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a b s t r a c t

Sliding Mode Control (SMC) in the presence of small, unavoidable input delay as may be present in
controller implementation is studied. Linear systems with bounded matched disturbances and uncertain
systemmatrices are considered,where input delay in the SMCwill produce oscillations or potentially even
unbounded solutions.Without a priori knowledge of the bounds on the state-dependent terms as required by
existing methods, the design objective is to achieve ultimate boundedness of the closed-loop system with
a bound proportional to the delay and disturbance bounds. This is a non-trivial problem because the relay
gain depends on the state bound, whereas the latter bound depends on the relay gain. A controller with
linear gain proportional to the scalar 1

µ
is proposed, which for small enoughµ > 0 produces a closed-loop

singularly perturbed system and yields the desired ultimate bound. A constructive LinearMatrix Inequality
(LMI)-based solution for evaluation of both the design parameters and the ultimate bound is derived. The
superiority of the proposed control over existingmethodologies that ignore input delay within the design
is demonstrated through an example.

Crown Copyright© 2012 Published by Elsevier Ltd. All rights reserved.

1. Introduction

SlidingMode Control is well known for its invariance properties
and has received a great deal of attention in the area of robust
control. SMC can provide asymptotic stability in the presence of
matched uncertainties and disturbances. However, in practical
control systems, ideal sliding motion cannot usually be achieved
due to model imperfections, time delays etc. The combination of
delay phenomenon with relay actuators induces oscillations of
finite frequency around the sliding surface and even instability
(Fridman, 1997; Fridman, Fridman, & Shustin, 1993; Levaggi &
Punta, 2006). The degree to which the robustness of this SMC
design paradigmcan translate into systemswith input delay is thus
of considerable interest and an open research question.

Many results are availablewhich apply various controlmethods
to time-delay systems. For example, adaptive control (Wen, Soh, &
Zhang, 2000; Zhou, Wen, & Wang, 2009), finite-time stabilization
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(Karafyllis, 2006), to name a few. Delays are unavoidable in the
implementation of any feedback loop. Sampled-data control can
be considered as control with a delayed input (Fridman, Seuret, &
Richard, 2004). When control engineers approach SMC, the choice
of sampling rate is an immediate, and extremely critical design
decision (Utkin, 1992). The existing work on sampled-data SMC
transforms the system to discrete-time. However, this approach
becomes complicated for uncertain or state-delay systems.

While the study of SMC in the presence of state delay has been
ongoing (Chou & Cheng, 2003; Shyu, Liu, & Hsu, 2005), results
on the effect of input delay in SMC are scarce. It was shown
in Akian, Bliman, and Sorine (2002) and Fridman et al. (1993);
Fridman, Fridman, and Shustin (2002) that even in the simplest
one dimensional delayed relay control system, only oscillatory
solutions can occur. Despite the oscillatory performance, relay
delay control has advantages over a linear delayed controller in
keeping an inverted pendulum upright (Sieber, 2006).

A simple example in Gouaisbaut, Perruquetti, and Richard
(2002) pointed out behavioral changes (bifurcations) arising
when designing a controller without taking the input delay into
consideration. This work motivates the study of specific SMC
design methods for systems with input delays. In the existing
results (Fridman et al., 2002; Gouaisbaut et al., 2002), an a priori
constant bound is assumed on the state-dependent terms of the
system, which is restrictive. The relay gain is chosen to be greater
than this bound. In Fridman, Strygin, and Polyakov (2004) for linear
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time-invariant systems with bounded nonlinear uncertainties,
relay delay control was designed to achieve practical and adaptive
stabilization provided the signs of the appropriately transformed
states are available for measurement.

For the case of known and constant input delay, the predictor-
based SMC was designed in Roh and Oh (1999). Stability was
achieved without any restriction on the time delay and spectral
properties of the open-loop system. However, it was pointed out
in Nguang (2001) that themethod cannot compensate formatched
uncertainties. A summary of some contributions to the field of
SMC with relay delay was provided in Richard (2003). A frequency
domain method of analysis was given in Boiko (2009). Recently,
sampled-data high gain output feedback SMC for linear systems
with matched disturbances has been designed via discretization
and singular perturbation analysis (Nguyen, Su, & Gajic, 2010).
Note that discretization of systems with uncertain matrices may
lead to complicated conditions. Also, there may be additional
difficulties in the presence of additional input/output delay.

In the present paper, output-feedback SMC for linear systems
with bounded disturbances and polytopic type uncertainties is
considered under uncertain time-varying input delays. The design
objective is to achieve ultimate boundedness of the closed-loop
system with a bound proportional to the size of the delay and the
disturbance. For small enough delay such a controller should have
advantages over a corresponding linear controller, because the
linear controlwill produce a bound proportional to the disturbance
only.

The main contribution is a general framework for SMC in the
presence of input delaywithout any a priori knowledge of the bounds
on the system states. The following design difficulty arises, which
does not appear in the absence of input delay: the relay gain
depends on the ultimate bound on the state, whereas the latter
bound depends on the relay gain. To overcome this difficulty, a
sliding mode controller is designed with a linear gain proportional
to the scalar 1

µ
, which for small enough µ > 0 produces a closed-

loop singularly perturbed system and which allows the desired
ultimate bound to be achieved for the closed-loop system. The
design process seeks to enlarge µ avoiding a high gain control.
The resulting ultimate bound is proportional to the size of the
delay, disturbance and the switching gain. Therefore trade-offs
can be made between the linear and discontinuous controller
elements in order to minimize delay effects. Preliminary results
were presented in Fridman, Han, and Spurgeon (2010).

Notation. Throughout the paper, the superscript ‘‘T ’’ stands for
matrix transposition, Rn denotes the n-dimensional Euclidean
space with vector norm ∥ · ∥, Rn×m is the set of all n × m real
matrices, and the notation P > 0, for P ∈ Rn×n means that P is
symmetric and positive definite. The symmetric elements of the
symmetric matrix are denoted by ∗. The symbol ∥ · ∥∞ stands for
essential supremum.

