðϵÞ40 such that Jxt0 JCoδðϵÞ implies jxðtÞjoϵ for all
tZt0;� uniformly asymptotically stable if it is uniformly stable and there
exists a δa40 such that for any η40 there exists a Tðδa;ηÞ such
that Jxt0 JCoδa implies jxðtÞjoη for all tZt0þTðδa;ηÞ and
t0AR.

� globally uniformly asymptotically stable if δa can be an arbitrarily
large, finite number.

The system is uniformly asymptotically stable if its trivial
solution is uniformly asymptotically stable.

Note that the stability notions are not different from their
counterparts for systems without delay [36]. In this tutorial we
shall only be concerned with uniform asymptotic stability, that
sometimes will be referred as asymptotic stability.

Prior to N.N. Krasovskii's papers on Lyapunov functionals and
B.S. Razumikhin's papers on Lyapunov functions, L.E. El'sgol'tz

(see [5] and references therein) considered the stability problem of
the solution xðtÞ � 0 of TDSs by proving that the function
V ðtÞ ¼ VðxðtÞÞ is decreasing in t, where V is some Lyapunov
function. This is possible only in some rare special cases. We shall
show this on the example of the scalar autonomous Retarded
Differential Equation (RDE)

_xðtÞ ¼ f ðxðtÞ; xðt�hÞÞ; f ð0;0Þ ¼ 0;

where f ðx; yÞ is locally Lipschitz in its arguments. Let us assume
that VðxÞ ¼ x2, which is a typical Lyapunov function for n¼1. Then
we have along the system

d
dt
½V ðxðtÞÞ� ¼ 2xðtÞ _xðtÞ ¼ 2xðtÞf ðxðtÞ; xðt�hÞÞ:

For the feasibility of inequality ðd=dtÞ½VðxðtÞÞ�r0, we need to require
that

xðtÞf ðxðtÞ; xðt�hÞÞr0

for all sufficiently small jxðtÞj and jxðt�hÞj. This essentially restricts
the class of equations considered. For example,

_xðtÞ ¼ �xðtÞx2ðt�hÞ
is stable by the above arguments.

2.1. Lyapunov–Krasovskii approach

Let V : R� C½�h;0�-R be a continuous functional, and let
xτðt;ϕÞ be the solution of (3) at time τZt with the initial condition
xt ¼ϕ. We define the right upper derivative _V ðt;ϕÞ along (3) as
follows:

_V ðt;ϕÞ ¼ lim sup
Δt-0þ

1
Δt

½VðtþΔt; xtþΔtðt;ϕÞÞ�Vðt;ϕÞ�:

Intuitively, a non-positive _V ðt; xtÞ indicates that xt does not grow
with t, meaning that the system under consideration is stable.

Theorem 1 (Lyapunov–Krasovskii Theorem, Gu et al. [28]). Suppose
f : R� C½�h;0�-Rn maps R� (bounded sets in C½�h;0�) into
bounded sets of Rn and that u; v;w : Rþ-Rþ are continuous
nondecreasing functions, u(s) and v(s) are positive for s40, and
uð0Þ ¼ vð0Þ ¼ 0. The trivial solution of (3) is uniformly stable if there
exists a continuous functional V : R� C½�h;0�-Rþ , which is
positive-definite, i.e.

uðjϕð0ÞjÞrV ðt;ϕÞrvðJϕJCÞ; ð4Þ
and such that its derivative along (3) is non-positive in the sense that

_V ðt;ϕÞr�wðjϕð0ÞjÞ: ð5Þ
If wðsÞ40 for s40, then the trivial solution is uniformly asympto-
tically stable. If in addition lims-1uðsÞ ¼1, then it is globally
uniformly asymptotically stable.

In some cases functionals Vðt; xt ; _xtÞ that depend on the state-
derivatives are useful (see [41, p. 337]). Denote by W ½�h;0� the
Banach space of absolutely continuous functions ϕ : ½�h;0�-Rn

with _ϕAL2ð�h;0Þ (the space of square integrable functions) with
the norm

JϕJW ¼ max
sA ½�h;0�

jϕðsÞjþ
Z 0

�h
j _ϕðsÞj2 ds

" #1=2
:

Theorem 1is then extended to continuous functionals

V : R�W ½�h;0� � L2ð�h;0Þ-Rþ ;

where inequalities (4) and (5) are modified as follows:

uðjxðtÞjÞrVðt; xt ; _xtÞrvðJxt JW Þ ð6Þ
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and

_V ðt; xt ; _xtÞr�wðjxðtÞjÞ: ð7Þ
Note that the functionals Vðt; xt ; _xtÞ can be applied to solutions of
RDEs with the initial functions xt0 from W ½�h;0�. However, for RDE
the stability results corresponding to continuous initial functions and
to absolutely continuous initial functions are equivalent [5].

2.2. Lyapunov–Razumikhin approach

To give a precise formulation of Razumikhin method, we
consider a differentiable function V : R� Rn-Rþ and define the
derivative of V along the solution x(t) of (3) as

_V ðt; xðtÞÞ ¼ d
dt
Vðt; xðtÞÞ ¼ ∂V ðt; xðtÞÞ

∂t
þ∂V ðt; xðtÞÞ

∂x
f ðt; xtÞ:

Theorem 2 (Lyapunov–Razumikhin Theorem, Gu et al. [28]). Sup-
pose f : R� C½�h;0�-Rn maps R� (bounded sets in C½�h;0�) into
bounded sets of Rn and that u; v;w : Rþ-Rþ are continuous
nondecreasing functions u(s) and v(s) are positive for s40 and
uð0Þ ¼ vð0Þ ¼ 0, v is strictly increasing. The trivial solution of (3) is
uniformly stable if there exists a differentiable function V : R�
Rn-Rþ , which is positive-definite, i.e.

uðjxjÞrV ðt; xÞrvðjxjÞ; ð8Þ
and such that the derivative of V along the solution x(t) of (3) satisfies

_V ðt; xðtÞÞr�wðjxðtÞjÞ if V ðtþθ; xðtþθÞÞrVðt; xðtÞÞ 8θA ½�h;0�:
If, in addition, wðsÞ40 for s40, and there exists a continuous
nondecreasing function ρðsÞ4s for s40 such that condition (9) is
strengthened to

_V ðt; xðtÞÞr�wðjxðtÞjÞ if Vðtþθ; xðtþθÞÞrρðVðt; xðtÞÞÞ 8θA ½�h;0�;
ð9Þ

then the trivial solution of (3) is uniformly asymptotically stable. If,
in addition, lims-1uðsÞ ¼1, then it is globally uniformly asympto-
tically stable.

3. Stability of linear systems with discrete delays

Consider a simple linear TDS

_xðtÞ ¼ AxðtÞþA1xðt�τðtÞÞ; tZt0; ð10Þ
where xðtÞARn, τðtÞA ½0;h� is a bounded time-varying delay. Here A
and A1 are constant n� n-matrices. In this section, delay-
independent and delay-dependent conditions will be presented.
For simplicity only we consider a linear system with a single
discrete delay. The results can be easily extended to a finite
number of discrete delays.

3.1. Delay-independent conditions

The choice of Lyapunov–Krasovskii functional (that we will also
call Lyapunov functional) is crucial for deriving stability criteria.
Special forms of the functional lead to delay-independent and
delay-dependent conditions. In this section we consider the
delay-independent (i.e. h-independent) conditions for systems
with time-varying delays.

A simple Lyapunov functional for (10) has the form

Vðt; xtÞ ¼ xT ðtÞPxðtÞþ
Z t

t� τðtÞ
xT ðsÞQxðsÞ ds; ð11Þ

where P40 and Q40 are n�n matrices. Note that V of (11)
depends on t because of τðtÞ. Note that in the case of constant
delay τ� h, the functional in (11) is time-independent (i.e. VðxtÞ).
We further assume that the delay τ is a differentiable function

with _τrdo1 (this is the case of slowly varying delays). It is clear
that V satisfies the positivity condition βjxðtÞj2rV ðt; xtÞ (for some
β40). Then, differentiating V along (10), we find

_V ðt; xtÞ ¼ 2xT ðtÞP _xðtÞþxT ðtÞQxðtÞ
�ð1� _τÞxT ðt�τÞQxðt�τÞ:

We further substitute for _xðtÞ the right-hand side of (10) and arrive at

_V ðt; xtÞr ½xT ðtÞ xT ðt�τÞ�W
xðtÞ

xðt�τÞ

" #
r�εjxðtÞj2

for some ε40 if

W ¼ ATPþPAþQ PA1

AT
1P �ð1�dÞQ

" #
o0: ð12Þ

The LMI (12) does not depend on h and it is, therefore, delay-
independent (but delay-derivative dependent). The feasibility of
LMI (12) is a sufficient condition for the delay-independent
asymptotic stability of systems with slowly varying delays. The
feasibility of (12) yields the following:

(i) A and A7A1 are Hurwitz matrices,
(ii) A�1A1=

ffiffiffiffiffiffiffiffiffiffiffi
1�d

p
is a Schur matrix, meaning that all its

eigenvalues are inside the unit circle [8].

