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a b s t r a c t

A family of continuous-time observable nonlinear systems with input and output is considered. A new
technique of estimation of the state variables is proposed. It relies on the use of past values of the output, as
done to construct someobserverswhich converge in finite time, andon a recent technical result pertaining
to the theory of the monotone systems. It applies to systems with additive disturbances and disturbances
in the output. The nonlinear terms are not supposed to be globally Lipschitz, but it is requested that they
depend only on the input and output variables.
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1. Introduction

The problem of estimating the value of the solutions of a sys-
tem when some variables are not accessible by measurements is
a fundamental problem, which has been addressed by many tech-
niques in many contributions. Traditional state estimators, such as
for instance the Luenberger observer [1], are very popular. They
compute point estimates of the state from input–output data, pos-
sibly supplemented by an estimate of the dispersion of the possi-
ble values of the state around this point estimate. Guaranteed state
estimators [2,3], also known as set-membership estimators [4,5],
compute sets guaranteed to contain the actual value of the state
if some hypotheses on the state perturbation and measurement
noise are satisfied. Guaranteed state estimation can be traced back
to the seminal work of F.C. Schweppe [6]. His idea was recursively
to compute ellipsoids guaranteed to contain the actual state (of
course, other types of containers than ellipsoids could and have
been used). In the last two decades, a new technique of guaran-
teed state estimations has been proposed. It is based on tools called
interval observers and is developed and applied in many studies,
see, for instance, [7–11] and the references therein. Typically, inter-
val observers bound the actual state between two functions which
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take advantage of the solutions of two deterministic and possibly
coupled dynamical systems. A key feature of the interval observers
is that they can be applied only when an approximate knowledge
of the initial conditions (in terms of an upper and a lower bound)
is known. By contrast with all the mentioned results, some ob-
servers make it possible to determine the value of the solutions of
continuous-time systems in finite time. This is the case in particu-
lar of the observers designed in [12–14] [15,16] which converge to
the solutions in finite time. Some papers present finite-time con-
vergent observers for nonlinear systems that are linearizable up to
output injection. This is the case of [15,16]. All the above works
consider systems without additive disturbances in the measure-
ments. Recently finite time observers were designed for a class of
nonlinear systemswith unknown inputs [17]. The latter results are
confined to the case where the number of unknown inputs is not
greater than the number of outputs.

The aim of the present work is to propose a new approach of
guaranteed state estimations for estimating state variables of non-
linear systems in the case where no approximate knowledge of the
initial conditions is known and the systems have no monotonic-
ity property. It is based on formulas incorporating past values of
the input and the output of the studied system, which are remi-
niscent of the formulas proposed in [12,17,15] and uses a recent
technical result stated and proved in [18], which makes it possible
to express a function without monotonicity property as another
function (with domain of definition of dimension larger than the
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domain of the considered function) which is increasing with re-
spect to some of its variables and decreasing with respect to oth-
ers. We consider the systems for which two types of bounded
deterministic time-varying disturbances are present: in the dy-
namics and in the output. Usually, these disturbances are present
in applications; notice in particular that in general the measures
are inaccurate. The results we obtain are of two types: some of the
formulas of estimation we propose are functions of the past values
of the input and the output only and have terms with distributed
delays and others take advantage of dynamic extensions and have
terms with pointwise constant delays only. In the absence of un-
known uncertainties, the formulas we exhibit provide with the
exact values of the solutions, after a finite time interval. When un-
known disturbances are present and upper and lower bounded by
known constant vectors, then, the formulas we propose give, after
a finite time interval, upper and lower bounds for each component
of the solutions, as interval observers do. The difference between
these bounds is bounded as long as the disturbances are bounded.
Finally, it is worthmentioning that we consider systems with non-
linear terms which are not supposed to be globally Lipschitz, but it
is required that they depend only on the inputs and outputs.

The paper is organized as follows. The family of systems studied
is presented in Section 2. The main results are stated and proved
in Sections 3 and 4. They are illustrated through examples in
Section 5. Concluding remarks are given in Section 6.
Notation, definitions and prerequisites

The notationwill be simplifiedwhenever no confusion can arise
from the context. Any k×nmatrix, whose entries are all 0 is simply
denoted 0. The Euclidean normof vectors of any dimension and the
induced norm ofmatrices of any dimension are denoted | · |. All the
inequalities must be understood componentwise (partial order of
Rr ) i.e. va = (va1, . . . , var)

⊤
∈ Rr and vb = (vb1, . . . , vbr)

⊤
∈

Rr are such that va ≤ vb if and only if, for all i ∈ {1, . . . , r},
vai ≤ vbi. A symmetricmatrixM ∈ Rn×n is positive (resp. negative)
semidefinite if for all vectors v ∈ Rn, v⊤Mv ≥ 0 (resp. v⊤Mv ≤ 0).
Then we denote M ≽ 0 (resp. M ≼ 0). A matrix M ∈ Rn×n

is said to be Schur stable if its spectral radius is smaller than 1.
For two matrices M = (mij) ∈ Rr×s and N = (nij) ∈ Rr×s

of same dimension, max{M,N} is the matrix where each entry is
max{mij, nij}. For a matrix M ∈ Rr×s, M+

= max{M, 0}, M−
=

max{−M, 0}. A matrix M ∈ Rr×s is said to be nonnegative if
M+

= M . A sequence (ui) is nonnegative if for all integer k, uk is
nonnegative. If a matrix M is Metzler, then for all t ≥ 0, eMt

≥ 0.
For any continuous function ϕ : [−τ ,∞) → Rn and all t ≥ 0, we
define ϕt by ϕt(m) = ϕ(t + m) for all m ∈ [−τ , 0], i.e., ϕt ∈ Cin is
the translation operator.

2. Family of studied systems

Throughout the paper, we consider the nonlinear system
ẋ(t) = F(x(t), u(t), ϵ2(t))
y(t) = Cx(t)+ ϵ1(t),

(1)

where x(t) ∈ Rn is the state, and C ∈ Rq×n, y(t) ∈ Rq is the output,
u(t) ∈ Rp is a possible known input, F is a nonlinear function of
class C1, and ϵ1 : [0,+∞) → Rq and ϵ2 : [0,+∞) → Rm are
disturbances, which are supposed to be piecewise continuous and
bounded.

