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a b s t r a c t

We consider an LTI system of relative degree r ≥ 2 that can be stabilized using r − 1 output derivatives.
The derivatives are approximated by finite differences leading to a time-delayed feedback. We present
a new method of designing and analyzing such feedback under continuous-time and sampled measure-
ments. Thismethod admits essentially larger time-delay/sampling period compared to the existing results
and, for the first time, allows to use consecutively sampled measurements in the sampled-data case.
The main idea is to present the difference between the derivative and its approximation in a convenient
integral form. The kernel of this integral is hard to express explicitly but we show that it satisfies certain
properties. These properties are employed to construct the Lyapunov–Krasovskii functional that leads to
LMI-based stability conditions. If the derivative-dependent control exponentially stabilizes the system,
then its time-delayed approximation stabilizes the system with the same decay rate provided the time-
delay (for continuous-timemeasurements) or the sampling period (for sampledmeasurements) are small
enough.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

Control laws that depend on output derivatives are used to
stabilize LTI systems with relative degrees greater than one. To
estimate the derivatives, which can hardly be measured directly,
one can use the finite differences, i.e., ẏ ≈ (y(t) − y(t − h))/h.
Such approximation leads to time-delayed feedback that pre-
serves the stability if the delay h > 0 is small enough (Borne,
Kolmanovskii, & Shaikhet, 2000; French, Ilchmann, & Mueller,
2009; Karafyllis, 2008). For a given h, the delay-induced stabil-
ity can be checked using frequency-domain techniques (Abdal-
lab, Dorato, & Benites-Read, 1993; Kharitonov, Niculescu, Moreno,
& Michiels, 2005; Niculescu & Michiels, 2004; Ramírez, Mondié,
Garrido, & Sipahi, 2016) or complete Lyapunov–Krasovskii func-
tionals (Egorov, 2016; Gu, Kharitonov, & Chen, 2003; Kharitonov,
2012), which give necessary and sufficient conditions.

The delay-induced stability can be also studied using linear
matrix inequalities (LMIs) (Gu, 1997; Seuret & Gouaisbaut, 2013,
2015). The advantage of LMIs is that, though being conservative,
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they allow for performance and robustness analysis, can cope with
certain types of nonlinearities (Fridman, 2014), and can deal with
stochastic perturbations (Fridman & Shaikhet, 2016, 2017). Simple
and yet efficient LMIs for the delay-induced stabilitywere obtained
in Fridman and Shaikhet (2016, 2017). The key idea was to use
Taylor’s expansion of the delayed terms with the remainders in
the integral form that are compensated by appropriate terms in
the Lyapunov–Krasovskii functional. Compared to Gu (1997) and
Seuret and Gouaisbaut (2013, 2015), the resulting LMIs have a
lower order, contain less decision variables, and were proved to
be feasible for small delays if the derivative-dependent feedback
stabilizes the system.

Another advantage of LMI-based conditions is that they can be
extended to sampled-data systems. This has been done using dis-
cretized Lyapunov functionals with a Wirtinger-based term in Liu
and Fridman (2012). Another LMIs for sampled-data stabilization
were derived in Seuret and Briat (2015) by employing impulsive
system representation and looped Lyapunov functionals. The high-
order LMIs obtained in Liu and Fridman (2012) and Seuret and Briat
(2015) contain many decision variables, which make them hard to
solve numerically. Using the ideas of Fridman and Shaikhet (2016,
2017), simple LMIs for sampled-data delay-induced stabilization
were derived in Selivanov and Fridman (in press-b). These condi-
tionswere proved to be feasible for a small enough sampling period
if the continuous-time derivative-dependent feedback stabilizes
the system.

In this paper, we essentially improve the results of Fridman and
Shaikhet (2017) for continuous-time measurements (Section 2)
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and the results of Selivanov and Fridman (in press-b) for sampled
measurements (Section 3). Namely, we derive simple LMIs that
are feasible for significantly larger values of time-delay (Remark 2)
and sampling period (Remark 3). Such improvement is achieved
using an original integral representation of the difference between
the derivative and its approximation (Proposition 1). The kernel
of this integral is hard to express explicitly but we show that it
satisfies certain properties (Proposition 2). These properties are
employed to construct Lyapunov–Krasovskii terms that bound the
approximation errors and lead to LMI-based stability conditions.
Compared to Fridman and Shaikhet (2017) and Selivanov and
Fridman (in press-b), such approach leads to amore natural design
of the controller gains in the delayed feedback. Moreover, the
considered sampled-data delayed controller uses consecutivemea-
surements, while Selivanov and Fridman (in press-b) used distant
measurements (cf. (25) and (29)). All these improvements allow to
use less memory and slower sampling when one uses time-delays
to implement derivative-dependent feedback. Finally, we show
that if the derivative-dependent controller exponentially stabilizes
the system with a decay rate α′ > 0, then the LMIs are feasible
for any decay rate α < α′ and small enough time-delay/sampling
period.