From (i) it follows that the delay-independent conditions
cannot be applied for stabilization of unstable plants by a feedback
with delay. For such systems delay-dependent (h-dependent) con-
ditions are needed.

We next derive stability conditions by applying Razumikhin's
method and using the Lyapunov function VðxðtÞÞ ¼ xT ðtÞPxðtÞ with
P40, that satisfies the positivity condition (8). Consider the
derivative of V along (10). We will apply the Lyapunov–Razumi-
khin theorem with ρðsÞ ¼ ρ � s, where the constant ρ41. When-
ever Razumikhin's condition

ρxT ðtÞPxðtÞ�xðt�τðtÞÞTPxðt�τðtÞÞZ0

holds for some ρ ¼ 1þε (ε40), we can conclude that, for any
q40 there exists α40 such that

_V ðxðtÞÞ ¼ 2xT ðtÞP½AxðtÞþA1xðt�τðtÞÞ�r2xT ðtÞP½AxðtÞþA1xðt�τðtÞÞ�
þq½ρxT ðtÞPxðtÞ�xðt�τðtÞÞTPxðt�τðtÞÞ�r�αjxðtÞj2

if

ATPþPAþqP PA1

AT
1P �qP

" #
o0: ð13Þ

The latter matrix inequality does not depend on h. Moreover, it
does not depend on the delay derivative bound. Therefore, the
feasibility of (13) is sufficient for delay-independent uniform
asymptotic stability for systems with fast-varying delays (without
any constraints on the delay-derivatives).

The Krasovskii-based LMI (12) for d¼0 is less restrictive than
the Razumikhin-based condition (13): the feasibility of (13)
implies the feasibility of (12) with the same P and with Q ¼ qP.
Another advantage of the LMI (12) is that it is linear in the decision
variables P and Q, whereas (13) is bilinear in q and P. The latter
makes computation more difficult. One can treat (13) as an LMI
with the tuning parameter q40. However, till now only Razumi-
khin method provides delay-independent conditions for systems with
fast-varying delays.

Halanay's inequality [30, 1960] that extends the Razumikhin
method to the exponential stability can also lead to delay-
independent conditions for systems with fast-varying delays:

Let V : ½t0�h; þ1Þ-Rþ be bounded on ½t0�h; t0� and locally
absolutely continuous on ½t0;1Þ. Assume that for some positive
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constants δ1oδ0 the following inequality holds:

Hal9 _V ðtÞþ2δ0VðtÞ�2δ1 sup
�hrθr0

V ðtþθÞr0; tZt0:

Then

VðtÞre�2δðt� t0Þ sup
�hrθr0

Vðt0þθÞ; tZt0;

where δ40 is a unique positive solution of the equation
δ¼ δ0�δ1e2δh.

We recover now the delay-independent stability condition (13)
by using Halanay's inequality. Choose VðtÞ ¼ xTPxðtÞðP40Þ, where x
(t) satisfies (10), 2δ1 ¼ q40 and 2δ0 ¼ qð1þεÞðε40Þ. Then
Halr _V ðtÞþ2δ0VðtÞ�2δ1Vðt�τðtÞÞ ¼ 2xT ðtÞP½AxðtÞþA1xðt�τðtÞÞ�

þqð1þεÞxT ðtÞPxðtÞ�qxðt�τðtÞÞTPxðt�τðtÞÞ:
Therefore, the feasibility of (13) guarantees that for small enough ε
the Halanay inequality Halr0 holds meaning that the system (10)
is exponentially stable.

3.2. Delay-dependent conditions

The first delay-dependent (both, Krasovskii and Razumikhin-
based) conditions were derived by using the relation

xðt�τðtÞÞ ¼ xðtÞ�
Z t

t�τðtÞ
_xðsÞ ds ð14Þ

via different model transformations and by bounding the cross
terms [44,59,42]. The widely used 1st Model Transformation,
where (14) is substituted into (10) with _xðsÞ substituted by the
right-hand side of (10), has the form

_xðtÞ ¼ ½AþA1�xðtÞ�A1

Z t

t� τðtÞ
½AxðsÞþA1xðs�τðsÞÞ� ds: ð15Þ

Note that this transformation is valid for t�τðtÞZt0. The latter
system is not equivalent to the original one possessing some
additional dynamics [29,38]. The stability of the transformed
system (15) guarantees the stability of the original one, but not
vice versa.

The first delay-dependent conditions treated only the slowly
varying delays with _τrdo1, whereas the fast-varying delay
(without any constraints on the delay derivative) was analyzed
via Lyapunov–Razumikhin functions.

For the first time, systems with fast varying delays were
analyzed by using Krasovskii method in [20], via the descriptor
model transformation introduced in [7]:

_xðtÞ ¼ yðtÞ; 0¼ �yðtÞþðAþA1ÞxðtÞ�A1

Z t

t� τðtÞ
yðsÞ ds: ð16Þ

The descriptor system (16) is equivalent to (10) in the sense of
stability. In the descriptor approach, _xðtÞ is not substituted by the
right-hand side of the differential equation. Instead, it is consid-
ered as an additional state variable of the resulting descriptor
system (16). Therefore, the novelty of the descriptor approach is
not in V ¼ xT ðtÞPxðtÞþ⋯ðP40Þ, but in _V , where ðd=dtÞ xT ðtÞPxðtÞ� �

is
found as

d
dt

xT ðtÞPxðtÞ� �¼ 2xT ðtÞP _xðtÞþ2½xT ðtÞPT
2þ _xT ðtÞPT

3�

� � _xðtÞþðAþA1ÞxðtÞ�A1

Z t

t�τðtÞ
_xðsÞ ds

� �
; ð17Þ

and where P2ARn�n and P3ARn�n are “slack variables”. This leads
to _V r�εðjxðtÞj2þj _xðtÞj2Þ; ε40.

The advantages of the descriptor method are

� less conservative conditions (even without delay) for uncertain
systems,

� “unifying” LMIs for the discrete-time and for the continuous-
time systems, having almost the same form and the same
advantages [21],

� simple conditions in terms of LMIs can be derived for neutral
type systems (these are systems with the delayed highest-order
state derivative), where the LMIs imply the stability of the
difference operator [8],

� efficient design is obtained for systems with state, input and
output delays by choosing P3 ¼ εP2 with a tuning scalar
parameter ε [70],

� simple delay-dependent conditions can be derived for diffusion
partial differential equations [17].

Most of the recent Krasovskii-based results do not use model
transformations and cross terms bounding. They are based on the
application of Jensen's inequality [28]:Z 0

�h
ϕT ðsÞRϕðsÞ dsZ1

h

Z 0

�h
ϕT ðsÞ dsR

Z 0

�h
ϕðsÞ ds;

8ϕAL2½�h;0�; 8R40: ð18Þ

3.2.1. Simple delay-dependent conditions
First Krasovskii-based LMI conditions for systems with fast-

varying delays (without any restrictions on the delay-derivative)
were derived in [20] via the descriptor method. We differentiate
xT ðtÞPxðtÞ as in (17). To “compensate”

R t
t�τðtÞ _xðsÞ ds consider the

double integral term [20]:

VRð _xtÞ ¼
Z 0

�h

Z t

tþθ
_xT ðsÞR _xðsÞ ds dθ; R40: ð19Þ

The term VR can be rewritten equivalently as

VRð _xtÞ ¼
Z t

t�h
ðhþs�tÞ _xT ðsÞR _xðsÞ ds: ð20Þ

Differentiating VRð _xtÞ, we obtain

d
dt
VRð _xtÞ ¼ �

Z t

t�h
_xT ðsÞR _xðsÞ dsþh _xT ðtÞR _xðtÞ

¼ �
Z t

t� τðtÞ
_xT ðsÞR _xðsÞ dsþh _xT ðtÞR _xðtÞ

�
Z t� τðtÞ

t�h
_xT ðsÞR _xðsÞ ds|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

will be ignored

: ð21Þ

We apply further Jensen's inequality

�
Z t

t� τðtÞ
_xT ðsÞR _xðsÞ ds r�1

h

Z t

t� τðtÞ
_xT ðsÞ dsR

Z t

t� τðtÞ
_xðsÞ ds:

Then, for the Lyapunov functional

VðxðtÞ; _xtÞ ¼ xT ðtÞPxðtÞþVRð _xtÞ

we find

d
dt
VðxðtÞ; _xtÞr2xT ðtÞP _xðtÞþh _xT ðtÞR _xðtÞ

�1
h

Z t

t�τðtÞ
_xT ðsÞ ds R

Z t

t� τðtÞ
_xðsÞ ds

þ2½xT ðtÞPT
2þ _xT ðtÞPT

3�½ðAþA1ÞxðtÞ�A1

Z t

t�τ
_xðsÞ ds

� _xðtÞ�rηT ðtÞΨηðtÞo�εðjxðtÞj2þj _xðtÞj2Þ; ε40;
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where ηðtÞ ¼ colfxðtÞ; _xðtÞ; ð1=hÞ R tt� τ
_xðsÞ dsg, if

Ψ d ¼
Φ P�PT

2þðAþA1ÞTP3 �hPT
2A1

n �P3�PT
3þhR �hPT

3A1

n n �hR

2
664

3
775o0;

Φ¼ PT
2ðAþA1ÞþðAþA1ÞTP2: ð22Þ

As it was understood later [17,25,69] the equivalent delay-
dependent conditions can be derived without the descriptor
method, where _x is substituted by the right-hand side of (10)
and the Schur complement is applied further.

Note that Ψ do0 yields that the eigenvalues of hA1 are inside
the unit circle. In the example _xðtÞ ¼ �xðt�τðtÞÞ with A1 ¼ �1, the
simple delay-dependent conditions cannot guarantee the stability
for hZ1, which is far from the analytical bound 1.5. This illustrates
the conservatism of the simple conditions.

3.2.2. Improved delay-dependent conditions
The relation between xðt�τðtÞÞ and xðt�hÞ (and not only

between xðt�τðtÞÞ and x(t)) has been taken into account in [32].
The widely used by now Lyapunov–Krasovskii functional for delay-
dependent stability has the form

Vðt; xt ; _xtÞ ¼ xT ðtÞPxðtÞþ
Z t

t�h
xT ðsÞSxðsÞ ds

þh
Z 0

�h

Z t

tþθ
_xT ðsÞR _xðsÞ ds dθþ

Z t

t�τðtÞ
xT ðsÞQxðsÞ ds;

ð23Þ
where P40;RZ0; SZ0;QZ0. This functional depends on the
state derivative. Moreover, this functional with Q¼0 leads to
delay-dependent conditions for systems with fast-varying delays,
whereas for R¼ S¼ 0 it leads to delay-independent conditions
(for systems with slowly varying delays) and coincides with (11).
The above V with S¼0 was introduced in [20], whereas the
S-dependent term was added in [32].

Differentiating V given by (23), we find

d
dt
Vr2xT ðtÞP _xðtÞþh2 _xT ðtÞR _xðtÞ

�h
Z t

t�h
_xT ðsÞR _xðsÞ dsþxT ðtÞ½SþQ �xðtÞ

�xT ðt�hÞSxðt�hÞ�ð1�dÞxT ðt�τðtÞÞQxðt�τðtÞÞ ð24Þ
and employ the representation

�h
Z t

t�h
_xT ðsÞR _xðsÞ ds¼ �h

Z t� τðtÞ

t�h
_xT ðsÞR _xðsÞ ds

�h
Z t

t�τðtÞ
_xT ðsÞR _xðsÞ ds: ð25Þ

Applying Jensen's inequality (18) to both terms in (25) we arrive at

�h
Z t

t�h
_xT ðsÞR _xðsÞ dsr� h

τðtÞe
T
1Re1�

h
h�τðtÞe

T
2Re2; ð26Þ

where

e1 ¼ xðtÞ�xðt�τðtÞÞ; e2 ¼ xðt�τðtÞÞ�xðt�hÞ:
Here, for τ¼ 0 and τ¼ h, we mean the following limits:

lim
τðtÞ-0

h
τðtÞe

T
1Re1 ¼ h lim

τðtÞ-0
τðtÞ _xT ðtÞR _xðtÞ ¼ 0

and

lim
τðtÞ-h

h
h�τðtÞe

T
2Re2 ¼ 0:

Further, in [32] the right-hand side of (26) was upper-bounded
by �eT1Re1�eT2Re2 that was conservative. The convex analysis of [60]
allowed to avoid the latter restrictive bounding. Similar to [65],

we reformulate the result of [60] in a more convenient form for the
Lyapunov-based analysis:

Lemma 1. Let R1ARn1�n1 ;…;RNARnN�nN be positive matrices. Then
for all e1ARn1 ;…; eNARnN , for all αi40 with ∑iαi ¼ 1 and for all
SijARni�nj i¼ 1;…;N; j¼ 1;…; i�1 such that

Ri Sij
n Rj

" #
Z0 ð27Þ

the following inequality holds:

∑
N

i ¼ 1

1
αi
eTi RieiZ

e1
e2
⋮
eN

2
6664

3
7775
T R1 S12 ⋯ S1N

n R2 ⋯ S2N
n n ⋱ ⋮
n n ⋯ RN

2
6664

3
7775

e1
e2
⋮
eN

2
6664

3
7775: ð28Þ

By using Lemma 1 we arrive at the following statement:

Proposition 1. Given hZ0, dA ½0;1Þ. If there exist n�n matrices
P40, S40;Q40, R40 and S12 such that the following LMIs are
feasible:

ATPþPAþSþQ�R S12 PA1þR�S12 hATR

n �S�R R�ST12 0

n n Φ33 hAT
1R

n n n �R

2
66664

3
77775o0 ð29Þ

R S12
n R

� �
Z0; ð30Þ

where Φ33 ¼ �ð1�dÞQ�2RþS12þST12, then the system (10) is
uniformly asymptotically stable for all delays τðtÞA ½0;h� such that
_τðtÞrd. Moreover, if the above conditions hold with Q¼0 (or,
equivalently, with d¼1), then the system is uniformly asymptotically
stable for all fast varying delays τA ½0;h�.

Proof. Differentiating V given by (23), we find (24). Let the LMI
(30) be feasible. Then by Jensen's inequality and Lemma 1

�h
Z t

t�h
_xT ðsÞR _xðsÞ ds

r�
e1
e2

" #T h
τðtÞR 0

n h
h� τðtÞR

2
4

3
5 e1

e2

" #

r�
e1
e2

" #T
R S12
n R

� � e1
e2

" #
; ð31Þ

Denote ηðtÞ ¼ colfxðtÞ; xðt�hÞ; xðt�τðtÞÞg. Then employing (24),
(31) and substituting for _xðtÞ the right-hand side of (10), we arrive at

d
dt
VrηT ðtÞΦηðtÞ

þηT ðtÞ½hRA 0 hRA1�R�1½hRA 0 hRA1�TηðtÞ ð32Þ
where

Φ¼
ATPþPAþSþQ�R 0 PA1þR

n �S�R R

n n �ð1�dÞQ�2R

2
64

3
75:

Applying the Schur complement to the last term in (32), we find that
ðd=dtÞVr�εjxðtÞj2 for some ε40 if (29) is feasible. □

3.2.3. Interval or non-small delay
The above conditions guarantee the stability for “small delay”

τðtÞA ½0;h�. Many applications motivate the stability analysis for
interval (or non-small) delay τðtÞA ½h0;h1� with h040 (see e.g.
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[10,32,39]). Keeping in mind that (10) can be represented as

_xðtÞ ¼ AxðtÞþA1xðt�h0Þ�A1

Z t�h0

t�τðtÞ
_xðsÞ ds;

the stability of (10) can be analyzed via Lyapunov functionals of
the form [10]

Vðt; xt ; _xtÞ ¼ Vnðxt ; _xtÞþV1ðt; xt ; _xtÞ;
where Vn is a “nominal” functional for the “nominal” system with
constant delay

_xðtÞ ¼ AxðtÞþA1xðt�h0Þ
and where

V1 ¼
Z t�h0

t�h1
xT ðsÞS1xðsÞ dsþ

Z t�h0

t� τðtÞ
xT ðsÞQ1xðsÞ ds

þðh1�h0Þ
Z �h0

�h1

Z t

tþθ
_xT ðsÞR1 _xðsÞ ds dθ;

S140; Q140; R140:

In the case where the nominal system is stable for all constant
delays from ½0;h0�, Vn can be chosen in the form of (23), where
h¼ h0 and Q¼0. Then the stability conditions in terms of LMIs can
be derived by using arguments of Proposition 1.

3.3. Time-dependent Lyapunov functionals for sampled-data systems

Consider the sampled-data system given by (1), i.e.