We introduce the following assumption:

Assumption A. The function F is such that there exist a matrix
A ∈ Rn×n and a function f of class C1 such that, for all x ∈ Rn, u ∈

Rp, ε ∈ Rm

F(x, u, ε) = Ax + f (Cx, u, ε) (2)

and the pair (A, C) is observable.
We will also use the following assumption:

Assumption B. There are known constant vectors ϵ1 ∈ Rq, ϵ1 ∈

Rq and ϵ2 ∈ Rn, ϵ2 ∈ Rn such that, for i = 1, 2, and for all t ≥ 0,
the inequalities

ϵ i ≤ ϵi(t) ≤ ϵ i (3)

are satisfied.

Discussion of the assumptions
•Notice that, along the trajectories of (1), f (Cx(t), u(t), ϵ2(t)) =

f (y(t)− ϵ1(t), u(t), ϵ2(t)). Thus Assumption A implies that in the
system (1), f can be seen as a function which depends only on y, u,
ϵ1 and ϵ2. Therefore, the family of systems (1) satisfying Assump-
tion A belongs to the family of the systems affine in the unmea-
sured part of the state. For these systems, many constructions of
asymptotic observers (see for instance [19]) and interval observers
(see for instance [7,20]) have been proposed.

• All the results of our paper can be extended straightforwardly
to the case where the function f depends on t explicitly. For the
sake of simplicity, we restrict ourselves to time-invariant systems.

• The decomposition (2) of the function F is not unique. In par-
ticular, let us notice for later use that when Assumption A is sat-
isfied, a matrix A with real negative eigenvalues can always be
selected.

• We prove in Appendix B that, under Assumption A, for any
selected matrix A, there is a matrix L ∈ Rn×q such that the matrix

H = A + LC ∈ Rn×n (4)

is Hurwitz and there is a constant τ > 0 such that the matrix

e−τH
− e−τA

∈ Rn×n (5)

is invertible. See also [12], where it is proved that L can be chosen
such that e−τH

− e−τA is invertible for arbitrarily small constants
τ > 0.

• We will use the following notation:

Eτ =

e−τH

− e−τA−1
. (6)

• Assumption B is realistic and is frequently satisfied in practice.
Moreover, it can be relaxed by allowing the bounds ϵ i, ϵ i to depend
on t . However, for the sake of simplicity, we restrict ourselves to
the case where they are constant.

3. Exact estimation

The results of this section provide with exact estimations of the
solutions in finite time, but they can be applied only when the
functions ϵ1 and ϵ2 are known. Moreover, it is important to keep
in mind that since Assumption A does not imply that the function
f is globally Lipschitz, the finite escape time-phenomenon may
occur even if u(t) is a bounded function. The results of the present
section owe a great deal to the contributions [12,15]. However,
they are very different from those of [12], which are devoted to
linear systems without functions ϵ1 and ϵ2. The results in [15] are
also concerned with systems without functions ϵ1 and ϵ2, but they
apply to systems (1) when they satisfy Assumption A.

3.1. Exact estimation, direct approach

Let us state and prove the following result:
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Theorem 1. Let the system (1) satisfy Assumption A. Let L ∈ Rn×q

and τ > 0 be such that the corresponding matrix e−τH
− e−τA

is invertible. Then, for a given piecewise continuous input u(t), any
solution x(t) of the system (1) which exists over [0,+∞) satisfies,
for all t ≥ τ ,

x(t) = −Eτ

 t

t−τ
e(t−l−τ)Af (y(l)− ϵ1(l), u(l), ϵ2(l))dl

+ Eτ

 t

t−τ
e(t−l−τ)H

[f (y(l)− ϵ1(l), u(l), ϵ2(l))

− Ly(l)]dl + Eτ

 t

t−τ
e(t−l−τ)HLϵ1(l)dl. (7)

Proof. From the definition of the output y and the definition
of H , we deduce that the system (1) admits the following
representations:

ẋ(t) = Ax(t)+ f (y(t)− ϵ1(t), u(t), ϵ2(t)),
ẋ(t) = Hx(t)+ f (y(t)− ϵ1(t), u(t), ϵ2(t))− Ly(t)+ Lϵ1(t).

(8)

By integrating these two systems between two values s1 ≥ 0 and
s2 ≥ 0, we obtain the equalities

x(s1) = eA(s1−s2)x(s2)+

 s1

s2
eA(s1−l)f (y(l)

− ϵ1(l), u(l), ϵ2(l))dl,

x(s1) = eH(s1−s2)x(s2)+

 s1

s2
eH(s1−l)

[f (y(l)

− ϵ1(l), u(l), ϵ2(l))− Ly(l)+ Lϵ1(l)]dl.

(9)

Now, consider a value t ≥ τ . Then selecting s2 = t and s1 = t − τ ,
the equalities (9) give

x(t − τ) = e−τAx(t)+

 t−τ

t
e(t−l−τ)Af (y(l)

− ϵ1(l), u(l), ϵ2(l))dl,

x(t − τ) = e−τHx(t)+

 t−τ

t
e(t−l−τ)H

[f (y(l)

− ϵ1(l), u(l), ϵ2(l))− Ly(l)+ Lϵ1(l)]dl.

(10)

As an immediate consequence, we have
e−τH

− e−τA x(t)
= −

 t

t−τ
e(t−l−τ)Af (y(l)− ϵ1(l), u(l), ϵ2(l))dl

+

 t

t−τ
e(t−l−τ)H

[f (y(l)− ϵ1(l), u(l), ϵ2(l))

− Ly(l)+ Lϵ1(l)]dl. (11)

Since e−τH
− e−τA is invertible, we deduce that (7) is satisfied.

3.2. Exact estimation with dynamic extensions

The formula (7) includes terms with distributed delays, which
in practice can be difficult to evaluate. To overcome this drawback,
we propose the result below, which relies on a formula without
distributed terms. This theorem is reminiscent of the main results
of [12,15].

