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The conditions of existence of a Lyapunov–Krasovskii functional (LKF) for nonlinear input-to-state
stable (ISS) neutral type systems are proposed. The system under consideration depends nonlinearly
on the delayed state and the delayed state derivative, and satisfies the conditions for the existence
and uniqueness of the solutions. The LKF and the system properties are defined in a Sobolev space of
absolutely continuous functions with bounded derivatives.
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1. Introduction

Stability analysis for dynamical systems constitutes an im-
portant area of research in different domains of science and
technology, and especially in the control theory (Khalil, 2015).
For generic dynamical systems, the key tool to study stability
is the Lyapunov function method, which for time-delay systems
has two extensions based on Lyapunov–Razumikhin functions
and Lyapunov–Krasovskii functionals (Fridman, 2014; Hale, 1977;
Khalil, 2015; Kolmanovskii & Myshkis, 1999; Kolmanovsky &
Nosov, 1986). These approaches have also their development for
systems with inputs, where one of the most popular concepts is
ISS (Dashkovskiy, Efimov, & Sontag, 2011). It is a well-known fact
that existence of a Lyapunov function is necessary and sufficient
for asymptotic stability and ISS in the case of ordinary differential
equations (Khalil, 2015). For time-delay systems, the conditions
of such an equivalence appeared rather recently (for instance,
check (Huang, 1989; Kharitonov & Zhabko, 2003) for asymptotic
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stability, and (Karafyllis & Jiang, 2011; Karafyllis & Pepe, 2015;
Lin & Wang, 2018a, 2018b; Mironchenko & Wirth, 2018; Pepe &
Karafyllis, 2013) for ISS case). For the class of nonlinear neutral
type time-delay systems, the papers (Pepe & Karafyllis, 2013;
Pepe, Karafyllis, & Jiang, 2017) develop the equivalent conditions
of asymptotic stability and ISS in terms of existence of LKF. In
these works, the systems in the Hale’s form have been analyzed,
and an implicit expression of LKF has been proposed. A two steps
procedure from Karafyllis and Jiang (2011) is used in Pepe and
Karafyllis (2013) and Pepe et al. (2017), which at the last iteration
includes an infinite summation over a partition of unity, then
the form of dependence of LKF on the state function is com-
plicated and not intuitive. Studying uniform asymptotic stability
these results have been extended in Efimov and Fridman (2019)
to a different class of neutral time-delay systems (not in the
Hale’s form) with a coercive LKF given in an explicit form. Differ-
ently from Karafyllis and Jiang (2011), Pepe and Karafyllis (2013)
and Pepe et al. (2017), where the stability has been analyzed
in the space W1,+∞

[−τ ,0] (the Sobolev space of continuous functions
with essentially bounded derivatives), while also frequently the
space W1,2

[−τ ,0] is used (Fridman, 2014) (the state derivative is
square integrable), in Efimov and Fridman (2019) the mathe-
matical treatment has been performed in W1,1

[−τ ,0] (the Sobolev
space of continuous functions with integrable derivatives). The
technical advantage of such a change consists in the established
Lipschitz continuity of the solutions of the neutral type systems
with locally Lipschitz continuous right-hand side in W1,1

[−τ ,0] (in
W1,+∞

[−τ ,0] such a property has been proven for the systems in the
Hale’s form only).
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The main contribution of the present work consists in the
formulation of equivalent conditions of ISS for neutral type non-
linear time-delay systems with essentially bounded inputs in
W1,1

[−τ ,0]. As in Mironchenko and Wirth (2018) and Pepe et al.
(2017), two types of the conditions are given: in terms of ex-
istence of an LKF, and in terms of uniform global asymptotic
stability of an auxiliary system. A conference version of the paper
restricted to the case of asymptotic stability was presented in
Efimov and Fridman (2019).

The outline of this paper is as follows. Some preliminary
results are introduced in Section 2. The problem statement is
given in Section 3. The main result is established in Section 4.

2. Preliminaries

Denote by R and N the sets of real and natural numbers,
respectively, and R+ = {s ∈ R : s ≥ 0}.

2.1. Definitions of norms and spaces

Denote by Cn
[a,b], [a, b] ⊂ R the Banach space of continuous

functions φ : [a, b] → Rn with the uniform norm ∥φ∥[a,b] =

sups∈[a,b] |φ(s)|, where |·| is the standard Euclidean norm in Rn.
For a Lebesgue measurable function of time d : [a, b] → Rm,

[a, b] ⊂ R, define the norm ∥d∥[a,b] = ess sups∈[a,b]|d(s)|, then
∥d∥∞ = ess sups≥0|d(s)| and the space of d with ∥d∥[a,b] < +∞

(∥d∥∞ < +∞) we further denote as Lm
[a,b] (L

m
∞
).

Denote by W1,p
[a,b], p ∈ N and W1,∞

[a,b] the Sobolev spaces of
absolutely continuous functions φ : [a, b] → Rn, [a, b] ⊂ R, with
bounded derivatives having the respective norms ∥φ∥W1,p

[a,b]
=

∥φ∥[a,b] +

(∫ b
a |φ̇(s)|pds

) 1
p
< +∞ and ∥φ∥W1,∞

[a,b]
= ∥φ∥[a,b] +

∥φ̇∥[a,b] < +∞, where φ̇(s) =
∂φ(s)
∂s (it is a Lebesgue measurable

essentially bounded function for φ ∈ W1,∞
[a,b], i.e. φ̇ ∈ Ln

[a,b]).
1

Lemma 1 (Efimov & Fridman, 2019). For any φ ∈ W1,∞
[a,b] and

p ∈ N ∪ {+∞} the following inequalities are satisfied:

min{1, (b − a)
1
p −1

}∥φ∥W1,1
[a,b]

≤ ∥φ∥W1,p
[a,b]

≤ max{1, (b − a)
1
p }∥φ∥W1,∞

[a,b]
.

Proof. From the norm definition we deduce:

∥φ∥W1,p
[a,b]

= ∥φ∥[a,b] +

(∫ b

a
|φ̇(s)|pds

) 1
p

≤ ∥φ∥[a,b] +

(∫ b

a
∥φ̇∥

p
[a,b]ds

) 1
p

≤ max{1, (b − a)
1
p }∥φ∥W1,∞

[a,b]
,

and using integral Jensen’s inequality (Khalil, 2015):

∥φ∥W1,p
[a,b]

= ∥φ∥[a,b] +

(∫ b

a
|φ̇(s)|pds

) 1
p

≥ ∥φ∥[a,b] + (b − a)
1
p −1

∫ b

a
|φ̇(s)|ds

≥ min{1, (b − a)
1
p −1

}∥φ∥W1,1
[a,b]

that was necessary to prove.

