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1. Introduction

Asymptotic methods for analysis and control of perturbed sys-
tems depending on small parameters have led to important qual-
itative results (see e.g. Bogoliubov & Mitropolsky, 1961; Cheng
et al., 2018; Khalil, 2002; Kokotovic & Khalil, 1986; Moreau &
Aeyels, 2000; Teel et al., 2003; Tikhonov, 1952; Vasilieva & Bu-
tuzov, 1973). However, by using these methods it is difficult to
find an efficient bound on the small parameter that preserves the
stability of the perturbed system. The direct Lyapunov method
may lead to such bounds. Thus, for singularly perturbed systems,
such a bound was presented e.g. in Kokotovic and Khalil (1986)
and Fridman (2002) by using the direct Lyapunov method.
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For the sampled-data systems with fast sampling, the time-
delay approach was initiated in the framework of asymptotic
methods (Mikheev et al,, 1988) and averaging (Fridman, 1992).
Later the direct Lyapunov-Krasovskii method to sampled-data
systems (Fridman et al., 2004) led to efficient bounds on sampling
intervals that preserve the performance of the systems, and to
efficient tools for robust sampled-data and networked control
(see e.g. Fridman (2014), Hetel and Fridman (2013), Liu et al.
(2019)).

In this paper we consider linear systems with fast-varying
almost periodic coefficients. Our objective is to propose a con-
structive time-delay approach with a corresponding Lyapunov-
Krasovskii method to the averaging method for these systems.
Differently from the classical results (see Chapter 10 of Khalil
(2002), where the system coefficients are supposed to be con-
tinuous in time, we assume them to be piecewise-continuous.
This allows to apply our results to fast switching systems. By
taking average of the both sides of the system, we present the
resulting system as a perturbation of the averaged system, and
model it as a system with time-delays of the length of the small
parameter. If the transformed time-delay system is stable, then
the original one is also stable. We assume that the averaged
system is exponentially stable.
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We suggest a direct Lyapunov-Krasovskii approach, and for-
mulate sufficient exponential stability conditions in the form of
LMIs. The upper bound on the small parameter that guarantees
a desired decay rate for the original system can be found from
LMIs. Two numerical examples (stabilization by vibrational con-
trol and by time-dependent switching) illustrate the efficiency
of the method. We further apply the time-delay approach to
persistently excited systems that leads to a novel quadratic time-
independent Lyapunov functional for such systems.

We extend our results to input-to-state stability (ISS) of the
perturbed systems and to stability and ISS analysis of linear
fast-varying systems with state time-varying delays. Note that
classical results for averaging of time-delay systems were pre-
sented in Hale and Lunel (1990), Lehman and Weibel (1999),
Strygin (1970). We propose a constructive method via appropri-
ate Lyapunov functionals that leads to sufficient stability and ISS
analysis conditions in the form of LMIs. By solving these LMIs,
upper bounds on the small parameter and on the time-varying
delay that preserve the performance can be found.

Note also that stability of linear systems with periodic coef-
ficients and either constant or periodic delays was analyzed by
using numerical methods: Chebyshov polynomials and finite el-
ement methods (Butcher & Mann, 2009) and semi-discretization
method (Insperger & Stépan, 2011). An eigenvalue-based tech-
nique for stability analysis of such systems was presented in
Michiels and Niculescu (2014). Stability conditions for linear
systems with continuous periodic coefficients and constant de-
lays were provided via complete Lyapunov-Krasovskii functional
in Gomez et al. (2016), Letyagina and Zhabko (2009). Guaranteed
cost control of periodically switching linear systems with con-
stant delay and appropriate dwelling times (that are supposed to
be not too small) was studied in Xie and Lam (2018) via piecewise
linear in time Lyapunov functionals for delay-dependent stability.
Strict time-dependent Lyapunov functionals for nonlinear time-
varying systems with delays were presented in Mazenc and
Malisoff (2017).

The article is organized as follows. Section 2 presents a time-
delay approach to stability by averaging. Section 3 extends the
time-delay approach to stability of persistently excited systems.
Section 4 extends the results of Sections 2 and 3 to ISS analysis
of the perturbed systems. Section 5 deals with the averaging
of time-delay systems. Some conclusions are drawn in the last
section. A conference version of the results from Section 2 was
presented on IFAC World Congress 2020 (Fridman & Zhang, 2020).

1.1. Notations and Jensen’s inequalities

Throughout the paper R" denotes the n-dimensional Euclidean
space with the vector norm |-|, R™™ is the set of all n x m real
matrices with the induced matrix norm | - ||. The superscript
T stands for matrix transposition, and the notation P > 0, for
P € R™" means that P is symmetric and positive definite. The
symmetric elements of the symmetric matrix are denoted by x.
Denote by C[—hy, 0] the Banach space of continuous functions
¢ : [—hm, 0] — R" with the norm ||llc = maXge[—ny,,0119(0)],
and by L,(0, t) the space of essentially bounded functions ¢ :
(0, t) — R" with the norm [|@[0, t]|loc = €SS SUPyc(o,¢) [#(0)].