2. Problem formulation

Consider the following uncertain dynamical system with time
varying input delay τ(t) and disturbancew(t)

ẋ(t) = Ax(t)+ B (u(t − τ(t))+ w(t)) , y(t) = Cx(t) (1)

where x(t) ∈ Rn, x(t0) = x0, u(t) ∈ Rm, y(t) ∈ Rp withm < p < n.
It is assumed that u(t) = 0 for t < t0. Matrix A may be uncertain
with polytopic type uncertainty. The matched disturbance w(t) ∈

Rm and the uncertain input delay τ(t) are assumed to be bounded
∥w(t)∥ ≤ ∆, τ (t) ∈ [0, τ ∗

], where ∆ and τ ∗ are known bounds
and τ ∗ is supposed to be sufficiently small. It is assumed that the
delay is either fast varying (without any constraints on the delay
derivative) or slowly varying, where the delay-derivative satisfies

the bound τ̇ ≤ d < 1. Assuming B and C are both of full rank, a
controller will be designed which for sufficiently large t induces
the motion of the closed-loop system in the Mτ ∗∆-neighborhood
(with M > 0 independent of τ ∗) of the surface

S = {x ∈ Rn
: z2(t) = FCx(t) = 0} (2)

for some selected matrix F ∈ Rm×p. The ideal sliding motion
z2(t) = 0 is only possible with τ = 0.

Remark 1. Since a static output feedback control is designed, the
results are applicable to both input delay, τi, and output delay, τo,
where in the closed-loop system the resulting delay is τ = τi + τ0.

3. Sliding manifold design

If rank(CB) = m, there exists a change of coordinates xr = Trx,
where Tr ∈ Rn×n is non-singular, in which the system has the
regular form (Edwards & Spurgeon, 1995)

ẋr(t) =


A11 A12
A21 A22


xr(t)+


0
Im


(u(t − τ(t))+ w(t))

y(t) =

0 T


xr(t) (3)

where xr(t) = col{x1(t), x2(t)}, T ∈ Rp×p is invertible, A11 ∈

R(n−m)×(n−m). GivenK ∈ Rm×(p−m), let F =

K Im


T−1. As a result

F

0 T


=


KC1 Im


, C1 =


0(p−m)×(n−p) I(p−m)


. Defining the

sliding manifold as

z2(t) = Fy(t) = x2(t)+ KC1x1(t) (4)

the reduced-order dynamics is governed by the system

ẋ1(t) = (A11 − A12KC1)x1(t)+ A12z2(t) (5)

with input z2. The system triple A11, A12, C1 is assumed to be
stabilizable. In the presence of input delay, z2 in (5) will not vanish
in finite time. Therefore, a K is sought which not only stabilizes
(5) (as in the case without delay), but also produces input-to-state
stability (with the smallest gain possible). Sufficient conditions for
the input-to-state stability of (5) are given by the following lemma:

Lemma 1. Given tuning parameters α > 0, ε, ε1, b, and M ∈

R(p−m)×(n−p), if there exists an (n − m) × (n − m) matrix P > 0,
and matrices Q22 ∈ R(p−m)×(p−m), Q11 ∈ R(n−p)×(n−p), Q12 ∈

R(n−p)×(p−m), Y ∈ Rm×(p−m) so that LMI

Θ =

θ1,1 θ1,2 A12

∗ −εQ2 − εQ T
2 εA12

∗ ∗ −bIm

 < 0

θ1,1 = A11Q2 − A12[YM ε1Y ] + αP + Q T
2 A

T
11 − [YM ε1Y ]

TAT
12,

θ1,2 = P − Q2 + εQ T
2 A

T
11 − ε[YM ε1Y ]

TAT
12 (6)

holds, where Q2 =


Q11 Q12
Q22M ε1Q22


, then the solution of (5) with K =

YQ−1
22 and with the initial condition x1(t0) at initial time t0 is bounded

by xT1(t)P̂x1(t) < e−α(t−t0)xT1(t0)P̂x1(t0) +
b
α
∥z2[t0,t]∥

2
∞

where P̂ =

Q−T
2 PQ2

−1 (Han, Fridman, & Spurgeon, 2010).

Remark 2. To minimize the ultimate bound on x1, the following
procedure is adopted from Fridman and Dambrine (2009). The
ζ ∈ R is minimized subject to LMI (6) and


−P Q T

2
∗ −ζ In−m


< 0,

which leads to lim supt→∞ ∥x1(t)∥2 < ζ b
α
lim supt→∞ ∥z2(t)∥2.

A delayed sliding mode controller is designed which ensures the
closed-loop system is ultimately boundedwith boundproportional
to the delay, disturbance and switching gain.
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4. Controller design: a singular perturbation approach

Defining z =


In−m 0
KC1 Im


xr = col{z1(t), z2(t)} in (3) it follows

that

ż1(t) = Ā11z1(t)+ Ā12z2(t)

ż2(t) = Ā21z1(t)+ Ā22z2(t)+ u (t − τ(t))+ w(t)
(7)

where Ā11 = A11 − A12KC1, Ā12 = A12, Ā21 = KC1Ā11 − A22KC1 +

A21, A22 = KC1Ā12 + A22. For i = 1, . . . ,m, denote the i-th
component z2 by z2i . A control law of the form

u(t) = −
F
µ
y(t)− (1 + δ)∆


sign z21(t) · · · sign z2m(t)

T (8)

will be designed for (7), whereµ > 0 and δ > 0 are tuning param-
eters. The design objective is to achieve ultimate boundedness of
the closed-loop system with a bound proportional to the delay and
the disturbance bounds. The closed-loop system (7) and (8) has the
form

ż1(t) = Ā11z1(t)+ Ā12z2(t) (9)

µż2(t) = µĀ21z1(t)+ µĀ22z2(t)− z2(t − µξ(t))
+µ[w(t)− (1 + δ)∆

× [sign z21(t − µξ(t)) · · · sign z2m(t − µξ(t))]T ] (10)

with the initial condition

z(t0) = z0, z(t) = 0, t < t0 (11)

where µξ(t) = τ(t), 0 ≤ ξ(t) ≤ h and µh = τ ∗. For small µ > 0
(7) and (8) is a singularly perturbed system. The delay is scaled byµ
in order to guarantee robust (input to state) stability with respect
to small enough delay (Fridman, 2002).

Remark 3. For ξ ≡ 0, a conventional SMC is designed as follows
Edwards and Spurgeon (1995): find µ > 0 so that the linear
controller ul(t) = −

F
µ
y(t) asymptotically stabilizes (7) with w ≡

0. For all δ > 0, (8) asymptotically stabilizes (7) with non-zero
∥w∥ ≤ ∆. The bound∥[Ā21i Ā22i ]z(t)∥ < δ∆ is valid for big enough
t , which implies finite time convergence of the closed-loop system
to z2 = 0. The Lyapunov-based proofs of stability and finite time
convergence use the relation z2 i(t) sign z2i(t) ≥ 0. For non-zero
ξ(t), the product z2i(t) sign z2i(t − µξ(t)) may change sign and
the closed-loop system (7) and (8) is not asymptotically stable.