_xðtÞ ¼ AxðtÞþA1xðtkÞ; xðtÞARn; k¼ 0;1;…; ð33Þ
where A1 ¼ BK . It is assumed that the sampling intervals may be
variable and uncertain (e.g. due to packet dropouts in networked
control systems). However, it is assumed that tkþ1�tkrh, where
h40 is a known upper bound.

Till [12] the conventional time-independent Lyapunov func-
tionals Vðxt ; _xtÞ for systems with fast-varying delays were applied
to sampled-data systems [18]. These functionals did not take
advantage of the sawtooth evolution of the delays induced by
sampled-and-hold. The latter drawback was removed in [12],
where time-dependent Lyapunov functionals (inspired by [56])
were introduced for sampled-data system.

Lemma 2. Let there exist positive numbers α, β and a functional V :

R�W ½�h;0� � L2½�h;0�-Rþ such that

αjϕð0Þj2rVðt;ϕ; _ϕÞrβJϕJ2W :

Consider the function V ðtÞ ¼ Vðt; xt ; _xtÞ, which is continuous from the
right for x(t) satisfying (33), absolutely continuous for tatk and
which satisfies

lim
t-t �k

V ðtÞZV ðtkÞ: ð34Þ

If along (33) ðd=dtÞV ðtÞr�εjxðtÞj2; tatk for some scalar ε40, then
(33) is asymptotically stable.

Consider the following simple Lyapunov functional:

Vsðt; xðtÞ; _xtÞ ¼ V ðtÞ ¼ xT ðtÞPxðtÞþVU ðt; _xtÞ; P40; ð35Þ
where

VU ðt; _xtÞ ¼ ðh�τðtÞÞ
Z t

t� τðtÞ
_xT ðsÞU _xðsÞ ds;

τðtÞ ¼ t�tk; U40: ð36Þ
The discontinuous term VU does not increase along the jumps
since VUZ0 and VU vanishes after the jumps because xðtÞjt ¼ tk ¼
xðt�τðtÞÞjt ¼ tk , i.e. (34) holds.

Since ðd=dtÞxðt�τðtÞÞ ¼ ð1� _τðtÞÞ _xðt�τðtÞÞ ¼ 0, we find

d
dt
VUðt; _xtÞ ¼ �

Z t

t� τðtÞ
_xT ðsÞU _xðsÞ dsþðh�τðtÞÞ _xT ðtÞU _xðtÞ

and thus

d
dt
V ðtÞr2 _xT ðtÞPxðtÞ�

Z t

t� τðtÞ
_xT ðsÞU _xðsÞ dsþðh�τðtÞÞ _xT ðtÞU _xðtÞ:

ð37Þ
Denoting

v1 ¼
1
τðtÞ

Z t

t� τðtÞ
_xðsÞ ds;

we understand by v1jτðtÞ ¼ 0 the following: limτðtÞ-0v1 ¼ _xðtÞ.
We apply further Jensen's inequalityZ t

t� τðtÞ
_xT ðsÞU _xðsÞ dsZτðtÞvT1Uv1;

and the descriptor method, where

0¼ 2½xT ðtÞPT
2þ _xT ðtÞPT

3�½ðAþA1ÞxðtÞ�τðtÞA1v1� _xðtÞ�;
with some n�n matrices P2; P3; is added to (37). Setting η1ðtÞ ¼
colfxðtÞ; _xðtÞ; v1g, we obtain that ðd=dtÞV ðtÞrηT1ðtÞΨ sη1ðtÞo�
εjxðtÞj2 for some ε40 if

Ψ s ¼
Φ11 P�PT

2þðAþA1ÞTP3 �τðtÞPT
2A1

n �P3�PT
3þðh�τðtÞÞU �τðtÞPT

3A1

n n �τðtÞU

2
664

3
775o0;

where Φ11 ¼ PT
2ðAþA1ÞþðAþA1ÞTP2. The latter matrix inequality

for τðtÞ-0 and τðtÞ-h leads to two LMIs:

Φ11 P�PT
2þðAþA1ÞTP3

n �P3�PT
3þhU

" #
o0;

Φ11 P�PT
2þðAþA1ÞTP3 �hPT

2A1

n �P3�PT
3 �hPT

3A1

n n �hU

2
664

3
775o0: ð38Þ

We arrived at the following:

Proposition 2. Let there exist n�n matrices P40, U40; P2 and P3
such that the LMIs (38) are feasible. Then (33) is asymptotically stable
for all variable sampling instants tkþ1�tkrh.

The conditions of Proposition 2 cannot be applied to (33) with
A1 from uncertainty polytope, since in the matrix Ψs the matrix A1

is multiplied by τðtÞ. Moreover, additional terms in the Lyapunov
functional may further improve the results. See [12,63] for various
time-dependent construction of V. A different discontinuous in
time Lyapunov functional was suggested in [46] which is based on
Wirtinger's inequality [49]:

Let zðtÞ : ða; bÞ-Rn be absolutely continuous with _zAL2½a; b�
and zðaÞ ¼ 0. Then for any n�n matrix W40 Wirtinger's inequal-
ity holds:Z b

a
zT ðξÞWzðξÞ dξr4ðb�aÞ2

π2

Z b

a
_zT ðξÞW _zðξÞ dξ: ð39Þ

Consider the following Lyapunov functional:

Vðt; xt ; _xtÞ ¼ xT ðtÞPxðtÞþVW ðt; xt ; _xtÞ; P40;

where the Wirtinger-based term is given by

VW ðt; xt ; _xtÞ ¼ h2
Z t

tk

_xT ðsÞW _xðsÞ ds

�π2

4

Z t

tk
½xðsÞ�xðtkÞ�TW ½xðsÞ�xðtkÞ� ds;

W40; tkrtotkþ1; k¼ 0;1;2;…
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Since ½xðsÞ�xðtkÞ�js ¼ tk ¼ 0, by Wirtinger's inequality (39) VW Z0.
Moreover, VW vanishes at t ¼ tk, i.e. the condition (34) holds.

Setting vðtÞ ¼ xðtkÞ�xðtÞ and differentiating VW, we have

d
dt
VW ¼ h2 _xT ðtÞW _xðtÞ�π2

4
vT ðtÞWvðtÞ:

Then we arrive at the following stability condition (that recovers
result of [49,53] derived via the small-gain theorem):

PðAþA1ÞþðAþA1ÞTP 2h
π PA1 ðAþA1ÞTW

n �W 2h
π A

T
1R

n n �W

2
64

3
75o0; P40; W40:

Example 1. Consider the scalar system

_xðtÞ ¼ �xðtkÞ; tkrtotkþ1; k¼ 0;1;… ð40Þ
We remind that the system _xðtÞ ¼ �xðt�τðtÞÞ with constant delay
τðtÞ is asymptotically stable for τðtÞoπ=2 and unstable for τðtÞ4π=2,
whereas for the fast varying delay it is stable for τðtÞo1:5 and there
exists a destabilizing delay with an upper bound greater than 1.5 [41].
The latter means that all the existing methods, that are based on time-
independent Lyapunov functionals, corresponding to stability analysis
of systems with fast varying delays, cannot guarantee the stability for
the samplings which may be greater than 1.5. Conditions of
Proposition 1 guarantee asymptotic stability for all fast varying delays
from the interval [0, 1.33].

By using discretization it can be easily found that the system
remains asymptotically stable for all constant samplings less than
2 and becomes unstable for samplings greater than 2. By Wirtinger-
based LMI, for all variable samplings up to 1.57 the system remains
asymptotically stable. By Proposition 2 for all variable samplings up to
1.99 the system remains asymptotically stable.

The Wirtinger-based LMI is a single LMI with fewer decision
variables than (38). More important, differently from the Lyapunov
functionals of [12,63], the extension of the Wirtinger-based
Lyapunov functional to a more general sampled-data system [46]

_xðtÞ ¼ AxðtÞþBKxðtk�ηÞ; tA ½tk; tkþ1Þ ð41Þ
with a constant delay η40 leads to efficient stability conditions
[46]. Note that taking into account (in an elegant and efficient
manner) the special structure of delay in (41) with variable η¼ ηk
is still an open problem. Such kind of systems arises in networked
control systems [23,45].

Discontinuous in time Lyapunov functionals appeared to be
efficient for hybrid TDSs [47,48].