We will employ extended Jensen’s inequalities (Solomon &
Fridman, 2013):

Lemma 1.1. Denote
g=[Pfsws)ds, v =[] [, f(OW(s)dsdo,

where a < b, f : [a,b] — R, x(s) € R" and the integrations
concerned are well defined. Then for any n x n matrix R > 0 the
following inequalities hold:

G"RG < [P 1f(0)Id6 [7 1f(s)X" (s)Rx(s)ds, (1.1)
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YIRY < [ F(©)1046 [} [, [F(@)T ()Rx(5)dsds. (12)
2. A time-delay approach to stability by averaging

Consider the fast-varying system:
X(t)=A(L(t), t>=0, (2.1)

where x(t) € R", A : [0,00) — R™" is piecewise-continuous,

and ¢ > 0 is a small parameter. Similar to the case of general

averaging in Section 10.6 of Khalil (2002), assume the following:
A1 There exists t; > 1 such that the following holds:

LI AGHs = Ag + AACE), 22)
[AA(D) <o Vi=n
with Hurwitz constant matrix A;, and small enough constant
o > 0.

We will say that system (2.1) has almost periodic coefficients
if it satisfies A1. Matrix AA(ﬁ) may stand for system uncertainty
whose norm is upper bounded by a known constant o. Changing
variable s in (2.2) to 60 = % we can rewrite the first equation in
(2.2) as

1

fo A(é —0)d6 = A + AA(%) Vg >1
or, in terms of the fast time 7 = é

[ AT — 6)d6 = Awy + AA(T) VT > 14 (2.3)

0
Under A1, the averaged system
Xa(t) = [Aay + AA(é)]Xav(t)’ Xo(t) € R" (24)
is exponentially stable for small enough o.
Remark 2.1. If A(t)is 1-periodic, then in (2.3) we have AA(t) =

0. If A(z) is T-periodic with T > 0, scaling the time t = Tt and
denoting X(t) = x(Tt) = x(t), we can present system (2.1) as

Lxt) =T - A(L)x(D)

o |

with 1-periodic A(T7), where 7 = £. In general we can consider
almost periodic A (in the sense of (2.3) with non-zero AA(t)). For
example, let A(t) in (2.1) have the form

A(t) = A cos(t) + Ay sin*(31) + Ase™™, T =" (2.5)

The n x n matrices Ay, A,, A3 in (2.5) are constant, wher_eas Ay is
Hurwitz. Then, scaling the time ¢ = 27t and denoting x(t) = x(t),
we arrive at X(f) = 2w A(Z)x(E) with

[ A2r(t —0))d6 = 0.5A, + AA(7),
where

AA(T) = As [ e 270 dp.
For all T > t; the following holds:

IAA(T)] < 1Aslle™>™ [} e270dp 2o
with small enough o > 0 for some 7; > 1.

We will now introduce a time-delay approach to averaging,
where the original system (2.1) is transformed to a time-delay
system. We integrate (2.1) on [t — &, t] for t > ety. Note that
similar to Fridman and Shaikhet (2016), we can present

1 Ks)ds = M = dix(e) — G(n)], (2.6)
where

Gt) 2 L[ (s —t+ e)X(s)ds. (2.7)
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Then, integrating (2.1) and taking into account (2.6) we arrive at
= 1 [L A)xs) £ x(0)]ds,

By changing variable ¢6 = t — s in the last integral, we have

L AGIKS) — x(O)lds
o f—e[xt—ee)—X( )1do

:_fo ’_thae s)dsdé.

Finally, denoting
z(t) = x(t) — G(¢) (2.8)

and employing (2.2), we transform system (2.1) into a time-delay
system for t > ety

2(t) = [Aay + AAD)IK(E) — [y AL —0) [, K(s)dsdo.  (2.9)

System (2.9) is a kind of neutral type system that depends on the
past values of x(s) = A(g)x(s), s € [t—e, t]. This can be considered
as a neutral system in Hale’s form (Hale & Lunel, 1993).

Summiarizing, if x(t) is a solution to system (2.1), then it
satisfies the time-delay system (2.9). Therefore, the stability of
the time-delay system guarantees the stability of the original
non-delayed system. Note that (2.9) can be considered as a
perturbation of the averaged system (2.4). We will present a
Lyapunov-Krasovskii method for (2.9) leading to LMIs for finding
an upper bound £* > 0 on ¢ that preserves the exponential
stability of system (2.1) for all € € (0, *].

We further assume the following:

A2 All entries ay,(t) of A(t) are uniformly bounded for 7 > 0
with the values from some finite intervals a,(z) € [a}}, a%] for
T>11>1.

Under A2, A(t) can be presented as a convex combination of
the constant matrices A; with the entries aj; or ak""v:

AT) = YL H(DA

t>eT.

Vi>1 21,

fizo, YN fi=1, 1<N<2” (2.10)
Note that f; # 0. For a constant ay,, we have a}, = a’,:’,’).
Via (2.10), system (2.9) can be rewritten as
2(t) = [Aw + AACD)IX(E) — 3 AYi(E) (2.11)
where
= o5 (5 =) [y is)dsdo. (2.12)

Given ¢* > 0, denote by fl* > 0(i=1,...,N) the following

bounds:

e* [ 0f(t —6)do < f* V=1 (2.13)

e*

Note that since f; € [0, 1] we can always choose f* < 5.