1 In Fridman, Dambrine, and Yeganefar (2008) and Kolmanovsky and Nosov
(1986) the norm with p = 2 has been only used for the state space of time-delay
systems.

2.2. Comparison functions and their properties

A continuous function σ : R+ → R+ belongs to class K if it
is strictly increasing and σ (0) = 0; it belongs to class K∞ if it is
also radially unbounded.

Lemma 2 (Karafyllis & Jiang, 2011). For any α ∈ K there exists
a continuous function γ : R+ → R+ admitting the following
properties: γ (0) = 0, γ (s) > 0 for all s > 0, and

γ (s) ≤ α(s), |γ (s) − γ (s′)| ≤ |s − s′| ∀s, s′ ∈ R+.

In addition,

lim
s→+∞

γ (s) = +∞

provided that α ∈ K∞.

A continuous function β : R+ ×R+ → R+ belongs to class KL
if β(·, r) ∈ K and β(r, ·) is a strictly decreasing to zero for any
fixed r ∈ R+.

Lemma 3 (Sontag, 1998). For any β ∈ KL there exist θ1, θ2 ∈ K∞

such that

β(s, t) ≤ θ1
(
θ2(s)e−t)

∀s ≥ 0, t ≥ 0.

2.3. Neutral systems under consideration

Consider an autonomous functional differential equation of
the neutral type with inputs (Kolmanovsky & Nosov, 1986):

ẋ(t) = f (xt , ẋt , d(t)), t ≥ 0 (1)

where x(t) ∈ Rn and xt ∈ Cn
[−τ ,0] is the state function, xt (s) =

x(t + s), −τ ≤ s ≤ 0, with ẋt ∈ Ln
[−τ ,0]; d(t) ∈ Rm is the external

input, d ∈ Lm
∞
. The function f : Cn

[−τ ,0] × Ln
[−τ ,0] × Rm

→ Rn is
continuous and Lipschitz in the second variable with a constant
smaller than 1, ensuring forward uniqueness and existence of the
system solutions at least locally in time (Kolmanovsky & Nosov,
1986). We assume f (0, 0, 0) = 0. For the initial function x0 ∈

Cn
[−τ ,0] and disturbance d ∈ Lm

∞
denote a unique solution of

the system (1) by x(t, x0, d), which is an absolutely continuous
function defined on some time interval [−τ , T ) for T > 0, then
xt (x0, d) ∈ Cn

[−τ ,0] represents the corresponding state function,
and xt (s, x0, d) = x(t + s, x0, d) for all −τ ≤ s ≤ 0.

Given a continuous functional V : R+ ×Cn
[−τ ,0] ×Ln

[−τ ,0] → R+

define:

D+V (t, φ, φ̇, d) = lim sup
h→0+

1
h
[V (t + h, xh(φ, d), ẋh(φ, d))

−V (t, φ, φ̇)],

where xh(φ, d) is a solution of the system (1) for φ ∈ Cn
[−τ ,0],

φ̇ ∈ Ln
[−τ ,0] and d ∈ Rm is a constant.

2.4. Uniform stability

Denote D = {d ∈ Lm
∞

: ∥d∥∞ ≤ 1} and D = {d ∈

Rm
: |d| ≤ 1} in order to analyze the behavior of (1) with a

bounded input d. Then in the following we summarize the well-
known results (Fridman, 2014; Kolmanovskii & Myshkis, 1999) on
stability of (1).

Definition 1 (Fridman et al., 2008; Lin &Wang, 2018b; Pepe & Jiang,
2006). The system (1) is called uniformly globally asymptotically
stable (uGAS), if for all x0 ∈ W1,1

[−τ ,0] and d ∈ D there exists
β ∈ KL such that

∥xt (x0, d)∥W1,1
[−τ ,0]

≤ β(∥x0∥W1,1
[−τ ,0]

, t) ∀t ≥ 0.
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Instead of W1,1
[−τ ,0] any other space W1,p

[−τ ,0] can be used in this
definition for p ∈ N ∪ {+∞}.

As it is usually assumed (Fridman et al., 2008; Pepe & Jiang,
2006), in this case

|x(t, x0, d)| ≤ β(∥x0∥W1,1
[−τ ,0]

, t) ∀t ≥ 0.

Recall that in El’sgol’ts and Norkin (1973), under the assumption
that f is Lipschitz in the second variable φ̇ with a constant smaller
than 1, it is established that the latter estimate is equivalent to
the stability in W1,∞

[−τ ,0].

Definition 2. A continuous functional V : R+×Cn
[−τ ,0]×Ln

[−τ ,0] →

R+ is called simple if D+V (t, φ, φ̇, d) is independent on φ̈.

For instance, a locally Lipschitz functional V : Cn
[−τ ,0] → R+ is

simple.

Definition 3 (Fridman et al., 2008; Lin &Wang, 2018b; Pepe & Jiang,
2006). A continuous functional V : R+ × Cn

[−τ ,0] × Ln
[−τ ,0] → R+

is called LKF for the system (1) if it is simple, there exist p ∈

N ∪ {+∞}, α1, α2 ∈ K∞ and α ∈ K such that V is Lipschitz
continuous on bounded sets in W1,p

[−τ ,0] \ {0}, and for all t ∈ R+,
d ∈ D and φ ∈ W1,p

[−τ ,0]:

α1(∥φ∥W1,p
[−τ ,0]

) ≤ V (t, φ, φ̇) ≤ α2(∥φ∥W1,p
[−τ ,0]

),

D+V (t, φ, φ̇, d) ≤ −α(V (t, φ, φ̇)).

Note that existence of such a LKF implies that for all t ∈ R+,
d ∈ D and φ ∈ W1,p

[−τ ,0]:

α1(|φ(0)|) ≤ V (t, φ, φ̇) ≤ α2(∥φ∥W1,p
[−τ ,0]

),

D+V (t, φ, φ̇, d) ≤ −α̂(|φ(0)|),

where α̂(s) = α(α1(s)) is a function from class K, which is the
standard LKF formulation used to establish asymptotic stabil-
ity (Fridman, 2014).

