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Abstract—Event-triggered control (ETC) is becoming in-
creasingly popular in load frequency control (LFC) operation
in power systems. So far, the existing literature has primarily
focused on load disturbance rejection in face of communication
delay without considering much on networked-induced mea-
surement disturbances and messages sent. In this paper, we
study the LFC operation as a problem of networked control
system and propose, for the first time, an ETC based switching
approach for frequency regulation. We derive delay-dependent
conditions to obtain the lower bound on inter-event time during
event-trigger mechanism which assures the robust stability
under networked induced time-varying delays and measurement
disturbance and reduction in the amount of sent measurements.
The effectiveness of the proposed approach is verified via
numerical examples based on single-, two-area power systems
and single-area with electric vehicle (EV) participation.

Index Terms—Event-triggered control, electric vehicles, PI
control, periodic sampling, time-delays.

I. Introduction

THE study of time-delay has aroused wide interest
in LFC operation of power systems due to (i)

existence of geographically distributed generators and
load, (ii) usage of more open, adaptable and distributed
communication network infrastructure, and (iii) increased
competition among third party or bilateral contracts
in offering better ancillary services. In addition to the
delay in control signal, intrusion of communication noises
and malicious signal breaching (cyber-attack) are also
important issues [1]–[4]. Ignoring these phenomenon in
network dynamics may lead to failure or inappropriate
functioning of existing LFC approaches (e.g., [5]–[8]). Thus
it is essential to consider time-delays and disturbances.

In the past two decades, substantial research has been
done to ensure the stable LFC operation under time-
delayed communication. In face of delayed control signal,
the LFC study conducted in [9] and [10] presented the
idea of determining a delay bound and LMI-based robust
control theory. Later on, this approach is generalized
by using Lyapunov–Krasovskii functional (LKF) [11] for
stability and stabilization of LFC processes to overcome
the effect of time-delays [12]. Specifically, an improved
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weighing matrix approach is used to devise a delay-
dependent bounded real lemma [13] for analysis. A new
delay-dependent LMI criterion based on Park’s inequality
[14] and truncated infinite series integral inequality [15]
and Bessel–Legendre inequality [16] were also proposed.
An LMI-based robust predictive control state-feedback law
was designed in [17]. A new free weighing matrix with
a refined Jensen inequality based stability condition was
suggested for EV supported LFC operation [18]. Recently
a unified approach of fuzzy H∞ and iterative learning was
suggested in [19] for time-varying communication delays.
In addition to it, different delay-dependent stability con-
ditions using delay margin for LFC systems have been
studied in [20], [21] and references therein. However, the
explicit treatment of communication constraints (uncer-
tain fast-varying time-delays, external disturbance) in the
networked-power systems during LFC operation is still a
difficult task.

Another challenge for large-scale power systems op-
erating in distributed network communication system
is the implementation of LFC mechanism under heavy
transmission burden and brief communication times via
band-limited channel. The ETC algorithm serves as a
suitable candidate for reduction of communication burden
between sensors, controller and actuator nodes (see [22]
and references therein). Consequently, the LFC schemes
augmenting the ETC approaches via proportional-integral
(PI) control [23], sliding mode control [24], supplementary
adaptive dynamic programming controller [25], observer-
based controller [26] were proposed for time-delayed power
systems. An adaptive ETC strategy (opposite to the fixed
threshold parameter to fulfill event-triggering condition)
was also proposed to reduce the number of transmissions
[27].

The comprehensive survey, thus far, signifies that ETC
approaches and LKF-based stability conditions represent a
promising framework for efficient LFC operation. Besides
solutions to time variations in practical power network
(due to message losses, link failure, etc.), the explicit con-
siderations of communication uncertainties due to channel
disturbance and cyber-attack are still required. Congestion
control and channel quality enhancement by transmitting
the reduced amount of measurement signals is still an open
problem in networked power systems. Keeping these issues
in mind, we aim to achieve robust and stable networked-
control LFC operation. We summarize our contribution in
the following paragraph.

This paper addresses the LFC operation of power
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system under networked control framework where sampled
in time measurements are transmitted through communi-
cation network having uncertainties of time-delays and
network induced disturbances. Unlike the conventional
discrete time control which employs periodic sampling of
measurements (thereby creating redundancy), we consider
a continuous event-triggering (ET) mechanism but with
certain waiting time, i.e., whenever the ET condition
gets violated, the measurement is sent and then the ET
mechanism waits for some time and then restarts its
operation. We adopted this approach of [28] under PI
control strategy and proposed a new resource aware LFC
approach which reduces the amount of sent measurement
by switching between periodic sampling and continuous
ET. Our idea is to wait for at least certain time in-
terval at sensor end when frequency measurements are
sent. This waiting time is derived using delay-dependent
stability condition via LMI tool and LKF. After waiting,
the sensor continuously monitor the ET condition and
release measurements when it is violated. We demonstrate
that this approach (i) reduces redundant transmission of
packets which arises due to periodic sampling, (ii) avoids
Zeno phenomenon which occurs due to continuous ET,
(iii) yields larger inter-sampling time interval for same
ET conditions,and (iv) guarantees the desired L2−gain
(within the prescribed value) of the closed-loop system.
Thus, the overall workload is minimized during LFC op-
eration. To illustrate the effectiveness of derived approach,
we study the single- and two-area power systems under
networked induced uncertain time-varying delays, and
measurement and load disturbances. We also employed the
approach to a deregulated system where the EV takes part
in power generation. For comparative study, we applied
the periodic sampling and periodic ET schemes and it is
observed that the switching approach requires less amount
of measurements in comparison to the former schemes in
all the cases. Moreover, the waiting time is also larger
than the periodic ET approach.