Theorem 2.1. Assume A1 and A2. Given matrices Aq,, Ai (i =
1,...,N), and constants o > 0, « > 0 and &* > 0, let there exist
n x nmatrices P > 0,R > 0,H; > 0(i=1,...,N) and a scalar
A > 0 that satisfy the following LMIs:

VEAIR+ Y1 Hy)
0(N+2)n,n
N
_(R + Zj:] H])

(]

EE ‘
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Here
D1y —Al P — 2aP P13 P
o | * “HeTR+2QP By P 7
* * @33 Onnn
* * *  —Al (2.15)

@11 = PAgy + Al P + 2aP + Aoy,

D13 = —¢23 = —P[A1, ..., AN],
b33 = —2ae” dlag{ HL---,%*HN}
N
with f* (i = 1,...,N) defined by (2.13). Then system (2.1) is

exponentially stable with a decay rate « for all ¢ € (0, *], meaning
that there exists My > 0 such that for all ¢ € (0, *] the solutions
of (2.1) initialized by x(0) € R" satisfy the following inequality:

(2.16)

Moreover, if the LMIs (2.14) hold with o = 0, then system (2.1) is
exponentially stable with a small enough decay rate « = oy > 0 for
all ¢ € (0, &*].

x(0)* < Moe > |x(0)]* Vt > 0.

Proof. Choose

Vp(t) = Z"(t)Pz(t), 0 <P e R™". (2.17)
Differentiating Vp(t) along (2.11) we have

d - _ T L

BVp(t) = 2[x(t) — GO P[(Aay + AA(L)(E) 218)

— N AY(0)]
To compensate the G(t)-term, we will use as in Fridman and
Shaikhet (2016)

Vr(t) = 1 [, e 295 — ¢ + KT (s)RK(s)ds, R >0. (2.19)
We have

4 Vu(t) + 20 Vg(t) = ex” (£)RX(t

—é }f_s e‘z‘)‘((f‘)s)(s - t(+) e)E’cT)(s)R)'c(s)ds. (2:20)

By Jensen’s inequality (1.1)

2GT(ORG(t) < [, (s — t + &)kT (s)RX(s)ds.
Then

dye(t) + 2aVg(t) < exT(£)RX(t) — 2e722¢GT(£)RG(t). (2.21)

To compensate the Y;(t)-terms (distributed delay) in (2.18), we
employ as in Solomon and Fridman (2013)

= Z{V 1 Vi ()
_ZfOftgg e 2= (s — t 40X (s)
with H,- > 0. Differentiating Vy;,(t), we have
%VH,-(f)-i‘ 2<¥VH( )
= exT (t)H;x( 2[0 ft 0@ e 2alt=s)xT ( )H-)'c(s)dsde
< exT(t)Hx — ¢ 2 fo ft WX x(s)dsdf.
Applying further Jensen’s mequallty (1.2)
YT (6HYi(t) < f1 e@f,»(ﬁ - 0)d0
x [ol fi(t j; X s)dsd
<f* fo ft X H,x(s)dsd@
where we took into account (2.10) and used (2.13), we arrive at
LV (£) 4 2a Vi (1) < X" (0)Hix(t)
— e YT (OHY(D).

) (2.22)
H;x(s)dsdf

(2.23)
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Define a Lyapunov functional as
Vi(t) = Va(x(t), &, €) = Vp(t) + Vi(t) + Vi(t), (2:24)

where X, = x(t+60) (6 € [—e¢, 0]), with Vp(t), Vr(t) and Vy(t) given
by (2.17), (2.19) and (2.22) respectively. By Jensen’s inequality
(3.87) in Fridman (2014)

[, dT(s)Rp(s)ds = 1 [ oT(s)dsR [, ¢
with ¢(s) = (s — t + &)x(s), for all ¢ € (0, 8*] we have
Vi(t) = Vp(t) + VR(t)
S N | 4 BT
with e-independent ¢; > 0. Thus, V(t) is positive-definite.

To compensate AA( )x(t) in (2.18) we apply S-procedure: we
add to Vl( ) the left- hand part of

M) — [AACEK(E)P) = 0 (2.26)

with some A > 0. Then from (2.18), (2.21), (2.23) and (2.26), we
have along (2.11)

LVi(t) + 2aV;(t)
LVi(£) + 2aVi () + Ao X(0)]* —
< E] D& + X (R + YL, Hk(t),
where @ is given by (2.15) and
ET(L) = [XT(£), GT (), YT(E), ..., Y (£), X" (D) AAT(L)]. (2.28)

Since we are interested in exponential bounds on solutions of
(2.11) that satisfy (2.1), we substitute into (2.27)

X(t) = Y0, fDAX(E).
Applying further Schur complements, we conclude that if
‘/87 Zl 1f AT R+ Z

0(N+2)n,n
N
—(R+ X2, H)

(2.25)

2

|AA(E X)) (2.27)

g
<0, (2.29)

EE ‘
we have
Lyi(t) +2aVi(t) <0 Vt > ety,
yielding for solutions of (2.1) the following bound:
crlx(0))* < Vi(t) < e 2y (ety), (2.30)

LMIs (2.14) imply (2.29) since (2.29) is affine in Zf;lﬁ(g)AiT.
Note that Vi(e7;) defined by (2.24) is upper bounded for all
e €(0,¢e%]

Viters) < o[ Iem)P + [0, i(s)Pds]

with e-independent c; > 0. For t € [0, e7¢], x(t) satisfies (2.1),
where under A2 we have ||A(7)|| < a for some a > 0 and all
T > 0. Hence, & |x(t)|* < 2alx(t)|* for t € [0, e71] yielding

X(E)] < e”[x(0)],  IX(t)] < ae™|x(0)],

Therefore, Vy(e1;) for all ¢ € (0, £*] can be further upper bounded
as

Vilery) < Cz[ 26671 x(0)]% + fs(: 1

t > ety.

