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a b s t r a c t

We study stability of linear systems with fast almost periodic coefficients that are piecewise-
continuous in time. The classical averaging method guarantees the stability of such systems for small
enough values of parameter provided the corresponding averaged system is stable. However, it is
difficult to find an upper bound on the small parameter by using classical tools for asymptotic analysis.
In this paper we introduce an efficient constructive method for finding an upper bound on the value of
the small parameter that guarantees a desired exponential decay rate. We transform the system into
a model with time-delays of the length of the small parameter. The resulting time-delay system is a
perturbation of the averaged system. The averaged system is supposed to be exponentially stable.
The stability of the time-delay system guarantees the stability of the original one. We construct
an appropriate Lyapunov functional for finding sufficient stability conditions in the form of linear
matrix inequalities (LMIs). The upper bound on the small parameter that preserves the exponential
stability is found from the LMIs. Two numerical examples (stabilization by vibrational control and by
time-dependent switching) illustrate the efficiency of the method. Moreover, we apply the time-delay
approach to persistently excited systems that leads to a novel quadratic time-independent Lyapunov
functional for such systems. We further extend our method to input-to-state stability (ISS) analysis.
Finally the results are extended to linear fast-varying systems with time-varying delays.

© 2020 Elsevier Ltd. All rights reserved.
1. Introduction

Asymptotic methods for analysis and control of perturbed sys-
ems depending on small parameters have led to important qual-
tative results (see e.g. Bogoliubov & Mitropolsky, 1961; Cheng
t al., 2018; Khalil, 2002; Kokotovic & Khalil, 1986; Moreau &
eyels, 2000; Teel et al., 2003; Tikhonov, 1952; Vasilieva & Bu-
uzov, 1973). However, by using these methods it is difficult to
ind an efficient bound on the small parameter that preserves the
tability of the perturbed system. The direct Lyapunov method
ay lead to such bounds. Thus, for singularly perturbed systems,
uch a bound was presented e.g. in Kokotovic and Khalil (1986)
nd Fridman (2002) by using the direct Lyapunov method.
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For the sampled-data systems with fast sampling, the time-
delay approach was initiated in the framework of asymptotic
methods (Mikheev et al., 1988) and averaging (Fridman, 1992).
Later the direct Lyapunov–Krasovskii method to sampled-data
systems (Fridman et al., 2004) led to efficient bounds on sampling
intervals that preserve the performance of the systems, and to
efficient tools for robust sampled-data and networked control
(see e.g. Fridman (2014), Hetel and Fridman (2013), Liu et al.
(2019)).

In this paper we consider linear systems with fast-varying
almost periodic coefficients. Our objective is to propose a con-
structive time-delay approach with a corresponding Lyapunov–
Krasovskii method to the averaging method for these systems.
Differently from the classical results (see Chapter 10 of Khalil
(2002), where the system coefficients are supposed to be con-
tinuous in time, we assume them to be piecewise-continuous.
This allows to apply our results to fast switching systems. By
taking average of the both sides of the system, we present the
resulting system as a perturbation of the averaged system, and
model it as a system with time-delays of the length of the small
parameter. If the transformed time-delay system is stable, then
the original one is also stable. We assume that the averaged
system is exponentially stable.

https://doi.org/10.1016/j.automatica.2020.109287
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We suggest a direct Lyapunov–Krasovskii approach, and for-
mulate sufficient exponential stability conditions in the form of
LMIs. The upper bound on the small parameter that guarantees
a desired decay rate for the original system can be found from
LMIs. Two numerical examples (stabilization by vibrational con-
trol and by time-dependent switching) illustrate the efficiency
of the method. We further apply the time-delay approach to
persistently excited systems that leads to a novel quadratic time-
independent Lyapunov functional for such systems.

We extend our results to input-to-state stability (ISS) of the
perturbed systems and to stability and ISS analysis of linear
fast-varying systems with state time-varying delays. Note that
classical results for averaging of time-delay systems were pre-
sented in Hale and Lunel (1990), Lehman and Weibel (1999),
Strygin (1970). We propose a constructive method via appropri-
ate Lyapunov functionals that leads to sufficient stability and ISS
analysis conditions in the form of LMIs. By solving these LMIs,
upper bounds on the small parameter and on the time-varying
delay that preserve the performance can be found.

Note also that stability of linear systems with periodic coef-
ficients and either constant or periodic delays was analyzed by
using numerical methods: Chebyshov polynomials and finite el-
ement methods (Butcher & Mann, 2009) and semi-discretization
method (Insperger & Stépán, 2011). An eigenvalue-based tech-
nique for stability analysis of such systems was presented in
Michiels and Niculescu (2014). Stability conditions for linear
systems with continuous periodic coefficients and constant de-
lays were provided via complete Lyapunov–Krasovskii functional
in Gomez et al. (2016), Letyagina and Zhabko (2009). Guaranteed
cost control of periodically switching linear systems with con-
stant delay and appropriate dwelling times (that are supposed to
be not too small) was studied in Xie and Lam (2018) via piecewise
linear in time Lyapunov functionals for delay-dependent stability.
Strict time-dependent Lyapunov functionals for nonlinear time-
varying systems with delays were presented in Mazenc and
Malisoff (2017).

The article is organized as follows. Section 2 presents a time-
delay approach to stability by averaging. Section 3 extends the
time-delay approach to stability of persistently excited systems.
Section 4 extends the results of Sections 2 and 3 to ISS analysis
of the perturbed systems. Section 5 deals with the averaging
of time-delay systems. Some conclusions are drawn in the last
section. A conference version of the results from Section 2 was
presented on IFACWorld Congress 2020 (Fridman & Zhang, 2020).

1.1. Notations and Jensen’s inequalities

Throughout the paper Rn denotes the n-dimensional Euclidean
pace with the vector norm |·|, Rn×m is the set of all n × m real
atrices with the induced matrix norm ∥ · ∥. The superscript
stands for matrix transposition, and the notation P > 0, for
∈ Rn×n means that P is symmetric and positive definite. The

ymmetric elements of the symmetric matrix are denoted by ∗.
enote by C[−hM , 0] the Banach space of continuous functions
: [−hM , 0] → Rn with the norm ∥φ∥C = maxθ∈[−hM ,0] |φ(θ )|,

nd by L∞(0, t) the space of essentially bounded functions φ :

0, t) → Rn with the norm ∥φ[0, t]∥∞ = ess supθ∈(0,t) |φ(θ )|.
We will employ extended Jensen’s inequalities (Solomon &

ridman, 2013):

emma 1.1. Denote

G =
∫ b
a f (s)x(s)ds, Y =

∫ b
a

∫ t
t−θ

f (θ )x(s)dsdθ,

here a ≤ b, f : [a, b] → R, x(s) ∈ Rn and the integrations
concerned are well defined. Then for any n × n matrix R > 0 the
following inequalities hold:

T
∫ b ∫ b T (1.1)
G RG ≤ a |f (θ )|dθ a |f (s)|x (s)Rx(s)ds,

2

YTRY ≤
∫ b
a |f (θ )|θdθ

∫ b
a

∫ t
t−θ

|f (θ )|xT (s)Rx(s)dsdθ. (1.2)

. A time-delay approach to stability by averaging

Consider the fast-varying system:

ẋ(t) = A( t
ε
)x(t), t ≥ 0, (2.1)

here x(t) ∈ Rn, A : [0, ∞) → Rn×n is piecewise-continuous,
and ε > 0 is a small parameter. Similar to the case of general
averaging in Section 10.6 of Khalil (2002), assume the following:

A1 There exists τ1 ≥ 1 such that the following holds:
1
ε

∫ t
t−ε

A( s
ε
)ds = Aav + ∆A( t

ε
),

∥∆A( t
ε
)∥ ≤ σ ∀

t
ε

≥ τ1
(2.2)

ith Hurwitz constant matrix Aav and small enough constant
> 0.
We will say that system (2.1) has almost periodic coefficients

if it satisfies A1. Matrix ∆A( t
ε
) may stand for system uncertainty

whose norm is upper bounded by a known constant σ . Changing
variable s in (2.2) to θ =

t−s
ε
, we can rewrite the first equation in

(2.2) as∫ 1
0 A( t

ε
− θ )dθ = Aav + ∆A( t

ε
) ∀

t
ε

≥ τ1

or, in terms of the fast time τ =
t
ε
,∫ 1

0 A(τ − θ )dθ = Aav + ∆A(τ ) ∀τ ≥ τ1. (2.3)

Under A1, the averaged system

ẋav(t) = [Aav + ∆A( t
ε
)]xav(t), xav(t) ∈ Rn (2.4)

is exponentially stable for small enough σ .

Remark 2.1. If A(τ ) is 1-periodic, then in (2.3) we have ∆A(τ ) =

. If A(τ ) is T -periodic with T > 0, scaling the time t = T t̄ and
enoting x̄(t̄) = x(T t̄) = x(t), we can present system (2.1) as
d
dt̄ x̄(t̄) = T · A( T t̄

ε
)x̄(t̄)

ith 1-periodic A(T τ̄ ), where τ̄ =
t̄
ε
. In general we can consider

almost periodic A (in the sense of (2.3) with non-zero ∆A(τ )). For
example, let A(τ ) in (2.1) have the form

A(τ ) = A1 cos(τ ) + A2 sin2(3τ ) + A3e−τ , τ =
t
ε
. (2.5)

The n × n matrices A1, A2, A3 in (2.5) are constant, whereas A2 is
Hurwitz. Then, scaling the time t = 2π t̄ and denoting x̄(t̄) = x(t),
we arrive at ˙̄x(t̄) = 2πA( 2π t̄

ε
)x̄(t̄) with∫ 1

0 A(2π (τ − θ ))dθ = 0.5A2 + ∆A(τ ),

where

∆A(τ ) = A3
∫ 1
0 e−2π (τ−θ )dθ.