Theorem 1 (Fridman, 2014; Fridman et al., 2008). If there exists a
LKF for the system (1), then it is uGAS.

There exist also some converse results to Theorem 1, see,
e.g., Pepe and Karafyllis (2013), which are obtained for V :

Cn
[−τ ,0] → R+ and a special class of f in the Hale’s form, and

(Karafyllis & Jiang, 2011) for the background framework. Here we
will use the following counterpart of Theorem 1 given in Efimov
and Fridman (2019) (since in the sequel we have to develop some
steps of the proof from Efimov and Fridman (2019), it is presented
in the Appendix):

Theorem 2. Let the system (1) be uGAS in the sense of Theorem 1
and f : Cn

[−τ ,0] × Ln
[−τ ,0] × Rm

→ Rn be uniformly Lipschitz
continuous on bounded sets in W1,1

[−τ ,0] (i.e., for any closed and
bounded subset Υ ⊂ W1,1

[−τ ,0] there exists LΥ > 0 such that

|f (φ, φ̇, d) − f (ϕ, ϕ̇, d)| ≤ LΥ ∥φ − ϕ∥W1,1
[−τ ,0]

for all φ, ϕ ∈ Υ and d ∈ D). Then there exists a LKF for the system
(1) with p = 1.

The expression for a LKF proposed in the proof of Theorem 2,
see (4) in the Appendix, has an explicit form (if only negative def-
initeness of D+V (x0, ẋ0, d) is required), and it is more simple than
in Karafyllis and Jiang (2011), Pepe and Karafyllis (2013) and Pepe
et al. (2017), where a two step procedure for construction of LKF
has been proposed.

2.5. Robust stability

The ISS property is an extension of the conventional stability
paradigm to the systems with external inputs (Fridman et al.,
2008; Pepe & Jiang, 2006; Teel, 1998).

Definition 4 (Fridman et al., 2008; Pepe & Jiang, 2006). The system
(1) is called practical ISS, if for all x0 ∈ W1,1

[−τ ,0] and d ∈ Lm
∞

there
exist q ≥ 0, β ∈ KL and γ ∈ K such that for all t ≥ 0

∥xt (x0, d)∥W1,1
[−τ ,0]

≤ β(∥x0∥W1,1
[−τ ,0]

, t) + γ (∥d∥[0,t)) + q.

If q = 0 then (1) is called ISS.

Definition 5. The system (1) is said to possess the practical
asymptotic gain (AG) property, if for all x0 ∈ W1,1

[−τ ,0] and d ∈ Lm
∞

there exist q ≥ 0 and γ ∈ K such that

lim
t→+∞

∥xt (x0, d)∥W1,1
[−τ ,0]

≤ γ (∥d∥∞) + q.

If q = 0 then (1) admits AG property.

Definition 6. The system (1) is said to have the practical global
stability (GS) property, if for all x0 ∈ W1,1

[−τ ,0] and d ∈ Lm
∞

there
exist q ≥ 0 and σ1, σ2 ∈ K such that for all t ≥ 0

∥xt (x0, d)∥W1,1
[−τ ,0]

≤ max{σ1(∥x0∥W1,1
[−τ ,0]

), σ2(∥d∥∞)} + q.

If q = 0 then (1) admits GS property.

Again, instead of W1,1
[−τ ,0] any other space W1,p

[−τ ,0] can be used
in these definitions for p ∈ N ∪ {+∞}.

As it follows from the definitions above, a (practical) ISS sys-
tem has (practical) AG and (practical) GS properties, and for a
system in (1) described by an ordinary differential equation (i.e.,
with τ = 0) the converse implication also holds (Dashkovskiy
et al., 2011).

As it has been observed in Fridman et al. (2008) and Pepe and
Jiang (2006), a sufficient characterization of ISS property can be
introduced for (1):

Definition 7. A continuous functional V : R+ × Cn
[−τ ,0] ×

Ln
[−τ ,0] → R+ is called practical ISS LKF for the system (1) if it

is simple and there exist p ∈ N ∪ {+∞}, r ≥ 0, α1, α2 ∈ K∞ and
α, χ ∈ K such that V is Lipschitz continuous on bounded sets in
W1,p

[−τ ,0] \ {0}, and for all t ∈ R+, φ ∈ W1,p
[−τ ,0] and d ∈ Rm:

α1(∥φ∥W1,p
[−τ ,0]

) ≤ V (t, φ, φ̇) ≤ α2(∥φ∥W1,p
[−τ ,0]

),

V (t, φ, φ̇) ≥ max{r, χ (|d|)} H⇒ D+V (t, φ, φ̇, d) ≤ −α(V (t, φ, φ̇)).

If r = 0 then V is an ISS LKF.

Theorem 3 (Fridman et al., 2008). If there exists a (practical) ISS LKF
for the system (1), then it is (practical) ISS with the AG γ = α−1

1 ◦χ .

There exist also some converse results to Theorem 3, see e.g.
Pepe et al. (2017), which are also obtained for V : Cn

[−τ ,0] → R+

and neutral systems in Hale’s form.

3. Problem statement

The goal of this work is to propose a converse of Theorem 3 for
xt ∈ W1,1

[−τ ,0] and for another class of f than in Pepe and Karafyllis
(2013) and Pepe et al. (2017). In particular, as in Theorem 2 the
following hypothesis is accepted in the sequel:

Assumption 1. The system (1) is ISS in the sense of Definition 4,
and f : Cn

[−τ ,0] × Ln
[−τ ,0] × Rm

→ Rn is Lipschitz continuous on
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bounded sets in W1,1
[−τ ,0]×Rm: for any closed and bounded subsets

Υ ⊂ W1,1
[−τ ,0] and D ⊂ Rm there exists LΥ ,D > 0 such that

|f (φ, φ̇, d) − f (ϕ, ϕ̇, δ)| ≤ LΥ ,D(∥φ − ϕ∥W1,1
[−τ ,0]

+ |d − δ|)

for all φ, ϕ ∈ Υ and d, δ ∈ D.

Here the boundedness of a subset is understood as bounded-
ness of the least upper bound of the norm for difference of any
two elements of the subset.