4. General Lyapunov functionals for LTI TDSs

A necessary condition for the application of the simple Lyapu-
nov–Krasovskii functionals considered in the previous sections is
the asymptotic stability of (10) with τ¼0. Consider e.g. the
following system with a constant delay:

_xðtÞ ¼ 0 1
�2 0:1

� �
xðtÞþ 0 0

1 0

� �
xðt�hÞ; xðtÞAR2:

This system is unstable for h¼0 and is asymptotically stable for
the constant delay hAð0:1002;1:7178Þ [28]. For analysis of such
systems (particularly, for using delay for stabilization) the simple
Lyapunov functionals considered in the previous sections are not
suitable. One can use a general Lyapunov functional

VðxtÞ ¼ xðtÞTPxðtÞþ2xT ðtÞ
Z 0

�h
Q ðξÞxðtþξÞ dξ

þ
Z 0

�h

Z 0

�h
xT ðtþsÞRðs; ξÞxðtþξÞ ds dξ ð42Þ

(that corresponds to necessary and sufficient conditions for
stability). However, this leads to a complicated system of PDEs
with respect to P;Q ;R (see e.g. [50]). LMI sufficient conditions via a
general Lyapunov functional and discretization were found by
Gu et al. [28]. See also recent results via augmented Lyapunov
functional and improved integral inequality by Seuret and
Gouaisbaut [64].

4.1. Necessary stability conditions and general Lyapunov functionals

Let the system with a constant delay h40

_xðtÞ ¼ AxðtÞþA1xðt�hÞ; xðtÞARn ð43Þ
be asymptotically (and thus exponentially) stable. Given an n�n
matrix W40, we look for VW such that

d
dt
VW ðxtÞ ¼ �xT ðtÞWxðtÞ; W40; ð44Þ

and VW ð0Þ ¼ 0, where xðtÞ ¼ xðt;ϕÞ is a solution of (43) with
x0 ¼ϕAC½�h;0�. Note that

xðtÞ ¼ XðtÞϕð0Þþ
Z 0

�h
Xðt�θ�hÞA1ϕðθÞ dθ;

where X(t) is the fundamental matrix of (43). The latter matrix
satisfies (43) and also

_X ðtÞ ¼ XðtÞAþXðt�hÞA1; Xð0Þ ¼ I; XðtÞ ¼ 0 ðto0Þ:
Since (43) is exponentially stable, the fundamental matrix expo-
nentially converges to zero in the sense that jXðtÞjrce�αt for some
cZ1 and α40.

ThenZ 1

0

d
dt
VW ðxtÞ dt ¼ �

Z 1

0
xT ðtÞWxðtÞ dt:

Since VW ðx1Þ ¼ 0, we obtain
R1
0 ðd=dtÞVW ðxtÞ dt ¼ �VW ðϕÞ and

0rVW ðϕÞ ¼
Z 1

0
xT ðtÞWxðtÞ dt

¼ϕT ð0ÞUW ð0Þϕð0Þ

þ2ϕT ð0Þ
Z 0

�h
UW ð�h�θÞA1ϕðθÞ dθ

þ
Z 0

�h
ϕT ðθ2ÞAT

1

Z 0

�h
UW ðθ2�θ1ÞA1ϕðθ1Þ dθ1 dθ2;

where

UW ðθÞ ¼
Z 1

0
XT ðtÞWXðtþθÞ dto1: ð45Þ

Note that the latter integral converges due to the exponential
convergence of X(t) to zero.

Since for the autonomous system (43) xðsþt;ϕÞ ¼ xðs; xðtþ�;ϕÞÞ,
we have

VW ðxðtþ�;ϕÞÞ ¼
Z 1

0
xT ðsþt;ϕÞWxðsþt;ϕÞ ds

¼
Z 1

t
xT ðθ;ϕÞWxðθ;ϕÞ dθ:

Differentiating in t the latter equation we derive (44). Given W40,
it is easily seen that VW is quadratically upper bounded: there exists
β40 such that VW ðϕÞrβJϕJ2C for some β40. However, as was
shown in [33], this functional has a cubic lower bound.

A more general Lyapunov functional was introduced in [40]

_V ðxtÞ ¼ �xT ðtÞW1xðtÞ�xT ðt�hÞW2xðt�hÞ

�
Z 0

�h
xT ðtþsÞW3xðtþsÞ ds ð46Þ
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with some Wi40; i¼ 1;2;3, leading to the following complete
Lyapunov functional

VðϕÞ ¼ϕT ð0ÞUð0Þϕð0Þþ2ϕT ð0Þ
Z 0

�h
Uð�h�θÞA1ϕðθÞ dθ

þ
Z 0

�h
ϕT ðθ2ÞAT

1

Z 0

�h
Uðθ2�θ1ÞA1ϕðθ1Þ dθ1 dθ2

þ
Z 0

�h
ϕT ðθÞ½W2þðhþθÞW3�ϕðθÞ dθ; ð47Þ

where UðθÞ ¼UW1 þW2 þhW3
ðθÞ.

It was proved in [40] that if the system (10) is asymptotically
stable, then the complete Lyapunov functional has a quadratic
lower bound V ðϕÞZϵjϕð0Þj2 for some ε40 and satisfies the
derivative condition (46). Moreover, the Lyapunov matrix UW can
be found from the boundary value problem for a matrix linear
ODE. Therefore, the complete Lyapunov functional can be found by
fixing some n�n matrices Wi40; i¼ 1;2;3, and solving the
resulting boundary value problems for the ODE and substituting
the resulting U into (47).

In the case of multiple discrete delays, the complete Lyapunov
functional has a form similar to (47). However, only in the case of
commensurate delays the corresponding Lyapunov matrices can
be found from the boundary value problems for ODEs.

Remark 1. The complete Lyapunov functional can be used for the
robust stability analysis of linear uncertain systems provided the
nominal LTI delayed system is asymptotically stable. See [40] for
systems with uncertain matrices, [39] for systems with non-small
slowly varying delays, and [11,16] for systems with non-small fast-
varying delays. Note that for application of complete Lyapunov
functionals one has to fix some matrices (like W1 and W2 above),
which may lead to conservative results. An interesting application
of complete Lyapunov functional to explicit necessary and suffi-
cient stability conditions was suggested recently in [54]. See [37]
for exhaustive treatment of complete Lyapunov functionals.

4.2. About the discretized Lyapunov functional method

As follows from the previous subsection, a general quadratic
Lyapunov functional corresponding to necessary stability condi-
tions for (43) with a quadratic lower bound has a form of

VðxtÞ ¼ xT ðtÞPxðtÞþ2xT ðtÞ
Z 0

�h
Q ðξÞxðtþξÞ dξ

þ
Z 0

�h

Z 0

�h
xT ðtþsÞRðs; ξÞ ds xðtþξÞ dξ

þ
Z 0

�h
xT ðtþξÞSðξÞxðtþξÞ dξ; ð48Þ

where 0oPARn and where n�n matrix functions

Q ðξÞ;Rðξ;ηÞ ¼ RT ðη; ξÞ and SðξÞ ¼ ST ðξÞ
are absolutely continuous. For the sufficiency of (48), one has to
formulate conditions for VZα0jxðtÞj2; α040 and _V r�αjxðtÞj2;
α40.

LMI sufficient conditions via general Lyapunov functional of
(48) and discretization were found in [26], where Q ðξÞ;Rðξ;ηÞ ¼
RT ðη; ξÞ and SðξÞ ¼ ST ðξÞARn�n were continuous and piecewise-
linear matrix-functions. The resulting LMI stability conditions
appeared to be very efficient, leading in some examples to results
close to analytical ones. For the discretized Lyapunov functional
method see Section 5.7 of [28].

Till [9] no design problems were solved by this method due to
bilinear terms in the resulting matrix inequalities. The latter terms
arise from the substitution of _xðtÞ by the right-hand side of the
differential equation in _V . The descriptor discretized method

suggested in [9] avoids this substitution. The descriptor discretized
method was applied to state-feedback design of H1 controllers for
neutral type systems with discrete and distributed delays [22] and
to dynamic output-feedback H1 control of retarded systems with
state, input and output delays [71]. For differential-algebraic systems
with delay, the corresponding general Lyapunov–Krasovskii func-
tionals were studied in [27].