For all τ ≥ τ1 the following holds:

∥∆A(τ )∥ ≤ ∥A3∥e−2πτ1
∫ 1
0 e2πθdθ ∆

= σ

with small enough σ > 0 for some τ1 ≥ 1.

We will now introduce a time-delay approach to averaging,
where the original system (2.1) is transformed to a time-delay
system. We integrate (2.1) on [t − ε, t] for t ≥ ετ1. Note that
similar to Fridman and Shaikhet (2016), we can present

1
ε

∫ t
t−ε

ẋ(s)ds =
x(t)−x(t−ε)

ε
=

d
dt [x(t) − G(t)], (2.6)

where
∆ 1 ∫ t (2.7)
G(t) =

ε t−ε
(s − t + ε)ẋ(s)ds.
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hen, integrating (2.1) and taking into account (2.6) we arrive at

d
dt [x(t) − G(t)] =

1
ε

∫ t
t−ε

A( s
ε
)[x(s) ± x(t)]ds, t ≥ ετ1.

By changing variable εθ = t − s in the last integral, we have

1
ε

∫ t
t−ε

A( s
ε
)[x(s) − x(t)]ds

=
∫ 1
0 A( t

ε
− θ )[x(t − εθ ) − x(t)]dθ

= −
∫ 1
0 A( t

ε
− θ )

∫ t
t−εθ

ẋ(s)dsdθ.

inally, denoting

z(t) = x(t) − G(t) (2.8)

nd employing (2.2), we transform system (2.1) into a time-delay
ystem for t ≥ ετ1

ż(t) = [Aav + ∆A( t
ε
)]x(t) −

∫ 1
0 A( t

ε
− θ )

∫ t
t−εθ

ẋ(s)dsdθ. (2.9)

System (2.9) is a kind of neutral type system that depends on the
past values of ẋ(s) = A( s

ε
)x(s), s ∈ [t−ε, t]. This can be considered

as a neutral system in Hale’s form (Hale & Lunel, 1993).
Summarizing, if x(t) is a solution to system (2.1), then it

satisfies the time-delay system (2.9). Therefore, the stability of
the time-delay system guarantees the stability of the original
non-delayed system. Note that (2.9) can be considered as a
perturbation of the averaged system (2.4). We will present a
Lyapunov–Krasovskii method for (2.9) leading to LMIs for finding
an upper bound ε∗ > 0 on ε that preserves the exponential
stability of system (2.1) for all ε ∈ (0, ε∗

].
We further assume the following:
A2 All entries akv(τ ) of A(τ ) are uniformly bounded for τ ≥ 0

with the values from some finite intervals akv(τ ) ∈ [amkv, a
M
kv] for

τ ≥ τ1 ≥ 1.
Under A2, A(τ ) can be presented as a convex combination of

the constant matrices Ai with the entries amkv or aMkv:

A(τ ) =
∑N

i=1 fi(τ )Ai ∀τ ≥ τ1 ≥ 1,

fi ≥ 0,
∑N

i=1 fi = 1, 1 ≤ N ≤ 2n2 .
(2.10)

Note that fi ̸≡ 0. For a constant akv , we have amkv = aMkv .
Via (2.10), system (2.9) can be rewritten as

ż(t) = [Aav + ∆A( t
ε
)]x(t) −

∑N
i=1 AiYi(t), (2.11)

where

Yi(t)
∆
=

∫ 1
0 fi

( t
ε

− θ
) ∫ t

t−εθ
ẋ(s)dsdθ. (2.12)

Given ε∗ > 0, denote by f ∗

i > 0 (i = 1, . . . ,N) the following
bounds:

ε∗
∫ 1
0 θ fi(τ − θ )dθ ≤ f ∗

i ∀τ ≥ τ1. (2.13)

Note that since fi ∈ [0, 1] we can always choose f ∗

i ≤
ε∗

2 .

Theorem 2.1. Assume A1 and A2. Given matrices Aav , Ai (i =

1, . . . ,N), and constants σ > 0, α > 0 and ε∗ > 0, let there exist
× n matrices P > 0, R > 0, Hi > 0 (i = 1, . . . ,N) and a scalar
> 0 that satisfy the following LMIs:⎡⎢⎣ Φ

√
ε∗AT

i (R +
∑N

j=1 Hj)

0(N+2)n,n

∗ ∗ −(R +
∑N

j=1 Hj)

⎤⎥⎦ < 0, i = 1, . . . ,N.

(2.14)
3

Here

Φ =

⎡⎢⎢⎢⎣
Φ11 −AT

avP − 2αP Φ13 P

∗ −
4
ε∗ e−2αε∗

R + 2αP Φ23 −P
∗ ∗ Φ33 0Nn,n

∗ ∗ ∗ −λIn

⎤⎥⎥⎥⎦ ,

Φ11 = PAav + AT
avP + 2αP + λσ 2In,

Φ13 = −Φ23 = −P[A1, . . . , AN ],

Φ33 = −2e−2αε∗

diag{
1
f ∗1
H1, . . . ,

1
f ∗N
HN}

(2.15)

with f ∗

i (i = 1, . . . ,N) defined by (2.13). Then system (2.1) is
exponentially stable with a decay rate α for all ε ∈ (0, ε∗

], meaning
that there exists M0 > 0 such that for all ε ∈ (0, ε∗

] the solutions
of (2.1) initialized by x(0) ∈ Rn satisfy the following inequality:

|x(t)|2 ≤ M0e−2αt
|x(0)|2 ∀t ≥ 0. (2.16)

Moreover, if the LMIs (2.14) hold with α = 0, then system (2.1) is
exponentially stable with a small enough decay rate α = α0 > 0 for
all ε ∈ (0, ε∗

].

Proof. Choose

VP (t) = zT (t)Pz(t), 0 < P ∈ Rn×n. (2.17)

Differentiating VP (t) along (2.11) we have
d
dt VP (t) = 2[x(t) − G(t)]TP[(Aav + ∆A( t

ε
))x(t)

−
∑N

i=1 AiYi(t)].
(2.18)

To compensate the G(t)-term, we will use as in Fridman and
haikhet (2016)

VR(t) =
1
ε

∫ t
t−ε

e−2α(t−s)(s − t + ε)2ẋT (s)Rẋ(s)ds, R > 0. (2.19)

e have
d
dt VR(t) + 2αVR(t) = εẋT (t)Rẋ(t)

−
2
ε

∫ t
t−ε

e−2α(t−s)(s − t + ε)ẋT (s)Rẋ(s)ds.
(2.20)

y Jensen’s inequality (1.1)

2GT (t)RG(t) ≤
∫ t
t−ε

(s − t + ε)ẋT (s)Rẋ(s)ds.

hen
d
dt VR(t) + 2αVR(t) ≤ εẋT (t)Rẋ(t) −

4
ε
e−2αεGT (t)RG(t). (2.21)

To compensate the Yi(t)-terms (distributed delay) in (2.18), we
mploy as in Solomon and Fridman (2013)

VH (t) =
∑N

i=1 VHi (t),

VHi (t) = 2
∫ 1
0

∫ t
t−εθ

e−2α(t−s)(s − t + εθ )ẋT (s)Hiẋ(s)dsdθ
(2.22)

ith Hi > 0. Differentiating VHi (t), we have
d
dt VHi (t) + 2αVHi (t)

= εẋT (t)Hiẋ(t) − 2
∫ 1
0

∫ t
t−εθ

e−2α(t−s)ẋT (s)Hiẋ(s)dsdθ

≤ εẋT (t)Hiẋ(t) − 2e−2αε
∫ 1
0

∫ t
t−εθ

ẋT (s)Hiẋ(s)dsdθ.

pplying further Jensen’s inequality (1.2)

Y T
i (t)HiYi(t) ≤

∫ 1
0 εθ fi( tε − θ )dθ

×
∫ 1
0 fi( tε − θ )

∫ t
t−εθ

ẋT (s)Hiẋ(s)dsdθ

≤ f ∗

i

∫ 1
0

∫ t
t−εθ

ẋT (s)Hiẋ(s)dsdθ,

here we took into account (2.10) and used (2.13), we arrive at
d
dt VHi (t) + 2αVHi (t) ≤ εẋT (t)Hiẋ(t)

−
2
∗ e−2αεY T (t)H Y (t).