(2.31)

t €0, etq].

2 ,2at 2
e~ x(0)| ds] (2.32)

< ce~ 2T |x(0)

with some e-independent c3 > 0. Then (2.16) follows from (2.30)
and (2.32).

The feasibility of the strict LMIs (2.14) with « = 0 implies
the feasibility of (2.14) with the same decision variables and with
a small enough positive « = «p, and thus guarantees a small
enough decay rate. O
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Remark 2.2. To select the tuning parameters « > 0 and ¢* > 0,
we suggest the following algorithm: given matrices A,, and A;
(i = 1,...,N) and a small constant ¢ > 0, we verify the
feasibility of the LMIs with &* close to zero to enlarge the upper
bound «* on « that preserves the feasibility. We apply here the
binary search method (with a high efficiency) to find «*. Similarly,
by choosing ¢ € (0, «*], we obtain the upper bound &* that
preserves the feasibility of the LMIs.

Remark 2.3. LMIs of Theorem 2.1 are always feasible for small
enough positive ¢*, o and o. Indeed, since A,, is Hurwitz, there
exists a n x n matrix P > 0 such that for small enough « > 0 the
following holds:

®g = PAgy + AT P+ 2aP < 0.

We choose R = N - H; = ', (i = 1,...,N), » = % and
o = &* By using Schur complements and further employing
f = % we find that LMIs (2.14) are feasible if the following
matrix inequalities hold:

Do + e*(Iy + 2e**"ATA;)  —Al P — 2aP
* — 21, + 20P
T
P P .
+g*[ b ](1n+}12?_1A,-A,T)[ p ] <0, i=1,...,N.

Since @ < 0, the latter inequalities are always feasible for small
enough &* > 0.

Note that by similar arguments, all the LMIs presented in the
theorems of this paper are feasible for small enough positive &*
and « (as well as o, hy, by ', . . ., blgl in Sections 4 and 5 ).

Remark 2.4. As it is seen from the proof of Theorem 2.1 (cf.
(2.26)), LMIs (2.14) guarantee the stability of a more general
system than (2.1) with A = A(— t, ¢) provided there exists 7; > 0
such that for all small enough e > 0andt > et all entries of A
are uniformly bounded and

L[L AGS, s, e)ds = Ay + AA(L ), AA(L te)| < o,

where A,, is Hurwitz and constant ¢ > 0 is small enough.

Example 2.1 (Khalil (2002), Example 10.10: vibrational control).
Consider the suspended pendulum with the suspension point
that is subject to vertical vibrations of small amplitude and high
frequency. The linearized at the upper equilibrium position model
is given by

(t e : (t) (233)
X(t) = X .
y2—cos’t  —y(B+ AB)—cost

with y > 0 and 8 > 0. Here the uncertainty A8 stems from
the uncertainties of friction coefficient and satisfies |[AB| < f;
with 8; > 0. Note that we linearized f given above (10.32) on p.
410 of Khalil (2002) at x; = 7, x, = 0 to derive (2.33). Similar
to Remark 2.1, we change the time variable t = 2rt and define
X(t) = x(2mwt) = x(t), therefore,

. cos @ 1 o
X(t)=2m oni i X(
y? — cos? T —y(B + AB) — cos ==

(2.34)

Then we obtain
0 1 AA 5 0 O
y2—05 —yB|° A Y.

with ¢ = 27y ;. It follows from Theorem 10.4 of Khalil (2002)
that for 2 < 0.5 and small enough &, system (2.34) with

Aq = 27 [
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AB = 0 is exponentially stable. By applying Theorem 2.1, we
will find upper bounds on ¢ and uncertainty AS that guarantee
the exponential convergence of (2.34) with a decay rate @« > 0
for all £ and A that are not larger than the found upper bounds.

We choose y = 0.2 and 8 = 1. Note that cost € [—1, 1]
and cos?>t € [0, 1]. Therefore, system (2.34) can be presented
as a system with polytopic type uncertainty, where Ay, ..., Asg
correspond to the eight vertices:

1 1
A=2n [—0.4610.5 0.2(£84 +4)]’ t=1 4
1 1 ,
Ai=am [—0.46 £05 —02+p + 6):| =48
(2.35)

Here for simplicity we choose f;* = 0.5¢*(i = 1, ..., 8), where f*
is defined by (2.13). By verifying the feasibility of LMIs (2.14) in
the eight vertices (2.35) (four vertices for 8; = 0), we find upper
bounds ¢* that guarantee the exponential stability of (2.34) for
all ¢ € (0, ¢*] either with a small enough decay rate (for « = 0)
or with o = 0.2:

B1=0: a =0, &* =0.0031;
a=0.2, &* =0.0021;
B1=0.1: a=0, &* =0.0013;
a=0.2, &* = 0.0007.

Numerical simulations under an arbitrary initial condition show
that the system (2.34) with A8 = 0 preserves the stability
till a larger upper bound &* = 0.47, which may illustrate the
conservatism of the proposed method.