Given h > 0, the main problem is the choice of µ > 0 and of
δ > 0 (if any) that ensures the bound

lim sup
t→∞

∥[Ā21 Ā22]z(t)∥ < δ∆, ∀ξ(t) ∈ [0, h] (12)

holds for solutions of (9), (10). In the following, matrix inequalities
are derived for finding µ and δ via a singular perturbation
approach, which guarantees the feasibility of these matrix
inequalities for small enough µ. The design process seeks to
enlarge µ avoiding a high gain control. Finally, it will be proved
that the closed-loop system is ultimately bounded with a bound
proportional to τ ∗∆. For recent results on stability of singularly
perturbed systems with small delay, refer to Chen, Yang, Lu, and
Shen (2010) and Glizer (2009).

4.1. Input-to-state stability of the time-delay system

Considering the switching component of the SMC as a
perturbation, this allows a bound on the state and an appropriate

switching gain to be chosen. Denoting

w̄(t) = w(t)− (1 + δ)

×∆

sign z21(t − µξ(t)) · · · sign z2m(t − µξ(t))

T (13)

the closed-loop system (9), (10) can be presented as

ż1(t) = Ā11z1(t)+ Ā12z2(t) (14)
µż2(t) = µĀ21z1(t)+ µĀ22z2(t)− z2 (t − µξ(t))+ µw̄(t)

where ∥w̄(t)∥ ≤ [1 + (1 + δ)
√
m]∆. Let Pµ ∈ Rn×n be positive

definite with structure (Kokotovic, Khalil, & O’Reilly, 1986)

Pµ =


P1 µPT

2
∗ µP3


> 0 (15)

where P1 ∈ Rn−m. For (14), choose the Lyapunov–Krasovskii
functional of the form

Vµ(t) =

 t

t−µξ(t)
eᾱ(s−t)zT2 (s)Sz2(s)ds +

 t

t−µh
eᾱ(s−t)zT2 (s)G

· z2(s)ds + µh
 0

−µh

 t

t+θ
eᾱ(s−t)żT2 (s)Rż2(s)dsdθ

+ zT (t)Pµz(t) (16)

where G, R and S ∈ Rm are positive matrices. The inequality

W (t) =
d
dt

Vµ(t)+ ᾱVµ(t)− µ2b̄w̄T (t)w̄(t) < 0 (17)

along the trajectories of (9), (10) for ∥z0∥2
+ ∥w̄[t0,t]∥

2
∞
> 0

guarantees (19) (Fridman&Dambrine, 2009). The following lemma
can be stated (for proof see the Appendix) as follows:

Lemma 2. Given positive tuning scalars µ, h, ᾱ and b̄, let there exist
Pµ > 0 in (15)with (n−m)× (n−m)matrix P1 > 0, m× (n−m)-
matrix P2 and m × m positive matrices P3, G, R, S such that the
following LMI with its entries

Θµ =


θ̃1,1 · · · θ̃1,6
∗ · · · θ̃6,6


< 0 (18)

θ̃1,1 = P1Ā11 + ĀT
11P1 + µPT

2 Ā21 + µĀT
21P2 + ᾱP1,

θ̃1,2 = P1Ā12 + µĀT
21P3 + µĀT

11P
T
2 + µPT

2 Ā22 + ᾱµPT
2 ,

θ̃1,4 = −PT
2 , θ̃1,5 = PT

2 , θ̃1,6 = hµĀT
21R,

θ̃2,2 = µP2Ā12 + µĀT
12P

T
2 + µP3Ā22 + µĀT

22P3
+ ᾱµP3 + G − e−ᾱµhR + S,

θ̃2,4 = −P3 + e−ᾱµhR, θ̃2,5 = P3, θ̃2,6 = hµĀT
22R,

θ̃3,3 = −e−ᾱµhG − e−ᾱµhR, θ̃3,4 = e−ᾱµhR,

θ̃4,4 = −2e−ᾱµhR − (1 − d)Se−ᾱµh, θ̃4,6 = −hR,

θ̃5,5 = −b̄Im, θ̃5,6 = hR, θ̃6,6 = −R

is feasible. Then solutions of (9)–(11) satisfy the bound

zT (t)Pµz(t) < e−ᾱ(t−t0)zT (t0)Pµz(t0)+
µ2b̄
ᾱ

∥w̄[t0,t]∥
2
∞

(19)

for all ξ(t) ∈ [0, h] with µξ̇(t) ≤ d < 1 (and thus (9)–(10) is
input-to-state stable). Moreover, solutions of (9)–(11) satisfy (19) for
all fast-varying delays ξ(t) ∈ [0, h] if LMI (18) is feasible with S = 0.
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4.2. LMIs for the controller design

Conditions will now be derived that guarantee the bound (12)
for the solutions of (9), (10). Taking into account (19) and, thus,
lim supt→∞ zT (t)Pµz(t) <

µ2 b̄
ᾱ

[1+(1+δ)
√
m]

2∆2, it may be con-
cluded that (12) holds if the inequality µ2zT (t)[Ā21 Ā22]

T
[Ā21 Ā22]

z(t) < ᾱzT (t)Pµz(t)δ2

b̄[1+(1+δ)
√
m]2

is satisfied for t → ∞. Hence, the inequality
−ᾱδ2

b̄[1 + (1 + δ)
√
m]2

P1
−µᾱδ2

b̄[1 + (1 + δ)
√
m]2

PT
2 µĀT

21

∗
−µᾱδ2

b̄[1 + (1 + δ)
√
m]2

P3 µĀT
22

∗ ∗ −Im


< 0 (20)

guarantees that the solutions of (9), (10) satisfy the bound (12).
By Schur complements, (20) is feasible if the following matrix
inequality is feasible

−ᾱδ2

b̄[1 + (1 + δ)
√
m]2


P1 µPT

2
∗ µP3


+ µ2


ĀT
21

ĀT
22

 
Ā21 Ā22


< 0. (21)

Matrix inequalities (15), (18) and (20) have been derived for
finding the parameters µ and δ of the controller (8). It will now
be shown that if the µ-independent LMI

Θ0 = Θµ|µ=0 < 0 (22)

is feasible, then for all δ > 0 inequalities (15), (18) and (20) are
feasible for all small enough µ. Let P1, P2, P3 satisfy Θ0 < 0. Then
for small enough µ > 0, (15) and (18) are feasible for the same µ-
independent matrices P1, P2, P3. Hence, given δ > 0, (21) is feasible
for small enough µ > 0.