(2.23)

fi i i i
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Define a Lyapunov functional as

V1(t) = V̄1(x(t), ẋt , ε) = VP (t) + VR(t) + VH (t), (2.24)

where ẋt = ẋ(t+θ ) (θ ∈ [−ε, 0]), with VP (t), VR(t) and VH (t) given
by (2.17), (2.19) and (2.22) respectively. By Jensen’s inequality
(3.87) in Fridman (2014)∫ t

t−ε
φT (s)Rφ(s)ds ≥

1
ε

∫ t
t−ε

φT (s)dsR
∫ t
t−ε

φ(s)ds

with φ(s) = (s − t + ε)ẋ(s), for all ε ∈ (0, ε∗
] we have

V1(t) ≥ VP (t) + VR(t)

≥
[x(t)
G(t)

]T [
P −P
∗ P + e−2αε∗ R

] [x(t)
G(t)

]
≥ c1|x(t)|2

(2.25)

with ε-independent c1 > 0. Thus, V1(t) is positive-definite.
To compensate ∆A( t

ε
)x(t) in (2.18) we apply S-procedure: we

add to V̇1(t) the left-hand part of

λ(σ 2
|x(t)|2 − |∆A( t

ε
)x(t)|2) ≥ 0 (2.26)

ith some λ > 0. Then from (2.18), (2.21), (2.23) and (2.26), we
ave along (2.11)

d
dt V1(t) + 2αV1(t)

≤
d
dt V1(t) + 2αV1(t) + λ(σ 2

|x(t)|2 − |∆A( t
ε
)x(t)|2)

≤ ξ T
1 Φξ1 + ε∗ẋT (t)(R +

∑N
i=1 Hi)ẋ(t),

(2.27)

where Φ is given by (2.15) and

ξ T
1 (t) = [xT (t),GT (t), Y T

1 (t), . . . , Y
T
N (t), x

T (t)∆AT ( t
ε
)]. (2.28)

Since we are interested in exponential bounds on solutions of
(2.11) that satisfy (2.1), we substitute into (2.27)

ẋ(t) =
∑N

i=1 fi(
t
ε
)Aix(t).

pplying further Schur complements, we conclude that if⎡⎢⎣ Φ

√
ε∗

∑N
i=1 fi(

t
ε
)AT

i (R +
∑N

j=1 Hj)

0(N+2)n,n

∗ ∗ −(R +
∑N

j=1 Hj)

⎤⎥⎦ < 0, (2.29)

we have
d
dt V1(t) + 2αV1(t) ≤ 0 ∀t ≥ ετ1,

ielding for solutions of (2.1) the following bound:

1|x(t)|2 ≤ V1(t) ≤ e−2α(t−ετ1)V1(ετ1), t ≥ ετ1. (2.30)

LMIs (2.14) imply (2.29) since (2.29) is affine in
∑N

i=1 fi(
t
ε
)AT

i .
Note that V1(ετ1) defined by (2.24) is upper bounded for all

ε ∈ (0, ε∗
]

V1(ετ1) ≤ c2
[
|x(ετ1)|2 +

∫ ετ1
ε(τ1−1) |ẋ(s)|

2ds
]

(2.31)

with ε-independent c2 > 0. For t ∈ [0, ετ1], x(t) satisfies (2.1),
where under A2 we have ∥A(τ )∥ ≤ a for some a > 0 and all
τ ≥ 0. Hence, d

dt |x(t)|
2

≤ 2a|x(t)|2 for t ∈ [0, ετ1] yielding

x(t)| ≤ eat |x(0)|, |ẋ(t)| ≤ aeat |x(0)|, t ∈ [0, ετ1].

Therefore, V1(ετ1) for all ε ∈ (0, ε∗
] can be further upper bounded

as

V1(ετ1) ≤ c2
[
e2aετ1 |x(0)|2 +

∫ ετ1
ε(τ1−1) a

2e2at |x(0)|2ds
]

≤ c3e−2αετ1 |x(0)|2
(2.32)

with some ε-independent c3 > 0. Then (2.16) follows from (2.30)
and (2.32).

The feasibility of the strict LMIs (2.14) with α = 0 implies
the feasibility of (2.14) with the same decision variables and with
a small enough positive α = α0, and thus guarantees a small
enough decay rate. □
4

Remark 2.2. To select the tuning parameters α > 0 and ε∗ > 0,
we suggest the following algorithm: given matrices Aav and Ai
(i = 1, . . . ,N) and a small constant σ > 0, we verify the
feasibility of the LMIs with ε∗ close to zero to enlarge the upper
bound α∗ on α that preserves the feasibility. We apply here the
binary search method (with a high efficiency) to find α∗. Similarly,
by choosing α ∈ (0, α∗

], we obtain the upper bound ε∗ that
preserves the feasibility of the LMIs.

Remark 2.3. LMIs of Theorem 2.1 are always feasible for small
enough positive ε∗, α and σ . Indeed, since Aav is Hurwitz, there
exists a n× n matrix P > 0 such that for small enough α > 0 the
following holds:

Φ0
∆
= PAav + AT

avP + 2αP < 0.

We choose R = N · Hi = e2αε∗

In (i = 1, . . . ,N), λ =
1
ε∗ and

= ε∗. By using Schur complements and further employing
∗

i ≤
ε∗

2 , we find that LMIs (2.14) are feasible if the following
matrix inequalities hold:[

Φ0 + ε∗(In + 2e2αε∗

AT
i Ai) −AT

avP − 2αP

∗ −
2
ε∗ In + 2αP

]

+ε∗

[
P

−P

]
(In +

1
4

∑N
i=1 AiAT

i )
[

P
−P

]T

< 0, i = 1, . . . ,N.

ince Φ0 < 0, the latter inequalities are always feasible for small
nough ε∗ > 0.
Note that by similar arguments, all the LMIs presented in the

theorems of this paper are feasible for small enough positive ε∗

nd α (as well as σ , hM , b−1
0 , . . . , b−1

N̄
in Sections 4 and 5 ).

emark 2.4. As it is seen from the proof of Theorem 2.1 (cf.
2.26)), LMIs (2.14) guarantee the stability of a more general
ystem than (2.1) with A = A( t

ε
, t, ε) provided there exists τ1 > 0

such that for all small enough ε > 0 and t ≥ ετ1 all entries of A
are uniformly bounded and

1
ε

∫ t
t−ε

A( s
ε
, s, ε)ds = Aav + ∆A( t

ε
, t, ε), ∥∆A( t

ε
, t, ε)∥ ≤ σ ,

here Aav is Hurwitz and constant σ > 0 is small enough.

Example 2.1 (Khalil (2002), Example 10.10: vibrational control).
Consider the suspended pendulum with the suspension point
that is subject to vertical vibrations of small amplitude and high
frequency. The linearized at the upper equilibrium position model
is given by

ẋ(t) =

[
cos t

ε
1

γ 2
− cos2 t

ε
−γ (β + ∆β) − cos t

ε

]
x(t) (2.33)

with γ > 0 and β > 0. Here the uncertainty ∆β stems from
the uncertainties of friction coefficient and satisfies |∆β| ≤ β1
with β1 ≥ 0. Note that we linearized f given above (10.32) on p.
410 of Khalil (2002) at x1 = π , x2 = 0 to derive (2.33). Similar
to Remark 2.1, we change the time variable t = 2π t̄ and define
x̄(t̄) = x(2π t̄) = x(t), therefore,

˙̄x(t̄) = 2π

[
cos 2π t̄

ε
1

γ 2
− cos2 2π t̄

ε
−γ (β + ∆β) − cos 2π t̄

ε

]
x̄(t̄).

(2.34)

hen we obtain

av = 2π
[

0 1
γ 2

− 0.5 −γ β

]
, ∆A = −2πγ

[
0 0
0 ∆β

]
ith σ = 2πγβ1. It follows from Theorem 10.4 of Khalil (2002)
hat for γ 2 < 0.5 and small enough ε, system (2.34) with
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β = 0 is exponentially stable. By applying Theorem 2.1, we
will find upper bounds on ε and uncertainty ∆β that guarantee
the exponential convergence of (2.34) with a decay rate α > 0
for all ε and ∆β that are not larger than the found upper bounds.

We choose γ = 0.2 and β = 1. Note that cos τ ∈ [−1, 1]
and cos2 τ ∈ [0, 1]. Therefore, system (2.34) can be presented
as a system with polytopic type uncertainty, where A1, . . . , A8
correspond to the eight vertices:

Ai = 2π
[

−1 1
−0.46 ± 0.5 0.2(±β1 + 4)

]
, i = 1, . . . , 4,

Ai = 2π
[

1 1
−0.46 ± 0.5 −0.2(±β1 + 6)

]
, i = 4, . . . , 8.

(2.35)

Here for simplicity we choose f ∗

i = 0.5ε∗(i = 1, . . . , 8), where f ∗

i
is defined by (2.13). By verifying the feasibility of LMIs (2.14) in
the eight vertices (2.35) (four vertices for β1 = 0), we find upper
bounds ε∗ that guarantee the exponential stability of (2.34) for
all ε ∈ (0, ε∗

] either with a small enough decay rate (for α = 0)
or with α = 0.2:
β1 = 0 : α = 0, ε∗

= 0.0031;
α = 0.2, ε∗

= 0.0021;
β1 = 0.1 : α = 0, ε∗

= 0.0013;
α = 0.2, ε∗

= 0.0007.

Numerical simulations under an arbitrary initial condition show
that the system (2.34) with ∆β = 0 preserves the stability
till a larger upper bound ε∗

= 0.47, which may illustrate the
conservatism of the proposed method.

