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SUMMARY

Stability of linear systems with norm-bounded uncertainties and uncertain time-varying delays is
considered. The delay is supposed to be bounded and fast varying (without any constraints on the delay
derivative). Sufficient stability conditions are derived by direct Lyapunov method based on the complete
Lyapunov–Krasovskii functional (LKF). A novel complete LKF construction is presented: the derivative
condition for the nominal LKF (i.e. for the LKF, which corresponds to the system with the nominal values
of the coefficients and of the delay) depends on the ‘present’ state only. The comprehensive technique for
stability analysis of uncertain time-delay systems is extended to the case of complete LKF: the application
of free weighting matrices (instead of descriptor model transformation) and of Jensen’s inequality (instead
of the cross-terms bounding). Numerical examples illustrate the efficiency of the method, and complete the
paper. Copyright # 2007 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The stability and control of time-delay systems is a subject of recurring interest, and a lot of
research has been devoted to the field in the last decade using both frequency- and time-domain
methods. Most of the results devoted to the robust stability of systems with norm-bounded
uncertainties and uncertain delays consider as assumption the stability of the system free of
delays, and next, in the time domain, use appropriate Lyapunov–Razumikhin functions or
Lyapunov–Krasovkii functionals (LKFs) combined with linear matrix inequalities (LMIs) to
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derive some bounds on the delay values m (finite), such that the uncertain system will be stable for
all delays intervals of the form ½0; m�:Without any loss of generality, we can define such a case as
stability characterization of uncertain ‘small ’ delays (see, for instance, the results of [1–5]).

Next there exist cases (high-speed networks, biological systems, see some examples in [6])
where such an assumption is not realistic, and the procedures and the methods mentioned above
fail. In other words, the system free of uncertainty and free of delays is not necessarily
asymptotically stable, but it may be stable for some ‘non-zero’ delays. Such a case can be called
‘non-small ’ delays, and the analysis becomes largely more complicated as in the ‘small’ delays
case. As expected, their stability analysis cannot be performed by using simple LKFs [7].
Complete LKF (which corresponds to necessary and sufficient conditions for the stability of the
nominal system) should be apzplied to stability analysis in this case. Note that the discretized
Lyapunov functional method [7, 8], which gives the sufficient conditions only, cannot always be
applied efficiently.

There exist two main methods for robust stability of uncertain linear systems: direct
Lyapunov method and input–output approach to stability [7]. The direct Lyapunov method via
complete LKF has been developed in the case of known constant delays and norm-bounded
uncertainties [9, 10], or in the case of uncertain ‘non-small’ delays and known coefficients
[11, 12]. Robust stability of uncertain systems with ‘non-small’ delay has been analysed also via
input–output approach to stability [7, 13]. However, only direct Lyapunov method can be
applied to the problems, where the knowledge of the initial function is important (see e.g. [14]
for application of LKF to the estimate on the domain of attraction of the nonlinear system,
modelled as a linear uncertain system).

In [9, 11], the complete LKF was constructed for the uncertain system, which did not explicitly
depend on the bounds of the uncertainties. As a result, the conditions were rather complicated,
and induced some conservatism. In the case of constant delay and uncertain system matrices, a less
conservative condition was obtained by inserting a cross-term into the derivative of LKF in [10].

Recently, a new construction of complete LKF for stability analysis of systems with non-
small delays was suggested [12]: to a nominal LKF, which is appropriate to the nominal system
(with nominal delays), the additional terms are added. These terms correspond to the perturbed
system and they vanish when the delay uncertainties approach 0. Unlike the existing complete
LKFs (see e.g. [9, 11, 15–17]), the derivative of the complete nominal LKF of [12] along the
trajectories of the nominal system depended on the state and the state derivative which allowed a
less conservative treatment of the delay perturbation.