Example 2.2 (Hetel and Fridman (2013): stabilization by fast switch-
ing). Consider a switched uncertain system

L t € [ke, ke + Be),

¢ [ Pe) (2.36)
g t € [ke + Be, (k + 1)e),

wheree > 0,k=0,1,... and 8 € (0, 1), with unstable modes

i -J0o1 03] 2 _[-013 -0.16
=106 —-02|""27|[-033 0.03

and uncertainties

} 0 0 , g(t) 0
AA (L) = AAy (L) =|[""¢
1) [0 g(i)]’ 2 [ 0o o (2.37)
lg(z) <& Vr >0,
where g; > 0. Then (2.36) can be presented as (2.1) with
J— 2 . _. _.
AlT) = Z[:] Xxi(T)A; + AAi(T)), (2.38)

t=telkk+1), k=01,...,

where x1(t) = xwk+p)(T) is the indicator function of [k, k + B),
x2(t) = 1 — x1(7). Choose B = 0.4 that leads to Hurwitz

Aqw = BA1 + (1 — BAy,
and
AA() = [ AA(T — 6)d6 + [ Abo(x — 0)do).
The latter yields
AA(T)I < foﬂ | AA(t — 6)]|d6 + fﬂ] | AAy (T — 0)]1do

implying o = g;. Since A(7) is not continuous, the classical results
with asymptotic methods (e.g. Theorem 10.4 of Khalil (2002) are
not applicable here.
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Taking into account the uncertainties given by (2.37), system
(2.36) can be presented as a system with polytopic type uncer-
tainty (2.10), where Ay, ..., A4 correspond to the four vertices:

0.1 0.3 _
A= [0.6 09 :I:g1:| , filt)=x(r), i=1,2,
A= [_0'13 =& _0'16] . (1) = xat), i=3.4
—0.33 0.03 ’

(2.39)

The bounds (2.13) in this example can be found as follows:

e* [y Oxi(t —0)do < &* [} 0do
=05 [1—(1—BRI&f*, i=1,2,

&* [y Oxalt — 0)d0 < &* [, 0do
=0.56%(1— B2) 2 f*

i

i=3,4.
(2.40)

By verifying the feasibility of LMIs (2.14) in the four vertices (2.39)
(two vertices for g = 0), we find the upper bounds &* that
guarantee the exponential stability of (2.36) for all ¢ € (0, &*]
either with a small enough decay rate (for « = 0) or with a decay
rate « = 0.005:

g1=0: a =0, &* =0.1363;
o = 0.005, &* =0.0930;

(2.41)
g1 =0.01: a=0, &* = 0.0244;
o = 0.005, &* =0.0033.

Numerical simulations show that system (2.36) with AA;(t) =
0 (i = 1, 2) is stable for a much larger upper bound &* = 37.8.

Remark 2.5. As it is seen from the examples, the theoretical
upper bounds on ¢ are essentially smaller than the values found
from simulations. This often happens for systems with two time-
scales (e.g. singularly perturbed systems), where the theory is
aimed for comparatively small values of ¢ that preserve the two
scales, whereas in the numerical examples it may happen that
the stability is guaranteed also for large values of . Note that by
using classical tools for asymptotic analysis, it is difficult to find
an upper bound on ¢ that preserves the stability. We propose a
constructive time-delay approach with a positive bound on ¢ that
guarantees a desired performance and that is found from easily
verifiable LMIs. This is the first paper on time-delay approach
to averaging. As it happened with the first results for delay-
dependent stability conditions (see Sections 3.6-3.10 of Fridman
(2014)), we believe that our method will be improved in the
future.

3. A time-delay approach to persistently excited systems

In this section, we consider the following persistently excited
(PE) system

X(t) = —ep(r)p"(0)X(r), T >0, (3.1)

where X(7) € R", p : [0, 00) — R" is measurable and ¢ > 0 is a
small parameter. Similar to Pogromsky and Matveev (2017), we
assume that function p has the following properties:

A3 Boundedness: there exists a constant M such that for
almost allt >0

p()p’(r) < MI,. (3.2)
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A4 Persistency of excitation: there is a constant p > 0 such
that

[ plx —0)p"(x —0)d6 = pl, VT > 1. (3.3)
From A3 it follows that
f3 p(z —Op"(x —60)d6 < M, V> 1. (3.4)

Remark 3.1. The system (3.1) has been studied in Pogrom-
sky and Matveev (2017), Zhang et al. (2019), where sufficient
conditions were provided to guarantee the stability. Particu-
larly, in Zhang et al. (2019), the following condition 2eM? >
VeM? — gp guarantees the asymptotic stability of (3.1). Clearly
that given M > 0 and p > 0, the latter condition does not
hold for small enough ¢. This is different from our results that
guarantee stability for small €. In Pogromsky and Matveev (2017),
a bound on the decay rate has been derived by introducing
a novel non-quadratic Lyapunov functional. Time-varying Lya-
punov functions for PE were considered in Efimov and Fradkov
(2015), Verrelli and Tomei (2020). We have proposed explicit
time-independent Lyapunov functional with matrices found from
LMIs (to be compared with time-varying Lyapunov functions
found from time-varying differential Lyapunov equations with
some pre-chosen initial conditions). Since our functional leads to
exponential stability conditions in terms of LMIs, these conditions
can be easily extended further to ISS conditions (see Section 4) in
terms of simply verifiable LMIs.