Example 2.2 (Hetel and Fridman (2013): stabilization by fast switch-
ing). Consider a switched uncertain system

ẋ(t) =

{
(Ā1 + ∆Ā1( tε ))x(t), t ∈ [kε, kε + βε),

(Ā2 + ∆Ā2( tε ))x(t), t ∈ [kε + βε, (k + 1)ε),
(2.36)

where ε > 0, k = 0, 1, . . . and β ∈ (0, 1), with unstable modes

Ā1 =

[
0.1 0.3
0.6 −0.2

]
, Ā2 =

[
−0.13 −0.16
−0.33 0.03

]
nd uncertainties

∆Ā1( tε ) =

[
0 0
0 g( t

ε
)

]
, ∆Ā2( tε ) =

[
g( t

ε
) 0

0 0

]
,

|g(τ )| ≤ g1 ∀τ ≥ 0,
(2.37)

where g1 ≥ 0. Then (2.36) can be presented as (2.1) with

A(τ ) =
∑2

i=1 χi(τ )(Āi + ∆Āi(τ )),
τ =

t
ε

∈ [k, k + 1), k = 0, 1, . . . ,
(2.38)

here χ1(τ ) = χ[k,k+β)(τ ) is the indicator function of [k, k + β),
2(τ ) = 1 − χ1(τ ). Choose β = 0.4 that leads to Hurwitz

Aav = βĀ1 + (1 − β)Ā2,

and

∆A(τ ) =
∫ β

0 ∆Ā1(τ − θ )dθ +
∫ 1

β
∆Ā2(τ − θ )dθ.

he latter yields

∥∆A(τ )∥ ≤
∫ β

0 ∥∆Ā1(τ − θ )∥dθ +
∫ 1

β
∥∆Ā2(τ − θ )∥dθ

implying σ = g1. Since A(τ ) is not continuous, the classical results
with asymptotic methods (e.g. Theorem 10.4 of Khalil (2002) are
not applicable here.
5

Taking into account the uncertainties given by (2.37), system
(2.36) can be presented as a system with polytopic type uncer-
tainty (2.10), where A1, . . . , A4 correspond to the four vertices:

Ai =

[
0.1 0.3
0.6 −0.2 ± g1

]
, fi(τ ) = χ1(τ ), i = 1, 2,

Ai =

[
−0.13 ± g1 −0.16

−0.33 0.03

]
, fi(τ ) = χ2(τ ), i = 3, 4.

(2.39)

The bounds (2.13) in this example can be found as follows:

ε∗
∫ 1
0 θχ1(τ − θ )dθ ≤ ε∗

∫ 1
1−β

θdθ

= 0.5ε∗
[1 − (1 − β)2] ∆

= f ∗

i , i = 1, 2,

ε∗
∫ 1
0 θχ2(τ − θ )dθ ≤ ε∗

∫ 1
β

θdθ

= 0.5ε∗(1 − β2) ∆
= f ∗

i , i = 3, 4.

(2.40)

By verifying the feasibility of LMIs (2.14) in the four vertices (2.39)
(two vertices for g1 = 0), we find the upper bounds ε∗ that
guarantee the exponential stability of (2.36) for all ε ∈ (0, ε∗

]

either with a small enough decay rate (for α = 0) or with a decay
rate α = 0.005:
g1 = 0 : α = 0, ε∗

= 0.1363;
α = 0.005, ε∗

= 0.0930;
g1 = 0.01 : α = 0, ε∗

= 0.0244;
α = 0.005, ε∗

= 0.0033.

(2.41)

Numerical simulations show that system (2.36) with ∆Āi(τ ) =

0 (i = 1, 2) is stable for a much larger upper bound ε∗
= 37.8.

Remark 2.5. As it is seen from the examples, the theoretical
upper bounds on ε are essentially smaller than the values found
from simulations. This often happens for systems with two time-
scales (e.g. singularly perturbed systems), where the theory is
aimed for comparatively small values of ε that preserve the two
scales, whereas in the numerical examples it may happen that
the stability is guaranteed also for large values of ε. Note that by
using classical tools for asymptotic analysis, it is difficult to find
an upper bound on ε that preserves the stability. We propose a
constructive time-delay approach with a positive bound on ε that
guarantees a desired performance and that is found from easily
verifiable LMIs. This is the first paper on time-delay approach
to averaging. As it happened with the first results for delay-
dependent stability conditions (see Sections 3.6–3.10 of Fridman
(2014)), we believe that our method will be improved in the
future.

3. A time-delay approach to persistently excited systems

In this section, we consider the following persistently excited
(PE) system

˙̄x(τ ) = −εp(τ )pT (τ )x̄(τ ), τ ≥ 0, (3.1)

where x̄(τ ) ∈ Rn, p : [0, ∞) → Rn is measurable and ε > 0 is a
small parameter. Similar to Pogromsky and Matveev (2017), we
assume that function p has the following properties:

A3 Boundedness: there exists a constant M such that for
almost all τ ≥ 0

T 2
p(τ )p (τ ) ≤ M In. (3.2)
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A4 Persistency of excitation: there is a constant ρ > 0 such
that∫ 1

0 p(τ − θ )pT (τ − θ )dθ ≥ ρIn ∀τ ≥ 1. (3.3)

From A3 it follows that∫ 1
0 p(τ − θ )pT (τ − θ )dθ ≤ M2In ∀τ ≥ 1. (3.4)

emark 3.1. The system (3.1) has been studied in Pogrom-
ky and Matveev (2017), Zhang et al. (2019), where sufficient
onditions were provided to guarantee the stability. Particu-
arly, in Zhang et al. (2019), the following condition 2εM2 >

εM2 − ερ guarantees the asymptotic stability of (3.1). Clearly
that given M > 0 and ρ > 0, the latter condition does not
hold for small enough ε. This is different from our results that
guarantee stability for small ε. In Pogromsky and Matveev (2017),
a bound on the decay rate has been derived by introducing
a novel non-quadratic Lyapunov functional. Time-varying Lya-
punov functions for PE were considered in Efimov and Fradkov
(2015), Verrelli and Tomei (2020). We have proposed explicit
time-independent Lyapunov functional with matrices found from
LMIs (to be compared with time-varying Lyapunov functions
found from time-varying differential Lyapunov equations with
some pre-chosen initial conditions). Since our functional leads to
exponential stability conditions in terms of LMIs, these conditions
can be easily extended further to ISS conditions (see Section 4) in
terms of simply verifiable LMIs.

By changing the time τ =
t
ε
and defining x̄(τ ) = x(ετ ) = x(t),

e can rewrite the PE system (3.1) in the slow time as

ẋ(t) = −p( t
ε
)pT ( t

ε
)x(t), t ≥ 0. (3.5)

ollowing the time-delay approach to averaging of Section 2,
e integrate (3.5) on [t − ε, t] for t ≥ ε, and employ (2.6)
ith notation (2.7). Then we transform (3.5) to the following
ime-delay system:

ż(t) = −Aav
( t

ε

)
x(t) + Y (t), t ≥ ε, (3.6)

here z(t) = x(t) − G(t) with G(t) defined by (2.7). Here

Aav
( t

ε

) ∆
=

1
ε

∫ t
t−ε

p( s
ε
)pT ( s

ε
)ds =

∫ 1
0 p( t

ε
− θ )pT ( t

ε
− θ )dθ,

Y (t) ∆
=

∫ 1
0 p( t

ε
− θ )pT ( t

ε
− θ )

∫ t
t−εθ

ẋ(s)dsdθ.
(3.7)

Under A3 and A4, the following holds:

ρIn ≤ Aav
( t

ε

)
≤ M2In. (3.8)

s in Section 2, the original system (3.1) is stable if the time-
elay system (3.6) is stable. Moreover, (3.6) can be considered as
perturbation of the exponentially stable system

ẋav(t) = −Aav
( t

ε

)
xav(t), xav(t) ∈ Rn.

For the stability analysis of (3.6), we first consider (2.17) with
a scalar matrix P = pIn, i.e.

Vp(t) = pzT (t)z(t), (3.9)

where p > 0 is a scalar. Differentiating Vp(t) along (3.6) we have
d
dt Vp(t) = 2p[x(t) − G(t)]T [−Aav

( t
ε

)
x(t) + Y (t)]. (3.10)

To compensate the G(t)-term in (3.10), we use (2.19) with R = rIn,
i.e.

Vr (t) = r 1
ε

∫ t
t−ε

e−2α(t−s)(s − t + ε)2ẋT (s)ẋ(s)ds, (3.11)

where r is a positive scalar. Then (2.21) holds, where due to (3.5)
and A3 we obtain

ẋT (t)Rẋ(t) ≤ rẋT (t)ẋ(t) ≤ rM4xT (t)x(t).