Thepart of this paper corresponding to the sampled-data imple-
mentation of the first order derivative was presented in Selivanov
and Fridman (2018). These results were used in Selivanov and
Fridman (in press-a) to study sampled-data implementation of PID
control.

Notations. N0 = N ∪ {0}, 1r = [1, . . . , 1]T ∈ Rr , Im ∈ Rm×m is the
identity matrix, ⊗ stands for the Kronecker product, diag{Ri}

r−1
i=1 is

the block-diagonal matrix with Ri being on the diagonal, 0 < P ∈

Rn×n denotes that P is symmetric and positive-definite, C i is a class
of i times continuously differentiable functions.

Auxiliary lemmas.

Lemma 1 (Exponential Wirtinger Inequality, Selivanov & Fridman,
2016). Let f : [a, b] → Rn be an absolutely continuous function
with a square integrable first order derivative such that f (a) = 0 or
f (b) = 0. Then∫ b

a
e2αt f T (t)Wf (t) dt ≤ e2|α|(b−a) 4(b − a)2

π2

∫ b

a
e2αt ḟ T (t)Wḟ (t) dt

for any α ∈ R and 0 ≤ W ∈ Rn×n.

Lemma 2 (Jensen’s Inequality, Solomon & Fridman, 2013). Let ρ :

[a, b] → [0,∞) and f : [a, b] → Rn be such that the integration
concerned is well-defined. Then for any 0 < Q ∈ Rn×n,[∫ b

a
ρ(s)f (s) ds

]T

Q
[∫ b

a
ρ(s)f (s) ds

]
≤

∫ b

a
ρ(s) ds

∫ b

a
ρ(s)f T (s)Qf (s) ds.

2. Continuous-time control

Consider the LTI system

ẋ(t) = Ax(t) + Bu(t),
y(t) = Cx(t),

x ∈ Rn, u ∈ Rm, y ∈ Rl (1)

with relative degree r ≥ 2, i.e.,

CAiB = 0, i = 0, 1, . . . , r − 2, CAr−1B ̸= 0. (2)

Relative degree is how many times the output y(t) needs to be
differentiated before the input u(t) appears explicitly. In particular,
(2) implies

y(i) = CAix, i = 0, 1, . . . , r − 1. (3)

To prove (3), note that it is trivial for i = 0 and, if it has been proved
for i < r − 1, it holds for i + 1:

y(i+1)
=

(
y(i)

)′ (3)
= (CAix)′

(1)
= CAi

[Ax + Bu]
(2)
= CAi+1x.

For LTI systems with relative degree r , it is common to look for a
stabilizing controller of the form

u(t) = K̄0y(t) + K̄1y(1)(t) + · · · + K̄r−1y(r−1)(t). (4)

Remark 1. The control law (4) essentially reduces the system’s
relative degree from r ≥ 2 to r = 1. Indeed, due to (2), the transfer
matrix of (1) has the form

W (s) =
βr sn−r

+ · · · + βn

sn + α1sn−1 + · · · + αn

with βr = CAr−1B ̸= 0. Taking u(t) = K̂0u0(t) + K̂1u
(1)
0 (t) + · · · +

K̂r−1u
(r−1)
0 (t), one has

ỹ(s) =
(βr sn−r

+ · · · + βn)(K̂r−1sr−1
+ · · · + K̂0)

sn + α1sn−1 + · · · + αn
ũ0(s),

where ỹ and ũ0 are the Laplace transforms of y and u0. If βr K̂r−1 ̸=

0, the latter system has relative degree one. If it can be stabilized
by u0 = Ky then (1) can be stabilized by (4) with K̄i = K̂iK .

The controller (4) depends on the output derivatives, which are
hard to measure directly. Instead, the derivatives can be approxi-
mated by finite-differences ỹi(t) ≈ y(i)(t):

ỹ0(t) = y(t),

ỹi(t) =
ỹi−1(t) − ỹi−1(t − h)

h

=
1
hi

i∑
k=0

(
i
k

)
(−1)ky(t − kh), i ∈ N

(5)

with a delay h > 0 and the binomial coefficients
( i
k

)
=

i!
k!(i−k)! .

Replacing y(i) in (4) with their approximations ỹi, we obtain the
delay-dependent control

u(t) =

r−1∑
i=0

K̄iỹi(t)
(5)
=

r−1∑
i=0

Kiy(t − ih), (6)

where we set1 y(t) = y(0) for t < 0 and

Ki = (−1)i
r−1∑
j=i

(
j
i

)
1
hj K̄j, i = 0, . . . , r − 1. (7)

If (1) can be stabilized by the derivative-dependent control (4),
then it can be stabilized by the delay-dependent control (6) with
small enough delays (French et al., 2009). In this section, we derive
simple and yet efficient LMIs that allow to obtain appropriate value
of the delay h > 0. The first step is to present the approximation
error y(i)(t)− ỹi(t) in a convenient form suitable for the analysis via
Lyapunov–Krasovskii functionals.