By changing the time t = é and defining x(t) = x(et) = x(t),
we can rewrite the PE system (3.1) in the slow time as
X(t) = —p(H)pT(Lx(t), t=0. (3.5)
Following the time-delay approach to averaging of Section 2,
we integrate (3.5) on [t — ¢,t] for t > &, and employ (2.6)

with notation (2.7). Then we transform (3.5) to the following
time-delay system:

2(t) = —Aw (L) X(O) + Y(t), t>e, (3.6)
where z(t) = x(t) — G(t) with G(t) defined by (2.7). Here
() 2 Lt zds—fo (t-owit—oxo.
)2 [ p(t —0)pT(L —0) [, x(s)dsdo.
Under A3 and A4, the following holds:
plh < Aw (1) < M2l (3.8)

As in Section 2, the original system (3.1) is stable if the time-
delay system (3.6) is stable. Moreover, (3.6) can be considered as
a perturbation of the exponentially stable system

kav(t) = _Aav (E) xav(t), Xau(t) e R".

For the stability analysis of (3.6), we first consider (2.17) with
a scalar matrix P = pl,, i.e.

Vy(t) = pz' (t)z(t), (3.9)
where p > 0 is a scalar. Differentiating V,(t) along (3.6) we have

i Vo(t) = 2p[x() — G(OI' Ay (£) x(t) + Y(O)1. (3.10)
To compensate the G(t)-term in (3.10), we use (2.19) with R = r1,,,

ie.
=ri f[ —t + &)*xT(s)x(s)ds, (3.11)

where r is a positive scalar. Then (2.21) holds, where due to (3.5)
and A3 we obtain

XT(Rx(t) < rRT(£)x(t) < rMAxT (£)x(t).
Hence,
LV,(t) + 2aV,(t) < erM*XT(£)x(t) —

72a(t s)

2e72erGT(0)G(E).  (3.12)
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To compensate the Y(t)-term in (3.10), we employ
V()= 2n [ [1 e (s — t 4+ g0 ()K(s)dsdo  (3.13)
with a scalar n > 0. Differentiating V,(t) and using A3, we have

dy (t) 4 2aV,(t) < enM*x"(t)x(t)

10t . . (3.14)
—2e 2y [0 [ X7 ($)X(s)dsd6.
Applying further Jensen’s inequality (1.2)
< /; f: ggp (t-6) T(ﬁ >dsde
1
X [ p(t —opT (L —0) [, & (s)k(s)dsde (3.15)
= %M4fo S ® s)dsde,
we arrive at
LV, (£) 4 2V, (t) < eM*nxT(0)X(t) 3.16)
—ﬁe*z‘”nw(t)y(t).
Consider a Lyapunov functional as
Vo(t) = V() 4 Vi (8) 4+ V,(2), (3.17)

where V) (t), V;(t) and V,(t) are given by (3.9), (3.11) and (3.13)
respectively. From (2.25), it follows that V5(t) is positive-definite
since V(t) > Vp(t) + Vi (t) > c1)x(t))? for some ¢; > 0. By
combining (3.10), (3.12) and (3.16), and treating the term A, (%)
in (3.10) as the one from polytope with two vertices A; = pl,, and
A; = M?I, (cf. (3.8)), we arrive at the following result:

Theorem 3.1. Assume A3 and A4. Given constants M?> > p > 0,
o > 0and &* > 0, let there exist positive scalars p, r and n that
satisfy the following two LMIs:

B <0, i=1,2, (3.18)
where
Zin pa; — 2ap p
_ *
B = * —Si*e 2071 4 Jap -p ,
4 ,—2ac*
* * —mEe (3.19)

Ein = —2pa; + 2ap + * M (r + 1),
a=p, 4= Mz.

Then system (3.5) is exponentially stable with a decay rate a for
all ¢ € (0, e*], meaning that there exists My > 0 such that for all

€ (0, &*] the solutions of (3.5) initialized by x(0) satisfy (2.16).
Moreover, if the LMIs are feasible with « = 0, then system (3.5) is
exponentially stable with a small enough decay rate « = oy > 0 for
all e € (0, &*].

Example 3.1. Consider the PE system (3.1) subject to (3.2) and
(3.3). We choose = 0.5. By verifying the feasibility of LMIs
(3.18) with M = 1 and p = 0.55, we find an upper bound
e* = 0.0645 that preserves the exponential stability of (3.1),
where ¢ = ¢*, with a decay rate g*a = 0.03225. For ¢* = 0.0645,
the resulting decay rate W = 0.0313 of Pogromsky and
Matveev (2017) is a bit smaller.

4. ISS analysis of fast-varying linear systems

In this section we will extend the stability analysis of Sec-
tions 2 and 3 to ISS analysis of the perturbed systems.

4.1. ISS analysis by averaging

Consider the fast-varying perturbed system
X(t) = A(Sx(t) + B(Dw(t), =0, (4.1)
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where x(t) € R", A : [0,00) — R™" and B : [0, 0c0) — R™M™
are piecewise-continuous, ¢ > 0 is a small parameter, and w(t) €
R™ is a disturbance. The disturbance is supposed to be locally
essentially bounded meaning that w € Lo(0, t) for all t > 0.

We assume that A1 and A2 and relation (2.10) hold. Assume
additionally

A5 All entries by,(t) of B(t) are uniformly bounded for 7 > 0
with the values from some finite intervals by,(t) € [b}., bM] for
T>1> 1.