Hence,
d 4 T 4 −2αε T

dt Vr (t) + 2αVr (t) ≤ εrM x (t)x(t) −

ε
e rG (t)G(t). (3.12)

6

To compensate the Y (t)-term in (3.10), we employ

Vη(t) = 2η
∫ 1
0

∫ t
t−εθ

e−2α(t−s)(s − t + εθ )ẋT (s)ẋ(s)dsdθ (3.13)

with a scalar η > 0. Differentiating Vη(t) and using A3, we have
d
dt Vη(t) + 2αVη(t) ≤ εηM4xT (t)x(t)

−2e−2αεη
∫ 1
0

∫ t
t−εθ

ẋT (s)ẋ(s)dsdθ.
(3.14)

pplying further Jensen’s inequality (1.2)

Y T (t)Y (t) ≤
∫ 1
0

∫ t
t−εθ

p( t
ε

− θ )pT ( t
ε

− θ )dsdθ

×
∫ 1
0 p( t

ε
− θ )pT ( t

ε
− θ )

∫ t
t−εθ

ẋT (s)ẋ(s)dsdθ

≤
ε
2M

4
∫ 1
0

∫ t
t−εθ

ẋT (s)ẋ(s)dsdθ,

(3.15)

e arrive at
d
dt Vη(t) + 2αVη(t) ≤ εM4ηxT (t)x(t)

−
4

εM4 e−2αεηY T (t)Y (t).
(3.16)

Consider a Lyapunov functional as

V2(t) = Vp(t) + Vr (t) + Vη(t), (3.17)

where Vp(t), Vr (t) and Vη(t) are given by (3.9), (3.11) and (3.13)
respectively. From (2.25), it follows that V2(t) is positive-definite
since V2(t) ≥ Vp(t) + Vr (t) > c1|x(t)|2 for some c1 > 0. By
combining (3.10), (3.12) and (3.16), and treating the term Aav

( t
ε

)
in (3.10) as the one from polytope with two vertices A1 = ρIn and
A2 = M2In (cf. (3.8)), we arrive at the following result:

Theorem 3.1. Assume A3 and A4. Given constants M2 > ρ > 0,
α > 0 and ε∗ > 0, let there exist positive scalars p, r and η that
satisfy the following two LMIs:

Ξi < 0, i = 1, 2, (3.18)

where

Ξi =

⎡⎣Ξi11 pai − 2αp p

∗ −
4
ε∗

e−2αε∗ r + 2αp −p

∗ ∗ −
4

ε∗M4 e−2αε∗η

⎤⎦ ,

Ξi11 = −2pai + 2αp + ε∗M4(r + η),
a1 = ρ, a2 = M2.

(3.19)

hen system (3.5) is exponentially stable with a decay rate α for
ll ε ∈ (0, ε∗

], meaning that there exists M0 > 0 such that for all
∈ (0, ε∗

] the solutions of (3.5) initialized by x(0) satisfy (2.16).
oreover, if the LMIs are feasible with α = 0, then system (3.5) is
xponentially stable with a small enough decay rate α = α0 > 0 for
ll ε ∈ (0, ε∗

].

xample 3.1. Consider the PE system (3.1) subject to (3.2) and
3.3). We choose α = 0.5. By verifying the feasibility of LMIs
3.18) with M = 1 and ρ = 0.55, we find an upper bound
∗

= 0.0645 that preserves the exponential stability of (3.1),
here ε = ε∗, with a decay rate ε∗α = 0.03225. For ε∗

= 0.0645,
he resulting decay rate ε∗ρ

(1+ε∗M2)2
= 0.0313 of Pogromsky and

Matveev (2017) is a bit smaller.

4. ISS analysis of fast-varying linear systems

In this section we will extend the stability analysis of Sec-
tions 2 and 3 to ISS analysis of the perturbed systems.

4.1. ISS analysis by averaging

Consider the fast-varying perturbed system

ẋ(t) = A( t )x(t) + B( t )w(t), t ≥ 0, (4.1)

ε ε
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here x(t) ∈ Rn, A : [0, ∞) → Rn×n and B : [0, ∞) → Rn×nw

re piecewise-continuous, ε > 0 is a small parameter, and w(t) ∈
nw is a disturbance. The disturbance is supposed to be locally
ssentially bounded meaning that w ∈ L∞(0, t) for all t > 0.
We assume that A1 and A2 and relation (2.10) hold. Assume

dditionally
A5 All entries bkv(τ ) of B(τ ) are uniformly bounded for τ ≥ 0

with the values from some finite intervals bkv(τ ) ∈ [bmkv, b
M
kv] for

τ ≥ τ1 ≥ 1.
In this paper B(τ ) is treated as a matrix from the time-varying

polytope. Under A5, B(τ ) can be presented as a convex combi-
nation of the constant matrices Bl with the entries bmkv or bMkv:

B(τ ) =
∑N̄

l=1 f̄l(τ )Bl ∀τ ≥ τ1 ≥ 1,

f̄l ≥ 0,
∑N̄

l=1 f̄l = 1, 1 ≤ N̄ ≤ 2n×nw .
(4.2)

Following the time-delay approach to averaging, we integrate
4.1) on [t − ε, t] for t ≥ ετ1. Then we arrive at

ż(t) = [Aav + ∆A( t
ε
)]x(t) −

∫ 1
0 A( t

ε
− θ )

∫ t
t−εθ

ẋ(s)dsdθ

+
∫ 1
0 B( t

ε
− θ )w(t − θε)dθ, t ≥ ετ1,

(4.3)

here z(t) is given by (2.8). Compared to (2.9), the latter system
as an additional term

∫ 1
0 B( t

ε
− θ )w(t − θε)dθ . From (4.2), we

have∫ 1
0 B( t

ε
− θ )w(t − θε)dθ =

∑N̄
l=1 Blwl(t), (4.4)

where

wl(t)
∆
=

∫ 1
0 f̄l( tε − θ )w(t − θε)dθ. (4.5)

ince 0 ≤ f̄l ≤ 1, we have

|wl(t)| = |
∫ 1
0 f̄l( tε − θ )w(t − θε)dθ |

≤
∫ 1
0 |f̄l( tε − θ )||w(t − θε)|dθ

≤ ∥w[0, t]∥∞, l = 1, . . . , N̄, t ≥ ετ1.

(4.6)

Then system (4.3) has the following form

ż(t) = [Aav + ∆A( t
ε
)]x(t) −

∑N
i=1 AiYi(t)

+
∑N̄

l=1 Blwl(t), t ≥ ετ1,
(4.7)

here Yi(t) and wl(t) are given by (2.12) and (4.5), respectively.
ote that system (4.1) is ISS if the time-delay system (4.7) is ISS.
e now present the ISS conditions for system (4.7):

heorem 4.1. Assume A1, A2 and A5. Given matrices Aav , Ai
(i = 1, . . . ,N), Bl (l = 1, . . . , N̄), and constants σ > 0, α > 0
nd ε∗ > 0, let there exist n × n matrices P > 0, R > 0, Hi > 0
i = 1, . . . ,N), and scalars λ > 0 and bl > 0 (l = 0, . . . , N̄) that
atisfy the following LMIs:⎡⎢⎢⎣ Φ̄

√
ε∗AT

i (R +
∑N

j=1 Hj)
0(N+2)n+N̄nw ,n√

ε∗BT
l (R +

∑N
j=1 Hj)

∗ ∗ ∗ −(R +
∑N

j=1 Hj)

⎤⎥⎥⎦ < 0,

i = 1, . . . ,N, l = 1, . . . , N̄,

(4.8)

where

Φ̄ =

[
Φ Φ̄12

∗ Φ̄22

]
,

Φ̄12 =
[
P −P 0n,(N+1)n

]T [
B1 . . . BN̄ 0n,nw

]
,

Φ̄22 = −diag{b1Inw , . . . , bN̄ Inw , b0Inw },

(4.9)

and Φ is given by (2.15). Then system (4.1) is ISS for all ε ∈ (0, ε∗
],

eaning that there exists M > 0 such that for all ε ∈ (0, ε∗
] and
0

7

ocally essentially bounded w, the solutions of system (4.1) initialized
y x(0) ∈ Rn satisfy the following inequality:

|x(t)|2 ≤ M0e−2αt
|x(0)|2

+

[
M0e−2αt

+
b0+···+bN̄

2αc1

]
∥w[0, t]∥2

∞
∀t ≥ 0,

(4.10)

where c1 denotes the smallest eigenvalue of matrix
[

P −P

∗ P+e−2αε∗R

]
.

oreover, given ∆ > 0, the ellipsoid

X = {x ∈ Rn
: |x|2 ≤

b0+···+bN̄
2αc1

∆2
} (4.11)

is exponentially attractive with a decay rate α for all x(0) ∈ Rn

and essentially bounded w with ess supt≥0 |w(t)| ≤ ∆. In addition,
f LMIs (4.8) are feasible for α = 0, then system (4.1) is ISS for
ll ε ∈ (0, ε∗

] and (4.10) holds with a small enough decay rate
= α0 > 0.

roof. Differentiating V1(t) given by (2.24) along (4.7) and fol-
owing arguments of Theorem 2.1, we arrive at

d
dt V1(t) + 2αV1(t) − b0|w(t)|2 −

∑N̄
l=1 bl|wl(t)|2

≤ ξ̄ T
1 (t)Φ̄ ξ̄1(t) + ε∗ẋT (t)(R +

∑N
i=1 Hi)ẋ(t),

(4.12)

where

ξ̄ T
1 (t) = [ξ T

1 (t), ξ
T
2 (t)], ξ T

2 (t) = [wT
1 (t), . . . , w

T
N̄ (t), w

T (t)],

nd ξ1(t) and Φ̄ is given by (2.28) and (4.9) respectively. Via (2.10)
nd (4.2), we can present system (4.1) as follows

ẋ(t) =
∑N

i=1 fi(
t
ε
)Aix(t) +

∑N̄
l=1 f̄l(

t
ε
)Blw(t). (4.13)

ote that the term −b0|w(t)|2 in (4.12) compensates w(t) that
tems from the substitution of ẋ given by (4.13) into (4.12). By
chur complements, if⎡⎢⎢⎢⎣ Φ̄

√
ε∗

∑N
i=1 fi(

t
ε
)AT

i (R +
∑N

j=1 Hj)
0(N+2)n+N̄nw ,n

√
ε∗

∑N̄
l=1 f̄l(

t
ε
)BT

l (R +
∑N

j=1 Hj)
∗ ∗ ∗ −(R +

∑N
j=1 Hj)

⎤⎥⎥⎥⎦ < 0,

(4.14)

hen for t ≥ ετ1 the following holds:

d
dt V1(t) + 2αV1(t) − b0|w(t)|2 −

∑N̄
l=1 bl|wl(t)|2 ≤ 0.