Proposition 1. If y ∈ C i and y(i) is absolutely continuous with i ∈ N,
then ỹi defined in (5) satisfies

ỹi(t) = y(i)(t) −

∫ t

t−ih
ϕi(t − s)y(i+1)(s) ds, (8)

1 Then y(i)(0) with i > 0 are approximated by 0.
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where ϕ1(ξ ) =
h−ξ
h and for i ∈ N,

ϕi+1(ξ ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

∫ ξ

0

ϕi(λ)
h

dλ+
h − ξ

h
, ξ ∈ [0, h],∫ ξ

ξ−h

ϕi(λ)
h

dλ, ξ ∈ (h, ih),∫ ih

ξ−h

ϕi(λ)
h

dλ, ξ ∈ [ih, ih + h].

(9)

Proof. For i ∈ N, Taylor’s expansion with the remainder in the
integral form gives

y(i−1)(t − h) = y(i−1)(t) − y(i)(t)h −

∫ t

t−h
(t − h − s)y(i+1)(s) ds.

Reorganizing the terms, we obtain

y(i−1)(t) − y(i−1)(t − h)
h

= y(i)(t) −

∫ t

t−h

h − (t − s)
h

y(i+1)(s)ds.

(10)

Relations (5) and (10) imply (8) for i = 1. Let (8) be true for some
i ≥ 1. Then

ỹi+1(t)
(5)
=

ỹi(t) − ỹi(t − h)
h

(8)
=

y(i)(t) − y(i)(t − h)
h

− I

(10)
= y(i+1)(t) −

∫ t

t−h

h − (t − s)
h

y(i+2)(s) ds − I,

where (see Fig. 1)

I =

∫ t

t−ih

ϕi(t − ζ )
h

y(i+1)(ζ ) dζ

−

∫ t−h

t−h−ih

ϕi(t − h − ζ )
h

y(i+1)(ζ ) dζ

=

∫ t

t−ih

ϕi(t − ζ )
h

[
y(i+1)(ζ ) − y(i+1)(ζ − h)

]
dζ

=

∫ t

t−ih

ϕi(t − ζ )
h

∫ ζ

ζ−h
y(i+2)(s) ds dζ

Fig. 1
=

∫ t

t−h

[∫ t

s

ϕi(t − ζ )
h

dζ
]
y(i+2)(s) ds

+

∫ t−h

t−ih

[∫ s+h

s

ϕi(t − ζ )
h

dζ
]
y(i+2)(s) ds

+

∫ t−ih

t−ih−h

[∫ s+h

t−ih

ϕi(t − ζ )
h

dζ
]
y(i+2)(s) ds.

Therefore, (8) holds for i + 1 with

ϕi+1(t − s) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

∫ t

s

ϕi(t − ζ )
h

dζ +
h − (t − s)

h
, s ∈ [t − h, t],∫ s+h

s

ϕi(t − ζ )
h

dζ , s ∈ (t − ih, t − h),∫ s+h

t−ih

ϕi(t − ζ )
h

dζ , s ∈ [t − ih − h, t − ih].

Taking λ = t − ζ and ξ = t − s, we obtain (9). ■

Using (3), the closed-loop system (1), (4) can be written as

ẋ(t) = Dx(t), D = A + B
r−1∑
i=0

K̄iCAi. (11)

Fig. 1. Change of the integration order in I.

Fig. 2. Plots of ϕi for i = 1, . . . , 5.

Using (3) and (8), the system (1) and (6) can be written as

ẋ(t) = Dx(t) + B
r−1∑
i=1

κi(t) (12)

with the same D and

κi(t) = −K̄i

∫ t

t−ih
ϕi(t − s)y(i+1)(s) ds, i = 1, . . . , r − 1. (13)

If (4) stabilizes (1), then D is Hurwitz. In our analysis we derive
the conditions ensuring that the errors κi do not ruin the stability
of (12). For that sake we need several properties of the functions ϕi
(see Fig. 2).

Proposition 2. The functions ϕi defined in (9) satisfy

1) ϕi ∈ C1
[0, ih],

2) ϕ′

i ≤ 0,
3) 0 ≤ ϕi ≤ 1,
4) ϕi(ξ ) + ϕi(ih − ξ ) = 1,

5)
∫ ih
0 ϕi(ξ ) dξ =

ih
2 .