The rest of the paper is organized as follows. We for-
mulate the LFC operation of the single-area power system
in Section II and introduce the switching approach in
Section III. This approach is sequentially extended to two-
area and single-area power systems with EV participation
in Sections IV and V, respectively. Simulation results of
power system under different configuration are presented
in Section VI. Brief summary and outlook for future
research are described in Section VII.

Notations: We define the sets R and N a set of real
and natural numbers, respectively. Let x =col{xi} ∈ Rn

denote a vector with entries xi for i ∈ 1, ..., n. For
A ∈ Rn×n, A > 0 means A is symmetric positive definite
matrix. We denote by L2[0,∞], the space of function f :
[0,∞) → Rn with the norm ||f ||L2 = [

∫∞
0

|f(φ)|dφ]1/2 <
∞ where |f(·)| is the standard Euclidean norm on Rn.

II. Problem set-up for single-area LFC
Power systems are generally nonlinear. However lin-

earized models are acceptable in LFC problems because

Fig. 1: Dynamic model of control area. Power system
within green block (–) represents single-area configuration.
Green Block together with magenta (– -) blocks depicts
ith area and green and red blocks (· · · ) together describes
the control-area supported with electric vehicle.

the load has very small fluctuations. Following [17], [29],
[30], we study a standard simplified power generator
network comprising of governor, non-reheated turbine, and
load and machine (see Fig. 1). The units in control area
are assumed to be coherent and in order to obtain the area
frequency deviation ∆f(t), the generators are lumped.
The models of generator and load, turbine and governor
dynamics are given by [29]:

∆ḟ(t) =−D

M
∆f(t) +

1

M
∆PM (t)− 1

M
∆Pd(t), (1a)

∆ṖM (t) =− 1

TT
∆PM (t) +

1

TT
∆PV (t), (1b)

∆ṖV (t) =− 1

TG
∆PV (t)−

1

RTG
∆f(t) + αG

1

TG
u(t),(1c)

where TG,M, TT , D,R denote the governor time con-
stant, generator inertia constant, turbine time constant,
damping coefficient, and droop constant, respectively. The
parameter αG is a participation factor for LFC which
is set to unity in absence of other generation unit. The
variables ∆PV , ∆PM and ∆Pd denote the deviation in
valve position, generator mechanical output, and load,
respectively. Finally, u ∈ R is a control input.

We assume that the load disturbance ∆Pd(t) satisfies
∆Pd(t) ∈ L2[0,∞] and there exists a synchronous (steady-
state) solution to the power system model (1). This is
required for the existence of desired control signal which
can drive the system to predefined state. We present the
Lemma II.1 to elaborate the synchronous solution. Our
proof is along the lines of [31, Lemma 1].

Lemma II.1. Given the synchronous (steady-state) solu-
tion (∆f,∆PM ,∆PV ) of (1), the synchronous (steady-
state) frequency deviation is given by

∆f∗(t) =
−∆Pd(t) + u∗(t)

−D −R−1
(2)

where u∗(t) denotes the steady-state control action.

Proof. In synchronized state, (1b) reduces to ∆PM (t) =

∆PV (t) and (1c) to ∆PV (t) = u(t) − ∆f(t)
R and subse-

quently (1a) gives −(D+R−1)∆f(t) + u(t)−∆Pd(t) = 0
and we arrive at (2).
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Note that in (2), if ∆f∗(t) = 0 then −∆Pd + u∗ = 0
and we achieve a balance between generation and de-
mand. In this case, a synchronous solution is of the
form (∆f∗,∆P ∗

M ,∆P ∗
V , u

∗) = (0, 0, 0,U) where U ∈ R.
Therefore, our main objective is regulation of frequency
deviation and ∆f converges asymptotically to zero, i.e.,

limt→0∆f(t) = 0 ∀∆Pd. (3)

In LFC operation, the area control error (ACE) ∆E
is used to maintain zero steady-state error for frequency
deviation, which is defined as

∆E(t) = β∆f(t), (4)

where β is frequency bias constant. In order to stabilize
frequency deviations, we employ a PI controller of the
form

u(t) = −kP∆E(t)− kI

∫ t

0

∆E(t)dt, (5)

where kP ∈ R and kI ∈ R are the proportional and
integral gains, respectively. The PI controller offers a fast
disturbance rejection response. Moreover, in absence of
derivative term, it is immune to the effect of noise [32].
Note that the measurement y (namely the ∆E signal)
can be affected by the network induced transmission
(measurement) disturbance v(t) ∈ L2[0,∞] and therefore,
we have

y(t) =

[
β∆f(t) + v(t)∫ t

0
∆E(t)dt

]
. (6)

Under the representation (6), the controller (5) can now
be transformed into a static output-feedback controller of
the form

u(t) = −Ky(t), (7)

where K = [kP , kI ].
Our contribution is to analyze the power system (1)

for LFC operation in the framework of networked-based
control system where we consider the sampled in time
measurements y(sk) available at discrete time instants:

0 = s0 < s1 < s2 < ..., limk→∞sk = ∞. (8)

In such a scenario, the networked induced disturbance and
uncertain time varying-delays may lead to instability of
system.

Remark II.2. Network induced time-delays in power sys-
tems arise due to delay in telemeter signal (e.g., from re-
mote terminal units to control center and control center to
individual units, signal processing, control law updating),
data packet dropout (which can be equivalently considered
a time-varying delay [30]) and physical failures. Moreover,
the constant time-delays signify a heavily congested net-
work or a denial-of-service type attack whereas the random
delays denote the Byzantine failures and malicious attacks
[9].