4.3. Simple, augmented and general Lyapunov functionals

Consider a modified complete Lyapunov functional as suggested
in [13]

_V ðxtÞ ¼ �xT ðtÞW1xðtÞ�xT ðt�hÞSxðt�hÞ�
Z 0

�h
_xT ðtþsÞR0 _xðtþsÞ ds

ð49Þ
with some W140; S40;R040, where xðtþsÞ in the integral term
of (46) is replaced by _xðtþsÞ and W3 ¼ R0. This functional is defined
for solutions of (43) with absolutely continuous initial functions
ϕAW ½�h;0�. By changing the order of integrals we haveZ 1

0

Z 0

�h
_xT ðtþsÞR0 _xðtþsÞ ds dt

¼ h
Z 1

0
_xT ðsÞR0 _xðsÞ dsþ

Z 0

�h
ðsþhÞ _xT ðsÞR0 _xðsÞ ds:

The form of the functional

VR0 ðϕÞ ¼
Z 1

0
_xT ðs;ϕÞR0 _xðs;ϕÞ ds ð50Þ

can be found by following the arguments of [11].
Denote

U1ðθÞ9
Z 1

0

_X
T ðtÞR0

_X ðtþθÞ dt

¼
Z 1

0
½ATXT ðtÞþAT

1X
T ðt�hÞ�R0½XðtþθÞAþXðtþθ�hÞA1� dt;

θAR:

Let UR0 be defined by (45) with W ¼ R0. It can be shown that

VR0 ðϕÞ ¼
Z 1

0
_xT ðs;ϕÞR0 _xðs;ϕÞ ds

¼ϕT ð0ÞU1ð0Þϕð0Þþ2ϕT ð0Þ
Z 0

�h
U1ð�h�θÞA1ϕðθÞ dθ

þ
Z 0

�h
ϕT ðθ2ÞAT

1

Z 0

�h
U1ðθ2�θ1ÞA1ϕðθ1Þ dθ1 dθ2þ ~V ;

where

~V ¼
Z 0

�h
ϕT ðθ2ÞAT

1R0 A1ϕðθ2Þþ2½AeAðθ2 þhÞϕð0Þ
h

þ
Z θ2

�h
AeAðθ2 �θ1ÞA1ϕðθ1Þ dθ1�

#
dθ2:

Thus the functional defined by (49) has a form

VðϕÞ ¼ϕT ð0ÞUð0Þϕð0Þþ2ϕT ð0Þ
Z 0

�h
Uð�h�θÞA1ϕðθÞ dθ

þ
Z 0

�h
ϕT ðθ2ÞAT

1

Z 0

�h
Uðθ2�θ1ÞA1ϕðθ1Þ dθ1 dθ2

þ
Z 0

�h
ϕT ðθÞSϕðθÞdθþ

Z 0

�h

Z 0

θ

_ϕ
T ðsÞR0

_ϕðsÞ ds dθþhV ;

ð51Þ
where UðθÞ ¼UW1 þ SðθÞþhU1ðθÞ. The following can be proved [13]:

Proposition 3. Let the system (43) be asymptotically stable. For all
n�n matrices W140; S40 and R040, and for small enough ε40,
the Lyapunov functional (51) satisfies (49) and V ðϕÞZϵjϕð0Þj2.
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A general quadratic Lyapunov functional corresponding to (51)
has a form of

VðxtÞ ¼ xT ðtÞPxðtÞþ2xT ðtÞ
Z 0

�h
Q ðξÞxðtþξÞ dξ

þ
Z 0

�h

Z 0

�h
xT ðtþsÞRðs; ξÞ ds xðtþξÞ dξþ

Z t

t�h
xT ðξÞSxðξÞ dξ

þ
Z 0

�h

Z t

tþθ
_xT ðsÞR0 _xðsÞ ds dθ; ð52Þ

where P40; S40;R040. Matrix-functions Q ðξÞARn�n and
Rðξ;ηÞ ¼ RT ðη; ξÞARn�n are absolutely continuous. For the sufficiency
of (52), one has to formulate conditions for VZβjxðtÞj2; β40 and
_V r�αjxðtÞj2; α40.

Choosing in (52) R¼ Q ¼ 0 and replacing R0 by hR we arrive at
the simple Lyapunov functional (23), where Q¼0.

Consider now (52) with constant R� Z and Q, and replace R0 by
hR. Then we arrive at the augmented Lyapunov functional of the form

Vðxt ; _xtÞ ¼
xðtÞR t

t�h xðsÞ ds

" #T
P Q

n Z

� � xðtÞR t
t�h xðsÞ ds

" #
þ
Z t

t�h
xTSx ds

þh
Z 0

�h

Z t

tþθ
_xT ðsÞR _xðsÞ ds dθ;

P Q

n Z

� �
40; S40; R40: ð53Þ

Note that the term Qa0 in (53) allows us to derive non-convex
in h conditions that do not imply the stability of the original
system with h¼0. A remarkable result was obtained by Seuret and
Gouaisbaut [64] for systems with constant discrete and distributed
delays: by deriving an extended integral inequality, which includes
Jensen's inequality as a particular case, and applying the augmen-
ted Lyapunov functional (53) the authors arrived at LMIs that may
guarantee the stability of systems which are unstable with the
zero delay (i.e. in the case of “stabilizing delay”).

5. Lyapunov functionals for systems with distributed delays

Consider a linear system with the distributed delay

_xðtÞ ¼ AxðtÞþAd

Z 0

�hd
xðtþsÞ ds; xðtÞARn; hd40; ð54Þ

where A and Ad are constant n�n matrices, hdo1. We study
stability in two cases: (1) A and AþhdAd are Hurwitz, (2) A or
AþhdAd are Hurwitz.

In the 1st case the delayed term can be treated as a disturbance
by using the following Lyapunov functional:

V0ðxtÞ ¼ xT ðtÞPxðtÞþVRd
ðxtÞ;

VRd
ðxtÞ ¼ hd

Z 0

�hd

Z t

tþθ
xT ðτÞRdxðτÞ dτ dθ; P40;Rd40:

In the 2nd case, keeping in mind that (54) can be represented in
the following form:

_xðtÞ ¼ ðAþhdAdÞxðtÞþAd

Z t

t�hd
½xðsÞ�xðtÞ� ds; ð55Þ

we have to “compensate” the perturbation given by the integral
term in (55). This can be done by adding to V0 a triple integral term
as suggested in [2,68]

Vðxt ; _xtÞ ¼ V0ðxtÞþVZd
ð _xtÞ;

VZd
ð _xtÞ ¼

Z 0

�hd

Z 0

θ

Z t

tþλ
_xT ðsÞZd _xðsÞ ds dλ dθ; Zd40:

Then after differentiation we have

d
dt
Vðxt ; _xtÞ ¼ 2xT ðtÞP _xðtÞþh2dx

T ðtÞRdxðtÞþ
h2
d

2
_xT ðtÞZd _xðtÞ

�hd

Z t

t�hd
xT ðsÞRdxðsÞ ds�

Z 0

�hd

Z t

tþθ
_xT ðsÞZd _xðsÞ ds dθ

Application of Jensen's inequality to
R t
t�hd

xT ðsÞRdxðsÞ ds and the
extended Jensen's inequality to the double integral term [68]

�
Z 0

�hd

Z t

tþθ
_xT ðsÞZd _xðsÞ ds dθ

r� 2

h2
d

Z 0

�hd

Z t

tþθ
_xT ðsÞ ds dθ

 !
Zd

Z 0

�hd

Z t

tþθ
_xðsÞ ds dθ

 !

¼ � 2

h2d
hdx

T ðtÞ�
Z t

t�hd
xT ðsÞ ds

� 	
Zd hdxðtÞ�

Z t

t�hd
xðsÞ ds

� 	

leads to the LMI stability condition for the distributed delay
system (54):

PAþATPþh2dRd�2Zd PAdþ 2
hd
Zd ATZd

n �Rd� 2
h2d
Zd AT

dZd

n n � 2
h2d
Zd

2
66664

3
77775o0: ð56Þ

Example 2. Consider the system (54) with

A¼ 0:2 0
0:2 0:1

� �
; Ad ¼

�1 0
�1 �1

� �
; ð57Þ

where A is not Hurwitz. Here AþhdAd is Hurwitz for hd40:2. By
the LMI condition (56) the system (57) is asymptotically stable for
any hdA ½0:2001;1:6339�.

Remark 2. Lyapunov functional constructions of this section can
be easily extended to systems

_xðtÞ ¼ AxðtÞþ
Z 0

�hd
AdðsÞxðtþsÞ ds; xðtÞARn; hd40

with variable n�n matrix kernels AdAL1ð0;hdÞ. Thus, the following
Lyapunov functional with a double integral term can be used [19]:

VðxtÞ ¼ xT ðtÞPxðtÞþhd

Z 0

�hd

Z t

tþ s
xT ðτÞAT

dðsÞRdAdðsÞxðτÞ dτ ds;

where P40;Rd40, leading to the following LMI:

PAþATPþhd
R 0
�hd

AT
dðsÞRdAdðsÞ ds P

n �Rd

" #
o0:

In the latter LMI the decision variable Rd appears inside the integral.
In order to verify the feasibility of this LMI by using MATLAB, one can
assume that Rd ¼ rdI (which is restrictive), where rd40 is a scalar.
Another solution for the stability analysis in the case of variable
kernels has been suggested in [67], where it is assumed that
AdðsÞ ¼∑m

i ¼ 1AdiKiðsÞ with constant matrices AdiARn�n and scalar
kernel functions Ki(s).