Theorem 2. Let the system (1) satisfy Assumption A, let L and τ be
defined as in Theorem 1 and let u be a piecewise continuous function.
Consider the dynamic extensions

˙̂x(t) = Ax̂(t)+ f (y(t)− ϵ1(t), u(t), ϵ2(t)) (12)
and

ẋ∗(t) = Hx∗(t)+ f (y(t)− ϵ1(t), u(t), ϵ2(t))
− Ly(t)+ Lϵ1(t). (13)

where y is the output of (1). Consider a solution x(t) of (1) defined
over [0,+∞). Then, for all t ≥ τ ,

x(t) = Eτ

e−Hτ x∗(t)− x∗(t − τ)− e−Aτ x̂(t)+ x̂(t − τ)


. (14)

Remark 1. When one of the eigenvalues of the matrix A has a pos-
itive real part, then even when a bounded solution x(t), a bounded
input u(t) and bounded functions ϵi(t) are considered, the system
(12) admits exponentially unstable solutions. This can be a draw-
back in applied cases. Fortunately, as mentioned in the discussion
of Assumptions A and B, it is always possible to choose a decom-
position of F so that the corresponding matrix A has real negative
eigenvalues. Notice also that in the absence of disturbance, the sys-
tem (13) is a classical observer for (1) when A is Hurwitz.

Proof. Consider a solution (x̂(t), x∗(t)) of (12)–(13) associated
with the solution x(t) defined over [0,+∞). Then, f (y(t) −

ϵ1(t), u(t), ϵ2(t)) and f (y(t)−ϵ1(t), u(t), ϵ2(t))−Ly(t)+Lϵ1(t) are
piecewise continuous functions of t and are defined over [0,+∞).
By integrating (12) and (13), we deduce that, for all constants s1 ≥

0 and s2 ≥ 0, the equalities

x̂(s1) = eA(s1−s2)x̂(s2)+

 s1

s2
eA(s1−l)f (y(l)

− ϵ1(l), u(l), ϵ2(l))dl,

x∗(s1) = eH(s1−s2)x∗(s2)+

 s1

s2
eH(s1−l)

[f (y(l)

− ϵ1(l), u(l), ϵ2(l))− Ly(l)+ Lϵ1(l)]dl

(15)

are satisfied. It follows that, for all t ≥ τ , t

t−τ
eA(t−τ−l)f (y(l)− ϵ1(l), u(l), ϵ2(l))dl

= e−Aτ x̂(t)− x̂(t − τ), t

t−τ
eH(t−τ−l)

[f (y(l)− ϵ1(l), u(l), ϵ2(l))

−Ly(l)+ Lϵ1(l)]dl = e−Hτ x∗(t)− x∗(t − τ).

(16)

From (7) and (16), it follows that, for all t ≥ τ ,

E−1
τ x(t) = e−Hτ x∗(t)− x∗(t − τ)− e−Aτ x̂(t)+ x̂(t − τ). (17)

This allows us to conclude.

4. Approximate estimation

Theorems 1 and 2 give in finite time the exact value of any
solution x(t) of (1) that is defined for all t ≥ 0. The limitation of
these results is that they cannot be used when the disturbances ϵ1
and ϵ2 are unknown. The purpose of this section is to overcome
this limitation by assuming only that the bounds ϵ i and ϵ i in
Assumption B are known. To the best of our knowledge no result
of the type of those proposed in this section are available in the
literature.

Let us recall that Assumption A ensures that the matrix A in
the decomposition of F can be chosen such that all its eigenvalues
are negative real numbers, which implies that its Jordan form is
Metzler and Hurwitz. Then there are an invertible matrix R1 ∈

Rn×n and a Metzler and Hurwitz matrixM1 ∈ Rn×n such that

M1 = R1AR−1
1 . (18)
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For the same reason, there is amatrix L ∈ Rn×q such that thematrix

H = A + LC ∈ Rn×n (19)

has real negative eigenvalues and then there exist an invertible
matrix R2 ∈ Rn×n and a Metzler and Hurwitz matrix M2 ∈ Rn×n

such that

M2 = R2HR−1
2 . (20)

In this section, we consider the case where Assumption A is satis-
fied and the matrices A and L are selected as described above.

4.1. Approximate estimation, direct approach

Since the function f is of class C1, Lemma 2, proved in [18] and
recalled in Appendix B, ensures that there are Lipschitz continuous
function ϕi : Rq

× Rq
× Rp

× Rm
× Rm

→ Rn, i = 1, 2, such that

ϕ1(y, ϵ2, y, ϵ2, u) = −R1f (y, u, ϵ2),

ϕ2(y, ϵ2, y, ϵ2, u) = R2f (y, u, ϵ2), ∀(y, u, ϵ2) ∈ Rq×p×m (21)

and ϕ1(a1, a2, b1, b2, u) and ϕ2(a1, a2, b1, b2, u) are increasing
with respect to a1 and a2 and decreasing with respect to b1 and
b2. Next, we define the following functions for i = 1, 2,

ψ i(y, u) = ϕi(y − ϵ1, ϵ2, y − ϵ1, ϵ2, u),
ψ

i
(y, u) = ϕi(y − ϵ1, ϵ2, y − ϵ1, ϵ2, u),

(22)

ϵ3(t) = e−τM2R2Lϵ1(t), (23)

the matrices

Fτ = EτR−1
1 e−τM1 , Gτ = EτR−1

2 e−τM2 (24)

and the operators

T 1(yt , ut) = F+

τ

 t

t−τ
e(t−l)M1ψ1(y(l), u(l))dl

− F−

τ

 t

t−τ
e(t−l)M1ψ

1
(y(l), u(l))dl,

T 1(yt , ut) = F+

τ

 t

t−τ
e(t−l)M1ψ

1
(y(l), u(l))dl

− F−

τ

 t

t−τ
e(t−l)M1ψ1(y(l), u(l))dl,

T 2(yt , ut) = G+

τ

 t

t−τ
e(t−l)M2ψ2(y(l), u(l))dl

−G−

τ

 t

t−τ
e(t−l)M2ψ

2
(y(l), u(l))dl,

T 2(yt , ut) = G+

τ

 t

t−τ
e(t−l)M2ψ

2
(y(l), u(l))dl

−G−

τ

 t

t−τ
e(t−l)M2ψ2(y(l), u(l))dl,

S(yt , ut) = T 1(yt , ut)+ T 2(yt , ut),

S(yt , ut) = T 1(yt , ut)+ T 2(yt , ut).