Generally, the network induced unknown delays exist
between sensor and actuator which can affect the trans-
mission measurement y(sk). Therefore, in order to simplify
the analysis, we assume that all such delays are combined

into a single delay locating in forward loop (as depicted
in Fig. 1) and is denoted by {θk}k∈N ≤ θM , where θM
is a known bound. Let sk in (8) be sampling instants on
the sensor side and the controller is implemented via zero-
order hold (ZOH). Assuming θk in a manner that the ZOH
updating times tk = sk + θk which satisfy [11], [33]

tk = sk + θk ≤ sk+1 + θk+1 = tk+1, k ∈ N (9)

then the controller (7) can be represented as

u(t) = Ky(sk), t ∈ [tk, tk+1). (10)

Considering x=col{∆f,∆PM ,∆PV ,
∫
∆E} ∈ R4 as the

augmented state vector, z = ∆f ∈ R as the controlled
output, and ∆Pd(t), v(t) ∈ R as the load and measurement
disturbances, we can represent the power system (1), (6)
as

ẋ(t) = Ax(t) +Bu(t) + F∆Pd(t) (11a)
z(t) = C1x(t) (11b)
y(t) = C2x(t) +Dv(t) (11c)

where

A =


− D

M
1
M 0 0

0 − 1
TT

1
TT

0

− 1
RTG

0 − 1
TG

0

β 0 0 0

 , B =


0
0
αG

TG

0

 , F =


− 1

M
0
0
0


C1 = [1 0 0 0] , C2 =

[
β 0 0 0
0 0 0 1

]
, D =

[
1
0

]
.

The system (11) with (10) for t ∈ [tk, tk+1) can be, further,
written as

ẋ(t) = Ax(t)+BK[C2x(tk−θk)+Dv(tk−θk)]+F∆Pd(t).
(12)

Introducing the time-delay approach [11], the latter
sampled-data control system (12) can be represented as

ẋ(t)=Ax(t) +BK[C2x(t− ϑ(t)− θk) +Dv(t− ϑ(t)− θk)]

+F∆Pd(t), (13)

where ϑ(t) = t− tk for t ∈ [tk, tk+1). Now, our objective is
to achieve frequency regulation (3) with reduced number
of transmitted measurements in presence of time-delays
and measurement disturbances.

III. Switching based event-trigger control
As in [33], we introduce a switching based continuous-

time ET mechanism (see Fig. 2) to achieve our objectives.
Let h > 0 be a waiting time. The sampling times sk are
constructed as follows. Let ε > 0 be ET threshold and
Ω ≥ 0 be a matrix. Given sk, k ∈ N, the ET mechanism
waits for at least h seconds (thereby preventing infinite
discrete transitions in a finite time, i.e, Zeno phenomenon)
before the continuous-time ET condition:

(y(t)− y(sk))
TΩ(y(t)− y(sk)) ≥ εyT (t)Ωy(t), (14)

is verified as continuous measurements are available. It
means that ET mechanism starts working after h seconds
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Fig. 2: Signal transmission under switching approach
where the system is governed by periodic sampling during
time instant [tk, tk + h) and then by ET during t ∈
[tk +h, tk+1). Therefore two subsystems are created, each
corresponding to Υ = 1 and Υ = 0

.

after the measurement is sent. As a result, the next
measurement will be sent at least after h seconds if the
ET condition violates. Thus, sk+1 is defined as [33]

sk+1 = min{t ≥ sk + h| ET condition in (14) holds},
(15)

thereby transforming the controller (10) into an ETC
controller ū(t) as:

ū(t) = Kȳ(t) (16)

where

ȳ(t) =

{
y(t), if (14) is true,
y(sk), if (14) is false.

for t ∈ [sk + h, sk+1]. Denote by e(t) = y(sk) − y(t) for
t ∈ [sk+h, sk+1], the triggering error, we can further write
(16) as

ū(t) = K[y(t) + e(t)].

Thus, in switching based ETC, the system (13), (15) is
governed by the periodic sampling for t ∈ [tk, tk +h), i.e.,
t ∈ [sk + θk, sk + θk + h) and by continuous-time ET for
t ∈ [tk + h, tk+1). Finally, in view of (15) and (16), the
closed-loop system (13), can be presented as [33]

ẋ(t)=Ax(t) + Υ(t)BK[C2x(t− τ(t)) +Dv(t− τ(t))]

+(1−Υ(t))BK[C2x(t− θ̄(t)) +Dv(t− θ̄(t)) + e(t)]

+F∆Pd(t), (17)

where

Υ(t) =

{
1, t ∈ [tk,min{tk + h, tk+1}),
0, t ∈ [min{tk + h, tk+1}, tk+1),

τ(t) = t− sk, t ∈ [tk,min{tk + h, tk+1}),
e(t) = y(sk)− y(t− θ̄(t)), t ∈ [min{tk + h, tk+1}, tk+1),

Note that τ(t) follows the relation: τ(t) ≤ h + θM := τM
and θ̄(t) ∈ [0, θM ] is an unknown delay.

We are interested in determining the transmission
times {sk}k∈N in order to guarantee the stability and
performance. Precisely, our goal is, now, to internally
exponentially stabilize (17) with (15), if it is exponentially
stable with ∆Pd(t) ≡ 0, v(t) ≡ 0. Furthermore, we redefine

τ(t) as τ(t) = θ̄(t) for t ∈ [tk + h, tk+1) and let γ be the
worst case L2-gain under zero initial condition x(0) = 0
and ∆Pd, v such that ∆PT

d (t)∆Pd(t) + vT (t)v(t) 6≡ 0.
Consider the following performance index [11]:

J =

∫ ∞

0

{zT (t)z(t)− γ2
[
∆PT

d (t)∆Pd(t)

+vT (t− τ(t))v(t− τ(t)
]
}dt, (18)

our objective is to establish J < 0 along the trajectories
of (15),(17).