To the best of our knowledge, the stability of the systems with both, norm-bounded
uncertainties and uncertain non-small delays, has not been studied yet via complete LKF. In the
present paper we extend the construction of [12] to the systems with uncertain coefficients.
Different from the existing papers on robust stability via complete LKF [9–12], the derivative of
the present nominal LKF along the trajectories of the nominal system depends on the present
state only. We extend to the case of complete LKF the comprehensive technique for stability
analysis of uncertain time-delay systems: free weighting matrices [18] (instead of model
transformation) and application of Jensen’s inequality [7] (instead of the cross-terms bounding).
The terms depending on ’xðtÞ are inserted into the derivative of LKF by application of a certain
free weighting matrices (which is equivalent to the descriptor model transformation).

The remaining paper is organized as follows: Section 2 is devoted to the problem statement.
The robust stability analysis is presented in Section 3. Next, numerical examples illustrate the
efficiency of the method in Section 4, and some concluding remarks end the paper.
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Notation
Throughout the paper the superscript ‘T’ stands for matrix transposition, Rn denotes the n
dimensional Euclidean space with vector norm j � j; Rn�m is the set of all n�m real matrices,
and the notation P > 0; for P 2 Rn�n means that P is symmetric and positive definite. The
symmetric elements of the symmetric matrix will be denoted by * :

2. PROBLEM FORMULATION

We consider the following linear system with uncertain coefficients and an uncertain time-
varying delay t1ðtÞ:

’xðtÞ ¼ ðA0 þHDE0ÞxðtÞ þ ðA1 þHDE1Þxðt� t1ðtÞÞ ð1Þ

where xðtÞ 2 Rn is the system state, A0; A1; H; E0; and E1 are constant matrices of appropriate
dimensions and DðtÞ is a time-varying uncertain matrix that satisfies

DT
ðtÞDðtÞ4I ð2Þ

The uncertain delay t1ðtÞ is supposed to have the following form:

t1ðtÞ ¼ h1 þ Z1ðtÞ ð3Þ

where h1 > 0 is a nominal constant value, and Z1 is a time-varying piecewise continuous
perturbation satisfying jZ1j4m1; where m1 is a known upper bound.

As suggested in [12] we consider the following form of LKF:

V ¼ Vn þ Va ð4Þ

where Vn is a nominal complete LKF which corresponds to the necessary and sufficient
conditions for stability of the nominal system:

’xðtÞ ¼ A0xðtÞ þ A1xðt� h1Þ ð5Þ

and Va consists of additional terms and depends on m1; H; and Ej ðj ¼ 0; 1Þ and Va ! 0 for
m1! 0;H ! 0;Ej ! 0: The latter will guarantee that if the conditions for the stability of the
nominal system are feasible, then the stability conditions for the perturbed system will be
feasible for small enough delay perturbations and norm-bounded uncertainties.

3. ROBUST STABILITY VIA COMPLETE NOMINAL LKF

3.1. Complete LKF for the nominal system

We assume that the nominal system (5) is asymptotically stable. Then [17] there exists the
nominal complete LKF VnðxtÞ such that VnðxtÞ > ejxðtÞj2; e > 0 and along the trajectories of the
nominal system (5):

’Vn ¼ �x
TðtÞW0xðtÞ ð6Þ

COMPLETE LYAPUNOV–KRASOVSKII FUNCTIONAL
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It has the following form:

VnðfÞ ¼fT
ð0ÞUð0Þfð0Þ þ 2fT

ð0Þ

Z 0

�h1

UTðh1 þ yÞA1fðyÞ dy

þ

Z 0

�h1

Z 0

�h1

fT
ðy2ÞAT

1Uðy2 � y1ÞA1fðy1Þ dy1 dy2 ð7Þ

where

UðyÞ ¼
Z 1
0

KTðtÞW0Kðtþ yÞ dt; y 2 R ð8Þ

Here KðtÞ is a fundamental matrix associated with the nominal system (5), i.e. KðtÞ is an
n� n-matrix function satisfying

’KðtÞ ¼ A0KðtÞ þ A1Kðt� h1Þ; t50 ð9Þ

with the initial condition Kð0Þ ¼ I and KðtÞ ¼ 0 for t50:
The matrix UðyÞ satisfies the following differential equation and boundary value condition:

’UðyÞ ¼ UðyÞA0 þUðy� hÞA1; y50

W0 þUð0ÞA0 þ AT
0Uð0Þ þUTðhÞA1 þ AT

1UðhÞ ¼ 0 ð10Þ

Denote VðyÞ ¼ UTð�yþ hÞ ¼ Uðy� hÞ; y50: Then (10) can be represented in the form of the
following boundary value problem for ordinary differential equations:

’UðyÞ ¼ UðyÞA0 þ VðyÞA1 ð11aÞ

’VðyÞ ¼ �AT
1UðyÞ � AT

0VðyÞ; y50 ð11bÞ

�W0 ¼ Uð0ÞA0 þ AT
0Uð0Þ þ Vð0ÞA1 þ AT

1UðhÞ ð11cÞ

VðhÞ ¼ Uð0Þ ð11dÞ

For computation of UðyÞ one can apply Kronecker products of matrices (see e.g. [12, 19]). We
remind that given n�m matrix A with elements aij ; 14i4n; 14j4m; and p� q matrix B; their
Kronecker product A� B is the np�mq matrix with the block structure

A� B ¼

a11B . . . a1mB

..

.
� � � ..

.

an1B . . . anmB

2
6664

3
7775

The stack of A is the vector formed by stacking the columns of A into nm� 1 vector

AS ¼
4

½a11 . . . an1 a12 . . . an2 . . . am1 . . . amn�
T

The following holds ðABDÞS ¼ ðDT � AÞBS:
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Representing ð11Þ in the form

’USðyÞ

’VSðyÞ

" #
¼A

USðyÞ

VSðyÞ

" #
ð12aÞ

A ¼
AT

0 � In AT
1 � In

�In � AT
1 �In � AT

0

" #
ð12bÞ

�WS
0

0n2�1

" #
¼ B

USð0Þ

VSð0Þ

" #
ð12cÞ

B ¼
ðAT

0 � InÞ þ ðIn � AT
0 Þ AT

1 � In

In2 0n2�n2

" #
þ

In � AT
1 0n2�n2

0n2�n2 �In2

" #
eAh ð12dÞ

and assuming that B is non-singular we finally obtain

USðyÞ ¼ ½I 0�eAyB�1
�WS

0

0n2�1

" #
; y 2 ½0; h� ð13Þ

3.2. Robust stability analysis

Similar to [11, 12] we represent the perturbed system in the form:

’xðtÞ ¼ ðA0 þHDE0ÞxðtÞ þ ðA1 þHDE1Þxðt� h1Þ � ðA1 þHDE1Þ

Z t�h1

t�h1�Z1

’xðsÞ ds ð14Þ

Differentiating Vn along the trajectories of (14), we find

’VnðxtÞ ¼ � xTðtÞW0xðtÞ þ 2 xTðtÞUTð0Þ þ

Z 0

�h1

xTðtþ yÞAT
1Uðh1 þ yÞ dy

� �"
HD

"
E0xðtÞ

þE1xðt� h1Þ � E1

Z t�h1

t�h1�Z1

’xðsÞ ds

#
� A1

Z t�h1

t�h1�Z1

’xðsÞ ds

#
ð15Þ

In order to treat effectively the fast-varying delay, we insert into ’Vn negative quadratic terms,
depending on ’xðtÞ by adding to ’VnðxtÞ the right side of the expression (we follow here the free
weighting matrices technique of [18])

0 ¼ 2½xTðtÞPT
2 þ ’xTðtÞPT

3 �x ð16Þ

where

x ¼ � ’xðtÞ þ ðA0 þHDE0ÞxðtÞ þ ðA1 þHDE1Þxðt� h1Þ � ðA1 þHDE1Þ

Z t�h1

t�h1�Z1

’xðsÞ ds

and where P2 and P3 are n� n-matrices. This is equivalent to descriptor model transformation
[4]. We note that in the case of constant delay t1 � h1; the matrices P2 and P3 may be chosen to
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be zero. However, these matrices improve the stability analysis of systems with uncertain
coefficients (see Example 1).