(25)

We are ready to state and prove the following result:

Theorem 3. Let the system (1) satisfy Assumptions A and B and let
the matrix A be such that, for some matrices L, M1, M2, R1, R2 and
a constant τ > 0 the equalities (18) and (20) are satisfied and
Eτ defined in (6) is well-defined. Let u be piecewise continuous and
consider a solution (1) defined over [0,+∞). Then, for all t ≥ τ , the
inequalities

S(yt , ut)− Eτ

 t

t−τ
e(t−l−τ)HLy(l)dl + ϵS

≤ x(t) ≤ S(yt , ut)− Eτ

 t

t−τ
e(t−l−τ)HLy(l)dl + ϵL (26)

where

ϵL =

(EτR−1

2 )
+M3(e−τM2R2L)+

+ (EτR−1
2 )

−M3(e−τM2R2L)−

ϵ1

−

(EτR−1

2 )
+M3(e−τM2R2L)−

+ (EτR−1
2 )

−M3(e−τM2R2L)+

ϵ1,

ϵS =

(EτR−1

2 )
+M3(e−τM2R2L)+

+ (EτR−1
2 )

−M3(e−τM2R2L)−

ϵ1

−

(EτR−1

2 )
+M3(e−τM2R2L)−

+ (EτR−1
2 )

−M3(e−τM2R2L)+

ϵ1,

(27)

with M3 = M−1
2


eτM2 − I


, are satisfied.

Proof. From (7) and the definitions of ϕ1 and ϕ2 in (21), we deduce
immediately that, for all t ≥ τ ,

x(t) = Eτ

 t

t−τ
e(t−l−τ)AR−1

1 ϕ1(y(l)− ϵ1(l), ϵ2(l),

y(l)− ϵ1(l), ϵ2(l), u(l))dl

+ Eτ

 t

t−τ
e(t−l−τ)H

[R−1
2 ϕ2(y(l)− ϵ1(l),

ϵ2(l), y(l)− ϵ1(l), ϵ2(l), u(l))− Ly(l)]dl

+ Eτ

 t

t−τ
e(t−l−τ)HLϵ1(l)dl. (28)

From (18) and (20), it follows that

x(t) = Fτ

 t

t−τ
e(t−l)M1ϕ1(y(l)− ϵ1(l), ϵ2(l),

y(l)− ϵ1(l), ϵ2(l), u(l))dl

+Gτ

 t

t−τ
e(t−l)M2ϕ2(y(l)− ϵ1(l), ϵ2(l),

y(l)− ϵ1(l), ϵ2(l), u(l))dl − Eτ

 t

t−τ
e(t−l−τ)HLy(l)dl

+ EτR−1
2

 t

t−τ
e(t−l)M2ϵ3(l)dl. (29)

From Assumption B and the monotonicity properties of the
functions ϕ1 and ϕ2, it follows that, for i = 1, 2, the inequalities

ψ
i
(y(t), u(t)) ≤ ϕi(y(t)− ϵ1(t), ϵ2(t), y(t)− ϵ1(t), ϵ2(t), u(t))

≤ ψ i(y(t), u(t)) (30)

hold for all t ≥ 0. Using the fact that the matrices M1 and M2 are
Metzler and the definitions ofψ

i
andψ i, it follows that, for i = 1, 2,

and all t ≥ τ , the inequalities t

t−τ
e(t−l)Miψ

i
(y(l), u(l))dl ≤

 t

t−τ
e(t−l)Miϕi(·)dl

≤

 t

t−τ
e(t−l)Miψ i(y(l), u(l))dl (31)
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with ϕi(·) = ϕi(y(l) − ϵ1(l), ϵ2(l), y(l) − ϵ1(l), ϵ2(l), u(l)) are sat-
isfied. We deduce easily that for all t ≥ τ ,

T 1(yt , ut) ≤ Fτ

 t

t−τ
e(t−l)M1ϕ1(·)dl ≤ T 1(yt , ut),

T 2(yt , ut) ≤ Gτ

 t

t−τ
e(t−l)M2ϕ2(·)dl ≤ T 2(yt , ut).

(32)

In Appendix A, we prove that, for all t ≥ τ ,

ϵS ≤ EτR−1
2

 t

t−τ
e(t−l)M2ϵ3(l)dl ≤ ϵL. (33)

It follows from (29), (32) and (33) that (26) is satisfied.

4.2. Approximate estimation with dynamic extensions

The motivations of Theorem 2 also motivate the following
result:

Theorem 4. Let the system (1) satisfy the conditions in Theorem 3.
Let u(t) be piecewise continuous and consider a solution (1) defined
over [0,+∞). Let us introduce several dynamic extensions:

ża(t) = Hza(t)+ Ly(t),

żb(t) = M1zb(t)+ ψ1(y(t), u(t)),
żc(t) = M1zc(t)+ ψ

1
(y(t), u(t)),

żd(t) = M2zd(t)+ ψ2(y(t), u(t)),
że(t) = M2ze(t)+ ψ

2
(y(t), u(t)),

(34)

where y and u are the output and input in (1). Then, for all t ≥ τ , the
inequalities

V(Zt) ≤ x(t) ≤ V(Zt) (35)

with Z = (za, zb, zc, zd, ze) and

V(Zt) = F+

τ


zb(t)− eτM1zb(t − τ)


+ F−

τ


eτM1zc(t − τ)− zc(t)


+G+

τ


zd(t)− eτM2zd(t − τ)


+G−

τ


eτM2ze(t − τ)− ze(t)


+ Eτ e−τH eτHza(t − τ)− za(t)


+ ϵL, (36)

V(Zt) = F+

τ


zc(t)− eτM1zc(t − τ)


+ F−

τ


eτM1zb(t − τ)− zb(t)


+ (Gτ )+


ze(t)− eτM2ze(t − τ)


+G−

τ


eτM2zd(t − τ)− zd(t)


+ Eτ e−τH eτHza(t − τ)− za(t)


+ ϵS, (37)

where ϵS and ϵL are the constants given in (27), are satisfied.
Proof. Consider a solution x(t) of (1) defined over [0,+∞). Since
y and u are bounded on any compact time interval, by integrating
(34), we obtain, for all t ≥ τ ,

za(t) = eτHza(t − τ)+

 t

t−τ
e(t−l)HLy(l)dl,

zb(t) = eτM1zb(t − τ)+

 t

t−τ
e(t−l)M1ψ1(y(l), u(l))dl,

zc(t) = eτM1zc(t − τ)+

 t

t−τ
e(t−l)M1ψ

1
(y(l), u(l))dl,

zd(t) = eτM2zd(t − τ)+

 t

t−τ
e(t−l)M2ψ2(y(l), u(l))dl,

ze(t) = eτM2ze(t − τ)+

 t

t−τ
e(t−l)M2ψ

2
(y(l), u(l))dl.