In pursuit of asymptotic stability and finite L2−gain,
we proposed the following theorem.

Theorem III.1. Consider the system (11) where u(t) =
ū(t). Given positive scalars γ, α, h, θM ≥ 0, ε ≥ 0, and
τM = h + θM , let there exists n × n matrices P > 0,
{Si}i=0,1 ≥ 0, {Ri}i=0,1 ≥ 0, {Gi}i=0,1 ≥ 0, and m × m
matrix Ω ≥ 0 such that

Γ ≤ 0, Λ ≤ 0,

[
R0 G0

GT
0 R0

]
≥ 0,

[
R1 G1

GT
1 R1

]
≥ 0

where Γ = {Γij} and Λ = {Λij} are symmetric block
matrices composed from the matrices

Γ11 =Λ11 = ATP + PA+ 2αP + S0 − e−2αθMR0 + CT
1 C1

Γ12 =e−2αθMR0

Γ14 =PBKC2

Γ15 =Λ16 = PF

Γ16 =Λ17 = PBKD

Γ17 =Λ18 = AT (θ2MR0 + h2R1)

Γ22 =Λ22 = e−2αθM (S1 − S0 −R0)− e−2ατMR1

Γ23 =e−2ατMG1

Γ24 =e−2ατM (R1 −G1)

Γ33 =Λ33 = e−2ατM (R1 + S1)

Γ34 =e−2ατM (R1 −GT
1 )

Γ44 =e−2ατM (G1 +GT
1 − 2R1)

Γ47 =Λ48 = (BKC2)
T (θ2MR0 + h2R1)

Γ55 =Λ66 = −γ2I

Γ57 =Λ68 = FT (θ2MR0 + h2R1)

Γ77 =Λ88 = −(θ2MR0 + h2R1)

Γ66 =− γ2I

Γ67 =Λ78 = (BKD)T (θ2MR0 + h2R1)

Λ12 =e−2αθMG0

Λ23 =e−2ατMR1

Λ24 =e−2αθM (R0 −GT
0 )

Λ14 =PBKC2 + e−2αθM (R0 −G0)

Λ15 =PBK

Λ44 =e−2αθM (G0 +GT
0 − 2R0) + εCT

2 ΩC2

Λ47 =εCT
2 ΩC2

Λ58 =(BK)T (θ2MR0 + h2R1)

Λ55 =− Ω
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Λ77 =εDTΩD − γ2I,

rest blocks are null matrices. Then the controller (16)
under the event-triggered sampling instants (15) internally
exponentially stabilizes the system (11) with decay rate α
and prescribed L2-gain less than γ.

Proof is given in Appendix.

Remark III.2. The LMIs of Theorem III.1 are affine in
A,B, F , therefore this approach is applicable to polytopic-
type uncertainties.

Remark III.3. It is worth-noting that the Theorem III.1
signifies delay-dependent stability conditions. The delay-
independent conditions are not applicable for LFC opera-
tion because when communication delay or fault exceeds
some threshold, the LFC operation is ceased through voice
communication or pause counter [10], [13].

IV. Switching approach for two-area power systems

We also deal with LFC operation of the two-area power
systems. Assuming same generation units in all control
areas (i = 1, 2), the dynamic model of each area is given
by [14], [29]

∆ḟi(t) =− Di

Mi
∆fi(t) +

1

Mi
∆PM,i(t)−

1

Mi
∆Pd,i(t),

∆ṖM,i(t) =− 1

TT,i
∆PM,i(t) +

1

TT,i
∆PV,i(t),

∆ṖV,i(t) =− 1

TG,i
∆PV,i(t)−

1

RiTG,i
∆fi(t) + αG,i

1

TG,i
ui(t).

(19)

The area control error ∆E(t) is

∆Ei(t) = βi∆fi(t) + ∆Ptie,i(t)

where ∆Ptie,i(t) for i = 1, 2 is the net exchange of tie-line
power of the ith control area given by

∆Ptie,1(t) = 2πT12(∆f1(t)−∆f2(t))

and T12 is the tie-line synchronization coefficient be-
tween 1st and 2nd control area. Note that ∆Ptie,1(t) =
−∆Ptie,2(t). Using (19), we can obtain complete model of
the system similar to (11) where

x = col
{
∆f1,∆PM,1,∆PV,1,

∫
∆E1,∆Ptie,∆f2,∆PM,2,

∆PV,2,

∫
∆E2

}
∈ R9, ∆Pd = col{∆Pd,1,∆Pd,2} ∈ R2,

v = col{v1, v2} ∈ R2,

A=



−D1

M1

1
M1

0 0 − 1
M1

0 0 0 0

0 − 1
TT1

1
TT1

0 0 0 0 0 0

− 1
R1TG1

0 − 1
TG1

0 0 0 0 0 0

β 0 0 0 1 0 0 0 0
2πT12 0 0 0 0 −2πT12 0 0 0

0 0 0 0 1
M2

−D2

M2

1
M2

0 0

0 0 0 0 0 0 − 1
TT2

1
TT2

0

0 0 0 0 0 − 1
R2TG2

0 − 1
TG2

0

0 0 0 0 −1 β 0 0 0


,

B=

[
0 0 1

TG1
0 0 0 0 0 0

0 0 0 0 0 0 0 1
TG2

0

]>
,

F =

[
− 1

M1
0 0 0 0 0 0 0 0

0 0 0 0 0 − 1
M2

0 0 0

]>
,

C1=

[
1 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0

]
,

C2 =


β 0 0 0 1 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 −1 β 0 0 0
0 0 0 0 0 0 0 0 1

 , D=


1 0
0 0
0 1
0 0


>

,

and the controller u(t) = Ky(t) where

K =

[
kP1 kI1 0 0
0 0 kP2 kI2

]
.