By comparison principle, the latter implies

V1(t) ≤ e−2α(t−ετ1)V1(ετ1) +
b0+···+bN̄

2α ∥w[0, t]∥2
∞

,

t ≥ ετ1.
(4.15)

LMIs (4.8) yield (4.14) and thus (4.15).
For t ∈ [0, ετ1], x(t) satisfies (4.1), where under A2 and A5

there exist a > 0 and b > 0 such that ∥A(τ )∥ ≤ a and ∥B(τ )∥ ≤ b
for all τ ≥ 0. We obtain

|ẋ(t)| ≤ a|x(t)| + b∥w[0, t]∥∞, t ∈ [0, ετ1]

implying

2|x(t)||ẋ(t)| ≤ 2a|x(t)|2 + 2b|x(t)|∥w[0, t]∥2
∞

, t ∈ [0, ετ1],

or, by Young’s inequality,
d
dt |x(t)|

2
≤ (2a + b)|x(t)|2 + b∥w[0, t]∥2

∞
, t ∈ [0, ετ1].

By comparison principle, the latter yields

|x(t)|2 ≤ e(2a+b)t
|x(0)|2 +

be(2a+b)t

2a+b ∥w[0, t]∥2
∞

, t ∈ [0, ετ1].

(4.16)
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hen
|ẋ(t)|2 ≤ 2a2|x(t)|2 + 2b2∥w[0, t]∥2

∞

≤ 2a2e(2a+b)t
|x(0)|2 + 2b

(
a2 e(2a+b)t

2a+b + b
)

∥w[0, t]∥2
∞

,

t ∈ [0, ετ1].

(4.17)

From (2.31), (4.16) and (4.17), it follows that

V1(ετ1) ≤ c3e−2αετ1
[
|x(0)|2 + ∥w[0, t]∥2

∞

]
,

t ∈ [0, ετ1], ε ∈ (0, ε∗
]

(4.18)

with some ε-independent c3 > 0. The latter inequality together
with (2.25) and (4.15) implies (4.10).

The feasibility of the strict LMIs (4.8) with α = 0 implies
their feasibility with the same decision variables and with a small
enough α = α0 > 0, and thus guarantees ISS. □

4.2. ISS analysis of persistently excited systems

In this section, we consider the PE system (3.5) in the presence
of perturbations

ẋ(t) = −p( t
ε
)pT ( t

ε
)x(t) + B( t

ε
)w(t), t ≥ 0, (4.19)

where ε > 0, B : [0, ∞) → Rn×nw is piecewise-continuous, and
w(t) ∈ Rnw is the essentially bounded disturbance. Assume that
A3 - A5 and presentation (4.2) hold. Following the time-delay
approach to averaging of Section 2, we integrate (4.19) on [t−ε, t]
for t ≥ ε. Using the notations given by (2.7), (2.8), (3.7) and (4.4),
we rewrite system (4.19) as

ż(t) = −Aav( tε )x(t) + Y (t) +
∑N̄

l=1 Blwl(t), t ≥ ε. (4.20)

Note that the ISS of the time-delay system (4.20) implies the ISS
of (4.19). To derive stability conditions of system (4.20), we con-
sider Lyapunov functional V2(t) given by (3.17). Differentiating
V2(t) along (4.20) via (3.12) and (3.16) we arrive at

d
dt V2(t) + 2αV2(t) − b0|w(t)|2 −

∑N̄
l=1 bl|wl(t)|2

≤ 2p[x(t) − G(t)]T [−Aav( tε )x(t) + Y (t) +
∑N̄

l=1 Blwl(t)]
+2αpxT (t)x(t) + ε(r + η)ẋT (t)ẋ(t)

−
4
ε
e−2αεrGT (t)G(t) −

4
εM4 e−2αεηY T (t)Y (t)

−b0|w(t)|2 −
∑N̄

l=1 bl|wl(t)|2.

(4.21)

Further by substituting (4.19) and applying Young’s inequality,
we obtain due to A3
ẋT (t)ẋ(t) ≤ 2xT (t)p( t

ε
)pT ( t

ε
)p( t

ε
)pT ( t

ε
)x(t)

+2wT (t)BT ( t
ε
)B( t

ε
)wT (t)

≤ 2M4xT (t)x(t) + 2wT (t)BT ( t
ε
)B( t

ε
)wT (t).

(4.22)

Then for all t ≥ ε

d
dt V2(t) + 2αV2(t) − b0|w(t)|2 −

∑N̄
l=1 bl|wl(t)|2 ≤ 0 (4.23)

f the two matrix inequalities⎡⎣ Ξ̄i
03n+N̄nw ,n

√
2ε∗(r + η)

∑N̄
l=1 f̄l(

t
ε
)BT

l
∗ ∗ −(r + η)In

⎤⎦ < 0, i = 1, 2

(4.24)

are feasible, where

Ξ̄i =

[ (
Ξi + diag{εM4(r + η), 02,2}

)
⊗ In Φ̃12

∗ Φ̄22

]
. (4.25)

Here Ξi and Φ̄22 are given by (3.19) and (4.9) respectively, and

˜
[ ]T [ ]
Φ12 = p In −In 0n,n B1 . . . BN̄ 0n,nw .

8

Since (4.24) is affine in
∑N̄

l=1 f̄l(
t
ε
)BT

l , we obtain the following
ISS result:

Theorem 4.2. Assume A3 - A5. Given matrices Bl (l = 1, . . . , N̄),
and constants M2 > ρ > 0, α > 0 and ε∗ > 0, let there exist
positive scalars p, r, η and bl (l = 0, . . . , N̄) that satisfy the following
LMIs:⎡⎣ Ξ̄i

03n+N̄nw ,n√
2ε∗(r + η)BT

l
∗ ∗ −(r + η)In

⎤⎦ < 0, i = 1, 2, l = 1, . . . , N̄,

(4.26)

where Ξ̄i is given by (4.25). Then system (4.19) is ISS for all ε ∈

(0, ε∗
], meaning that there exists M0 > 0 such that for all ε ∈ (0, ε∗

]

and locally essentially bounded w, the solutions of system (4.19)
initialized by x(0) ∈ Rn satisfy (4.10). Moreover, given ∆ > 0,
the ellipsoid X given by (4.11) is exponentially attractive with a
decay rate α for all x(0) ∈ Rn and essentially bounded w with
ess supt≥0 |w(t)| ≤ ∆. In addition, if the LMIs (4.26) hold with
α = 0, then system (4.19) is ISS for all ε ∈ (0, ε∗

] and (4.10) holds
with a small enough decay rate α = α0 > 0.

5. Averaging of systems with time-varying delays

In this section, we consider the fast-varying system with a
time-varying delay h(t):

ẋ(t) = A( t
ε
)x(t) + Ad( tε )x(t − h(t)), t ≥ 0, (5.1)

here x(t) ∈ Rn, A, Ad : [0, ∞) → Rn×n are piecewise-
continuous, and ε > 0 is a small parameter. The delay h(t) is
supposed to be bounded

0 ≤ h(t) ≤ hM (5.2)

and fast-varying (without any restriction on the delay derivative).
The initial condition of system (5.1) is given by x(θ ) = φ(θ ),
θ ∈ [−hM , 0] with φ ∈ C[−hM , 0].

We assume the following:
A6 There exists τ1 ≥ 1 such that (2.2) holds and

1
ε

∫ t
t−ε

Ad( sε )ds = Adav + ∆Ad( tε ),

∥∆Ad( tε )∥ ≤ σd ∀
t
ε

≥ τ1,
(5.3)

here σd > 0 is a small enough constant. Moreover, matrix
av + Adav is Hurwitz.
A7 Let A2 hold and all entries adkv(τ ) of Ad(τ ) are uniformly

ounded for τ ≥ 0 with the values from some finite intervals
dkv(τ ) ∈ [amdkv, a

M
dkv] for τ ≥ τ1 ≥ 1.