It is easily seen that Θ0 < 0 guarantees exponential stability
with decay rate ᾱ/2 of the slow subsystem

żs(t) = Ā11zs(t), zs(t) ∈ Rn−m

and asymptotic stability of the fast subsystem of (14)

µżf (t) = −zf (t − µξ(t)), ξ(t) ∈ [0, h], zf (t) ∈ Rm.

Since Ā11 is Hurwitz, there exists P1 > 0 satisfying P1Ā11 + ĀT
11P1 +

ᾱP1 < 0 for small enough ᾱ > 0. Choose next P2 = 0, G = S = 0
and R = P3 = p3Im. By using Schur complements, it can be shown
that Θ0 < 0 holds for big enough p3 > 0, b̄ and small enough h.
The sufficient conditions below for the feasibility of (15), (18) and
(20) have been proved:

Proposition 1. (i) Given positive tuning scalars h, ᾱ and b̄, let there
exist 0 < P1 ∈ R(n−m)×(n−m), P2 ∈ Rm×(n−m) and positive m × m-
matrices P3,G, R, S such that LMI (22) is feasible. Then, for all δ > 0
there exists µ(δ) > 0 such that for all µ ∈ (0, µ(δ)] LMIs (15),
(18) and (20) are feasible and, thus, solutions of (9)–(10) satisfy the
bound (12).
(ii) LMI (22) is feasible for small enough h, ᾱ and big enough b̄.

4.3. Main result

Let φ(t, t0, µ) be the fundamental solution of the equation
µζ̇ (t) = −ζ (t − µξ(t)), ζ (t) ∈ R with φ(t0, t0, µ) = 1 and
φ(t, t0, µ) = 0 for t < t0. By using the arguments of Lemma 2 and
choosing

V2 = ψ

 t

t−µξ(t)
eα2(s−t)ζ 2(s)ds + q

 t

t−µh
eα2(s−t)ζ 2(s)ds

+µhr
 0

−µh

 t

t+θ
eα2(s−t)ζ̇ 2(s)dsdθ + µρζ 2(t)

with positive scalars ρ, q, r, ψ , it can be shown that the feasibility
of the µ-independent LMIψ + q − r 0 −ρ + r 0

∗ −q − r r 0
∗ ∗ −(1 − d)ψ − 2r hr
∗ ∗ ∗ −r

 < 0 (23)

yields the following bound

|φ(t, t0, µ)| ≤ e−
α2(t−t0)

µ (24)
for small enough α2 > 0 and ∀ µ > 0, ξ(t) ≤ h, µξ̇ ≤ d < 1.
Note that (23) is feasible for h ≤ 1.414 if d = 0 and for h ≤ 1.22
if d is unknown (i.e. for fast varying delay). The main result is now
formulated (for proof see the Appendix) as follows:

Theorem 1. Let the conditions of Lemma 1 hold. Given pos-
itive tuning scalars µ , h , ᾱ , b̄ and δ let there exist 0 < P1 ∈

R(n−m)×(n−m), P2 ∈ Rm×(n−m), positive m × m-matrices P3,G, R,
S and positive scalars ρ, q, r, ψ such that LMIs (15), (18), (20) and
(23) are feasible. Then for all ξ ∈ [0, h], µξ̇ ≤ d < 1 the solutions
z(t) of the closed-loop system (9)–(10) satisfy the following bounds:

lim sup
t→∞

|z2i(t)| ≤ 2M0µh, M0 = (1 + δ)(1 +
√
m)∆ (25)

where i = 1, . . . ,m denotes the i-th component of z2, and

lim sup
t→∞

zT1 (t)P̂z1(t) ≤ 4
b
α
mM2

0µ
2h2. (26)

Moreover, the solutions of (9)- (10) satisfy (25) and (26) for all fast
varying delays ξ(t) ∈ [0, h] if the above LMIs are feasible with S = 0
and ψ = 0.

Remark 4. The singular perturbation approach allows the choice
of tuning parameters to occur in two stages:
(i) Given b̄ > 0, h = 0 find the tuning parameter ᾱ > 0 that
minimizes b̄

ᾱ
by solving the µ-independent LMI (22) (which

corresponds to the slow and the fast subsystems). Increase h
arriving to some maximum achievable h ≤ 1.22 which preserves
the feasibility of (22).
(ii) With ᾱ, b̄ and h as found in (1) search for the remaining tuning
parametersµ > 0 and δ > 0 such that theµ-dependent LMIs (15),
(18), (20) and (21) (which correspond to the full-order system) are
feasible. Start with small µ and big δ for which the above LMIs are
feasible (as guaranteed by Proposition 1). Then increaseµ (to avoid
the high-gain control and to treat bigger delays) by decreasing h
and ᾱ such that µh is maximized and δ is minimized. The latter
leads to a smaller ultimate bound.
Note increase in µ leads to increase of the switching parameter δ.
Therefore, a trade-off exists between bound minimization and the
acceptable control magnitude.

Remark 5. Consider now (1) with the linear controller ul(t) =

−
F
µ
y(t). Then the closed-loop system has the form (14) with

w̄(t) = w(t). Under the conditions of Lemma 2, the solutions of
the resulting closed-loop system satisfy zT (t)Pµz(t) < e−ᾱ(t−t0)

zT0 Pµz0 +
µ2 b̄
ᾱ
∆2. Given µ and δ satisfying the conditions of

Theorem 1, the ultimate bounds under the proposed SMC are
given by (25) and (26) and these bounds vanish for h → 0, i.e. the
performance under the proposed SMC recovers the performance
under the ideal SMC without input delay. Given µ > 0 satisfying
Lemma 2, the ultimate bounds under the linear controller ul(t) =

−
F
µ
y(t) are proportional to the disturbance bound only and do

not vanish for h → 0. Therefore, the linear controller leads to
vanishing bounds only forµ → 0, i.e. by using very high gain (even
with no input delay).
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5. Extension to input and state delay

The following uncertain dynamical system is considered with
state and input time varying delay r(t) and τ(t), respectively, and
with matched disturbancew(t)

ẋ(t) = Ax(t)+ Adx(t − r(t))+ B (u(t − τ(t))+ w(t)) ,
y(t) = Cx(t)

where x(t) ∈ Rn, u(t) ∈ Rm, w(t) ∈ Rm and y(t) ∈ Rp with m <
p < n. The delays and disturbance are bounded by: r(t) ∈ [0, r∗

],
τ(t) ∈ [0, τ ∗

] and ∥w(t)∥ ≤ ∆. The delays may be either slowly
varyingwith ṙ(t) ≤ d1 < 1, τ̇ (t) ≤ d2 < 1 or fast varying (with no
constraint on the delay derivatives). The input and outputmatrices
B and C are both of full rank. The sliding manifold can be defined
by (2).