We have

’VnðxtÞ ¼ � xTðtÞW0xðtÞ þ dþ 2½xTðtÞPT
2 þ ’xTðtÞPT

3 �½� ’xðtÞ þ A0xðtÞ þ A1xðt� h1Þ�

� 2

�
xTðtÞðUTð0Þ þ PT

2 Þ þ ’xTðtÞPT
3

þ

Z 0

�h1

xTðtþ yÞAT
1Uðh1 þ yÞ dy

�
A1

Z t�h1

t�h1�Z1

’xðsÞ ds ð17Þ

where

d ¼ 2

"
xTðtÞðUTð0Þ þ PT

2 Þ þ ’xTðtÞPT
3

þ

Z 0

�h1

xTðtþ yÞAT
1Uðh1 þ yÞ dy

#
HD E0xðtÞ þ E1xðt� h1Þ � E1

Z t�h1

t�h1�Z1

’xðsÞ ds

" #
ð18Þ

By applying the standard bounding, for a scalar r > 0 the following is obtained:

d4r�1 xTðtÞðUTð0Þ þ PT
2 Þ þ ’xTðtÞPT

3 þ

Z 0

�h1

xTðtþ yÞAT
1Uðh1 þ yÞ dy

� �
H

�HT xTðtÞðUTð0Þ þ PT
2 Þ þ ’xTðtÞP3 þ

Z 0

�h1

UTðh1 þ yÞA1xðtþ yÞ dy
� �

þ r xTðtÞET
0 þ xTðt� h1ÞE

T
1 �

Z t�h1

t�h1�Z1

’xTðsÞET
1 ds

" #"
E0xðtÞ þ E1xðt� h1Þ

�E1

Z t�h1

t�h1�Z1

’xðsÞ ds

#
ð19Þ

We choose

VðxtÞ ¼VnðxtÞ þ Va1ðxtÞ þ Va2ðxtÞ þ Va3ðxtÞ

Va1ðxtÞ ¼

Z t

t�h1

xTðsÞSxðsÞ ds; S > 0

Va2ðxtÞ ¼

Z m1

�m1

Z t

tþy�h1
’xTðsÞR ’xðsÞ ds dy; R > 0

Va3ðxtÞ ¼ r

Z 0

�h1

Z t

tþy
xTðsÞAT

1Uðh1 þ yÞUTðh1 þ yÞA1xðsÞ ds dy; r > 0 ð20Þ

where Vn is defined by (7), S;R are n� n-matrices and r;r are scalars.
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Derivative of V along (14) satisfies the following:

’V4 � xTðtÞW0xðtÞ þ 2½xTðtÞPT
2 þ ’xTðtÞPT

3 �½� ’xðtÞ þ A0xðtÞ þ A1xðt� h1Þ�

� 2 xTðtÞðUTð0Þ þ PT
2 Þ þ ’xTðtÞPT

3 þ

Z 0

�h1

xTðtþ yÞAT
1Uðh1 þ yÞ dy

� �
A1

Z t�h1

t�h1�Z1

’xðsÞ ds

þ r�1 xTðtÞðUTð0Þ þ PT
2 Þ þ ’xTðtÞPT

3 þ

Z 0

�h1

xTðtþ yÞAT
1Uðh1 þ yÞ dy

� �
H

�HT xTðtÞðUTð0Þ þ PT
2 Þ þ

’P3xðtÞ þ

Z 0

�h1

UTðh1 þ yÞA1xðtþ yÞ dy
� �

þ r xTðtÞET
0 þ xTðt� h1ÞE

T
1 �

Z t�h1

t�h1�Z1

’xTðsÞET
1 ds

" #"
E0xðtÞ þ E1xðt� h1Þ:

�E1

Z t�h1

t�h1�Z1

’xðsÞ ds

#
þ xTðtÞSxðtÞ � xTðt� h1ÞSxðt� h1Þ

þ 2m1 ’x
TðtÞR ’xðtÞ �

Z t�h1þm1

t�h1�m1

’xTðyÞR ’xðyÞ dyþ h1rx
TðtÞAT

1QA1xðtÞ

� r

Z 0

�h1

xTðtþ yÞAT
1Uðh1 þ yÞUTðh1 þ yÞA1xðtþ yÞ dy ð21Þ

where

Q ¼

Z 0

�h1

Uðh1 þ yÞUTðh1 þ yÞ dy ð22Þ

Applying further Jensen inequality [7],

m1

Z t�h1þm1

t�h1�m1

’xTðyÞR ’xðyÞ dy5Z1

Z t�h1

t�h1�Z1

’xTðyÞR ’xðyÞ dy5
Z t�h1

t�h1�Z1

’xTðsÞ dsR

Z t�h1

t�h1�Z1

’xðsÞ ds

h1

Z 0

�h1

xTðtþ yÞAT
1Uðh1 þ yÞUTðh1 þ yÞA1xðtþ yÞ dy

5
Z 0

�h1

xTðtþ yÞAT
1Uðh1 þ yÞ dy

Z 0

�h1

UTðh1 þ yÞA1xðtþ yÞ dy
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we find that

’V4zTFzþ r�1 xTðtÞðUTð0Þ þ PT
2 Þ þ ’xTðtÞPT

3 þ

Z 0

�h1

xTðtþ yÞAT
1Uðh1 þ yÞ dy

� �
H

�HT ðUð0Þ þ P2ÞxðtÞ þ ’P3xðtÞ þ

Z 0

�h1

UTðh1 þ yÞA1xðtþ yÞ dy
� �

þ r xTðtÞET
0 þ xTðt� h1ÞE

T
1 �

Z t�h1

t�h1�Z1

’xTðsÞET
1 ds

" #"
E0xðtÞ þ E1xðt� h1Þ

�E1

Z t�h1

t�h1�Z1

’xðsÞ ds

#
ð23Þ

where

zT ¼ xTðtÞ ’xTðtÞ
1

m1

Z t�h1

t�h1�Z1

’xTðsÞ ds

Z 0

�h1

xTðtþ yÞAT
1Uðh1 þ yÞ dy xTðt� h1Þ

" #

and

F ¼

�W0 þ PT
2A0 þ AT

0P2 þ S þ h1rA
T
1QA1 AT

0P3 � PT
2 �m1½U

Tð0Þ þ PT
2 �A1 0 PT

2A1

* �PT
3 � P3 þ 2m1R �m1P

T
3A1 0 PT

3A1

* * �m1R �m1A1 0

* * * �
rI

h1
0

* * * * �S

2
66666666664

3
77777777775

ð24Þ

Therefore, applying Schur complements to the last two terms of (23), we find that ’V50 (and
thus (1) is asymptotically stable) if the following LMI is satisfied:

j ðUTð0Þ þ PT
2 ÞH rET

0

j PT
3H 0

F j 0 �m1rE
T
1

j H 0

j 0 rET
1

� � �

* �rI 0

* * �rI

2
666666666666666664

3
777777777777777775

50 ð25Þ

We have proved the following.
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Theorem 3.1
Assume that the nominal system (5) is asymptotically stable. Given n� n-matrix W0 > 0: Let
UðyÞ; y 2 ½0; h1� and Q be defined by (8), (22). Then (1) is asymptotically stable if there exist
n� n-matrices P2;P3;R; and S and scalars r and r that satisfy LMI (25), where F is given by
(24).

Remark 3.2
For verification of the conditions of Theorem 3.1, one can compute UðyÞ by calculating the
matrix B given by (12d) and by using the relation (13).

In the case of known coefficients, where D ¼ 0; the stability condition is F50: In the case of
constant delays, we obtain the following corollary.