5.1. Systems with infinite delays

A linear system with infinite delay has a form

_xðtÞ ¼ AxðtÞþAd

Z 1

0
KðθÞxðt�θÞ dθ; ð58Þ

where xðtÞARn , A;AdARn�n are constant matrices. It is supposed
that the scalar kernel function KAL1½0;1Þ satisfies the inequalityR1
0 jKðθÞj dθo1. A solution of (58) is uniquely determined for the
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uniformly continuous initial function ϕACð�1;0�. This solution
continuously depends on ϕ (see [41, Theorem 3.2.3]).

Assume that A or A0 ¼ AþAd
R1
0 KðθÞ dθ are Hurwitz. The

following Lyapunov functional can be applied to stability analysis
of (58) [67]:

VðtÞ ¼ VPðtÞþVRd
ðtÞþVZd

ðtÞ; VPðtÞ ¼ xT ðtÞPxðtÞ ð59Þ
with

VRd
ðtÞ ¼

Z 1

0

Z t

t�θ�τ
jKðθÞjxT ðsÞRdxðsÞ ds dθ;

VZd
ðtÞ ¼

Z 1

0

Z θþ τ

0

Z t

t�λ
jKðθÞj _xT ðsÞZd _xðsÞ ds dλ dθ;

where P;Rd and Zd are positive n�n matrices. Application of
appropriately extended Jensen's inequalities leads to efficient
LMI stability conditions [67].

A particular class of systems with infinite delays are systems
with gamma-distributed delays KðθÞ ¼ θN�1e�θ=T=TNðN�1Þ!, where
T40 and N¼ 1;2;… are parameters of distribution. Note thatR1
0 KðξÞ dξ¼ 1. The corresponding average delay satisfies

R1
0 ξK

ðξÞ dξ¼NT .
Gamma-distributed delays can be encountered in the problem

of control over communication networks, in the population
dynamics [4] and in the traffic flow dynamics [51]. For gamma-
distributed delays by using augmented Lyapunov functionals, LMIs
for the case of “stabilizing delays”, where A and A0 may be non-
Hurwitz, have been derived in [67]. The latter stability problem is
motivated e.g. by the traffic flow model on the ring [55], where
A¼0 and where the zero eigenvalue of A0 corresponds to the
vehicles moving with the same velocity.

6. Stability of nonlinear systems

Till now the stability conditions for linear TDSs have been
derived. This section discusses stability results for some classes of
nonlinear systems.

Consider the following autonomous RDE:

_xðtÞ ¼ LxtþgðxtÞ; xðtÞARn; tZ0; ð60Þ
where L : C½�h;0�-Rn is a linear bounded functional, g : C½�h;0�-Rn

is a locally Lipschitz continuous function that satisfies

jgðψ ÞjrβðJψ JCÞJψ JC 8ψAC½�h;0�;
where β is continuous and βð0Þ ¼ 0.

The linear system

_xðtÞ ¼ Lxt ; tZ0 ð61Þ
is called the first approximation with respect to the original
system (60). In fact, the linear system (61) can be considered as
a linearization in the neighborhood of the trivial solution of the
nonlinear system _xðtÞ ¼ f ðxtÞ with a smooth f such that f ð0Þ ¼ 0.
As for non-delay systems, the stability of the nonlinear TDS with
the asymptotically stable first approximation can be derived either
by the (first) Lyapunov method with the quadratic Lyapunov
function/functional or by using Gronwall's inequality. By using
Gronwall's inequality the following can be proved [13, Proposition
3.17]:

Proposition 4. If the linear system (61) is asymptotically stable,
then the nonlinear system (60) is asymptotically stable.

In the critical case, where some characteristic roots of (61) are
on the imaginary axis, whereas all the others have negative real
parts, either the direct Lyapunov method or the center manifold
theory can be applied [31]. Thus, in the system

_xðtÞ ¼ �ax3ðtÞ�a1x3ðt�hÞ; a40

the first approximation _xðtÞ ¼ 0 has the zero eigenvalue. This is the
critical case, where no conclusion can be done from the analysis of
the first approximation. Application of the Lyapunov functional

VðxtÞ ¼
x4ðtÞ
2a

þ
Z t

t�h
x6ðsÞ ds

leads to the following result [31]: the system is asymptotically
delay-independently stable for ja1joa.

Lyapunov-based methods for asymptotic stability of linear
systems considered in this paper can be usually extended to some
quasilinear systems with e.g. Lipschitz nonlinearities. For example,
consider the system

_xðtÞ ¼ AxðtÞþA1xðt�τðtÞÞþgðt; xðtÞ; xðt�τðtÞÞ; xðtÞARn; tZ0;

ð62Þ
with a continuous g : R� Rn � Rn-Rn, which is locally Lipschitz
continuous in the second and the third arguments and satisfies for
all t the inequality

jgðt; x; yÞj2r xT yT
h i

M
x

y

" #
8x; yARn; ð63Þ

where 0oMARn�n and Mrβ0I; β0ARþ . Then, by using S-proce-
dure together with the inequality (63) one can arrive to LMI
condition for the global asymptotic stability of the quasilinear
system (62).

Delay-dependent conditions have been extended to some
classes of nonlinear systems (see e.g. [14]) Consider next a class
of systems, affine in control uðtÞARm

_xðtÞ ¼ AðxðtÞÞxðtÞþBðxðtÞÞuðtÞ; ð64Þ
where xðtÞARn, A and B are continuously differentiable matrix-
functions. Given a state-feedback

uðtÞ ¼ Kðxðt�τðtÞÞÞ; KðxÞ ¼ kðxÞx; ð65Þ
where k : Rn-Rm�n is a continuously differentiable function and
where τðtÞA ½0;h� is the unknown piecewise-continuous delay that
often appears in the feedback. We extend the relation xðt�τðtÞÞ ¼
xðtÞ� R tt�τðtÞ _xðsÞ ds to the nonlinear case as follows:

Kðxðt�τðtÞÞÞ ¼ KðxðtÞÞ�
Z t

t�τðtÞ
KxðxðsÞÞ _xðsÞ ds;

where Kx ¼ ½ð∂=∂x1ÞK…ð∂=∂xnÞK�, and represent the closed-loop
system (64)–(65) in the form

_xðtÞ ¼ AðxðtÞÞxðtÞþBðxðtÞÞKðxðtÞÞ�BðxðtÞÞ
Z t

t� τðtÞ
KxðxðsÞÞ _xðsÞ ds: ð66Þ

Note that (66) is equivalent to (64)–(65). The following Lyapunov
functional

Vðxt ; _xtÞ ¼ xT ðtÞPxðtÞþ
Z t

t� r
Dðs; xt ; _xtÞ ds;

Dðs; xt ; _xtÞ9
Z t

s
_xT ðξÞKT

x ðxðξÞÞRKxðxðξÞÞ _xðξÞ dξ; P40; R40

leads to a state-dependent matrix inequality [14]. The feasibility of
state-dependent LMIs may be studied by using a convex optimiza-
tion approach (sum of squares) for nonlinear systems [58].

If a nonlinear system is locally (not globally) stable, it is of
interest to find a domain of attraction. The direct Lyapunov
method provides constructive tools for finding estimates on the
domains of attraction of nonlinear TDSs [3].

7. The input–output approach to stability

Till now we have applied the direct Lyapunov approach to
the stability analysis of (10). An alternative approach is the
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input–output approach that is based on the representation of the
original system as a feedback interconnection of some auxiliary
systems with additional inputs and outputs and application of the
small-gain theorem. These two approaches sometimes lead to
complementary results, improving each other and giving ideas for
further improvements. The input–output approach was introduced for
nonlinear time-varying finite-dimensional systems by Zames [72], it
was extended to continuous-time linear systems with constant delays
in [34,73] and with slowly varying delays in [28]. This approach was
generalized to linear continuous-time with fast-varying delays and to
discrete-time systems in [21,35,66].

The input–output approach is applicable to stability and to
L2-gain analysis. Note that in the feedback interconnection of the
systems, the initial conditions are supposed to be zero. Therefore,
this approach cannot be directly applied to the bounds on the
solutions of the original system, where the initial state may be
non-zero (see e.g. [15] for related solution bounds depending on
the initial conditions). For solution bounds the direct Lyapunov
method seems to be preferable.