5.1. Sliding manifold design

In regular form, the system (5) becomes

ẋr(t) =


A11 A12
A21 A22


xr(t)+


Ad11 Ad12
Ad21 Ad22


xr(t − r(t))

+


0
Im


(u(t − τ(t))+ w(t)) ,

y(t) =

0 T


xr(t).

(27)

Defining the sliding manifold as in (4), the reduced-order system
with inputs z2(t) and z2(t − r(t)) is

ẋ1(t) = (A11 − A12KC1)x1(t)+ (Ad11 − Ad12KC1)x1(t − r(t))
+ A12z2(t)+ Ad12z2(t − r(t)) (28)

where (A11 + Ad11, A12 + Ad12, C1) is assumed stabilizable.

Lemma 3 (Han et al. (2010)). Given tuning scalars α > 0, ε, ε1, b1,
b2 > 0 and a matrix M ∈ R(p−m)×(n−p), let there exist (n − m) ×

(n − m) matrices P > 0, G ≥ 0, S ≥ 0, R ≥ 0 and matrices
Q22 ∈ R(p−m)×(p−m), Q11 ∈ R(n−p)×(n−p), Q12 ∈ R(n−p)×(p−m),
Y ∈ Rm×(p−m), K = YQ−1

22 such that LMI

Θ̂ =


θ̂1,1 · · · θ̂1,6

∗ · · · θ̂6,6


< 0 (29)

where

θ̂11 = A11Q2 − A12[Y ε1Y ] + Q T
2 A

T
11

+αP − [YM εY ]
TAT

12 + G + S − Re−αr∗ ,

θ̂15 = A12, θ̂34 = Re−αr∗

θ̂12 = P − Q2 + εQ T
2 A

T
11 − ε[YM ε1Y ]

TAT
12,

θ̂66 = −b2Im

θ̂14 = Ad11Q2 − Ad12[YM ε1Y ] + Re−αr∗ , θ̂16 = Ad12

θ̂22 = −εQ2 − εQ T
2 + r∗2R, θ̂33 = −(G + R)e−αr∗ ,

θ̂24 = εAd11Q2 − εAd12[YM ε1Y ], θ̂25 = εA12,

θ̂26 = εAd12

θ̂44 = −2e−αr∗R − (1 − d1)Se−αr∗ , θ̂55 = −b1Im,

holds, then for all ultimately bounded z2, solutions of (28) satisfy the
inequality lim supt→∞ xT1(t)P̂x1(t) <

b1+b2
α

lim supt→∞ ∥z2(t)∥2,
where P̂ and Q2 are in the form given in Lemma 1.

5.2. Controller design and the resulting ultimate bound

By similar change of coordinates as in (7) and (27) becomes

ż1(t) = Ā11z1(t)+ Ād11z1(t − r(t))+ Ā12z2(t)
+ Ād12z2(t − r(t))

ż2(t) = Ā21z1(t)+ Ād21z1(t − r(t))+ Ā22z2(t)
+ Ād22z2(t − r(t))+ u(t − τ(t))+ w(t).

With the controller given in (8) the closed-loop system is

ż1(t) = Ā11z1(t)+ Ād11z1(t − r(t))+ Ā12z2(t)
+ Ād12z2(t − r(t))

µż2(t) = µĀ21z1(t)+ µĀd21z1(t − r(t))+ µĀ22z2(t)

+µĀd22z2(t − r(t))− z2(t − µξ(t))+ w̄(t) (30)

where w̄(t) is given by (13) with ∥w̄(t)∥ ≤ [1 + (1 + δ)
√
m]∆,

µξ(t) = τ(t), 0 ≤ ξ(t) ≤ h, z(t) = col{z1(t), z2(t)}. Let Pµ be
of the same structure as (15), then input-to-state stability can be
derived using the Lyapunov–Krasovskii functional

Vµ(t) = zT (t)Pµz(t)+

 t

t−r∗
eᾱ(s−t)zT1 (s)G1z1(s)ds

+

 t

t−r(t)
eᾱ(s−t)zT1 (s)S1z1(s)ds

+

 t

t−µh
eᾱ(s−t)zT2 (s)G2z2(s)ds

+

 t

t−µξ(t)
eᾱ(s−t)zT2 (s)S2z2(s)ds

+

 t

t−r(t)
eᾱ(s−t)zT2 (s)S3z2(s)ds

+

 t

t−r∗
eᾱ(s−t)zT2 (s)S4z2(s)ds

+ r∗

 0

−r∗

 t

t+θ
eᾱ(s−t)żT1 (s)R1 · ż1(s)dsdθ

+µh
 0

−µh

 t

t+θ
eᾱ(s−t)żT2 (s)R2ż2(s)dsdθ

+µ2r∗

 0

−r∗

 t

t+θ
eᾱ(s−t)żT2 (s)R3ż2(s)dsdθ

with positive matrices G1, G2, S1, S2, S3, S4, R1, R2 and R3.

Lemma 4. Given positive tuning scalars r∗, µ, h, ᾱ and b̄1, let there
exist Pµ > 0 in (15) with (n − m) × (n − m) matrix P1 > 0, m ×

(n − m)-matrix P2, m × m positive matrix P3, (n − m) × (n − m)
positive matrices G1, S1, R1, m × m positive matrices G2, S2, S3, S4, R2
and R3 such that the LMI

Θµ =


θ̄1,1 · · · θ̄1,12
∗ · · · θ̄12,12


< 0 (31)

with entries

θ̄1,1 = ᾱP1 + P1Ā11 + ĀT
11P1 + µPT

2 Ā21 + µĀ21P2 + G1

+ S1 − R1e−ᾱr∗ ,

θ̄1,2 = P1Ād11 + R1e−ᾱr∗
+ µPT

2 Ād21,

θ̄1,4 = P1Ā12 + µĀT
21P3 + µĀT

11P
T
2 + µPT

2 Ā22 + αµPT
2 ,

θ̄1,5 = P1Ād12 + µPT
2 Ād22, θ̄1,7 = −PT

2 , θ̄1,9 = PT
2 ,

θ̄1,10 = r∗ĀT
11R1, θ̄1,11 = µhĀT

21R2,

θ̄1,12 = µr∗ĀT
21R3,
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θ̄2,2 = −2R1e−ᾱr∗
− (1 − d1)S1e−ᾱr∗, θ̄2,3 = R1e−ᾱr∗ ,