(38)
These equalities rewrite as t

t−τ
e(t−l)HLy(l)dl = za(t)− eτHza(t − τ), t

t−τ
e(t−l)M1ψ1(y(l), u(l))dl = zb(t)− eτM1zb(t − τ), t

t−τ
e(t−l)M1ψ

1
(y(l), u(l))dl = zc(t)− eτM1zc(t − τ), t

t−τ
e(t−l)M2ψ2(y(l), u(l))dl = zd(t)− eτM2zd(t − τ), t

t−τ
e(t−l)M2ψ

2
(y(l), u(l))dl = ze(t)− eτM2ze(t − τ).

(39)

It follows that, for all t ≥ τ , the equalities

T 1(yt , ut) = F+

τ


zb(t)− eτM1zb(t − τ)


+ F−

τ


eτM1zc(t − τ)− zc(t)


,

T 1(yt , ut) = F+

τ


zc(t)− eτM1zc(t − τ)


+ F−

τ


eτM1zb(t − τ)− zb(t)


,

T 2(yt , ut) = G+

τ


zd(t)− eτM2zd(t − τ)


+G−

τ


eτM2ze(t − τ)− ze(t)


,

T 2(yt , ut) = G+

τ


ze(t)− eτM2ze(t − τ)


+G−

τ


eτM2zd(t − τ)− zd(t)


− Eτ

 t

t−τ
e(t−l−τ)HLy(l)dl

= −Eτ e−τH za(t)− eτHza(t − τ)

.

(40)

are satisfied. Evidently, Theorem 3 applies. Then from the
inequalities (26) and the equalities (40), we deduce that the
inequalities (35) are satisfied.

5. Illustration

5.1. First example

In this section, we illustrate Theorems 2 and 4 with the two
dimensional system:ẋ1 = x2 + x21 sin(x1)+ ϵ2,

ẋ2 = x21 sin(x1)+ ϵ2,
y = x1 + ϵ1.

(41)

This system is of the form (1) with C = (1 0). Notice that the
function x21 sin(x1) is not globally Lipschitz. We can choose

A =

−
5
2

1

−
3
2

0

 , f (y, u, ϵ2) =

y2 sin(y)+
5
2
y + ϵ2

y2 sin(y)+
3
2
y + ϵ2

 . (42)

Notice that A is Hurwitz, the pair (A, C) is observable and the
function f is of class C1. Next, let us determine suitable matrices
M1 and M2. Let

R1 =


3 −2

−2 2


.

Then

R−1
1 =

1 1

1
3
2


and
R1AR−1

1 = M1
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with

M1 =

−
3
2

0

0 −1

 .
Selecting L = −

 5
2
9
2

, we obtain

H =


−5 1
−6 0


. (43)

Notice that

R2 =


−2 1
3 −1


is such that R−1

2 =


1 1
3 2


and

R2HR−1
2 = M2 (44)

with

M2 =


−2 0
0 −3


. (45)

Next, let us check the invertibility of the following matrix:

e−τH
− e−τA

= R−1
2 e−τM2R2 − R−1

1 e−τM1R1

=


3e3τ − 2e2τ − 3e

3τ
2 + 2eτ e2τ − e3τ + 2e

3τ
2 − 2eτ

6e3τ − 6e2τ − 3e
3τ
2 + 3eτ 3e2τ − 2e3τ + 2e

3τ
2 − 3eτ


. (46)

This matrix is invertible when τ is sufficiently large. Therefore
Assumption A2 is satisfied. Defining

δτ = det(e−τH
− e−τA), (47)

we have

δτ = 2e4τ − 3e3τ + e5τ + e
5τ
2 + 2e

7τ
2 − 3e

9τ
2 . (48)

Then,
Eτ = (e−τH

− e−τA)−1

=


4e

τ
2 + 2eτ + 3

e2τ − e3τ − e
3τ
2 + e

5τ
2

−
2e

τ
2 + eτ + 2

e2τ − e3τ − e
3τ
2 + e

5τ
2

−3

2e

3τ
2 + 2eτ − 1


2e2τ − 2e3τ − e

3τ
2 + e

7τ
2

e
τ
2 + 3e

3τ
2 + 3eτ − 2

2e2τ − 2e3τ − e
3τ
2 + e

7τ
2

 . (49)
We apply Theorem 2 with ϵ1(t) =

1
9 sin(t), ϵ2(t) =

1
2 sin(t2).

We obtain the output y(t) shown in Fig. 1 for the initial values
x1(0) = 2.3 and x2(0) = 1

First, we implement the dynamic extensions x̂ and x∗ given
respectively by Eqs. (12) and (13). Then, for different values of the
delay τ , we implement the exact estimation of the stat x given by
(14).
Numerical examples and simulation results:
• Choosing τ = 0.1, for t ≥ 0.1, the exact estimation given by

(14) is equivalent to

x(t) = 104

−0.1774 0.0995
−3.8992 2.1813


x∗(t)

− 104

−0.1775 0.0995
−3.8992 2.1812


x̂(t)

+ 104

−0.1503 0.0831
−3.3007 1.8220


×

x̂(t − 0.1)− x∗(t − 0.1)


. (50)
Fig. 1. The perturbed output y(t) of system (41).

• Choosing τ = 0.5, then

x(t) =


−66.11 38.80
−405.89 234.66


x∗(t)−


−67.11 38.80
−405.89 233.66


x̂(t)

+


−29.31 15.94
−176.86 95.51

 
x̂(t − 0.5)− x∗(t − 0.5)


. (51)

• Choosing τ = 1, then

x(t) =


−14.61 9.31
−64.65 39.45


x∗(t)−


−15.61 9.31
−64.65 38.45


x̂(t)

+


−3.01 1.60
−12.40 6.56

 
x̂(t − 1)− x∗(t − 1)


. (52)

Fig. 2 illustrates these 3 numerical examples. We observe that
the estimation is exact for all t ≥ τ .
Now, we assume that Assumption B is satisfied and apply

Theorem 4. We have

− R1f (y, u, ϵ2) =


−3 2
2 −2

y2 sin(y)+
5
2
y + ϵ2

y2 sin(y)+
3
2
y + ϵ2


=

−y2 sin(y)−
9
2
y − ϵ2

2y

 . (53)