In this paper B(t) is treated as a matrix from the time-varying
polytope. Under A5, B(t) can be presented as a convex combi-

nation of the constant matrices B; with the entries b}, or b%’}

)= L flt)B Vr=1 =1,
.fl >0, Zil]f_} =1,

Following the time-delay approach to averaging, we integrate
(4.1)on [t — &, t] for t > ety. Then we arrive at

2(t) = [Aw + AA({ — [JACL —6) [, X(s)dsdo
+f0 B(t — 0w t—98)d9

where z(t) is given by (2.8). Compared to (2.9), the latter system
has an additional term fo1 B(f — O)w(t — He)dh. From (4.2), we
have

Jo BC:

where

4.2
1 <N <2, (42)

t > ety,

—O)w(t —0e)dd = 3N Buy(t), (44)

= fo]fl(ﬁ — 0)w(t — Oe)do. (4.5)

Since 0 < f; < 1, we have

lwi(t)] = | fo‘ﬁ L gyw(t — 0e)do|
< fo (L — O)llw(t — e)|do (4.6)
=< ”w[o»t]”oo» l—l N7 t > eTy.

Then system (4.3) has the following form
2(t) = [Aqw + AA Zl 1 AiYi(t

+ 8, Blwz ), t> ety

where Y;(t) and w(t) are given by (2.12) and (4.5), respectively.
Note that system (4.1) is ISS if the time-delay system (4.7) is ISS.
We now present the ISS conditions for system (4.7):

(4.7)

Theorem 4.1. Assume A1, A2 and A5. Given matrices Agqy, Ai

i=1,...,N),B (= 1,...,N), and constants o > 0, « > 0
and e* > 0, let there exist n x n matrices P > 0,R > 0, H; > 0
(i=1,...,N) and scalars . > 0and b, > 0(l =0,...,N) that
satisfy the following LMIs:
) VEAIR+ Y H))
@ O(N+2)n+Nnu,,n <0
VEB[(R+ YL Hy) ’ (4.8)
x ok ok ‘ —(R—i—Z][-V_:]I-Ij)
i=1,...,N, I=1,...,N,
where
& — @ ?12 ’
* (pzz (4 9)
S =[P —P Onpi ] [B1 By Onn,]. .

D,y = —diag{bil,,, ..., bylu,, boln, },

and @ is given by (2.15). Then system (4.1) is ISS for all ¢ € (0, £*],
meaning that there exists My > O such that for all ¢ € (0, ¢*] and
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locally essentially bounded w, the solutions of system (4.1) initialized
by x(0) € R" satisfy the following inequality:
X(£)]* < Moe=2|x(0)|*

+ [Moe,m n "0*“'*’“] lwlo, t])%, vt >0,

2acq

(4.10)

. . [P -p
where ¢ denotes the smallest eigenvalue of matrix [ - —M*R]'
* e
Moreover, given A > 0, the ellipsoid

_ n. 2 bo+---+b
={xeR":|x| < e,

DTN A2) (4.11)

is exponentially attractive with a decay rate « for all x(0) € R"
and essentially bounded w with ess sup;. |w(t)| < A. In addition,
if LMIs (4.8) are feasible for « = 0, then system (4.1) is ISS for
all ¢ € (0,¢&*] and (4.10) holds with a small enough decay rate
o =og > 0.

Proof. Differentiating V;(t) given by (2.24) along (4.7) and fol-
lowing arguments of Theorem 2.1, we arrive at

Ly, (t) + 2aVi(t) — bolw(t) Zl L bilwi(6)?

< E(OPE(6) + X (¢ ) R+Z, L Hox(t),
where
E(6) = [£{(0). & ()], & (£) = [wi(r), ..., wg (), w'(£)],
and &;(t) and @ is given by (2.28) and (4.9) respectively. Via (2.10)
and (4.2), we can present system (4.1) as follows

Xt) = YL (DA + Zz itk

Note that the term —bo|w(t)|? in (4.12) compensates w(t) that
stems from the substitution of x given by (4.13) into (4.12). By
Schur complements, if

Ve L HOATR+ XL Hy)
P B O(N+2)n+Nnu,,n
Ver YL (OB (R+ YL Hy)
—(R+ Y1, Hy)

(4.12)

YBiw(t). (4.13)

X * k ‘
(4.14)

then for t > et the following holds:

EVA(E) + 2aVi(£) = bolw()* — YOI, bilwi(t)* < 0
By comparison principle, the latter implies

bo+---+by
2|

Vi(t) < em2t=emly, () + wl0, t]]|1%,

t>e1.

(4.15)

LMIs (4.8) yield (4.14) and thus (4.15).

For t € [0, etq], X(t) satisfies (4.1), where under A2 and A5
there exist a > 0 and b > 0 such that ||A(7)|| < aand ||B(t)|| < b
for all T > 0. We obtain

[X(6)] < alx(t)] + bllw(0, t]lleo, ¢ € [0, e71]
implying
2X(E)IX(E)] < 2alx(t)* + 2bIx(t)] w0, £11Z,, ¢ € [0, eT1],
or, by Young’s inequality,
i X(OF < 2a+b)x(O)* + bw[0, e]]%,. ¢ € [0, e1].
By comparison principle, the latter yields
X(O)? < e x(0)2 + L wl0, t]],., £ € [0, eTy].
(4.16)
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Then
IX()? < 2a|x(t)? + 2b*||w[0, t]]1%,

< 2a26(20+b)t|x(0)|2 +2b ( 6(222:—1; ) lwlo, f]”
t €10, etq].