θ̄2,4 = µĀT
d21P3 + µĀT

d11P
T
2 , θ̄2,10 = r∗ĀT

d11R1,

θ̄2,11 = µhĀT
d21R2, θ̄2,12 = µr∗ĀT

d21R3,

θ̄5,10 = r∗ĀT
d12R1,

θ̄3,3 = −e−ᾱr∗(R1 + G1), θ̄4,7 = −P3 + R2e−ᾱµh,

θ̄4,4 = µP3Ā22 + µĀT
22P3 + µP2Ā12 + µĀT

12P
T
2 + µᾱP3

− R2e−ᾱµh
− µ2e−ᾱr∗R3 + G2 + S2 + S3 + S4,

θ̄4,5 = µP3Ād22 + µP2Ād12 + µ2e−ᾱr∗R3,

θ̄4,9 = P3, θ̄4,10 = r∗ĀT
12R1, θ̄4,11 = µhĀT

22R2,

θ̄5,5 = −(1 − d1)S3e−ᾱr∗
− 2µ2e−ᾱr∗R3,

θ̄5,6 = µ2e−ᾱr∗R3,

θ̄5,11 = µhĀT
d22R2, θ̄5,12 = µr∗ĀT

d22R3,

θ̄4,12 = µr∗ĀT
22R3,

θ̄6,6 = −e−ᾱr∗(µ2R3 + S4), θ̄9,9 = −b̄1Im,

θ̄12,12 = −R3

θ̄7,7 = −2R2e−ᾱµh
− (1 − d2)S2e−ᾱµh, θ̄7,8 = R2e−ᾱµh,

θ̄7,11 = −hR2, θ̄7,12 = −r∗R3,

θ̄8,8 = −(R2 + G2)e−ᾱµh,

θ̄9,11 = hR2, θ̄9,12 = r∗R3, θ̄10,10 = −R1,

θ̄11,11 = −R2.

Then solutions of (30) satisfy the bound

lim sup
t→∞

zT (t)Pµz(t) <
µ2b̄1


1 + (1 + δ)

√
m

2
ᾱ

∆2 (32)

for all r(t) ∈ [0, r∗
] and ξ(t) ∈ [0, h] with ṙ(t) ≤ d1 < 1 andµξ̇ ≤

d2 < 1. Moreover, solutions of (30) satisfy (32) for all fast-varying
delays r(t) ∈ [0, r∗

] or ξ(t) ∈ [0, h] if LMI (31) is feasible with
S1 = S3 = 0 or S2 = 0 respectively.

Conditions will be derived that guarantee

lim sup
t→∞

∥[Ā21 Ā22]z(t)∥ < κ1δ∆,

lim sup
t→∞

∥[Ād21 Ād22]z(t − r(t))∥ < κ2δ∆
(33)

for solutions of (30), where κ1 + κ2 ≤ 1. Given (32) and

lim sup
t→∞

zT (t − r(t))Pµz(t − r(t)) <
µ2b̄1


1 + (1 + δ)

√
m

2
ᾱ

∆2

are true, (33) holds if the following inequalities are satisfied

zT (t)[Ā21 Ā22]
T
[Ā21 Ā22]z(t) <

ᾱκ2
1 δ

2zT (t)Pµz(t)
µ2b̄1(1 + (1 + δ)

√
m)2

zT (t − r(t))[Ād21 Ād22]
T
[Ād21 Ād22]z(t − r(t))

<
ᾱκ2

2 δ
2zT (t − r(t))Pµz(t − r(t))
µ2b̄1(1 + (1 + δ)

√
m)2

for t → ∞. Hence, the inequalitiesκ2
1ϖP1 µκ2

1ϖPT
2 µĀT

21
∗ µκ2

1ϖP3 µĀT
22

∗ ∗ −Im

 < 0,

κ2
2ϖP1 µκ2

2ϖPT
2 µĀT

d21
∗ µκ2

2ϖP3 µĀT
d22

∗ ∗ −Im

 < 0

(34)

whereϖ = −
ᾱδ2

b̄1(1+(1+δ)
√
m)

2 , guarantee that the solutions of (30)

satisfy the bound (33).

Proposition 2. Given positive tuning scalars r∗, µ, h, ᾱ, b̄1, κ1, κ2, δ
let there exist 0 < P1 ∈ R(n−m)×(n−m), P2 ∈ Rm×(n−m) and positive
(n − m) × (n − m) matrices G1, S1, R1, positive m × m matrices
P3,G2, S2, S3, S4, R2 and R3 such that LMI Θ0 < 0 is feasible, where
Θ0 is given by (31) with µ = 0. Then, for positive scalars κ1, κ2,
where κ1 + κ2 ≤ 1 and all δ > 0, there exists µ(δ) > 0 such that
for all µ ∈ (0, µ(δ)] LMIs (15), (31) and (34) are feasible and, thus,
solutions of (30) satisfy the bound (33).

Theorem 2. Let the conditions of Lemma 4 hold. Given positive
tuning scalars r∗, µ, h ≤ 1.22, ᾱ, b̄1, κ1, κ2, δ let there exist 0 <
P1 ∈ R(n−m)×(n−m), P2 ∈ Rm×(n−m) and positive (n − m)× (n − m)
matrices G1, S1, R1, positive m × m matrices P3,G2, S2, S3, S4, R2
and R3 such that LMIs (15), (31) and (34) are feasible. Then for all
ξ ∈ [0, h], µξ̇ ≤ d1 < 1, r(t) ∈ [0, r∗

], ṙ(t) ≤ d2 < 1, the
solutions of the closed-loop system (30) satisfy (25) and (26).
Moreover, the solutions of (30) satisfy (25) and (26) for all fast varying
delays r(t) ∈ [0, r∗

] or ξ(t) ∈ [0, h] if the above LMIs are feasible
with S1 = S3 = 0 or S2 = 0 respectively.

Remark 6. Since LMIs (15), (18), (20) and (23), as well as (29),
(31) and (34), are affine in the system matrices, the results are
applicablewhere thesematrices have polytopic type uncertainties.