Consider first the delay-independent conditions, where the
delayed state xðt�τðtÞÞ is treated as a disturbance. This corre-
sponds to the presentation of (10) as the following forward system

_xðtÞ ¼ AxðtÞþA1X
�1uðtÞ;

yðtÞ ¼ XxðtÞ ð67Þ
with the feedback

uðtÞ ¼ yðt�τðtÞÞ: ð68Þ
Here XARn�n is a non-singular scaling matrix. Indeed, substituting
(68) and yðtÞ ¼ XxðtÞ into the differential equation (67), we obtain
(10). Assume that A is Hurwitz and yðtÞ ¼ 0 for tr0.

In the simple delay-dependent conditions for τðtÞA ½0;h�, the
presentation

_xðtÞ ¼ ðAþA1ÞxðtÞ�A1

Z t

t�τðtÞ
_xðsÞ ds

is used, where
R t
t�τðtÞ _xðsÞ ds is treated as a disturbance. This

corresponds to the presentation of (10) as the following forward
system

_xðtÞ ¼ ðAþA1ÞxðtÞþA1X
�1uðtÞ;

yðtÞ ¼ X _xðtÞ ¼ X½ðAþA1ÞxðtÞþA1X
�1uðtÞ� ð69Þ

with the feedback

uðtÞ ¼ �
Z t

t� τðtÞ
yðsÞ ds: ð70Þ

Here it is assumed that AþA1 is Hurwitz and yðtÞ ¼ 0 for tr0.
In both cases the forward system can be presented as y¼Gu

and the feedback as u¼Δy, where G : L2½0;1Þ-L2½0;1Þ and
Δ : L2½0;1Þ-L2½0;1Þ. The system G : L2½0;1Þ-L2½0;1Þ is said to
be input–output stable if it has a finite gain γ0ðGÞ defined by

γ0ðGÞ ¼ inffγ : JGuJ L2 rγ JuJ L2 8uAL2½0;1Þg:

The small gain theorem claims that the interconnected system
feedback ðG;ΔÞ is well defined and input–output stable if
γ0ðΔÞγ0ðGÞo1.

The following lemma provides upper bounds on the gains of
the feedback systems (68) and (70):

Lemma 3 (Lemma 3 [28,35]). For Δ given by (68) and for slowly
varying delays with _τrdo1 the following holds:

γ0ðΔÞr
1ffiffiffiffiffiffiffiffiffiffiffi
1�d

p : ð71Þ

For Δ given by (70) and fast-varying delays τA ½0;h� the following
holds:

γ0ðΔÞrh: ð72Þ

Since γ0ðGÞ ¼ JGJ1, by the small-gain theorem, the feedback
interconnection given by (67), (68) and (69), (70) is input–output
stable if JGJ1o1=γ0ðΔÞ. Deriving further LMI conditions for the
last inequality, i.e. for

_V þyTy� 1
γ20ðΔÞ

uTuo0 8ua0

by using VðxÞ ¼ xTPx; 0oPARn�n; xARn we can recover the
delay-independent and simple delay-dependent conditions of
Section 3.

7.1. Stability of systems with non-small delays

We consider (10), where we assume that the uncertain delay
τðtÞ has a form

τðtÞ ¼ hþηðtÞ; jηðtÞjrμrh: ð73Þ
Here h is a known nominal delay value and μ is a known upper
bound on the delay uncertainty. The delay is supposed to be either
differentiable with _τrd, where d is known, or piecewise-
continuous (fast-varying). In the latter case we will say that d is
unknown (though τ may be not differentiable).

Assume that the nominal system

_xðtÞ ¼ AxðtÞþA1xðt�hÞ; xðtÞARn ð74Þ
is asymptotically stable.

We represent (10) in the form of the forward system

_xðtÞ ¼ AxðtÞþA1xðt�hÞþA1X
�1uðtÞ;

yðtÞ ¼ X _xðtÞ; ð75Þ
with the feedback

uðtÞ ¼ ðΔyÞðtÞ ¼ �
Z �h

�h�ηðtÞ
yðtþsÞ ds; ð76Þ

where X is a scaling non-singular matrix.
Bounds on γ0ðΔÞ for _τrd with d41 were found in [66]:

Lemma 4. For the operator u¼Δy given by (76) with yðsÞ ¼ 0; so0
the following holds:

γ0ðΔÞrμ
ffiffiffiffiffiffiffiffiffiffi
F ðdÞ

p
; F ðdÞ ¼

1 if �1rdr1;
2d�1

d
if 1odo2;

7d�8
4d�4

if dZ2;

7
4

if d is unknown:

8>>>>>>>>><
>>>>>>>>>:

ð77Þ

Note that F is an increasing continuous function satisfying for
d41 the following inequalities:

1¼F ð1ÞoF ðdÞo lim
d-1

F ðdÞ ¼ 1:75:

The value of 1 cannot be improved. Moreover, the value 1.75 for
F ð1Þ is not far from an optimal one, and it cannot be less than 1.5.

LMI conditions that guarantee the input–output stability of (10)
can be derived by using some Lyapunov functional Vn that
corresponds to the nominal system (74) and that satisfies along
(75) the following inequality:

W9 _V nþyTy�μ�2F �1ðdÞuTuo0 8ua0:
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7.2. Relation between input–output and exponential stability

We will show below that input–output stability of LTV TDSs
implies the exponential stability of these systems. This implication
is based on Bohl–Perron principle that was generalized to TDSs
(see [24]). Consider the following linear homogenous system:

_xðtÞ ¼ ∑
m

k ¼ 1
AkðtÞxðt�τkðtÞÞþ

Z h

0
Adðt;θÞxðt�θÞ dθ;

xðsÞ ¼ϕðsÞ; sA ½�h;0�; ϕAC½�h;0� ð78Þ
with discrete and distributed delays. Here τ0 ¼ 0, Ak and Ad are
n�n matrices that are piecewise-continuous in their arguments,
piecewise-continuous delays τk are bounded by h: 0rτkrh.
Assume further that

sup
tZ0

∑
m

k ¼ 1
jAkðtÞjþ

Z h

0
jAdðt;θÞj dθ

" #
o1: ð79Þ

Consider next the corresponding non-homogeneous system
with the zero initial condition:

_xðtÞ ¼ ∑
m

k ¼ 1
AkðtÞxðt�τkðtÞÞþ

Z h

0
Adðt;θÞxðt�θÞ dθþ f ðtÞ;

xðsÞ ¼ 0; sA ½�h;0�; ð80Þ
where f ðtÞALp½0;1Þ ð1rpr1Þ. For the existence of a solution
xALp½0;1Þ to (80) with the zero initial condition see [24]. The
following result is obtained (see [24] for the proof):

Theorem 3 (Bohl–Perron principle). If for a pZ1 and any
f ALp½0;1Þ, the non-homogeneous system with the zero initial
condition (80) has a solution xALp½0;1Þ, and condition (79) holds,
then the homogeneous system (78) is exponentially stable.

We shall apply the Bohl–Perron principle with p¼2. Consider
the linear homogeneous system (10) with an uncertain delay
τðtÞA ½0;h�, where the following condition

JGJ1o1; GðsÞ ¼ sXðsI�A0�A1Þ�1μA1X
�1 ð81Þ

guarantees the input–output stability of (10). Consider also the
perturbed system

_xðtÞ ¼ AxðtÞþA1xðt�τðtÞÞþγ�1wðtÞ;
zðtÞ ¼ εxðtÞ;

xðsÞ ¼ 0; sr0;

where the positive scalars ε and γ�1 are small enough. The
inequality (81) implies

JGγ J1o1;

GγðsÞ ¼
sX

εIn

" #
sI�A0�A1ð Þ�1 μA1X

�1 In
γ

� �

for some small enough ε and γ�1. The latter means that for
all f ¼ γwAL2½0;1Þ the solution x(t) of (10) has a bounded L2-
norm JxJ L2 rð1=εÞJwJ L2 , i.e. xAL2½0;1Þ. Therefore, from the
Bohl–Perron principle it follows that the condition (81) satisfied
for some X and ρ implies the exponential stability of (10) with a
non-zero initial condition ϕAC½�h;0�. By the same arguments,
other conditions for the input–output stability discussed in this
section guarantee the exponential stability of the corresponding
linear homogeneous system.

8. Conclusions

The methods presented in this tutorial for retarded type
systems have been extended in the literature to neutral systems,
to descriptor TDSs and to discrete-time TDSs. Lyapunov-based

methods appeared to be efficient for the performance analysis of
TDSs, as well as for control design in the presence of state, input or
output delays. For detailed introduction to TDSs with applications
to sampled-data and network-based control see [13].

There are a lot of open problems related to stability and control
of TDSs. For example (to name a few), sufficient stability condi-
tions taking into account a particular form of τðtÞ or analytical
stability bounds and necessary Lyapunov-based stability condi-
tions for some classes of systems with time-varying delays.
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