Proof. Most properties are proved using induction on i.
1) Clearly, ϕ1(ξ ) =

h−ξ
h ∈ C1

[0, h]. If ϕi ∈ C1, then

ϕ′

i+1(ξ ) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

ϕi(ξ )
h

−
1
h
, ξ ∈ [0, h],

ϕi(ξ ) − ϕi(ξ − h)
h

, ξ ∈ (h, ih),

−
ϕi(ξ − h)

h
, ξ ∈ [ih, ih + h]

(14)
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is continuous on [0, (i + 1)h]. (Continuity at h and ih follows from
ϕi(0) = 1 and ϕi(ih) = 0, respectively.)

2) For i = 1 we have

ϕ′

1(ξ ) =

(
h − ξ

h

)′

= −
1
h
< 0.

If 2) holds for some i ≥ 1, then all expressions in (14) are negative
since ϕi(0) = 1, ϕ′

i ≤ 0, and ϕi ≥ 0.
3) Relation 0 ≤ ϕi easily proved using induction and (9).

Relations ϕi(0) = 1 and ϕ′

i ≤ 0 imply ϕi ≤ 1.
4) Clearly, it is enough to prove 4) for ξ ∈ [0, ih

2 ]. For i = 1,

ϕ1(ξ ) + ϕ1(h − ξ ) =
h − ξ

h
+

h − (h − ξ )
h

= 1.

Let 4) be true for some i ≥ 1. If ξ ∈ [0, h], the change of variable
λ̃ = ih − λ in the second integral leads to

ϕi+1(ξ ) + ϕi+1((i + 1)h − ξ )

=
1
h

∫ ξ

0
ϕi(λ) dλ+

h − ξ

h
+

1
h

∫ ih

ih−ξ
ϕi(λ) dλ

=
1
h

∫ ξ

0
ϕi(λ) dλ+

h − ξ

h
+

1
h

∫ ξ

0
ϕi(ih − λ̃) dλ̃

(4)
=

1
h

∫ ξ

0
1 dλ+

h − ξ

h
= 1.

If ξ ∈ (h, ih
2 ], the change of variable λ̃ = ih − λ in the second

integral leads to

ϕi+1(ξ ) + ϕi+1((i + 1)h − ξ )

=
1
h

∫ ξ

ξ−h
ϕi(λ) dλ+

1
h

∫ ih−ξ+h

ih−ξ
ϕi(λ) dλ

=
1
h

∫ ξ

ξ−h
ϕi(λ) dλ+

1
h

∫ ξ

ξ−h
ϕi(ih − λ̃) dλ̃

(4)
=

1
h

∫ ξ

ξ−h
1 dλ = 1.

5) Using the change of variable ξ̃ = ih − ξ , we obtain∫ ih

0
ϕi(ξ ) dξ =

∫ ih
2

0
ϕi(ξ ) dξ +

∫ ih

ih
2

ϕi(ξ ) dξ

=

∫ ih
2

0
ϕi(ξ ) dξ +

∫ ih
2

0
ϕi(ih − ξ̃ ) dξ̃

=

∫ ih
2

0
[ϕi(ξ ) + ϕi(ih − ξ )] dξ,

which implies 5) in view of 4). ■

Theorem 1. Consider the LTI system (1) of relative degree r ≥ 2,
i.e., satisfying (2).

(i) The delay-dependent feedback (6)with a time-delay h > 0 and
controller gains (7) exponentially stabilizes (1)with a decay rate
α > 0 if there exist

0 < P ∈ Rn×n, 0 < Ri ∈ Rm×m, i = 1, . . . , r − 1

such that2 M < 0, where M is the symmetric matrix composed
from

M11 = DTP + PD + 2αP +

r−2∑
i=1

(ih)2

4

[
K̄iCAi+1]TRi

[
K̄iCAi+1] ,

M12 = 1T
r−1 ⊗ PB,

M13 =
(r − 1)h

2

[
K̄r−1CAr−1D

]T
Rr−1,

M22 = − diag{e−2αihRi}
r−1
i=1 ,

M23 =
(r − 1)h

2
1r−1 ⊗

[
K̄r−1CAr−1B

]T
Rr−1,

M33 = −Rr−1

with D = A + B
∑r−1

i=0 K̄iCAi.
(ii) If the derivative-dependent feedback (4) with controller gains

K̄i ∈ Rm×l, i = 0, . . . , r − 1, stabilizes (1) with a decay rate
α′ > 0, then for any α ∈ (0, α′) there exists a sufficiently
small h > 0 such that the delay-dependent control (6) with the
controller gains (7) stabilizes (1) with the decay rate α.