An example of such a system is given by dynamics with
distributed delays in the state derivatives and general delays in
the state:

f (φ, φ̇, d) = F (φ,
∫ 0

−τ

k(s)φ̇(s)ds, d)

with a Lipschitz continuous on bounded sets function F : Cn
[−τ ,0]×

R2n
→ Rn and an essentially bounded kernel k : [−τ , 0] → R. An

important example covered by Assumption 1 includes retarded
system with a pointwise delay:

ẋ(t) = F (x(t), x(t − τ ), d(t)),

then f (φ, φ̇, d) = F (φ(0), φ(0) −
∫ 0

−τ
φ̇(s)ds, d) and it has been

observed previously (Fridman, 2001, 2014) that a LKF in W1,2
[−τ ,0]

for this kind of dynamics is usually more efficient than in Cn
[−τ ,0]

(especially for robustness analysis).
From the relations between the norms given in Lemma 1 we

observe that boundedness of xt in W1,+∞

[−τ ,0] implies immediately a
similar property for all other norms. Therefore, a stability analysis
performed in the space W1,1

[−τ ,0] seems to be less restrictive, which
is the motivation for selection of that space in this problem
formulation.

4. Main results

In this section, first, some preliminary results are established,
which clarify the features and significance of the imposed as-
sumptions, and second, a converse result is presented.

4.1. Lipschitz continuity of solutions

Under the introduced restrictions we have the following useful
property for the solutions of system (1):

Proposition 1. Let Assumption 1 be satisfied. Then in (1), for any
T > 0, and closed and bounded subsets Υ ⊂ W1,1

[−τ ,0] and Θ ⊂ Lm
∞
,

there exists MT ,Υ ,Θ > 0 such that

∥xt (φ, d) − xt (ϕ, δ)∥W1,1
[−τ ,0]

≤ MT ,Υ ,Θ (∥φ − ϕ∥W1,1
[−τ ,0]

+∥d − δ∥[0,T )) ∀t ∈ [0, T ]

for all φ, ϕ ∈ Υ and d, δ ∈ Θ .

Proof. According to Assumption 1 there are β ∈ KL and γ ∈ K
such that (consider also q ≥ 0)

∥xt (x0, d)∥W1,1
[−τ ,0]

≤ β(∥x0∥W1,1
[−τ ,0]

, t) + γ (∥d∥∞) + q

for all t ≥ 0, for all x0 ∈ W1,1
[−τ ,0] and d ∈ Lm

∞
. For any Υ and Θ

as above, φ, ϕ ∈ Υ and d, δ ∈ Θ , there exists ρ > 0 such that
∥φ∥W1,1

[−τ ,0]
≤ ρ, ∥ϕ∥W1,1

[−τ ,0]
≤ ρ, ∥d∥∞ ≤ ρ and ∥δ∥∞ ≤ ρ. Hence,

we have

max{∥xt (φ, d)∥W1,1
[−τ ,0]

, ∥xt (ϕ, δ)∥W1,1
[−τ ,0]

} ≤ β(ρ, 0)

+γ (ρ) + q

and

|f (xt (φ, d), ẋt (φ, d), d(t)) − f (xt (ϕ, δ), ẋt (ϕ, δ), δ(t))|
≤ Lρ(∥xt (φ, d) − xt (ϕ, δ)∥W1,1

[−τ ,0]
+ |d(t) − δ(t)|)

for almost all t ≥ 0, where Lρ > 0 represents the Lipschitz con-
stant of f on the set {φ ∈ W1,1

[−τ ,0] : ∥φ∥W1,1
[−τ ,0]

≤ β(ρ, 0)+γ (ρ)+q}
and {d ∈ Lm

∞
: ∥d∥∞ ≤ ρ} (it exists due to Assumption 1). For

any φ ∈ W1,1
[−τ ,0] and d ∈ Lm

∞
we have:

x(t, φ, d) = x(0, φ, d) +

∫ t

0
f (xs(φ, d), ẋs(φ, d), d(s))ds

for all t ≥ 0, and for φ, ϕ ∈ Υ and d, δ ∈ Θ:
|x(t, φ, d) − x(t, ϕ, δ)| ≤ |x(0, φ, d) − x(0, ϕ, δ)|

+

∫ t

0
|f (xs(φ, d), ẋs(φ, d), d(s)) − f (xs(ϕ, δ), ẋs(ϕ, δ), δ(s))|ds

≤ |x(0, φ, d) − x(0, ϕ, δ)|

+Lρ

∫ t

0
∥xs(φ, d) − xs(ϕ, δ)∥W1,1

[−τ ,0]
+ |d(s) − δ(s)|ds.

Therefore, for t ≥ 0:

∥xt (φ, d) − xt (ϕ, δ)∥W1,1
[−τ ,0]

= sup
−τ≤s≤0

|x(t + s, φ, d) − x(t + s, ϕ, δ)|

+

∫ 0

−τ

|ẋ(t + σ , φ, d) − ẋ(t + σ , ϕ, δ)|dσ

≤ ∥φ − ϕ∥W1,1
[−τ ,0]

+

∫ t

0
|f (xσ (φ, d), ẋσ (φ, d), d(σ )) − f (xσ (ϕ, δ), ẋσ (ϕ, δ), δ(σ ))|dσ

+

∫ 0

−τ

|ẋ(t + σ , φ, d) − ẋ(t + σ , ϕ, δ)|dσ

≤ 2∥φ − ϕ∥W1,1
[−τ ,0]

+2
∫ t

0
|f (xσ (φ, d), ẋσ (φ, d), d(σ )) − f (xσ (ϕ, δ), ẋσ (ϕ, δ), δ(σ ))|dσ

≤ 2∥φ − ϕ∥W1,1
[−τ ,0]

+2Lρ

∫ t

0
∥xσ (φ, d) − xσ (ϕ, δ)∥W1,1

[−τ ,0]
+ |d(σ ) − δ(σ )|dσ

≤ 2∥φ − ϕ∥W1,1
[−τ ,0]

+ 2Lρ t∥d − δ∥[0,t)

+2Lρ

∫ t

0
∥xσ (φ, d) − xσ (ϕ, δ)∥W1,1

[−τ ,0]
dσ .