Following the same methodology as described in section
III, we can obtain the same results as mentioned in
Theorem III.1 to impose switching based ETC.

V. Switching approach for power system with EV
We also study the power system network in which the

electric vehicles are integrated to participate in LFC. As
in [18], [34], the aggregated EVs are considered without
battery state of charge and the dynamics of generation
unit (in addition to (1)) is expressed as

∆ṖE(t) = − 1

TE
∆PE(t)−

KE

RTE
∆f(t) + αE

KE

TE
u(t) (20)

where KE , TE , αE are gain, time-constant and participa-
tion factor, respectively. The dynamical model has the
form (11) where x = col{∆f,∆PM ,∆PV ,∆PE ,∆E} ∈
R5,

A =


− D

M
1
M 0 1

M 0
0 − 1

TT

1
TT

0 0

− 1
RTG

0 − 1
TG

0 0

− KE

RTE
0 0 − 1

TE
0

β 0 0 0 0

 , B =


0
0
αG

TG
αE

TE

0

 ,

F =

[
− 1

M
0 0 0 0

]>
, C1 = [1 0 0 0 0] ,

C2 =

[
β 0 0 0 0
0 0 0 0 1

]
, D =

[
1
0

]
.

Applying the approach as mentioned in the section III, we
can obtain the similar results as stated in Theorem III.1.
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TABLE I: Maximum h and average SM for case 1
Periodic Event-trigger Switching approach

h 0.5 0.56 0.64
SM 117 41 36
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Fig. 3: Time evolution of frequency deviation for case 1

VI. Simulation Studies
To illustrate the effectiveness of proposed approach,

three case studies have been carried out. With the given
stabilizing controller, we compared three approaches of
selecting sampling instants:

1) Periodic sampling with sk = ih, i ∈ N where
maximum h can be calculated by setting ε = 0 in
(14) and employing [33, Proposition 1].

2) Periodic event-triggering [22]

sk+1 = min {sk + ih|i ∈ N, Ξ > 0} (21)

where Ξ = ((y(sk + ih) − y(sk))
TΩ(y(sk + ih) −

y(sk))) − εyT (sk + ih)Ωy(sk + ih) is ET condition;
maximum h can be obtained by setting Υ(t) = 0 and
θ̄(t) ≤ θM in (17) and modifying the proof of [28,
Theorem 2].

3) The proposed switching approach with sampling rule
defined in (15) where maximum h satisfies Theorem
III.1.

Remark VI.1. The switching approach outperforms the
periodic event-triggering in the sense that the sensor has
to wait for at least 2h time after the measurement is sent
when the ET mechanism follows (21) whereas it waits for
atleast h time in switching approach.

All the calculations and simulations are conducted using
MATLAB 9.5 (R2018b). Computations for LMI are car-
ried out in the MATLAB-based software package YALMIP
[35] and are solved using SDPT3-4.0 [36].

A. Case 1: Single-area system
We consider a single-area power network whose dynamic

model is described in section II and is governed by the

TABLE II: Maximum h and average SM for case 2
Periodic Event-trigger Switching approach

h 2.3 0.7 1
SM 35 14 12
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Fig. 4: Time evolution of frequency deviation under
periodic sampling, event-trigger and switching approach

(11). The standard nominal values of the parameters are

D = 1,M = 10, TT = 0.3, TG = 0.1, R = 0.05 (22)

and β = 1+ 1/R [19], [29]. The stabilizing PI parameters
chosen are kP = −0.1 and kI = −0.2. For the analysis,
the network-induced delay θM = 4 s is considered. For
ε = 0.003, α = 0.01, γ = 1, we obtained the maximum h
as given in Table I which depicts that the sampling time is
more for the proposed approach. We simulate the system
for load disturbance (in p.u.)

∆Pd(t) =

{
0.005 sin(0.4t), 0 < t < 10

0.01, otherwise
(23)

and networked-induced disturbance (in p.u.)

v(t) =


0.1, 0 < t < 10

0.01t, 10 < t < 30

0.01(1 + r), otherwise
(24)

where r is a single uniformly distributed random num-
ber in the interval (0,1). It is observed from Fig. 3
that the deviation in frequency from f∗ = 50 Hz
converges to zero (i.e., f∗) for initial condition x0 =
[0.01, 0, 0, 0]. We further performed numerical simula-
tions for several initial conditions given by x(0) =
0.01[cos(lπ/5), sin(lπ/5), cos(lπ/5), sin(lπ/5)] with l =
1, . . . , 4 and it is also evident from Table I that the
average sent measurements (SM) are approximately 12%
less than periodic event-triggered sampling. Thus the
network load is reduced while handling the induced delays
and disturbances both emanating due to load and network.
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B. Case 2: Two-area system
We extend our study to two-area system with identical

parameter (22) and stabilizing controller. For the analysis,
the network-induced delay θM = 3 s is considered. For
ε = 0.001, α = 0.01, γ = 100, we obtained the maximum
h as given in Table II which depicts that the sampling
time is more for the proposed approach. We simulate the
system for v(t) = 0.01(1 + r). Let the load disturbance
∆Pd,1(t) = 0.01 for all t > 50 s occurs in area 1 whereas
in area 2, it is ∆Pd,2(t) = 0.01 p.u. for all t > 0. The sim-
ulation results shown in Fig. 4 confirm that the deviation
in frequencies in both areas converge to zero (f∗) for the
initial condition x0 = [0.0075, 0, 0, 0, 0, 0.005, 0, 0, 0]. The
behavior is further confirmed for several initial conditions
given by

x(0) =0.01 (cos(lπ/5), sin(lπ/5), cos(lπ/5), sin(lπ/5),

cos(lπ/5), sin(lπ/5), cos(lπ/5), sin(lπ/5), cos(lπ/5))

with l = 1, . . . , 9 and found that the average sent
measurements are approximately 15% less than periodic
event-triggered sampling.