Therefore −R1f (y, u, ϵ2) = ϕ1(y, ϵ2, y, ϵ2)with

ϕ1(a1, a2, b1, b2)

=

2a31 + 2a1 − a21 sin(a1)− 2b31 −
13
2

b1 − b2

2a1

 . (54)

We also have

R2f (y, u, ϵ2) =


−2 1
3 −1

y2 sin(y)+
5
2
y + ϵ2

y2 sin(y)+
3
2
y + ϵ2


=

−y2 sin(y)−
7
2
y − ϵ2

2y2 sin(y)+ 6y + 2ϵ2

 . (55)

Therefore R2f (y, u, ϵ2) = ϕ2(y, ϵ2, y, ϵ2)with

ϕ2(a1, a2, b1, b2)
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Fig. 2. The errors between the real state and the exact estimation for τ = 0.1, τ = 0.5 and τ = 1.
=

2a31 + 2a1 − a21 sin(a1)− 2b31 −
11
2

b1 − b2

2a31 + 8a1 − 2b31 − 2b1 + 2a21 sin(a1)+ 2a2

 . (56)

Both ϕ1 and ϕ2 satisfy the required monotonicity properties.
For i = 1, 2, we assume that ϵ i = −ϵ i. Then Eqs. (57)–(60) are

given in Box I. Now, we have

Fτ = EτR−1
1 e−τM1 , (61)

Gτ = EτR−1
2 e−τM2 , (62)

M3 =

−
1
2

0

0 −
1
3

e−2τ
− 1 0

0 e−3τ
− 1



=


1 − e−2τ

2
0

0
1 − e−3τ

3

 . (63)

We implement the dynamic extensions za, zb, zc , zd and ze given by
Eqs. (34), as well as the lower and upper bounds dynamics given
by (35). Figs. 3 and 4 illustrate our results for several values of ϵ1,
ϵ2 and τ .

5.2. Second example

In this section, we illustrate our results with the model of
electromechanical system described in [21]:ẋ1 = x2,
ẋ2 = b1x3 − a1 sin(x1)− a2x2,
ẋ3 = b0u − a3x2 − a4x3,

(64)

with x = (x1, x2, x3) ∈ R3, with the output y = x1 and where
the bi’s and the ai’s are positive real numbers. Assuming that the
variable x1 measured is realistic from an applied point of view
because x1 represents the angular motor position of the device.

We let b0 = 40, b1 = 15, a1 = 35, a2 = 1, a3 = 36.4 and
a4 = 200. These values are close to the numerical values given
in [21]. With the notation of the previous sections, we can choose

A =


−2 1 0
0 −1 15
0 −36.4 −200


, f (y, u) =

 2y
−35 sin(y)

40u


. (65)

Selecting

L = −

8
1
1


(66)

we obtain

H =


−10 1 0
−1 −1 15
−1 −36.4 −200


. (67)
Then

M1 = R1AR−1
1 =


−2 0 0
0 −3.7826 0
0 0 −197.2174


(68)

and

M2 = R2HR−1
2 =


−9.8186 0 0

0 −3.9635 0
0 0 −197.2179


(69)

with

R1 =

1 0.5690 0.0431
0 1.1782 0.0901
0 0.1887 1.0173


,

R2 =


−1.0485 0.1763 0.0139
−0.1922 1.0779 0.0825
0.0064 0.1887 1.0173


.

(70)

Choosing τ = 0.1, Theorem 2 gives the exact estimate of the state
x(t) for t ≥ 0.1:

x(t) = 103

 0.0032 0.0159 0.1891
0.4214 −2.5809 6.0261

−0.0782 0.4788 −1.1179


x∗(t)

− 103

 0.0022 0.0159 0.1891
0.4214 −2.5819 6.0261

−0.0782 0.4788 −1.1189


x̂(t)

+ 103

 0.0018 −0.0131 −0.0010
0.3450 −2.5390 −0.1942

−0.0640 0.4710 0.0360


×

x̂(t − 0.1)− x∗(t − 0.1)


, (71)

where x̂(t) and x∗(t) are the solutions of the dynamic extensions
given by (12) and (13) with the matrices and functions we have
selected in this section. We considered the case where the input is
u(t) = (2t + 1) sin(50t) and obtained the simulations (see Fig. 5).

Now, we add to the example (64) some disturbances: we
consider:

ẋ1 = x2 + ϵ2,
ẋ2 = b1x3 − a1 sin(x1)− a2x2 + ϵ2,
ẋ3 = b0u − a3x2 − a4x3 + ϵ2,
y = x1 + ϵ1,

(72)

under Assumption B.Moreover, for the numerical implementation,
we suppose that, for all t ≥ 0 and i ∈ {1, 2}, ϵ i ≥ 0, ϵi(t) =

ϵ i sin(t2) and ϵ i = −ϵ i.
For the values of a1, a2, a3, a4, b0, b1 indicated above and the

matrix A given in (65), the corresponding function f is

f (y, u, ϵ2) =

 2y + ϵ2
−35 sin(y)+ ϵ2

40u + ϵ2


. (73)
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7)

8)

9)

0)
ψ1(y) =


2(y + ϵ1)

3
+ 2(y + ϵ1)− (y + ϵ1)

2 sin(y + ϵ1)− 2(y − ϵ1)
3
−

13
2
(y − ϵ1)− ϵ2

2(y + ϵ1)


, (5

ψ
1
(y) =


2(y − ϵ1)

3
+ 2(y − ϵ1)− (y − ϵ1)

2 sin(y − ϵ1)− 2(y + ϵ1)
3
−

13
2
(y + ϵ1)− ϵ2

2(y − ϵ1)


, (5

ψ2(y) =

2(y + ϵ1)
3
+ 2(y + ϵ1)− (y + ϵ1)

2 sin(y + ϵ1)− 2(y − ϵ1)
3
−

11
2
(y − ϵ1)− ϵ2

2(y + ϵ1)
3
+ 8(y + ϵ1)− 2(y − ϵ1)

3
− 2(y − ϵ1)+ 2(y + ϵ1)

2 sin(y + ϵ1)+ 2ϵ2

 , (5

ψ
2
(y) =

2(y − ϵ1)
3
+ 2(y − ϵ1)− (y − ϵ1)

2 sin(y − ϵ1)− 2(y + ϵ1)
3
−

11
2
(y + ϵ1)− ϵ2

2(y − ϵ1)
3
+ 8(y − ϵ1)− 2(y + ϵ1)