Proof. (i) Consider V = V0 +
∑r−1

i=1 Vκ i, where

V0 = xTPx,

Vκ i =
ih
2

∫ t

t−ih
e−2α(t−s)ψi(t − s)

[
K̄iy(i+1)(s)

]T
Ri

[
K̄iy(i+1)(s)

]
ds

(15)

with

ψi(ξ ) =

∫ ih

ξ

ϕi(λ) dλ, i = 1, . . . , r − 1. (16)

Due to the properties of ϕi given in Proposition 2, we have

ψi ∈ C1
[0, ih], ψi(ξ ) ≥ 0, ∀ξ ∈ [0, ih].

Therefore, V ≥ 0 is smooth for t ≥ (r − 1)h. We have

V̇0 + 2αV0
(12)
= 2xTPDx + 2xTPB

r−1∑
i=1

κi + 2αxTPx

with κi defined in (13). Proposition 2 implies∫ t

t−ih
ϕi(t − s) ds = ψi(0) =

ih
2
, i ∈ N.

Moreover, (16) implies

ψi(ih) = 0, ψ ′

i (ξ ) = −ϕi(ξ ).

Using these properties, we obtain

V̇κ i + 2αVκ i =
(ih)2

4

[
K̄iy(i+1)(t)

]T
Ri

[
K̄iy(i+1)(t)

]
−

ih
2

∫ t

t−ih
e−2α(t−s)ϕi(t − s)×[

K̄iy(i+1)(s)
]T
Ri

[
K̄iy(i+1)(s)

]
ds

Lemma 2
≤

(ih)2

4

[
K̄iy(i+1)(t)

]T
Ri

[
K̄iy(i+1)(t)

]
− e−2αihκT

i (t)Riκi(t).

(17)

2 MATLAB codes for solving the LMIs are available at https://github.com/
AntonSelivanov/Aut18a.
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Substituting y(i+1) (3)
= CAi+1x for i = 1, . . . , r − 2 and y(r) = CAr−1ẋ,

we obtain

V̇ + 2αV ≤ µT
[
M11 M12
MT

12 M22

]
µ

+
(r − 1)2h2

4
ẋT

[
K̄r−1CAr−1]TRr−1

[
K̄r−1CAr−1] ẋ,

where µ = col{x, κ1, . . . , κr−1}. Substituting (12) for ẋ and using
the Schur complement, we deduce that M < 0 guarantees V̇ ≤

−2αV , which implies the exponential stability.
(ii) If (4) stabilizes (1) with a decay rate α′ > 0, for any α ∈

(0, α′) there exists 0 < P ∈ Rn×n such that

DTP + PD + 2αP < 0. (18)

By the Schur complement,M < 0 is equivalent to[
M̃11 M12
MT

12 M22

]
+ h2F < 0, −Rr−1 < 0, (19)

where M̃11 = DTP + PD + 2αP and symmetric F does not depend
on h. Due to (18),

[
M̃11 M12
MT

12 M22

]
< 0 for Ri = cIm with large enough

c ∈ R. Therefore, (19) holds for small enough h implying M < 0.
By Theorem 1(i), (6) exponentially stabilizes (1) with the decay
rate α. ■

Remark 2. A different approach to the analysis of (1), (6) has
been proposed in Fridman and Shaikhet (2017), where Taylor’s
expansion was used for each y(t − ih) with i = 1, . . . , r − 1:

y(t − ih) =

r−1∑
j=0

y(j)(t)
j!

(−ih)j +
∫ t

t−ih
ϕ̄i(t − s)y(r)(s) ds. (20)

Here

ϕ̄i(ξ ) = −
(ξ − ih)r−1

(r − 1)!
, i = 1, . . . , r − 1.

The approximation errors were bounded using functionals similar
to Vκ i from (15). The values

∫ ih
0 ϕ̄i(ξ ) dξ play a key role in such

analysis: the smaller these values are, the smaller the effect of the
errors is (see (17)). When h → ∞, |

∫ ih
0 ϕ̄i(ξ ) dξ | =

(ih)r
r! grow faster

than
∫ ih
0 ϕi(ξ ) dξ =

ih
2 used here. Thus, our results admit larger

time-delay h.
Moreover, in Fridman and Shaikhet (2017), the errors were

multiplied by Ki that growwhen h → 0 (similarly to (7)), while we
multiply the errors by K̄i independent of h (see (13)). This allows to
obtain larger interval for the time-delay h (see Example 1).

These benefits are achieved using an original representation (8),
where the errors are related to the finite differences ỹi defined in
(5), while in Fridman and Shaikhet (2017) the errors were related
to y(t − ih). However, for r = 2 the results coincide, since (8) and
(20) are equivalent.