We also treat the system under measurement distur-
bance as cyber-attack where the following typical time-
varying attack signal1 from [4] is applied:

v(t) =


0.2, 0 < t < 5

0.5 sin(2t) + 0.5
t2 , 5 < t < 20

0.2 sin(t), 20 < t < 30

0.3 cos(t), otherwise.
The system is simulated for total 80 s and under load
fluctuation of 0.1 p.u. The response for initial condition
x(0) = 10−3 × (3.1, 3.1, 9.5, 3.1, 9.5, 3.1, 9.5, 3.1) is
shown in Fig. 5 which states that the frequency deviations
are bounded in the acceptable range. The amount of sent
messages are 35, 25 and 22 under periodic sampling, event-
trigger and switching approach, respectively.

C. Case 3: Single-area system with electric vehicle
Lastly to validate the switching approach in deregulated

scenario, we study a single-area power system where
EV (KE = 1 = TE) takes part in LFC operation. For
the analysis under network-induced delay θM = 1.2
s, ε = 0.001, α = 0.01, γ = 20, kP = −0.1, kI = −0.5,
we obtained the maximum h as given in Table III
which depicts that the sampling time is more for
the proposed approach. We simulate the system for
∆Pd(t) = 0.01(1 + r) = v(t) and the results in Fig. 6
exhibit that the deviation in frequency converges to zero
for zero (i.e., f∗ = 50 Hz) initial condition. We carried out
simulations for several initial conditions given by x(0) =
0.01 [cos(lπ/5), sin(lπ/5), cos(lπ/5), sin(lπ/5), cos(lπ/5)]
with l = 1, ..., 5 and observe that the average sent
measurements are approximately 20% less than periodic
event-trigger sampling.

1Attack signal are considered according to the National Electric
Sector Cybersecurity Organization Resource (NESCOR) standard.
See [4] and references therein.
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Fig. 5: Time evolution of frequency deviation under cyber
attack scenario

TABLE III: Maximum h and average SM for case 3
Periodic Event-trigger Switching approach

h 0.82 0.72 0.765
SM 62 15 12

D. Case 4: Two-area system with different generation
units

The switching approach can be extended to the multi-
area power systems having different generation unit in all
control areas. For this, the case study has been extended to
two-area power system where control area 1 has thermal
power plant while the control area 2 consists of hydro-
power plant2. The model of the complete system acquires

2Due to the space limitation, the complete description is omitted.
The reader can refer to [37] for more details.
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Fig. 6: Time evolution of frequency deviation for case 3
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TABLE IV: Average measurement sent for case 4
Periodic Event-trigger Switching approach

h 0.015 0.012 0.018
SM 2000 564 500

the form (11) where

x =col
{
∆f1,∆Pg,1,∆Xg,1,

∫
∆E1,∆Ptie,∆f2,∆Pg,2,

∆Xg,2,∆Xgh,2,

∫
∆E2

}
∈ R10,

∆Pd = col{∆Pd,1,∆Pd,2} ∈ R2, v = col{v1, v2} ∈ R2.
The system matrices are as follows:

A =



− 1
TP1

KP1
TP1

0 0−KP1
TP1

0 0 0 0 0

0 − 1
TT1

1
TT1

0 0 0 0 0 0 0

− 1
R1TG1

0 − 1
TG1

0 0 0 0 0 0 0

β1 0 0 0 1 0 0 0 0 0
2πT12 0 0 0 0 −2πT12 0 0 0 0

0 0 0 0 KP2
TP2

− 1
TP2

KP2
TP

0 0 0

0 0 0 0 0 2J1 − 2
Tw

2J3 2J2 0

0 0 0 0 0 −J1 0 −1
T2

−J2 0

0 0 0 0 0 − 1
R2TG2

0 0 −1
T1

0

0 0 0 0 −1 β2 0 0 0 0


,

B =

[
0 0 1

TG1
0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1
T1

0

]>
,

F =

[
−KP1

TP1
0 0 0 0 0 0 0 0 0

0 0 0 0 0 −KP2

TP2
0 0 0 0

]>

,

C1 =

[
1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0

]
,

C2 =

β1 0 0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0
0 0 0 0 −1 β2 0 0 0 0
0 0 0 0 0 0 0 0 0 1

 , D =

1 0
0 0
0 1
0 0

>

,

J1 =
Tr

T1T2R2
, J2 =

Tr − T1

T1T2
, J3 =

T2 + Tw

TwT2
.

The nominal values for simulation are taken as: TG1 =
0.08, TT1 = 0.3, KP1 = 120, TP1 = 20, R1 = 2.4 =
R2, β1 = 0.425, T12 = 0.086, KP2 = 80, TP2 = 20, T1 =
48.7, T2 = 5, R2 = 2.4, Tw = 1, Tr = 0.6, β2 = 0.5.
The analysis has been considered for θM = 0.02 s,
ε = 0.001, α = 0.01, γ = 100, kP1 = 1.9, kI1 = 0.5, kP2 =
1.15, kI2 = 0.1. Fig. 7 represents the state response
(∆f1,∆f2) for ∆Pd1 = 0.01 and initial conditions x0 =
0.1[0.95, 0.31, 0.95, 0.31, 0.95, 0.31, 0.95, 0.31, 0.95, 0.31];
and Table IV represent the superiority of the switching
approach due to reduced number of sent messages.