3
− 2(y + ϵ1)+ 2(y − ϵ1)

2 sin(y − ϵ1)− 2ϵ2

 . (6

Box I.
Fig. 3. Finite time interval estimation with upper and lower bounds for τ = 4, ϵ1 = 0.02, ϵ2 = 0.2.
Fig. 4. Finite time interval estimation with upper and lower bounds for τ = 3, ϵ1 = 0.01, ϵ2 = 0.02.
Fig. 5. The real states and the exact estimations for τ = 0.1 s.
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Then

− R1f (y, u, ϵ2)

=


−2y + 19.9138 sin(y)− 1.7241u − 1.6121ϵ2

41.2376 sin(y)− 3.6028u − 1.2683ϵ2
6.6054 sin(y)− 40.6938u − 1.2061ϵ2


, (74)

and

R2f (y, u, ϵ2)

=


−2.0971y − 6.1702 sin(y)+ 0.5562u − 0.8583ϵ2
−0.3844y − 37.7256 sin(y)+ 3.2990u + 0.9681ϵ2
0.0129y − 6.6042 sin(y)+ 40.6936u + 1.2125ϵ2


. (75)

We choose

ϕ1(a1, a2, b1, b2, u)

=

 20a1 + 19.9138 sin(a1)− 22b1 − 1.7241u − 1.6121b2
41.5a1 + 41.2376 sin(a1)− 41.5b1 − 3.6028u − 1.2683b2

7a1 + 6.6054 sin(a1)− 7b1 − 40.6938u − 1.2061b2


, (76)

and

ϕ2(a1, a2, b1, b2, u)

=

 6.5a1 − 6.1702 sin(a1)− 8.5971b1 + 0.5562u − 0.8583b2
38a1 − 37.7256 sin(a1)− 38.3844b1 + 3.2990u + 0.9681a2
6.8129a1 − 6.6042 sin(a1)− 6.8b1 + 40.6936u + 1.2125a2

 . (77)
Notice that ϕ1 and ϕ2 satisfy the requiredmonotonicity properties.
As an immediate consequence of our definitions, we have in Eqs.
(78)–(81) are given in Box II.

Finallywe implement the dynamic extensions za, zb, zc , zd and ze
given by Eqs. (34), and the lower and upper bounds dynamics given
by (35). Fig. 6 illustrates an example where τ = 0.1, ϵ1 = 0.001,
ϵ2 = 0.02 and the input u(t) = (2t + 1) sin(50t).

5.3. Third example

In order to show that the size of the estimation intervals
provided by the observer (34), i.e. its performance, strongly
depends on the size of the entries of the matrix A and on the type
of nonlinearities present in the dynamics of the studied system,we
consider:

ẋ1 = −x1 + x2 + ϵ2,

ẋ2 = −
x1
2

cos(x1)+ u + ϵ2,

y = x1 + ϵ1.

(82)

Now, let us apply Theorem 4. We can choose

A =


−

5
2

1
−1 0


,

f (y, u, ϵ2) =

 3
2
y + ϵ2

y −
y
2
cos(y)+ u + ϵ2

 . (83)

We observe that the nonlinear term y
2 cos(y) is not globally

Lipschitz, but bounded in norm by a linear function of the norm.
We observe also that the entries of A are neither very small nor
very big. Since C = [1 0], the pair (A, C) is observable. Moreover,
the matrix A is Hurwitz and the function f is of class C1. For L =

−


1
0.4


, we obtain

H =


−3.5 1
−1.4 0


. (84)
One can check readily that:

R1AR−1
1 =


−2 0

0 −
1
2


= M1 and

R2HR−1
2 =


−3.039 0

0 −0.460


= M2

(85)

with

R1 =

√
5
3


−2 1
1 −2


and R2 =


−1.297 0.426
0.571 −1.240


.

Consequently,

− R1f (y, 0, ϵ2) =

√
5
3

2y +
y
2
cos(y)+ ϵ2

y
2

− y cos(y)+ ϵ2

 . (86)

Thus −R1f (y, 0, ϵ2) = ϕ1(y, ϵ2, y, ϵ2)with

ϕ1(a1, a2, b1, b2)

=

√
5
3

 a31
6

+ 2a1 +
a1
2

cos(a1)−
b31
6

+ a2

a31 + 2a1 − a1 cos(a1)− b31 −
3
2
b1 + a2

 . (87)

We also have

R2f (y, 0, ϵ2) =


−1.5195y − 0.2135y cos(y)− 0.8707ϵ2
−0.3835y + 0.6204y cos(y)− 0.6692ϵ2


. (88)

Therefore R2f (y, 0, ϵ2) = ϕ2(y, ϵ2, y, ϵ2)with
ϕ2(a1, a2, b1, b2)

=


a31
12

−
b31
12

− 1.5195b1 − 0.2135b1 cos(b1)− 0.8707b2

a31
3

+ a1 −
b31
3

− 1.3835b1 + 0.6204b1 cos(b1)− 0.6692b2

 . (89)
Both ϕ1 and ϕ2 satisfy the required monotonicity properties.
Moreover we assume that ϵ i = −ϵ i, for i = 1, 2. Then we
implement the dynamic extensions za, zb, zc , zd and ze, aswell as the
lower and upper bounds. Fig. 7 illustrates our results for ϵ1 = 0.1,
ϵ2 = 0.2 and τ = 4.

In this example, although the disturbances on the output are
considerably stronger than the ones of Example 1 (five times
greater, see Fig. 3), it turns out that the performance, in terms
of size of estimation interval, of the observer is better than the
one of the observer we proposed for the Example 1. We observe
also that Example 2 leads to matrices A and H with rather large
entries, which produce matrices Fτ , Gτ and Eτ e−τH with large
entries, (between 0 and 62055). This fact is the reason why the
performance of the observer for Example 2 is worst than the one
of the observer we propose for Example 3. We conclude that the
performance of the observers we propose strongly depends on the
nature of the observed system, but certainly also on the selections
of τ , A, H and on the choices of functions ϕ1 and ϕ2.