Next, using Gronwall’s Lemma (Khalil, 2015) we obtain for all
t ∈ [0, T ]:

∥xt (φ, d) − xt (ϕ, d)∥W1,1
[−τ ,0]

≤ 2(∥φ − ϕ∥W1,1
[−τ ,0]

+LρT∥d − δ∥[0,T ))e2Lρ t .

Consequently, take any T > 0 then

∥xt (φ, d) − xt (ϕ, d)∥W1,1
[−τ ,0]

≤ MT ,Υ ,Θ (∥φ − ϕ∥W1,1
[−τ ,0]

+∥d − δ∥[0,T )) ∀t ∈ [0, T ]

for MT ,Υ ,Θ = 2max{1, LρT }e2LρT .

Thus, under Assumption 1, for any bounded set of initial condi-
tions and inputs, for a compact interval of time, for the solutions
of the system (1) there is a kind of local Lipschitz property with
respect to the initial conditions and inputs. It is worth to highlight
that the result is substantiated in the space W1,1

[−τ ,0], and a similar
conclusion inW1,∞

[−τ ,0] was obtained for the system (1) in the Hale’s
form (Pepe & Karafyllis, 2013; Pepe et al., 2017).
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Remark 1. In addition, due to Lemma 1, for any closed and
bounded subset Υ ⊂ W1,1

[−τ ,0]:

|f (φ, φ̇, d) − f (ϕ, ϕ̇, δ)| ≤ LΥ ,D,p(∥φ − ϕ∥W1,p
[−τ ,0]

+ |d − δ|)

for all φ, ϕ ∈ W1,p
[−τ ,0] and d, δ ∈ D such that ∥φ∥W1,p

[−τ ,0]
≤

min{1, τ
1
p −1

}ϱ and ∥ϕ∥W1,p
[−τ ,0]

≤ min{1, τ
1
p −1

}ϱ, where LΥ ,D,p =

max{1, τ 1−
1
p }LΥ ,D with LΥ ,D given in Assumption 1 and ϱ > 0 is

the corresponding norm bound on Υ , i.e. the Lipschitz continuity
of f in W1,p

[−τ ,0] also follows.

4.2. A uniformly GAS system

Further consider an auxiliary system:

ż(t) = f (zt , żt , γ−1(
1
2
∥zt∥W1,1

[−τ ,0]
)δ(t)), t ≥ 0, (2)

where z(t) ∈ Rn and zt ∈ Cn
[−τ ,0] is the state as before, z0 ∈

W1,1
[−τ ,0], γ is the AG function given for (1) in Definition 5 (which

exists for (1) under Assumption 1, and we can always assume
that γ ∈ K∞, then its inverse is well defined), and δ ∈ D is a
uniformly bounded input. Obviously, the origin is an equilibrium
of (2) since f (0, 0, 0) = 0 in (1). In addition, for any z0 ∈ W1,1

[−τ ,0]
and δ ∈ D the solution zt (z0, δ) of (2) is defined on some interval
of time [0, T

max
z0 ) and it coincides with the solution xt (z0, d) of (1)

for d(t) = γ−1( 12∥zt (z0, δ)∥W1,1
[−τ ,0]

)δ(t) on this interval of time.
Let us demonstrate a more strong relation between solutions of
the systems (1) and (2) (as in Sontag and Wang (1996), see also
Propositions 4.3 and 4.4 of Karafyllis and Jiang (2011)):

Proposition 2. The following relations are true:
(i) If the system (1) is ISS with the AG γ , then the system (2) is

uGAS.
(ii) If the system (2) is uGAS with the decay β ∈ KL, then the

system (1) is ISS with the AG β(2γ (·), 0).

Proof. (i) If the system (1) is ISS, then according to Definition 4

∥xt (xt0 , d)∥W1,1
[−τ ,0]

≤ β(∥xt0∥W1,1
[−τ ,0]

, t − t0) + γ (∥d∥[t0,t)),

for all t ≥ t0, for some β ∈ KL, γ ∈ K∞ and all xt0 ∈ W1,1
[−τ ,0],

d ∈ Lm
∞
, t0 ≥ 0. Since substituting d(t) = γ−1( 12∥zt∥W1,1

[−τ ,0]
)δ(t) in

the system (2) we get (1), for the latter with zt = zt (zt0 , δ) and
any zt0 ∈ W1,1

[−τ ,0], δ ∈ D we obtain:

∥zt∥W1,1
[−τ ,0]

≤ β(∥zt0∥W1,1
[−τ ,0]

, t − t0)

+γ ( sup
s∈[t0,t)

|γ−1(
1
2
∥zs∥W1,1

[−τ ,0]
)δ(s)|)

= β(∥zt0∥W1,1
[−τ ,0]

, t − t0) + γ ( sup
s∈[t0,t)

γ−1(
1
2
∥zs∥W1,1

[−τ ,0]
))

= β(∥zt0∥W1,1
[−τ ,0]

, t − t0) +
1
2

sup
s∈[t0,t)

∥zs∥W1,1
[−τ ,0]

for all t ∈ [0, T
max
zt0

). Hence,

sup
s∈[t0,t)

∥zs∥W1,1
[−τ ,0]

≤ sup
s∈[t0,t)

{β(∥zt0∥W1,1
[−τ ,0]

, s − t0)

+
1
2

sup
σ∈[t0,s)

∥zσ∥W1,1
[−τ ,0]

}

= sup
s∈[t0,t)

β(∥zt0∥W1,1
[−τ ,0]

, s − t0) +
1
2

sup
s∈[t0,t)

∥zs∥W1,1
[−τ ,0]

.

Take t0 = 0, then from the last inequality
1
2

sup
s∈[0,t)

∥zs(z0, δ)∥W1,1
[−τ ,0]

≤ β(∥z0∥W1,1
[−τ ,0]

, 0)

for any t ≥ 0, all z0 ∈ W1,1
[−τ ,0] and all δ ∈ D, which implies

global uniform boundedness of the solutions of the system (2).
Therefore, T

max
zt0

= +∞ for all z0 ∈ W1,1
[−τ ,0] and all δ ∈ D. Next,

select t0 =
t
2 :

sup
s∈[

t
2 ,t)

∥zs∥W1,1
[−τ ,0]

≤ sup
s∈[

t
2 ,t)
β(∥z t

2
∥W1,1

[−τ ,0]
, s −

t
2
)

+
1
2

sup
s∈[

t
2 ,t)

∥zs∥W1,1
[−τ ,0]

,

which for t → +∞ (i.e., considering the asymptotic behavior of
(2)) results in

lim
t→+∞

sup
s∈[

t
2 ,t)

∥zs∥W1,1
[−τ ,0]

≤
1
2

lim
t→+∞

sup
s∈[

t
2 ,t)

∥zs∥W1,1
[−τ ,0]

that can be satisfied for limt→+∞ ∥zt∥W1,1
[−τ ,0]

= 0 only. Conse-
quently, the system (2) is uniformly converging to the origin, the
uGAS property has been established.