E. Case 5: Multi-area system with multi generation units
To examine the efficiency of the proposed approach,

we consider another two-area power system where each
control area consists of two thermal generation units. Refer
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Fig. 7: Time evolution of frequency deviation for case 4

[38] for details. The system follows the standard model
(11) where

x =col
{
∆PV,11,∆PV,12,∆PM,11,∆PM,12,∆f1,

∫
∆E1,∆Ptie,

∆PV,21,∆PV,22,∆PM,21,∆PM,22,∆f2,

∫
∆E2

}
∈ R13,

∆Pd = col{∆Pd,1,∆Pd,2} ∈ R2, v = col{v1, v2} ∈ R2.
The system matrices are:

A =



−1
TG11

0 0 0 −1
TG11R1

0 0 0 0 0 0 0 0

0 −1
TG12

0 0 −1
TG12R12

0 0 0 0 0 0 0 0
1

TT11
0 −1

TT12
0 0 0 0 0 0 0 0 0 0

0 1
TT12

0 −1
TT12

0 0 0 0 0 0 0 0 0

0 0 1
M1

1
M1

−D1
M1

0 −1
M1

0 0 0 0 0 0

0 0 0 0 β 0 1 0 0 0 0 0 0
0 0 0 0 T12 0 0 0 0 0 0 −T12 0
0 0 0 0 0 0 0 −1

TG21
0 0 0 −1

TG21R21
0

0 0 0 0 0 0 0 0 −1
TG22

0 0 −1
TG22R22

0

0 0 0 0 0 0 0 1
TT21

0 −1
TT21

0 0 0

0 0 0 0 0 0 0 0 1
TT22

0 −1
TT22

0 0

0 0 0 0 0 0 1
M2

0 0 1
M2

1
M2

−D2
M2

0

0 0 0 0 0 0 −1 β 0 0 0 0 0



,

B =

[ α1

TG11

α1

TG12
0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 α2

TG21

α2

TG22
0 0 0 0

]>
,

F =

[
0 0 0 0 1

M1
0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1
M2

0

]>
,

C1 =

[
0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0

]
,

C2 =

0 0 0 0 β 0 1 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 −1 0 0 0 0 β 0
0 0 0 0 0 0 0 0 0 0 0 0 1

 , D =

1 0
0 0
0 1
0 0


>

,

For simulations, the standard nominal parameters selected are:
TG11 = 0.06 = TG21, TG12 = 0.07 = TG22, R11 = 2.4 = R21, R12 =
3.3 = R22, TT11 = 0.36 = TT21, TT12 = 0.42 = TT21,M1 =
0.1667 = M2, D1 = 0.0084 = D2, β1 = 0.8675 = β2, α1 =
α2 = 0.5, T12 = 0.1986.The analysis is conducted for θM = 0.8
s, ε = 0.001, α = 0.01, γ = 100, kP1 = −0.1 = kP2, kI1 = 0.45 = kI2.
It can be observed in Fig. 8 that the frequencies in both the areas
reaches to the schedule f∗ = 50 Hz for ∆Pd1 = 0.01 and initial
conditions

x0 =0.01 [0.81, 0.59, 0.81, 0.59, 0.81, 0.59,

0.81, 0.59, 0.81, 0.59, 0.81, 0.59, 0.81] .

Lastly, Table V exhibits that least messages are sent to stabilize the
frequency.
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TABLE V: Average measurement sent for case 5
Periodic Event-trigger Switching approach

h 0.15 0.07 0.08
SM 130 214 203
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Fig. 8: Time evolution of frequency deviation for case 5

Remark VI.2. Both EV and distributed generation (e.g., renewable
energy sources, battery energy storage system) are trending these
days for study of LFC operation. The switching approach is equally
applicable to these generation units under networked induced time-
varying delays and disturbances.

Remark VI.3. The proposed switching approach can be implemented
on a large-scale analog power system simulator to illustrate its capa-
bility in real-time LFC applications. The control scheme including
PI controller and ET mechanism can be built in a personal computer
(PC), and connected to the power system hardware by means of a
digital signal processing board equipped with analog-to-digital and
digital-to-analog converters. The bounded but time-varying delays
and disturbance in the measurement and control signals can be
artificially induced through PC.

Remark VI.4. Note that the maximum h of the periodic sampling,
in all the cases, can vary from smallest to largest in comparison to
that of the switching approach. There is no any possible reason for
it. One can only obtain the maximum h that ensures stability by
means of [33, Proposition 1] with ε = 0.

VII. Conclusions
We have considered the LFC problem with respect to time-varying

networked-induced delay and measurement disturbance. For this set-
up, we have introduced a new switching based event-triggered control
approach and derived the sufficient delay dependent stability con-
ditions to ensure the lower bound for inter-events during validation
of event-trigger conditions. This helps in reducing the workload of
power network while maintaining stability and performance. The
approach has been applied to different power systems configuration
comprising single- and multi-area, and single-area with integrated
EV.

One limitation of this work is that the measurements (∆fi(t)
signals) are checked by the centrally located ET machine in case of
multi-area system. This leads to increased computational complexity
and poor scalability of central control scheme. A decentralized control
approach is one of the promising solution which is our future work.
Besides, we will also seek the solution for false intrusion mitigation
and overall failure detection in the LFC operation of power systems.
Delay bounds will help in providing guidelines to mitigate such
attacks and faults.
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Appendix
Proof of Theorem III.1

The proof is based on [33, Theorem 2]. For stability analysis of
system (17), we consider the following LKF:

V =

4∑
i=0

Vi (25)

where xt(µ) = x(t+ µ) for µ ∈ [−h, 0],

V0(t, xt) = xT (t)Px(t),

V1(t, xt) =

∫ t

t−θM

e2α(s−t)xT (s)S0x(s)ds,

V2(t, xt) = θM

∫ 0

−θM

∫ t

t+µ
e2α(s−t)ẋT (s)R0ẋ(s)dsdµ,

V3(t, xt) =

∫ t−θM

t−τM

e2α(s−t)xT (s)S1x(s)ds,

V4(t, xt) = h

∫ −θM

−τM

∫ t

t+µ
e2α(s−t)ẋT (s)R1ẋ(s)dsdµ.