Corollary 3.3
Assume that the nominal system (5) is asymptotically stable and Z1 ¼ 0: Given n� n-matrix
W0 > 0: Let UðyÞ; y 2 ½0; h1� and Q be defined by (8), (22). Then (1) is asymptotically stable if
there exist an n� n-matrix P2;P3;S; and scalars r and r that satisfy LMI:

�W0 þ PT
2A0 þ AT

0P2 þ S þ h1rA
T
1QA1 AT

0P3 � PT
2 0 PT

2A1 ðU
Tð0Þ þ PT

2 ÞH rET
0

* �PT
3 � P3 0 PT

3A1 PT
3H 0

* * �
rI

h1
0 H 0

* * * �S 0 rET
1

* * * * �rI 0

* * * * * �rI

2
66666666666664

3
77777777777775
50

4. EXAMPLES

In the sequel, we shall consider two examples from the literature, together with some
comparisons between the results obtained by using our method with respect to the existing
methodologies and techniques.

Example 4.1 (Kharitonov and Niculescu [9])
Consider (1) with

A0 ¼
0 1

�1 �2

" #
; A1 ¼

0 0

�1 1

" #
; H ¼ I ; Ei ¼ eiI ; i ¼ 0; 1; ei 2 R ð26Þ

and with constant delay t1 � 1: It was found in [10] that the system is asymptotically stable for
e0 ¼ 0:016 and e1 ¼ 0:02: The latter bounds on the perturbations of the system matrices were
less conservative than those given in [9]. The improvement was achieved due to the cross-terms
which were inserted into the time derivative of the complete LKF. By applying a simpler
nominal complete LKF of (7), (6), where W0 ¼ I and Corollary 3:2; we obtain a larger
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stability region: e0 ¼ 0:11 and e1 ¼ 0:11: For P2 ¼ P3 ¼ 0 the results are more restrictive:
e0 ¼ e1 ¼ 0:05:

Considering next the case of known coefficients ðe0 ¼ e1 ¼ 0Þ and the fast-varying delay
t1 ¼ 1þ Z1ðtÞ with jZ1j4m1; we find that the system is asymptotically stable for m1 ¼ 0:14; which
is less restrictive than [12].

Finally, in the case of uncertain coefficients with e0 ¼ e1 ¼ 0:05; we find that the system is
asymptotically stable for m1 ¼ 0:1:

Example 4.2 (Kharitonov and Niculescu [11])
Consider (1) with

A1 ¼
0 0

�0:4 0

" #
; A0 ¼

0 1

�2 0

" #
; H ¼ I ; Ei ¼ eiI ; i ¼ 0; 1; ei 2 R ð27Þ

which was analysed in [11]. The nominal non-delayed system (i.e. (27) with t1 ¼ 0) is not
asymptotically stable and thus the simple LKFs are not applicable. For the case of constant
delay t1 ¼ 4þ Z1 and e1 ¼ e2 ¼ 0; the following stability interval was found by the frequency
domain analysis [11]: t2 ¼ 0; � 0:62095Z1ðtÞ50:7963: We note that the discretized Lyapunov
functional method of Gu et al. [7] applied to the nominal system with t1 � 4 and e0 ¼ e1 ¼ 0
does not converge for N48 and verification of the corresponding LMI conditions takes a lot of
computer time.

Considering the case of constant delay t1 � 4; we apply Corollary 3:2:We find that the system
is robustly stable for e0 ¼ e1 ¼ 10�3:

In the case of uncertain coefficients and fast-varying delay, the conditions of Theorem 3.1 are
feasible (and thus the system is asymptotically stable) for h1 ¼ 4; e0 ¼ e1 ¼ 10�4 and for m ¼
0:0025:

5. CONCLUSIONS

Stability of linear retarded type system with uncertain time-varying delays from given segments
and norm-bounded uncertainties is analysed.

A new LKF construction, which was recently introduced for systems with uncertain delays, is
extended to the case of norm-bounded uncertainties, where the nominal LKF (i.e. the LKF,
which corresponds to the nominal system) is of the complete type. The derivative of the nominal
complete LKF depends on the present state only. Similar to simple LKF, the additional terms of
LKF insert the past state terms into the derivative of LKF. The state derivative terms are
inserted into the derivative condition by application of free weighting matrices, which
correspond to the descriptor method.