(ii) Conversely, let (2) be uGAS, then according to Definition 1:

∥zt (zt0 , δ)∥W1,1
[−τ ,0]

≤ β(∥zt0∥W1,1
[−τ ,0]

, t − t0), ∀t ≥ t0,

for some β ∈ KL and all z0 ∈ W1,1
[−τ ,0], δ ∈ D, t0 ≥ 0.

Consider the system (1), take any x0 ∈ W1,1
[−τ ,0] and any d ∈

Lm
∞
, assume that ∥d∥∞ ≤ γ−1( 12∥xt∥W1,1

[−τ ,0]
) for t ∈ [0, t1) with

some (possibly infinite) t1 ≥ 0, then there is δ ∈ D such that
d(t) = γ−1( 12∥xt∥W1,1

[−τ ,0]
)δ(t) for all t ∈ [0, t1) and, hence, using

the properties of (2) we obtain:

∥xt (x0, d)∥W1,1
[−τ ,0]

≤ β(∥x0∥W1,1
[−τ ,0]

, t), ∀t ∈ [0, t1).

Next, assume that ∥d∥∞ > γ−1( 12∥xt∥W1,1
[−τ ,0]

) for t ∈ [t1, t2) with

some t2 > t1 (obviously, always t1 + t2 > 0 for any x0 ∈ W1,1
[−τ ,0]

and d ∈ Lm
∞
), hence,

∥xt∥W1,1
[−τ ,0]

≤ 2γ (∥d∥∞), ∀t ∈ [t1, t2).

Finally, let again ∥d∥∞ ≤ γ−1( 12∥xt∥W1,1
[−τ ,0]

) for t ∈ [t2, t3) with
some t3 > t2, similarly

∥xt (x0, d)∥W1,1
[−τ ,0]

≤ β(∥xt2∥W1,1
[−τ ,0]

, t − t2)

≤ β(2γ (∥d∥∞), 0), ∀t ∈ [t2, t3)

since in this case ∥xt2∥W1,1
[−τ ,0]

= 2γ (∥d∥∞) by construction. Next,
all these steps can be repeated iteratively if necessary (they cover
all possible scenarios), and it is clear that for all t ≥ 0

∥xt (x0, d)∥W1,1
[−τ ,0]

≤ β(∥x0∥W1,1
[−τ ,0]

, t) + β(2γ (∥d∥∞), 0),

since by definition β(s, 0) ≥ s for all s ≥ 0, which implies ISS
property of (1).

4.3. Converse design of LKF

For brevity of exposition the analysis is presented in the space
W1,1

[−τ ,0] (we need the result of Proposition 1 formulated in this
space) and for ISS case only.

Theorem 4. Let Assumption 1 be satisfied, then there exists an ISS
LKF for the system (1).
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Proof. Under the introduced hypothesis and Lemma 3 there are
θ1, θ2, θ3 ∈ K∞ such that

∥xt (x0, d)∥W1,1
[−τ ,0]

≤ θ1

(
θ2(∥x0∥W1,1

[−τ ,0]
)e−t

)
+ θ3(∥d∥∞)

for all t ≥ 0, for all x0 ∈ W1,1
[−τ ,0] and d ∈ Lm

∞
. Recalling

Lemma 2, there exists a continuous, positive definite and radially
unbounded function ψ : R+ → R+ admitting the following
properties:

ψ(s) ≤ θ−1
3 (s), |ψ(s) − ψ(s′)| ≤ |s − s′| ∀s, s′ ∈ R+.

Following the arguments of Proposition 2, the system (that is a
variant of (2))

ż(t) = F (zt , żt , δ(t)), t ≥ 0, (3)

where z(t) ∈ Rn, zt ∈ Cn
[−τ ,0], δ ∈ D and F (zt , żt , δ(t)) =

f (zt , żt , ψ( 12∥zt∥W1,1
[−τ ,0]

)δ(t)), is uGAS. Indeed,

θ3( sup
s∈[t0,t)

ψ(
1
2

∥zs∥W1,1
[−τ ,0]

)) ≤ θ3( sup
s∈[t0,t)

θ−1
3 (

1
2

∥zs∥W1,1
[−τ ,0]

))

=
1
2

sup
s∈[t0,t)

∥zs∥W1,1
[−τ ,0]

as for (2) (and all other arguments of Proposition 2 stay un-
changed). Now, take any closed and bounded subset Υ ⊂ W1,1

[−τ ,0],
according to Assumption 1 there exists LΥ ,D > 0 such that

|F (φ, φ̇, δ) − F (ϕ, ϕ̇, δ)| = |f (φ, φ̇, ψ(
1
2
∥φ∥W1,1

[−τ ,0]
)δ)

−f (ϕ, ϕ̇, ψ(
1
2
∥ϕ∥W1,1

[−τ ,0]
)δ)|

≤ LΥ ,D(∥φ − ϕ∥W1,1
[−τ ,0]

+ |ψ(
1
2
∥φ∥W1,1

[−τ ,0]
)δ

−ψ(
1
2
∥ϕ∥W1,1

[−τ ,0]
)δ|)

≤ LΥ ,D(∥φ − ϕ∥W1,1
[−τ ,0]

+ |ψ(
1
2
∥φ∥W1,1

[−τ ,0]
)

−ψ(
1
2
∥ϕ∥W1,1

[−τ ,0]
)|)

≤ LΥ ,D(∥φ − ϕ∥W1,1
[−τ ,0]

+
1
2
|∥φ∥W1,1

[−τ ,0]
− ∥ϕ∥W1,1

[−τ ,0]
|)