6. Example

The following model of combustion in a liquid monopropellant
rocketmotor has been considered in Zheng, Cheng, andGao (1995),
where the system is given by (5) with

A =

0.2ρ(t) 0 0 0
0 0 0 −1

−1 0 −1 1
0 1 −1 0

 ,

Ad =

−1 − 0.2ρ(t) 0 1 0
0 0 0 0
0 0 0 0
0 0 0 0


C =


0 1 0 0
0 0 0 1


, B =


0 1 0 0

T
. (35)

Here ρ(t) = sin(t) and the exogenous disturbance w(t) satisfy
∥w(t)∥ ≤ ∆ = 5. Time-varying delays in the states and input are
due to pressure force propagation in the combustion chamber and
gas injector respectively.

LMI solutions for the controller design incorporate matrices A
and Ad with two vertices corresponding to ρ = ±1. The controller
is designed for fast varying state delay r(t) ≤ 0.2 s and fast varying
input delay τ(t) ≤ 0.05 s. Setting r∗

= 0.2, α = 0.9, b1 =

0.0002, b2 = 0.0001, ε = 1.5, ε1 = 3.5, M = [4 2.4] in LMI
(29) and ζ = 147000 in the LMI in Remark 4, the reduced order
system (28) is ultimately bounded with K = 1.015. Choosing LMI
tuning parameters according to the algorithm in Remark 4, it is
obtained by solving theµ-independent LMI (22) (withµ = 0), that
ᾱ = 0.44, b̄1 = 0.000005 and maximum h = 0.7. Substituting
the above ᾱ, b̄1 and h into the µ-dependent LMI (31), we find that
LMIs (31) and (34) are feasible for µ = 0.17, µh = 0.05 s with a
smaller ᾱ = 0.28, h = 0.29 and κ1 = 0.9999, κ2 = 0.0001, δ =

5.03. Therefore, the system is ultimately bounded under the linear
controller u(t) = −

F
µ
y(t) with F = [1 1.015]. The controller (8)

has been fully synthesized to guarantee the bound ∥z2(t)∥t→∞ ≤

6.03 according to (25) for all fast varying state delays r(t) ≤ 0.2 s
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(a) Conventional SMC with state delay only. (b) Conventional SMC with state and input delays.
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(c) Proposed SMC with both state and input delays. (d) Proposed SMC with both state and input delays.

Fig. 1. Conventional and proposed SMC under slowly varying state delay r(t) ≤ 0.2 s and fast varying input delay τ(t) ≤ 0.05 s.
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(a) Using linear controller. (b) Using proposed SMC.

Fig. 2. Comparison of proposed SMC and the linear controller of the SMC under fast varying delays r(t) ≤ 0.2 s and τ(t) ≤ 0.01 s.

and input delays τ(t) ≤ 0.05 s. The control input does not produce
high gain (here∥F/µ∥ ≤ 8.4 since µ = 0.17 has been chosen
large enough). The designed controller is simulated, where the
disturbance isw(t) = 5 sin 3t .

The advantages of the designed SMC over the conventional SMC
from Han et al. (2010) (which ignores the input delay)

u(t) = −[15.8 43]y(t)− 67
Fy(t)

∥Fy(t)∥
, F = [1 3.1] (36)

are first demonstrated. Note that (36) has been designed for (35)
with the slowly varying state delay r(t) ≤ 0.2 s, ṙ ≤ 0.5. For
simulation, the slowly varying state delay is chosen as r(t) =

0.1 sin(5t) + 0.1 ≤ 0.2 s and the fast varying input delay is τ(t)
= 0.025 sin(40t) + 0.025 ≤ 0.05 s. The conventional SMC (36)
achieves asymptotic stability in the presence of the state delay
(see Fig. 1(a), where τ ≡ 0). In the presence of the input delay
the controller leads to the outputs bounded by ∥y∥t→30 s ≤ 4
(see Fig. 1(b)). In comparison the proposed SMC leads to a smaller
output bounds with ∥y(t)∥t→30 s ≤ 1.6 as shown in Fig. 1(c). The
resulting switching variable is bounded by ∥z2∥t→30 s ≤ 1.7 as
shown in Fig. 1(d), which is in line with the theoretical estimation.
In the simulations under both SMC methods, chattering of high
frequency is observed due to the delayed switching component
sign u(t − τ(t)). In the real implementations, many methods are
introduced for reducing the chattering. A comprehensive review is
given in Young, Utkin, and Özgüner (1999).

For sufficiently small input delay the proposed SMC should have
advantage over its linear control component leading to smaller
bounds on the system outputs. Consider next the fast varying
state delay r(t) = 0.1 sin(15t)+ 0.1 ≤ 0.2 s and the fast varying
input delay τ(t) = 0.005 sin(200t)+ 0.005 ≤ 0.01 s, where the
disturbance was kept the same. The outputs of the system
under the linear controller u(t) = −

F
µ
y(t)(µ = 0.17) and under

the proposed SMC are shown in Fig. 2(a) and (b) respectively.
The bound on the outputs produced by the linear controller is
∥y(t)∥t→30 s ≤ 0.85, whereas the bound obtained by the proposed
SMC is smaller with ∥y(t)∥t→30 s ≤ 0.35. Note that the linear
controller leads to the same bound ∥y(t)∥t→30 s ≤ 0.35 as SMC
by more than twice higher gain with µ = 0.07.

Remark 7. Without input delay, the new SMC design method has
advantages over existing methods (Edwards & Spurgeon, 1995;
Han et al., 2010). The matrix Pµ for the analysis of the closed-
loop system is full and not diagonal as in existing methods. The
conservativeness of the diagonally structured Pµ was verified by
setting P2 = 0 in (15) for the above example while keeping all the
other tuning parameters in the LMIs unchanged. The bound on the
feasible input delay in this casewas found to beµh = 0.02 s,which
is smaller than µh = 0.05 s obtained using the full Pµ.

7. Conclusion

Sliding mode control for systems with matched bounded
disturbances in the presence of input time-varying delay has been
studied using a singular perturbation approach. Unlike existing
results on relay control with input delay (Fridman et al., 2002;
Gouaisbaut et al., 2002) a priori knowledge of the bounds on the
system states is not needed. Ultimately bounded solutions of the
delayed system are found based on LMI formulations and various
Lyapunov-based methods. The ultimate bound is proportional to
the delay, the disturbances and the switching gain. The proposed
SMC brings the input delay analysis into the design phase which
is shown in the example to have key advantages when compared
with an existing SMC that ignores the input delay and with a
linear control (for sufficiently small input delay). The method is
applicable to linear systems with polytopic uncertainties in all
blocks of the system matrices. In the extension to state delays, for
the first time a static output feedback, a SMC is designed via the
Krasovskii method for systems with fast varying delays.