The new method treats, for the first time, systems with norm-bound uncertainties and with
fast-varying delays via complete LKF method, improving and simplifying the existing methods
based on complete LKF.

ACKNOWLEDGEMENTS

We thank the anonymous referees for the valuable remarks, which allowed us to improve the presentation.

E. FRIDMAN AND S.-I. NICULESCU

Copyright # 2007 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control (in press)

DOI: 10.1002/rnc



REFERENCES

1. Li X, de Souza C. Criteria for robust stability and stabilization of uncertain linear systems with state delay.
Automatica 1997; 33:1657–1662.

2. Moon YS, Park P, Kwon WH, Lee YS. Delay-dependent robust stabilization of uncertain state-delayed systems.
International Journal of Control 2001; 74:1447–1455.

3. Niculescu SI. Delay Effects on Stability: A Robust Control Approach. Lecture Notes in Control and Information
Sciences, vol. 269. Springer: London, 2001.

4. Fridman E. New Lyapunov–Krasovskii functionals for stability of linear retarded and neutral type systems. Systems
and Control Letters 2001; 43:309–319.

5. Richard JP. Time-delay systems: an overview of some recent advances and open problems. Automatica 2003;
39:1667–1694.

6. Kolmanovskii V, Myshkis A. Applied Theory of Functional Differential Equations. Kluwer: Dordrecht, 1999.
7. Gu K, Kharitonov V, Chen J. Stability of Time-Delay Systems. Birkhauser: Boston, 2003.
8. Han QL, Gu K. Stability of linear systems with time-varying delay: a generalized discretized Lyapunov functional

approach. Asian Journal of Control 2001; 3:170–180.
9. Kharitonov V, Zhabko A. Lyapunov–Krasovskii approach to the robust stability analysis of time-delay systems.

Automatica 2003; 39:15–20.
10. Mondie S, Kharitonov V, Santos O. Complete Lyapunov–Krasovskii functional with a given cross term in the time

derivative. Proceedings of 44th Conference on Decision and Control, Sevilla, Spain, 2005; 5060–5064.
11. Kharitonov V, Niculescu S. On the stability of linear systems with uncertain delay. IEEE Transactions on Automatic

Control 2003; 48:127–132.
12. Fridman E. Stability of systems with uncertain delays: a new ‘complete’ Lyapunov–Krasovskii functional. IEEE

Transactions on Automatic Control 2006; 51:885–890.
13. Kao CY, Lincoln B. Simple stability criteria for systems with time-varying delays. Automatica 2004; 40:1429–1434.
14. Tarbouriech S, Gomes da Silva, J. Synthesis of controllers for continuous-time delay systems with saturating

controls via LMI’s. IEEE Transactions on Automatic Control 2000; 45:105–111.
15. Repin YM. Quadratic Lyapunov functionals for systems with delay. Prikladnaya Matematika Mehanika 1965;

29:564–566 (in Russian).
16. Datko R. An algorithm for computing Lyapunov functionals for some differential-difference equations. In Ordinary

Differential Equations, L. Weiss (ed.). Academic Press: New York, 1971; 387–398.
17. Infante EF, Castelan WB. A Lyapunov functional for a matrix difference-differential equation. Journal of

Differential Equations 1978; 29:439–451.
18. Wu M, He Y, She JH, Liu GP. Delay-dependent criteria for robust stability of time-varying delay systems.

Automatica 2004; 40(8):1435–1439.
19. Louisell J. Numerics of the stability exponent and eigenvalue abcissas of a matrix delay system. Stability and Control

of Time-Delay Systems. Lecture Notes in Control and Information Sciences, vol. 228. Springer: London, 1997;
140–157.

COMPLETE LYAPUNOV–KRASOVSKII FUNCTIONAL

Copyright # 2007 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control (in press)

DOI: 10.1002/rnc