Under A7, (2.10) holds and Ad(τ ) can be presented as a convex
ombination of the constant matrices Adj with the entries amdkv or
M
dkv:

Ad(τ ) =
∑Nd

j=1 fdj(τ )Adj ∀τ ≥ τ1 ≥ 1,

fdj ≥ 0,
∑Nd

j=1 fdj = 1, 1 ≤ Nd ≤ 2n2 .
(5.4)

or a constant adkv , we have amdkv = aMdkv .
Following the time-delay approach to averaging, we integrate

5.1) on [t−ε, t] for t ≥ ετ1+hM . Then we arrive at the following
ime-delay system for t ≥ ετ1 + hM

ż(t) = [Aav + Adav + ∆A( t
ε
) + ∆Ad( tε )]x(t)

−
∫ 1
0 A( t

ε
− θ )

∫ t
t−εθ

ẋ(s)dsdθ

−
∫ 1
0 Ad( tε − θ )

∫ t
t−εθ−h(t−εθ ) ẋ(s)dsdθ,

(5.5)

here z(t) is given by (2.8). Compared to system (2.9), the latter
ystem has an additional integral term that via (5.4) can be
resented as∫ 1 t ∫ t

˙
∑Nd
− 0 Ad( ε
− θ ) t−εθ−h(t−εθ ) x(s)dsdθ = − j=1 AdjYdj(t),
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Ydj(t)
∆
=

∫ 1
0 fdj( tε − θ )

∫ t
t−εθ−h(t−εθ ) ẋ(s)dsdθ. (5.6)

Then system (5.5) can be rewritten as

ż(t) =
[
Aav + Adav + ∆A( t

ε
) + ∆Ad( tε )

]
x(t)

−
∑N

i=1 AiYi(t) −
∑Nd

j=1 AdjYdj(t), t ≥ ετ1 + hM ,
(5.7)

here Yi(t) and Ydj(t) are given by (2.12) and (5.6), respectively.
Note that (5.1) is stable if the time-delay system (5.7) is stable.
The latter system is a perturbation of the averaged system

ẋav(t) =
[
Aav + Adav + ∆A( t

ε
) + ∆Ad( tε )

]
xav(t), xav(t) ∈ Rn,

which is exponentially stable for small enough σ and σd.
Let f ∗

i (i = 1, . . . ,N) be defined by (2.13). Denote by f ∗

dj > 0
(j = 1, . . . ,Nd) the following bounds:∫ 1

0 (ε
∗θ + hM )fdj(τ − θ )dθ ≤ f ∗

dj ∀τ ≥ τ1 +
hM
ε

. (5.8)

e can always choose f ∗

dj ≤
ε∗

2 + hM since fdj ∈ [0, 1].
We now present the stability conditions for (5.1):

heorem 5.1. Assume A6 and A7. Given matrices Aav , Adav , Ai

i = 1, . . . ,N), Adj (j = 1, . . . ,Nd), and constants σ > 0, σd > 0,
> 0, ε∗ > 0 and hM > 0, let there exist n × n matrices P > 0,

R > 0, Hi > 0 (i = 1, . . . ,N), Qj > 0 (j = 1, . . . ,Nd), S1 > 0,
R1 > 0, U and scalars λ > 0, λd > 0 that satisfy the following LMIs:[

R1 U
∗ R1

]
≥ 0, (5.9)

[
Ω Θij
∗ Θ2

]
< 0, i = 1, . . . ,N, j = 1, . . . ,Nd. (5.10)

Here Ω is the symmetric matrix composed of

Ω11 = P(Aav + Adav) + (Aav + Adav)TP + 2αP

+λσ 2In + λdσ
2
d In + S1 −

1
hM

e−2αhMR1,

Ω12 = −(Aav + Adav)TP − 2αP,

Ω13 = −Ω23 = −P[A1, . . . , AN ],

Ω14 = Ω18 = −Ω24 = −Ω28 = P,

Ω15 = Ω56 =
1
hM

e−2αhM (R1 − U),

Ω16 =
1
hM

e−2αhMU,

Ω17 = −Ω27 = −P[Ad1, . . . , AdNd ],

Ω22 = −
4
ε∗ e−2αε∗

R + 2αP,

Ω33 = −2e−2αε∗

diag{
1
f ∗1
H1, . . . ,

1
f ∗N
HN},

Ω44 = −λIn,

Ω55 = −
1
hM

e−2αhM (2R1 − U − UT ),

Ω66 = −e−2αhM S1 −
1
hM

e−2αhMR1,

Ω77 = −2e−2α(ε∗
+hM )diag{

1
f ∗d1

Q1, . . . ,
1

f ∗dNd
QNd},

(5.11)
Ω88 = −λdIn,
9

and other blocks are zero matrices with f ∗

i (i = 1, . . . ,N) and f ∗

dj
(j = 1, . . . ,Nd) defined by (2.13) and (5.8) respectively, and

Θij =

⎡⎢⎢⎢⎣
√

ε∗AT
i Λ1

√
hMAT

i Λ2

0(N+2)n,n 0(N+2)n,n
√

ε∗AT
djΛ1

√
hMAT

djΛ2

0(Nd+2)n,n 0(Nd+2)n,n

⎤⎥⎥⎥⎦ ,

Θ2 = −diag{Λ1, Λ2},

Λ1 = R + (H1 + · · · + HN ) + (Q1 + · · · + QNd ),
Λ2 = R1 + 2(Q1 + · · · + QNd ).

(5.12)

hen system (5.1) is exponentially stable with a decay rate α for all
∈ (0, ε∗

] and h(t) ∈ [0, hM ], meaning that there exists M0 > 0
uch that for all ε ∈ (0, ε∗

], h(t) ∈ [0, hM ] the solutions of (5.1)
nitialized by φ ∈ C[−hM , 0] satisfy

x(t)|2 ≤ M0e−2αt
∥φ∥

2
C ∀t ≥ 0. (5.13)

oreover, if the LMIs (5.9) and (5.10) hold with α = 0, then
ystem (5.1) is exponentially stable with a small enough decay rate
= α0 > 0 for all ε ∈ (0, ε∗

] and h(t) ∈ [0, hM ].

roof. Differentiating VP (t) given by (2.17) along (5.7), we have
d
dt VP (t) = 2[x(t) − G(t)]TP[(Aav + Adav + ∆A( t

ε
)

+∆Ad( tε ))x(t) −
∑N

i=1 AiYi(t) −
∑Nd

j=1 AdjYdj(t)].
(5.14)

We use (2.19) and (2.22) to compensate the G(t)- and Yi(t)-terms
in (5.14). For the Ydj(t)-terms, we choose

VQ (t) =
∑Nd

j=1 VQj (t),

VQj (t) = 2
∫ 1
0

∫ t
t−εθ−hM

e−2α(t−s)

×(s − t + εθ + hM )ẋT (s)Qjẋ(s)dsdθ

(5.15)

with Qj > 0. Differentiating VQj (t), we have

d
dt VQj (t) + 2αVQj (t) = 2

∫ 1
0 (εθ + hM )ẋT (t)Qjẋ(t)dθ

−2
∫ 1
0

∫ t
t−εθ−hM

e−2α(t−s)ẋT (s)Qjẋ(s)dsdθ

≤ (ε + 2hM )ẋT (t)Qjẋ(t)

−2e−2α(ε+hM )
∫ 1
0

∫ t
t−εθ−h(t−εθ )ẋ

T (s)Qjẋ(s)dsdθ.

(5.16)

y using Jensen’s inequality (1.2), taking into account (5.4) and
mploying the notations (5.8), we obtain

Y T
dj(t)QjYdj(t)

≤
∫ 1
0

∫ t
t−εθ−h(t−εθ ) fdj(

t
ε

− θ )dsdθ

×
∫ 1
0 fdj( tε − θ )

∫ t
t−εθ−h(t−εθ ) ẋ

T (s)Qjẋ(s)dsdθ

≤
∫ 1
0 (εθ + h(t − εθ ))fdj( tε − θ )dθ

×
∫ 1
0

∫ t
t−εθ−h(t−εθ ) ẋ

T (s)Qjẋ(s)dsdθ

≤ f ∗

dj

∫ 1
0

∫ t
t−εθ−h(t−εθ ) ẋ

T (s)Qjẋ(s)dsdθ.

(5.17)

Then
d
dt VQj (t) + 2αVQj (t) ≤ (ε + 2hM )ẋT (t)Qjẋ(t)

−
2
f ∗dj
e−2α(ε+hM )Y T

dj(t)QjYdj(t).
(5.18)

Note that via (2.10) and (5.4), we can present system (5.1) as
follows

ẋ(t) =
∑N fi( t )Aix(t) +

∑Nd fdj( t )Adjx(t − h(t)). (5.19)
i=1 ε j=1 ε



E. Fridman and J. Zhang Automatica 122 (2020) 109287

S
d

F

F

w
(

f
(

ubstitution of the latter representation into (5.18) leads to the
elayed state x(t − h(t)). To compensate x(t − h(t)), we add the

following standard terms for delay-dependent stability (see p. 90
in Fridman (2014)) to Lyapunov functional

VS1 (t) =
∫ t
t−hM

e−2α(t−s)xT (s)S1x(s)ds, S1 > 0, (5.20)

VR1 (t) =
∫ t
t−hM

(s − t + hM )e−2α(t−s)ẋT (s)R1ẋ(s)ds,

R1 > 0.
(5.21)

We have
d
dt VS1 (t) + 2αVS1 (t)
= xT (t)S1x(t) − e−2αhM xT (t − hM )S1x(t − hM ).

(5.22)

urther by Park et al. (2011), we obtain
d
dt VR1 (t) + 2αVR1 (t)

= hM ẋT (t)R1ẋ(t) −
∫ t
t−hM

e−2α(t−s)ẋT (s)R1ẋ(s)ds

≤ hM ẋT (t)R1ẋ(t)− e−2αhM
hM

[
x(t) − x(t − h(t))

x(t − h(t))− x(t − hM )

]T

×

[
R1 U
∗ R1

][
x(t) − x(t − h(t))

x(t − h(t)) − x(t − hM )

]
,

(5.23)

where matrix U satisfies (5.9).
We now define a Lyapunov functional for system (5.7):

V3(t) = VP (t) + VR(t) + VH (t) + VQ (t) + VS1 (t) + VR1 (t), (5.24)

where VP (t), VR(t), VH (t), VQ (t), VS1 (t) and VR1 (t) are, respectively,
given by (2.17), (2.19), (2.22), (5.15), (5.20) and (5.21). It is clear
from (2.25) that V3(t) is positive-definite for all ε ∈ (0, ε∗

],
where due to (2.25) V3(t) ≥ VP (t) + VR(t) > c1|x(t)|2 for some
ε-independent c1 > 0.