On differentiating V we get V̇0 = 2xT (t)P ẋ(t), and

V̇1 =− 2αV1 + xT (t)S0x(t)− e2αθM xT (t− θM )S0x(t− θM )

V̇2 =− 2αV2 + θ2M ẋT (t)R0ẋ(t)

− θM

∫ t

t−τM

e2α(s−t)ẋT (s)R0ẋ(s)ds

V̇3 =− 2αV3 + e−2αθM xT (t− θM )S1x(t− θM )

− e2ατM xT (t− τM )S1x(t− τM )

V̇4 =− 2αV4 + h2ẋT (t)R1ẋ(t)ds

− h

∫ t−θM

t−τM

e2α(s−t)ẋT (s)R1ẋ(s)ds. (26)

Case (i): When Υ(t) = 0, θ̄(t) ∈ [0, θM ]

V̇0 =2xT (t)P [Ax(t) + F∆Pd +BKC2x(t− θ̄(t))

+BKDv(t− θ̄(t)) +BKe(t)]. (27)

We apply Park’s theorem [11, Lemma 3.4] and Jensen’s inequality
[11, Proposition 3.11] to compensate the term x(t− θ̄(t)), that is

−θM

∫ t

t−θM

e2α(s−t)ẋT (s)R0ẋ(s)ds ≤ e2αθM

×
[

x(t)− x(t− θ̄(t))
x(t− θ̄(t))− x(t− θM )

]T [
R0 G0

GT
0 R0

]
×

[
x(t)− x(t− θ̄(t))

x(t− θ̄(t))− x(t− θM )

]
(28)

−h

∫ t−θM

t−τM

e2α(s−t)ẋT (s)R1ẋ(s)ds ≤ −e−2ατM

×[x(t− θM )− x(t− τM )]TR1[x(t− θM )− x(t− τM )]. (29)

Now consider (14) which implies

0 ≤ ε[C2x(t− θ̄(t)) +Dv(t− θ̄(t))]Ω

× [C2x(t− θ̄(t)) +Dv(t− θ̄(t))]− eT (t)Ωe(t). (30)

Adding (26), (27), (30) and using (28), (29) we get

V̇ + 2αV + zT z − γ2[∆PT
d ∆Pd + vT (t− θ̄(t))v(t− θ̄(t))]

≤ ηT (t)Λ̃η(t) + ẋT (t)(θ2MR0 + h2R1)ẋ(t)

where η(t) = col{x(t), x(t−θM ), x(t−τM ), x(t−θ̄), e(t),∆Pd(t), v(t−
θ̄(t))} and the matrix Λ̃ is obtained from Λ by removing the last
block-column and the block-row. Substituting expression for ẋ and
employing Schur complement formula, we obtain that Λ ≤ 0 and
therefore

V̇ + 2αV + zT z − γ2[∆PT
d ∆Pd + vT (t− τ(t))v(t− τ(t))] ≤ 0. (31)
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Case (ii): When Υ(t) = 1, τ(t) ∈ [θM , τM ]
For system (17) with τ(t) ∈ [θM , τM ], we have

V0 =2xT (t)P [Ax(t) + F∆Pd +BKC2x(t− τ(t))

+BKDv(t− τ(t))]. (32)

To compensate for x(t−τ(t)) with τ(t) ∈ [θM , τM ], we apply Jensen’s
inequality and Park’s theorem to obtain

−θM

∫ t

t−ηm

e2α(s−t)ẋT (s)R0ẋ(s)ds ≤ −e−2αθM

×[x(t)− x(t− θM )]TR0[x(t)− x(t− θM )] (33)

−h

∫ t−θM

t−τM

e2α(s−t)ẋT (s)R1ẋ(s)ds ≤ e2ατM

×
[
x(t− θM )− x(t− τ(t))
x(t− τ(t))− x(t− τM )

]T [
R1 G1

GT
1 R1

]
×

[
x(t− θM )− x(t− τ(t))
x(t− τ(t))− x(t− τM )

]
. (34)

On adding (26), (32), and employing (33)), (34) we get

V̇ + 2αV + zT z − γ2[∆PT
d ∆Pd + vT (t− τ(t))v(t− τ(t))]

≤ κT Γ̃κ+ ẋT (θ2MR0 + h2R1)ẋ.

where κ(t) = col{x(t), x(t−θM ), x(t− τM ), x(t− τ(t)),∆Pd(t), v(t−
τ(t))} and the matrix Γ̃ is obtained from Γ by removing the last
block-column and the block-row. Substituting expression for ẋ and
z and employing Schur complement formula, we obtain that Γ ≤ 0
and thus guarantees (31).

If ∆Pd ≡ 0, v ≡ 0 then from (31), we have V̇ ≤ −2αV. Therefore
the system (17) is internally exponentially stable with decay rate α
and by integrating (17) from 0 to ∞ with initial condition x(0) = 0
we get (18).

Authorized licensed use limited to: TEL AVIV UNIVERSITY. Downloaded on June 06,2020 at 10:31:27 UTC from IEEE Xplore.  Restrictions apply. 