≤
3
2
LΥ ,D∥φ − ϕ∥W1,1

[−τ ,0]

for all φ, ϕ ∈ Υ and δ ∈ D, where the Lipschitz properties of
ψ and ∥ · ∥W1,1

[−τ ,0]
were used in the last two steps. Therefore,

F is uniformly Lipschitz continuous on bounded sets in W1,1
[−τ ,0],

then all conditions of Theorem 2 are satisfied and the system (3)
admits a LKF V , which is Lipschitz continuous on bounded sets in
W1,1

[−τ ,0] \ {0}, and for all δ ∈ D and φ ∈ W1,1
[−τ ,0]:

α1(∥φ∥W1,1
[−τ ,0]

) ≤ V (φ, φ̇) ≤ α2(∥φ∥W1,1
[−τ ,0]

),

D+V (φ, φ̇, δ) ≤ −α(V (φ, φ̇))

for some α1, α2, α ∈ K∞. Returning to the system (1), for any
φ ∈ W1,1

[−τ ,0] and d ∈ Rm, let ψ( 12∥φ∥W1,1
[−τ ,0]

) ≥ |d|, where
ψ(s) =

s
1+s infσ≥s ψ(σ ) is a function from class K∞, then d =

ψ( 12∥φ∥W1,1
[−τ ,0]

)δ′
= ψ( 12∥φ∥W1,1

[−τ ,0]
)δ for some δ′, δ ∈ D, hence,

the following implication holds in (1):

V (φ, φ̇) ≥ χ (|d|) ⇒ ∥φ∥W1,1
[−τ ,0]

≥ 2ψ−1(|d|)

⇒ D+V (φ, φ̇, d) ≤ −α(V (φ, φ̇)),

where χ (s) = α2(2ψ−1(s)), which implies that V is an ISS LKF
for (1).

The obtained result shows that the existence of a coercive
ISS LKF is necessary and sufficient for ISS of the system (1) in
W1,1

[−τ ,0] provided that the Lipschitz continuity property stated
in Assumption 1 is verified. The proposed conditions establish a
direct relation between a LKF for the auxiliary system (3) and the
required ISS LKF of (1).

5. Conclusions

The problem of existence of an ISS LKF for nonlinear neutral
type time-delay systems is solved considering the ISS property
in W1,1

[−τ ,0] space. It is shown that Lipschitz property of f defined
in such a space can be transformed to the same property of the
solutions of (1), and relations between ISS and uGAS properties
of (1) and an auxiliary system (2) are established.

Appendix

Under the introduced hypothesis in Theorem 2, and Lemma 3,
there are θ1, θ2 ∈ K∞ such that

∥xt (x0, d)∥W1,1
[−τ ,0]

≤ θ1

(
θ2(∥x0∥W1,1

[−τ ,0]
)e−t

)
∀t ≥ 0

for all x0 ∈ W1,1
[−τ ,0] and d ∈ D, then by recalling Lemma 2, there

exists a continuous, positive definite and radially unbounded
function ς : R+ → R+ admitting the following properties:

ς (s) ≤ θ−1
1 (s), |ς (s) − ς (s′)| ≤ |s − s′| ∀s, s′ ∈ R+.

Now, for any x0 ∈ W1,1
[−τ ,0] select

V (x0, ẋ0) = sup
t≥0,d∈D

{ς (∥xt (x0, d)∥W1,1
[−τ ,0]

)
κ1 + t
κ2 + t

} (4)

with κ2
1+κ2

< κ1 < κ2 < +∞. Then

V (x0, ẋ0) ≤ sup
t≥0,d∈D

{θ2(∥x0∥W1,1
[−τ ,0]

)e−t κ1 + t
κ2 + t

}

≤
κ1

κ2
θ2(∥x0∥W1,1

[−τ ,0]
)

and

V (x0, ẋ0) ≥ sup
t≥0,d∈D

{ς (∥xt (x0, d)∥W1,1
[−τ ,0]

)
κ1

κ2
}

≥ ς (∥x0∥W1,1
[−τ ,0]

)
κ1

κ2

since under introduced restrictions on κ1 and κ2 the functions
κ1+t
κ2+t and e−t κ1+t

κ2+t are strictly increasing and decreasing, respec-
tively. Define ς (s) =

s
1+s infσ≥s ς (σ ), which is a function from

class K∞, then
κ1

κ2
ς (∥x0∥W1,1

[−τ ,0]
) ≤ V (x0, ẋ0) ≤

κ1

κ2
θ2(∥x0∥W1,1

[−τ ,0]
)

for all x0 ∈ W1,1
[−τ ,0], and the LKF V (x0, ẋ0) is coercive admitting

lower and upper bounds in terms of functions from the class
K∞ with respect to ∥x0∥W1,1

[−τ ,0]
as desired. From the decreasing

of e−t κ1+t
κ2+t it also follows that there exists T x0 > 0 such that

V (x0, ẋ0) = sup
0≤t≤T x0 ,d∈D

{ς (∥xt (x0, d)∥W1,1
[−τ ,0]

)
κ1 + t
κ2 + t

},

and since

ς (∥x0∥W1,1
[−τ ,0]

)
κ1

κ2
≤ V (x0, ẋ0)

≤ sup
0≤t≤T x0 ,d∈D

{θ2(∥x0∥W1,1
[−τ ,0]

)e−t
},
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then by the definition of T x0 , it has an upper estimate:

T x0 ≤ ln

⎡⎣κ2
κ1

θ2(∥x0∥W1,1
[−τ ,0]

)

ς (∥x0∥W1,1
[−τ ,0]

)

⎤⎦ .
For any 0 < r < R < +∞ define a set

Ωr,R = {x0 ∈ W1,1
[−τ ,0] : r ≤ ∥x0∥W1,1

[−τ ,0]
≤ R},

consequently, there exists a finite T r,R
= supx0∈Ωr,R

T x0 , i.e. T r,R
=

ln
[
κ2
κ1

θ2(R)
ς (r)

]
.