6. Conclusion

We have developed a new technique of estimation of the solu-
tions of nonlinear continuous-time observable systems. Its key fea-
tures are that it applies in the absence of the knowledge of bounds
on the initial conditions and provides, after a finite time interval,
with the exact value of the solutions if there is no disturbances and
with a lower and an upper bounds when disturbances are present.
We conjecture that these results can be used to solve output feed-
back stabilization of systems. We plan to extend our results to
discrete-time systems.
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8)

9)

0)

1)
ψ1(y, u) =

 20(y + ϵ1)+ 19.9138 sin(y + ϵ1)− 22(y − ϵ1)− 1.7241u − 1.6121ϵ2
41.5(y + ϵ1)+ 41.2376 sin(y + ϵ1)− 41.5(y − ϵ1)− 3.6028u − 1.2683ϵ2

7(y + ϵ1)+ 6.6054 sin((y + ϵ1))− 7(y − ϵ1)− 40.6938u − 1.2061ϵ2


, (7

ψ
1
(y, u) =

 20(y − ϵ1)+ 19.9138 sin(y − ϵ1)− 22(y + ϵ1)− 1.7241u − 1.6121ϵ2
41.5(y − ϵ1)+ 41.2376 sin(y − ϵ1)− 41.5(y + ϵ1)− 3.6028u − 1.2683ϵ2

7(y − ϵ1)+ 6.6054 sin((y − ϵ1))− 7(y + ϵ1)− 40.6938u − 1.2061ϵ2


, (7

ψ2(y, u) =

 6.5(y + ϵ1)− 6.1702 sin(y + ϵ1)− 8.5971(y − ϵ1)+ 0.5562u − 0.8583ϵ2
38(y + ϵ1)− 37.7256 sin(y + ϵ1)− 38.3844(y − ϵ1)+ 3.2990u + 0.9681ϵ2
6.8129(y + ϵ1)− 6.6042 sin(y + ϵ1)− 6.8(y − ϵ1)+ 40.6936u + 1.2125ϵ2


, (8

ψ
2
(y, u) =

 6.5(y − ϵ1)− 6.1702 sin(y − ϵ1)− 8.5971(y + ϵ1)+ 0.5562u − 0.8583ϵ2
38(y − ϵ1)− 37.7256 sin(y − ϵ1)− 38.3844(y + ϵ1)+ 3.2990u + 0.9681ϵ2
6.8129(y − ϵ1)− 6.6042 sin(y − ϵ1)− 6.8(y + ϵ1)+ 40.6936u + 1.2125ϵ2


. (8

Box II.
Fig. 6. Example 2 with τ = 0.1 s, u(t) = (2t + 1) sin(50t), ϵ1 = 0.001 and ϵ2 = 0.02.
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Appendix A. Expressions of ϵL and ϵS in inequalities (33)

From (3), we deduce that the function ϵ3 defined in (23)
satisfies, for all t ≥ 0,

ϵ3 ≤ ϵ3(t) ≤ ϵ3, (90)

with

ϵ3 = (e−τM2R2L)+ϵ1 − (e−τM2R2L)−ϵ1,

ϵ3 = (e−τM2R2L)+ϵ1 − (e−τM2R2L)−ϵ1.
(91)
Since M2 is Metzler, the inequalities τ

0
elM2dlϵ3 ≤

 t

t−τ
e(t−l)M2ϵ3(l)dl ≤

 τ

0
elM2dlϵ3 (92)

are satisfied. We deduce that

(EτR−1
2 )

+M3ϵ3 ≤ (EτR−1
2 )

+

 t

t−τ
e(t−l)M2ϵ3(l)dl

≤ (EτR−1
2 )

+M3ϵ3,

(EτR−1
2 )

−M3ϵ3 ≤ (EτR−1
2 )

−

 t

t−τ
e(t−l)M2ϵ3(l)dl

≤ (EτR−1
2 )

−M3ϵ3,

(93)

with M3 = M−1
2


eτM2 − I


. As an immediate consequence,

(EτR−1
2 )

+M3ϵ3 − (EτR−1
2 )

−M3ϵ3 ≤ EτR−1
2

 t

t−τ
e(t−l)M2ϵ3(l)dl

≤ (EτR−1
2 )

+M3ϵ3 − (EτR−1
2 )

−M3ϵ3. (94)
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Fig. 7. Finite time interval estimation with upper and lower bounds for τ = 4, ϵ1 = 0.1, ϵ2 = 0.2.
It follows that

ϵS ≤ EτR−1
2

 t

t−τ
e(t−l)M2ϵ3(l)dl ≤ ϵL (95)

with

ϵL = (EτR−1
2 )

+M3ϵ3 − (EτR−1
2 )

−M3ϵ3,

ϵS = (EτR−1
2 )

+M3ϵ3 − (EτR−1
2 )

−M3ϵ3.
(96)

Using the expressions of ϵ3 and ϵ3, we obtain (27).

Remark 2. In the particular casewhere ϵ1 = −ϵ1, the expressions
of ϵL and ϵS simplify as

ϵL =

(EτR−1

2 )
+

+ (EτR−1
2 )

−


×M3

(e−τM2R2L)+ + (e−τM2R2L)−


ϵ1,

ϵS = −ϵL.

(97)

Appendix B. Technical lemmas

B.1. First result

Lemma 1. Let (A, C) be an observable pair. Then there is a matrix L
such that the matrix H = A+ LC is Hurwitz and there is τ∗ such that,
for all τ ≥ τ∗, the matrix e−τH

− e−τA is invertible.
Proof. Since the pair (A, C) is observable, there is a matrix L so
that all the eigenvalues of H are real, negative and smaller than
the smallest of the real parts of the eigenvalues of −A. Then
limr→+∞

eHr  e−Ar
 = 0. Consequently, there is τ∗ > 0 such that,

for all τ ≥ τ∗,
eHτ  e−Aτ

 < 1. Now, observe that the matrix
e−τH

− e−τA is invertible if and only if eτHe−τA
− I is invertible.

Since
eHτ  e−Aτ

 < 1, it does not exist a vector V ≠ 0 such
that


eτHe−τA

− I

V = 0. Therefore eτHe−τA

− I is invertible. This
conclude the proof.
B.2. Second result

We recall Lemma 6 of [18].

Lemma 2. Let g : Rk
→ R be a function of class C1. Then there exists

a function gc : Rk
× Rk

→ R nondecreasing with respect to each of
its k first variables and nonincreasing with respect to each of its k last
variables such that, for all x ∈ Rk, the equality

gc(x, x) = g(x) (98)

is satisfied.
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