Example 1 (Chain of three integrators). Consider (1) with[
A B
C 0

]
=

⎡⎢⎣ 0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0

⎤⎥⎦ . (21)

These parameters satisfy (2) with the relative degree r = 3. The
derivative-dependent control (4) with

K̄0 = −2 × 10−4, K̄1 = −0.06, K̄2 = −0.342 (22)

stabilizes (1) and (21). The LMIs of Theorem 1 are feasible for
h ∈ (0, 2.529], α = 0. Therefore, the delay-dependent controller
(6) also stabilizes the system (1), (21). The method developed
in Fridman and Shaikhet (2017) leads to a smaller interval h ∈

(0, 2.32]. Fig. 3 shows ∥x∥ for x(0) = [1,−1, 1]T .

Fig. 3. Example 1 (Chain of three integrators): dynamics of (1) and (21) under the
derivative-dependent feedback (4) (black solid line), time-delay feedback (6) with
h = 2.529 (blue dashed line), and sampled-data feedback (25) with h = 1.436 (red
dotted line).

Fig. 4. Example 2 (Chain of four integrators): dynamics of (1) and (23) under the
derivative-dependent feedback (4) (black solid line), time-delay feedback (6) with
h = 0.169 (blue dashed line), and sampled-data feedback (25) with h = 0.1 (red
dotted line).

Example 2 (Chain of four integrators). Consider (1) with

[
A B
C 0

]
=

⎡⎢⎢⎢⎣
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
1 0 0 0 0

⎤⎥⎥⎥⎦ . (23)

These parameters satisfy (2) with the relative degree r = 4. The
derivative-dependent control (4) with

K̄0 = −0.0208, K̄1 = −0.32, K̄2 = −1.18, K̄3 = −0.7 (24)

stabilizes (1), (23). These gains are taken from Fridman & Shaikhet
(2017). The LMIs of Theorem 1 are feasible for h ∈ (0, 0.169], α =

0. Therefore, the delay-dependent controller (6) also stabilizes the
system (1), (23). The method developed in Fridman and Shaikhet
(2017) leads to a smaller interval h ∈ (0, 0.138]. Fig. 4 shows ∥x∥
for x(0) = [1, 0, 0,−1]T .

3. Sampled-data control

In this section, we assume that only sampled in time measure-
ment y(tk) are available to the controller, where tk = kh are the
sampling instants with a sampling period h > 0 and k ∈ N0.
The derivative-dependent controller (4) is approximated by the
sampled-data controller

u(t) =

r−1∑
i=0

K̄iỹi(tk) =

r−1∑
i=0

Kiy(tk−i), t ∈ [tk, tk+1), k ∈ N0 (25)
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with ỹi from (5) and Ki from (7). We set3 y(tk−i) = y(t0) for
k < i. For t ∈ [tk, tk+1) with k ≥ r − 1, we present the sampled
measurements as

ỹ0(tk) = y(t) −

∫ t

tk

˙̃y0(s) ds = y(t) −

∫ t

tk

ẏ(s) ds,

ỹi(tk) = ỹi(t) −

∫ t

tk

˙̃yi(s) ds

(8)
= y(i)(t) −

∫ t

t−ih
ϕi(t − s)y(i+1)(s) ds −

∫ t

tk

˙̃yi(s) ds,

i = 1, . . . , r − 1.

Then the controller (25) can be written as

u =

r−1∑
i=0

K̄iy(i) + δ0 +

r−1∑
i=1

(δi + κi),

where, for t ∈ [tk, tk+1),

δi(t) = −K̄i

∫ t

tk

˙̃yi(s) ds, i = 0, . . . , r − 1,

κi(t) = −K̄i

∫ t

t−ih
ϕi(t − s)y(i+1)(s) ds, i = 1, . . . , r − 1.

(26)

The closed-loop system (1), (25) takes the form (cf. (12))

ẋ = Dx + Bδ0 + B
r−1∑
i=1

(δi + κi) (27)

with D defined in (11). If (4) stabilizes (1), then D is Hurwitz. In our
analysis we derive the conditions ensuring that the errors δi and κi
do not ruin the stability of (27).

Theorem 2. Consider the LTI system (1) of relative degree r ≥ 2,
i.e., satisfying (2).

(i) The sampled-data feedback (25) with a sampling period h > 0
and controller gains (7) exponentially stabilizes (1)with a decay
rate α > 0 if there exist

0 < P ∈ Rn×n, 0 < W0 ∈ Rm×m,

0 < Wi ∈ Rm×m, 0 < Ri ∈ Rm×m, i = 1, . . . , r − 1

such that4 N < 0, where N is the symmetric matrix composed
from

N11 = DTP + PD + 2αP

+

r−2∑
i=0

h2e2αih
[
K̄iCAi+1]TWi

[
K̄iCAi+1]

+

r−2∑
i=1

(ih)2

4

[
K̄iCAi+1]TRi

[
K̄iCAi+1] ,

N12 = 1T
r ⊗ PB,

N13 = 1T
r−1 ⊗ PB,

N14 = h
[
K̄r−1CAr−1D

]T
H,

N22 = −
π2

4
e−2αh diag{Wi}

r−1
i=0 ,

N24 = h1r ⊗
[
K̄r−1CAr−1B

]T
H,

N33 = − diag{e−2αihRi}
r−1
i=1 ,

N34 = h1r−1 ⊗
[
K̄r−1CAr−1B

]T
H,

N44 = −H

3 Then y(i)(0) with i > 0 are approximated by 0.
4 MATLAB codes for solving the LMIs are available at https://github.com/

AntonSelivanov/Aut18a.

with

D = A + B
r−1∑
i=0

K̄iCAi,

H = e2α(r−1)hWr−1 +

(
r − 1
2

)2

Rr−1.