Appendix A. Proof of Lemma 2

Differentiating V of the structure (15) and (16) along (14) it
follows from (17) that

W (t) ≤ 2zT1 (t)P1[Ā11 Ā12]z(t)+ 2µzT2 (t)P2[Ā11 Ā12]z(t)

+ 2zT1 (t)P
T
2


µ[Ā21 Ā22]z(t)− z2(t − µξ(t))+ µw̄(t)


+ 2zT2 (t)P3


µ[Ā21 Ā22]z(t)− z2(t − µξ(t))+ µw̄(t)


−µ2b̄w̄T (t)w̄(t)+ ᾱzT1 (t)P1z1(t)+ ᾱµzT2 (t)P2z1(t)
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+ ᾱµzT1 (t)P
T
2 z2(t)+ ᾱµzT2 (t)P3z2(t)+ µ2h2żT2 (t)Rż2(t)

−µh
 t

t−µh
e−ᾱµhżT2 (s)Rż2(s)ds + zT2 (t)Gz2(t)

− e−ᾱµhzT2 (t − µh)Gz2(t − µh)+ zT2 (t)Sz2(t)

− (1 − d)e−ᾱµξ(t)zT2 (t − µξ(t))Sz2(t − µξ(t)).

Using the identity t

t−µh
e−ᾱµhżT2 (s)Rż2(s)ds =

 t−µξ(t)

t−µh
e−ᾱµhżT2 (s)Rż2(s)ds

+

 t

t−µξ(t)
e−ᾱµhżT2 (s)Rż2(s)ds

apply Jensen’s inequality

−µh
 t−µξ(t)

t−µh
e−ᾱµhżT2 (s)Rż2(s)ds

≤ −e−ᾱµh
[zT2 (t − µξ(t))− zT2 (t − µh)]R[z2(t − µξ(t))

− z2(t − µh)] − µh
 t

t−µξ(t)
e−ᾱµhżT2 (s)Rż2(s)ds

≤ −e−ᾱµh
[zT2 (t)− zT2 (t − µξ(t))]R[z2(t)− z2(t − µξ(t))].

Then, setting ζ (t) = col{z1(t), z2(t), z2(t − µh), z2(t − µξ),
µw̄(t)} and applying Schur complements to the term µ2h2żT2 (t)
R̄ż2(t), where ż2(t) is substituted by the right-hand side of (14), it
is established thatW (t) < 0 ifΘµ < 0.

Appendix B. Proof of Theorem 1

The i-th component of differential equation (10) with the initial
condition (11) can be represented in the form of an integral
equation (Kolmanovskii & Myshkis, 1992)

z2i(t) = φ(t, t0, µ)z2i(t0)+

 t

t0
φ(t, s, µ)


[Ā21i Ā22i ]z(s)

+wi(s)− (1 + δ)∆ sign z2i(s − µξ(s))

ds. (B.1)

The feasibility of (20) implies the bound (12), then the following
inequality holds for t → ∞:

|[Ā21i Ā22i ]z(s)+ wi(s)

− (1 + δ)∆ sign z2i(s − µξ(s))| < M0. (B.2)

Taking into account (24) and (B.2), it is established from (B.1) that
for t → ∞

|z2i(t + θ)− z2i(t)| ≤

 t

t+θ
φ(t, s, µ)


[Ā21i Ā22i ]z(s)

+ wi(s)− (1 + δ)∆ sign z2i (s − µξ(s))

ds


< M0

 t

t+θ
e−

α2(t−s)
µ ds < µM0

1 − e−2α2h

α2
≤ 2M0µh

where θ ∈ [−2µh, 0]. Therefore,

z2i(t)− 2M0µh < z2i(t + θ) < z2i(t)+ 2M0µh

for t → ∞ and the following implication holds

|z2i(t)| ≥ 2M0µh ⇒ sign z2i(t + θ) = sign z2i(t) (B.3)

for large enough t . Thus, from (12), (B.2) and (B.3) for sufficiently
large t the following implication follows:

|z2i(t)| ≥ 2M0µh ⇒ zT2i(t)[[Ā21i Ā22i ]z(t + θ)+ wi(t + θ)

− (1 + δ)∆ sign z2i(t + θ)]

< |z2i(t)|(|[Ā21i Ā22i ]z(t + θ)| +∆)

− (1 + δ)∆|z2i(t)| < 0. (B.4)

It will be shown next that the z2i-component of the solutions
to (10) exponentially converges to the ball (25). Moreover, for
sufficiently large t , whenever z2i(t) achieves the ball (25), it will
never leave it. Taking into account (B.4), for sufficiently large t it
follows that

|z2i(t)| ≥ 2M0µh ⇒
d
dt
µz22i(t) = 2µz2i(t)ż2i(t)

= 2z2i(t)[−z2i(t − µξ(t))+ µ([Ā21i Ā22i ]z(t)+ wi(t)

− (1 + δ)∆ sgn z2i(t))]

≤ −2z2i(t)

z2i(t)−

 t

t−µξ(t)
ż2i(s)ds


= −2z22i(t)+ 2z2i(t)

 t

t−µξ(t)


−

z2i(s − µξ(s))
µ

+ [Ā21i Ā22i ]z(s)+ wi(s)− (1 + δ)∆ sgn z2i(s)

ds

≤ −2z22i(t)− 2
z2i(t)
µ

 t

t−µξ(t)
z2i(s − µξ(t))ds.

Therefore, given (B.3) holds for large enough t , it follows that
−

 t
t−µξ(t) z2i(t)z2i(s − µξ(t))ds ≤ 0. Hence

|z2i(t)| ≥ 2M0µh ⇒
d
dt
µz22i(t) ≤ −2z22i(t). (B.5)

Assume now that for large enough t1 the z2i component of the
solution to (10) is outside the ball (25). Then from (B.5) it follows
that for all t ≥ t1 such that |z2i(t)| ≥ 2M0µh the inequality holds

z22i(t) ≤ e−
2
µ (t−t1)z22i(t1), i.e. z2i exponentially converges to the ball

(25). Let t2 > t1 be the time when |z2i(t2)| = 2M0µh. Then due to
(B.5) z22i(t

+

2 ) < z22i(t2). Therefore, whenever z2i(t) attains the ball
(25), it will never leave it. Then (26) follows from Lemma 1 and
(25).
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