Let us check the Lipschitz continuity of V on any bounded
and closed subset in W1,1

[−τ ,0] \ {0} (here by {0} we understand
x ∈ W1,1

[−τ ,0] with ∥x∥W1,1
[−τ ,0]

= 0). For any x0, x1 ∈ W1,1
[−τ ,0] \ {0}

denote T x0,x1 = max{T x0 , T x1} and consider:

|V (x1, ẋ1) − V (x0, ẋ0)| = | sup
0≤t≤T x1 ,d∈D

{ς (∥xt (x1, d)∥W1,1
[−τ ,0]

)
κ1 + t
κ2 + t

}

− sup
0≤t≤T x0 ,d∈D

{ς (∥xt (x0, d)∥W1,1
[−τ ,0]

)
κ1 + t
κ2 + t

}|

≤ sup
0≤t≤T x0 ,x1 ,d∈D

⏐⏐⏐⏐[ς (∥xt (x1, d)∥W1,1
[−τ ,0]

) − ς (∥xt (x0, d)∥W1,1
[−τ ,0]

)]
κ1 + t
κ2 + t

⏐⏐⏐⏐
≤ sup

0≤t≤T x0 ,x1 ,d∈D

⏐⏐⏐∥xt (x1, d)∥W1,1
[−τ ,0]

− ∥xt (x0, d)∥W1,1
[−τ ,0]

⏐⏐⏐
≤ sup

0≤t≤T x0 ,x1 ,d∈D
∥xt (x1, d) − xt (x0, d)∥W1,1

[−τ ,0]
,

where in the last step and the step before the Lipschitz properties
of the norm ∥ · ∥W1,∞

[−τ ,0]
and the function ς have been utilized,

respectively. For any x0, x1 ∈ W1,1
[−τ ,0] \ {0} there exist 0 <

r < R < +∞ such that x0, x1 ∈ Ωr,R, then T x0,x1 ≤ T r,R

and using Proposition 1 in Efimov and Fridman (2019) (see also
Proposition 1) there exists MT r,R,Ωr,R

> 0 such that

∥xt (x1, d) − xt (x0, d)∥W1,1
[−τ ,0]

≤ MT r,R,Ωr,R
∥x1 − x0∥W1,1

[−τ ,0]

for all t ∈ [0, T r,R
] and all d ∈ D, hence,

|V (x1, ẋ1) − V (x0, ẋ0)| ≤ MT r,R,Ωr,R
∥x1 − x0∥W1,1

[−τ ,0]

for all x0, x1 ∈ Ωr,R and any 0 < r < R < +∞, which implies the
required Lipschitz continuity of V on bounded sets inW1,1

[−τ ,0]\{0}.
The continuity at the origin follows from the upper estimate:

V (x0, ẋ0) ≤
κ1

κ2
θ2(∥x0∥W1,1

[−τ ,0]
)

that is satisfied for all x0 ∈ W1,1
[−τ ,0].

Finally, let us check the decreasing of the LKF V on the trajec-
tories of the system (1) for t > 0:

V (xt (x0, d), ẋt (x0, d))

= sup
σ≥0,δ∈D

{ς (∥xσ (xt (x0, d), δ)∥W1,1
[−τ ,0]

)
κ1 + σ

κ2 + σ
}

= sup
σ≥t,δ∈D

{ς (∥xσ (x0, δ)∥W1,1
[−τ ,0]

)
κ1 + σ − t
κ2 + σ − t

}

< sup
σ≥t,δ∈D

{ς (∥xσ (x0, δ)∥W1,1
[−τ ,0]

)
κ1 + σ

κ2 + σ
}

≤ sup
σ≥0,δ∈D

{ς (∥xσ (x0, δ)∥W1,1
[−τ ,0]

)
κ1 + σ

κ2 + σ
} = V (x0, ẋ0),

thus, V is strictly decreasing along the trajectories of (1) for all
x0 ∈ W1,1

[−τ ,0] and any d ∈ D. Moreover (this part is absent in
Efimov and Fridman (2019)),

V (xt (x0, d), ẋt (x0, d)) − V (x0, ẋ0)

= sup
σ∈[0,T xt (x0,d)],δ∈D

{ς (∥xσ (xt (x0, d), δ)∥W1,1
[−τ ,0]

)
κ1 + σ

κ2 + σ
}

− sup
σ≥0,δ∈D

{ς (∥xσ (x0, δ)∥W1,1
[−τ ,0]

)
κ1 + σ

κ2 + σ
}

= sup
σ∈[0,T xt (x0,d)],δ∈D

{ς (∥xt+σ (x0, δ)∥W1,1
[−τ ,0]

)

×

(
κ1 + t + σ

κ2 + t + σ
+
κ1 + σ

κ2 + σ
−
κ1 + t + σ

κ2 + t + σ

)
}

− sup
σ≥0,δ∈D

{ς (∥xσ (x0, δ)∥W1,1
[−τ ,0]

)
κ1 + σ

κ2 + σ
}

≤ sup
σ∈[0,T xt (x0,d)],δ∈D

{ς (∥xt+σ (x0, δ)∥W1,1
[−τ ,0]

)

×

(
κ1 + σ

κ2 + σ
−
κ1 + t + σ

κ2 + t + σ

)
},

and applying the Mean Value Theorem we obtain:

V (xt (x0, d), ẋt (x0, d)) − V (x0, ẋ0)
≤ − sup

σ∈[0,T xt (x0,d)],δ∈D
{ς (∥xt+σ (x0, δ)∥W1,1

[−τ ,0]
)t

×
κ2 − κ1

(κ2 + σ + δt)2
}

for some δt ∈ (0, t). Finally,

D+V (x0, ẋ0, d) = lim sup
t→0+

1
t
[V (xt (x0, d), ẋt (x0, d)) − V (x0, ẋ0)]

≤ − lim sup
t→0+

sup
σ∈[0,T xt (x0 ,d)],δ∈D

{ς (∥xt+σ (x0, δ)∥W1,1
[−τ ,0]

)
κ2 − κ1

(κ2 + σ + δt)2
}

= − sup
σ∈[0,T x0 ],δ∈D

{ς (∥xσ (x0, δ)∥W1,1
[−τ ,0]

)
κ2 − κ1

(κ2 + σ )2
}

≤ −
κ2 − κ1

(κ2 + T x0 )2
ς (∥x0∥W1,1

[−τ ,0]
)

for any x0 ∈ W1,1
[−τ ,0] and any d ∈ D, which is a negative definite

function of V , but probably globally bounded. Now defining a new
LKF Ṽ (x0, ẋ0) =

∫ V (x0,ẋ0)
0 ρ(s)ds for a suitably defined function

ρ ∈ K∞ it is possible to obtain another LKF with a negative
definite and properly unbounded derivative D+Ṽ (x0, ẋ0, d) for any
x0 ∈ W1,1

[−τ ,0] and any d ∈ D, as desired.
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