(28)

(ii) If the derivative-dependent feedback (4) with controller gains
K̄i ∈ Rm×l, i = 0, . . . , r − 1, stabilizes (1) with a decay rate
α′ > 0, then for any α ∈ (0, α′) there exists a sufficiently small
sampling period h > 0 such that the sampled-data control (25)
with the controller gains (7) stabilizes (1)with the decay rate α.

Proof. (i) For t ≥ (r − 1)h consider the functional

V = V0 + Vδ0 +

r−1∑
i=1

(Vδi + Vyi + Vκ i),

where V0, Vκ i are given in (15) and

Vδi = h2
∫ t

tk

e−2α(t−s)
[
K̄i

˙̃yi(s)
]T

Wi

[
K̄i

˙̃yi(s)
]
ds

−
π2

4
e−2αh

∫ t

tk

e−2α(t−s)δTi (s)Wiδi(s) ds, t ∈ [tk, tk+1)

Vyi = h2e2αih
∫ t

t−ih
e−2α(t−s)ϕi(t − s)

[
K̄iy(i+1)(s)

]T
Wi

[
K̄iy(i+1)(s)

]
ds.

Since δ̇i(t) = −K̄i
˙̃yi(t) and δi(tk) = 0, Lemma 1 implies Vδi ≥ 0

for i = 0, . . . , r − 1. Since ϕi ≥ 0 and ψi ≥ 0, we have V ≥ 0.
Calculating the derivatives, we obtain

V̇0 + 2αV0
(27)
= 2xTPDx + 2xTPBδ0 + 2xTPB

r−1∑
i=1

(δi + κi) + 2αxTPx,

V̇δi + 2αVδi = h2
[
K̄i

˙̃yi
]T

Wi

[
K̄i

˙̃yi
]

−
π2

4
e−2αhδTi Wiδi.

The functional Vyi is introduced to compensate the term h2
[K̄i

˙̃yi]T

Wi[K̄i
˙̃yi] in the above expression. Since ϕi(0) = 1, ϕi(ih) = 0, and

ϕ′

i ≤ 0 (Proposition 2),

V̇yi + 2αVyi = h2e2αih
[
K̄iy(i+1)]TWi

[
K̄iy(i+1)]

+ h2e2αih
∫ t

t−ih
e−2α(t−s)ϕ′

i (t − s)
[
K̄iy(i+1)(s)

]T
Wi

[
K̄iy(i+1)(s)

]
ds

Lemma 2
≤ h2e2αih

[
K̄iy(i+1)]TWi

[
K̄iy(i+1)]

− h2
(∫ t

t−ih
(−ϕ′

i (t − s)) ds
)−1 ∫ t

t−ih
ϕ′

i (t − s)×

[
K̄iy(i+1)(s)

]T
ds Wi

∫ t

t−ih
ϕ′

i (t − s)
[
K̄iy(i+1)(s)

]
ds.

Differentiating (8), we obtain

˙̃yi = −

∫ t

t−ih
ϕ′

i (t − s)y(i+1)(s) ds, i ∈ N.

The latter and∫ t

t−ih
(−ϕ′

i (t − s)) ds = ϕi(0) − ϕi(ih) = 1

lead to

V̇yi + 2αVyi ≤ h2e2αih
[
K̄iy(i+1)]TWi

[
K̄iy(i+1)]

− h2
[
K̄i

˙̃yi
]T

Wi

[
K̄i

˙̃yi
]
.