Taking into account (2.21), (2.23), (5.14), (5.18), (5.22) and
(5.23), we have

d
dt V3(t) + 2αV3(t) ≤ ξ T

3 (t)Ωξ3(t)
+ẋT (t)(ε∗Λ1 + hMΛ2)ẋ(t), t ≥ ετ1 + hM ,

(5.25)

where

ξ T
3 (t) = [ξ T

1 (t), x
T (t − h(t)), xT (t − hM ),

Y T
d1(t), . . . , Y

T
dNd

(t), xT (t)∆AT
d (

t
ε
)],

(5.26)

and ξ1(t) is given by (2.28), Ω is the symmetric matrix composed
of (5.11), and Λ1 and Λ2 are given by (5.12). Substituting (5.19)
into (5.25) and applying Schur complements, via (5.10) we arrive
at

d
dt V3(t) + 2αV3(t) ≤ 0, t ≥ ετ1 + hM . (5.27)

The latter implies

c1|x(t)|2 ≤ V3(t) ≤ e−2α(t−ετ1−hM )V3(ετ1 + hM ),
t ≥ ετ1 + hM .

(5.28)

Denote xt (θ ) = x(t + θ ), θ ∈ [−hM , 0].

V3(ετ1 + hM ) ≤ c2
[
∥xετ1+hM ∥

2
C +

∫ ετ1+hM

ε(τ1−1)
|ẋ(s)|2ds

]
(5.29)

for some ε-independent c2 > 0. From (5.1), it follows that

xt (θ ) =

⎧⎪⎨⎪⎩
φ(t + θ ), t + θ < 0,

φ(0) +
∫ t+θ

0 [A( s
ε
)x(s)

+A ( s )x(s − h(s))]ds, t + θ ≥ 0.

(5.30)
d ε

10
From (5.30), we arrive at

∥xt∥C ≤ ∥φ∥C +
∫ t
0 c3∥xs∥Cds, t ∈ [0, ετ1 + hM ]

for some ε-independent c3 > 0. By the Gronwall inequality, the
latter implies

∥xt∥C ≤ ec3t∥φ∥C , t ∈ [0, ετ1 + hM ]. (5.31)

rom (5.1) and (5.31) we find

|ẋ(t)|2 ≤ c4∥φ∥
2
C , t ∈ [0, ετ1 + hM ] (5.32)

ith some ε-independent c4 > 0. So, from (5.29), (5.31) and
5.32), we obtain

V3(ετ1 + hM )

≤ c2
[
e2c3(ετ1+hM )

∥φ∥
2
C +

∫ ετ1+hM
ε(τ1−1) c4∥φ∥

2
Cds

]
≤ c5e−2α(ετ1+hM )

∥φ∥
2
C

(5.33)

or some ε-independent c5 > 0. Clearly, (5.28) and (5.33) imply
5.13) for some ε-independent M0 > 0. □

We further extend our results to the ISS analysis of the per-
turbed system

ẋ(t) = A( t
ε
)x(t) + Ad( tε )x(t − h(t)) + B( t

ε
)w(t), t ≥ 0. (5.34)

Assume A5 - A7 and let (2.10), (4.2) and (5.4) hold. By using
arguments of Theorems 4.1 and 5.1, we arrive at the following
ISS result:

Theorem 5.2. Assume A5 - A7. Given matrices Aav , Adav , Ai (i =

1, . . . ,N), Adj (j = 1, . . . ,Nd), Bl (l = 1, . . . , N̄), and constants
σ > 0, σd > 0, α > 0, ε∗ > 0 and hM > 0, let there exist
n × n matrices P > 0, R > 0, Hi > 0 (i = 1, . . . ,N), Qj > 0
(j = 1, . . . ,Nd), S1 > 0, R1 > 0, U and scalars λ > 0, λd > 0 and
bl > 0 (l = 0, . . . , N̄) that satisfy (5.9) and the following LMIs:⎡⎣ Ω Φ̂12

∗ Φ̄22
Θ̄ijl

∗ Θ2

⎤⎦ < 0,
i = 1, . . . ,N, j = 1, . . . ,Nd,

l = 1, ..., N̄

(5.35)

with

Φ̂12 =
[
P −P 0n,(N+Nd+4)n

]T [
B1 . . . BN̄ 0n,nw

]
,

Θ̄ijl =

⎡⎣ Θij
0N̄nw ,n 0N̄nw ,n√
ε∗BT

l Λ1
√
hMBT

l Λ2

⎤⎦ ,
(5.36)

where Φ̄22 is given by (4.9), Ω is the symmetric matrix composed
of (5.11), and Θij, Θ2, Λ1 and Λ2 are given by (5.12). Then system
(5.34) is ISS for all ε ∈ (0, ε∗

] and h(t) ∈ [0, hM ], meaning that
there exists M0 > 0 such that for all ε ∈ (0, ε∗

], h(t) ∈ [0, hM ]

and locally essentially bounded w, the solutions of system (5.34)
initialized by φ ∈ C[−hM , 0] satisfy (4.10) with |x(0)|2 changed by
∥φ∥

2
C . Moreover, given ∆ > 0, the ellipsoid X given by (4.11) is

exponentially attractive (meaning that x(t) approaches X for t →

∞) with a decay rate α for all φ ∈ C[−hM , 0] and essentially
bounded w with ess supt≥0 |w(t)| ≤ ∆. In addition, if the LMIs
(5.9) and (5.35) hold with α = 0, then system (5.34) is ISS for all
ε ∈ (0, ε∗

] and (4.10) with |x(0)|2 changed by ∥φ∥
2
C holds with a

small enough decay rate α = α0 > 0.

Example 5.1. Consider a delayed version of the switched uncer-
tain system considered in Example 2.2:

ẋ(t) ={
(Ād1 + ∆Ād1( tε ))x(t − h(t)), t ∈ [kε, kε + βε),
¯ ¯ t

(5.37)
(Ad2 + ∆Ad2( ε
))x(t − h(t)), t ∈ [kε + βε, (k + 1)ε),
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here ε > 0, k = 0, 1, . . . and β ∈ (0, 1). Here Ād1, ∆Ād1( tε ),
Ād2 and ∆Ād2( tε ) are equal to Ā1, ∆Ā1( tε ), Ā2 and ∆Ā2( tε ) given
by (2.37) respectively. Then by using the functions χ1 and χ2
efined below (2.38), system (5.37) can be presented as (5.34)
ith A(τ ) = 0 and

Ad(τ ) =
∑2

i=1 χi(τ )(Ādi + ∆Ādi(τ )),
τ =

t
ε

∈ [k, k + 1), k = 0, 1, . . . ,
(5.38)

hoose β = 0.4 that leads to Hurwitz

av + Adav = βĀd1 + (1 − β)Ād2,

nd

∆A(τ ) = 0,
∆Ad(τ ) =

∫ β

0 ∆Ād1(τ − θ )dθ +
∫ 1

β
∆Ād1(τ − θ )dθ

implying σ = 0 and σd = g1 with g1 given by (2.37). Note
hat Aav = 0 in this example is not Hurwitz. Since Ad(τ ) is not
ontinuous, the classical results with asymptotic methods (Hale
Lunel, 1990; Lehman & Weibel, 1999) are not applicable here.
The bounds (5.8) in this example can be found as∫ 1
0 (ε

∗θ + hM )χ1(τ − θ )dθ

≤ 0.5ε∗
[1 − (1 − β)2] + hMβ

∆
= f ∗

di, i = 1, 2,∫ 1
0 (ε

∗θ + hM )χ2(τ − θ )dθ

≤ 0.5ε∗(1 − β2) + hM (1 − β) ∆
= f ∗

di, i = 3, 4.

(5.39)

We verify the feasibility of LMIs (5.9) and (5.10) in the four
vertices given by (2.39) with Ai changed by Adi (also here two
vertices for g1 = 0). We find the following upper bounds hM that
reserve the exponential stability of (5.37) either with a small
nough decay rate (for α = 0) or with a decay rate α = 0.005 for

all ε ∈ (0, ε∗
] and h(t) ∈ [0, hM ] (to be compared with the results

given by (2.41) for h(t) ≡ 0):

g1 = 0, ε∗
= 0.05 : α = 0, hM = 0.0516;

α = 0.005, hM = 0.0259;
g1 = 0.01, ε∗

= 0.0015 : α = 0, hM = 0.0140;
α = 0.005, hM = 0.0010.

hus, the perturbed switched uncertain system (5.37) is ISS for
∈ (0, ε∗

] and h(t) ∈ [0, hM ].

. Conclusions

This paper has presented a constructive method to averag-
ng of linear systems with piecewise-continuous almost periodic
oefficients. The introduced time-delay approach allows, for the
irst time, to derive efficient LMI-based conditions on the upper
ound of the small parameter that preserves the stability. The
ethod has been extended to persistently excited systems and to

SS analysis, as well as to averaging of systems with time-varying
elay.
We have suggested some simple Lyapunov functionals for the

ransformed time-delay system, and we expect that in the future
he results may be improved e.g. by using advanced Lyapunov-
ased methods (for example, by using augmented Lyapunov func-
ionals with appropriate integral inequalities). The time-delay
pproach may be further extended to more general classes of
ystems and applied to various control problems that employ
veraging. These problems may include vibrational control, stabi-
ization by switching and extremum seeking (Scheinker & Krstić,
017).
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