The term−h2
[K̄i

˙̃yi]TWi[K̄i
˙̃yi] in the above expressionwill cancel the

positive term of V̇δi + 2αVδi. The derivative of Vκ i is given in (17).

https://github.com/AntonSelivanov/Aut18a
https://github.com/AntonSelivanov/Aut18a
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Substituting y(i+1) (3)
= CAi+1x for i = 1, . . . , r − 2 and y(r) = CAr−1ẋ,

we obtain

V̇ + 2αV ≤ ηT N̄η + ẋTh2
[K̄r−1CAr−1

]
TH[K̄r−1CAr−1

]ẋ,

where η = col{x, δ0, . . . , δr−1, κ1, . . . , κr−1}, H is defined in (28),
and N̄ is obtained from N by removing the last block-column and
block-row. Substituting (27) for ẋ and using the Schur complement,
we deduce that N < 0 guarantees V̇ ≤ −2αV , which implies the
exponential stability.
(ii) The proof is similar to the proof of Theorem 1(ii). ■

Remark 3. In Selivanov and Fridman (in press), the system (1) was
studied under the sampled-data feedback

u(t) =

r−1∑
i=0

Kiy(tk − qih), t ∈ [tk, tk+1), k ∈ N0 (29)

with integer delays 0 = q0 < q1 < · · · < qr−1. In Selivanov and
Fridman (in press), the errors due to sampling y(tk−qih)−y(t−qih)
were multiplied by Ki that grow when qih → 0. Consequently,
one had to increase discrete delays qi while reducing the sampling
period h to maintain Ki bounded. Here, due to the representation
u(t) =

∑r−1
i=0 K̄iỹi(t) (see (6)), we can consider the errors due to

sampling ỹi(tk) − ỹi(t) that are multiplied by K̄i independent of
h (see δi in (26)). This allows to use qi = i (cf. (25) and (29))
and, therefore, smaller memory is required to implement (25) (see
Example 1).

In addition, the results of Selivanov and Fridman (in press-b)
are based on Fridman & Shaikhet (2017), therefore, all the benefits
of the current analysis mentioned in Remark 2 remain relevant for
the sampled-data case if r > 2.

Example 1 (Chain of three integrators). Consider (1) with the pa-
rameters given in (21). The LMIs of Theorem 2 are feasible for
the controller gains (22) with h ∈ (0, 1.436], α = 10−3. There-
fore, the sampled-data controller (25) exponentially stabilizes the
system (1), (21). Fig. 3 shows ∥x∥ for x(0) = [1,−1, 1]T . The
same example has been considered in Selivanov and Fridman (in
press-b), where a significantly smaller interval h ∈ (0, 0.044] was
obtained. Moreover, Selivanov and Fridman (in press) used (29)
with q1 = 30, q2 = 60, what required to keep 61 measurements
y(tk), . . . , y(tk − q2h) to implement the controller, while (25) uses
only the last three: y(tk), y(tk−1), y(tk−2).

Example 2 (Chain of four integrators). Consider (1) with the pa-
rameters given in (23). The LMIs of Theorem 2 are feasible for the
controller gains (24) with h ∈ (0, 0.1], α = 0.01. Therefore, the
sampled-data controller (25) exponentially stabilizes the system
(1), (23). Fig. 4 shows ∥x∥ for x(0) = [1, 0, 0,−1]T . The conditions
of Selivanov and Fridman (in press) are feasible for the controller
(29) with h ∼ 10−6 and qi ∼ 104.

Example 3 (Furuta pendulum, Ortega-Montiel, Villafuerte-Segura,
Vázquez-Aguilera, & Freidovich, 2017). Consider the linearized
model of the Furuta pendulum given by (1) with

[
A B
C 0

]
=

⎡⎢⎢⎢⎢⎢⎣
0 1 0 0 0

37.377 −0.515 0 0.142 −35.42
0 0 0 1 0

−8.228 0.113 0 −0.173 43.28
1 0 0 0 0
0 0 1 0 0

⎤⎥⎥⎥⎥⎥⎦
(30)

and x = col{θ, θ̇ , φ, φ̇}, where θ is the angular position of the
pendulum and φ is the angle of the rotational arm (see Fig. 5). The

Fig. 5. Furuta pendulum.5

Fig. 6. Example 3 (Furuta pendulum): dynamics of (1), (30) under the derivative-
dependent feedback (4) (black solid line) and sampled-data feedback (25) with
h = 0.104 (red dotted line).

control input u is proportional to the motor induced torque. Using
the pole placement, we find that for

K̄0 =
[
1.2826 0.0013

]
, K̄1 =

[
0.1209 0.0086

]
the eigenvalues of D defined in (11) are −1, −1.1, −1.2, −1.3.
Therefore, the derivative-dependent controller (4) stabilizes the
system (1), (30). The conditions of Theorem 2 (with α = 0) are
feasible for h ∈ (0, 0.104]. Taking h = 0.104 in (7), we deduce that
the sampled-data controller (25) with

K0 =
[
2.4453 0.0837

]
, K1 =

[
−1.1627 −0.0824

]
,

and tk = 0.104 · k, k ∈ N0, exponentially stabilizes the Furuta
pendulum (1), (30). Fig. 6 shows ∥x∥ for x(0) = [π, 0, 0, 0]T . The
conditions of Selivanov and Fridman (in press-b) are feasible for
the controller (29) with h ∼ 10−4 and q1 ∼ 103.
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