From (2.31), (4.16) and (4.17), it follows that

Vilety) < cze72 7 [1x(0)* + wl0, t]]1%.],

t€[0,etq], € €(0,¢&*]

with some e-independent c3 > 0. The latter inequality together
with (2.25) and (4.15) implies (4.10).

The feasibility of the strict LMIs (4.8) with « = 0 implies

their feasibility with the same decision variables and with a small
enough o = ap > 0, and thus guarantees ISS. O

(4.17)

(4.18)

4.2. ISS analysis of persistently excited systems

In this section, we consider the PE system (3.5) in the presence
of perturbations

X(t) = —p(L)p" (5 () + B(Hw(t), (4.19)

where ¢ > 0, B : [0, 0c0) - R™"™ is piecewise-continuous, and
w(t) € R™ is the essentially bounded disturbance. Assume that
A3 - A5 and presentation (4.2) hold. Following the time-delay
approach to averaging of Section 2, we integrate (4.19) on [t —¢, t]
for t > ¢. Using the notations given by (2.7), (2.8), (3.7) and (4.4),
we rewrite system (4.19) as

2(t) = —Aa(L)X(t) + Y(t )+ 3N Buw(r), (4.20)

Note that the ISS of the time-delay system (4.20) implies the ISS
of (4.19). To derive stability conditions of system (4.20), we con-
sider Lyapunov functional V5(t) given by (3.17). Differentiating
V,(t) along (4.20) via (3.12) and (3.16) we arrive at

Z, L bilwi(0)?

t>0,

t>e.

LVy(t) + 2aVa(t) — bolw(t)

< 2p[x(t) — GO [—Aau(§ )x(t)+Y )+ Y0, Bu(t)]
+2apr(t)x(t)+s(r+r]) (£)x(t) (4.21)
—2e 2 rGT()G(t) — ze 2 YT ()Y (t)
—bolw(t)? = XL, bilwi(e)P.

Further by substituting (4.19) and applying Young's inequality,
we obtain due to A3

X(Ox(t) < 2x"(0)p()p" ()PP (£x(E)

+2w'(£)B (H)B(H)w(t) (4.22)
< 2M*XT(t)x(t) + 2w ()BT (L)B(L)w' (1)
Then forall t > ¢
LV5(t) + 2aVa(t) — bolw(t) Z, (bhilw(0)? <0 (4.23)
if the two matrix 1nequallt1es
= 03n+an n
T Ve )L ACDB [ <0, i=1,2
* k| —(r +n)l,
(4.24)
are feasible, where
_ E; + diag{eM*(r 4+ 1), 0 I, @
51=|: ( i g{eM*(r +n) 2,2})®n P12 :| (4.25)
* ())

Here &; and &, are given by (3.19) and (4.9) respectively, and
~ T
S =p[lh —h Oua] [B: By Onn,].
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Since (4.24) is affine in Z, 1f, g B, , we obtain the following
ISS result:

Theorem 4.2. Assume A3 - A5. Given matrices B (I =1, ..., N ),
and constants M> > p > 0, « > 0 and &* > 0, let there exist
positive scalars p, r,nand b; (I = 0, ..., N) that satisfy the following
LMIs:

) O3n+an,n _
! V2e*(r + n)B] <0, i=1,2, I=1,...,N,
x x| —(r+nh

6]

(4.26)

where Z; is given by (4.25). Then system (4.19) is ISS for all ¢ €
(0, £*], meaning that there exists My > 0 such that for all ¢ € (0, £*]
and locally essentially bounded w, the solutions of system (4.19)
initialized by x(0) € R" satisfy (4.10). Moreover, given A > 0,
the ellipsoid X given by (4.11) is exponentially attractive with a
decay rate « for all x(0) € R" and essentially bounded w with
esssup;sg |w(t)] < A. In addition, if the LMIs (4.26) hold with
a = 0, then system (4.19) is ISS for all & € (0, £*] and (4.10) holds
with a small enough decay rate &« = g > 0.

5. Averaging of systems with time-varying delays

In this section, we consider the fast-varying system with a
time-varying delay h(t):

X(t) = A(ZX(t) + Aa( g X(t — h(t)), t >0, (5.1

where x(t) € R", A, A4 [0,00) — R™" are piecewise-
continuous, and ¢ > 0 is a small parameter. The delay h(t) is
supposed to be bounded

0 < h(t) < hu (5.2)

and fast-varying (without any restriction on the delay derivative).
The initial condition of system (5.1) is given by x(6) = ¢(0),
0 € [—hy, 0] with ¢ € C[—hy, 0].
We assume the following:
A6 There exists t; > 1 such that (2.2) holds and
1 ft . dS = Adau + AAd( ) (53)
1AA(E >|| <oq Vizm,

where o; > 0 is a small enough constant. Moreover, matrix
Ay + Aday 1S Hurwitz.

A7 Let A2 hold and all entries ag,(t) of Aj(t) are uniformly
bounded for T > 0 with the values from some finite intervals
Aar(T) € [alh,, a¥ Tfor T > 11 > 1.

Under A7, (2.10) holds and A4(7) can be presented as a convex
combination of the constant matrices Ay with the entries ajj or

gy
Ag(t) =
faj =0,

Z; (DA YT ==,
Zj:]fdj =1, 1<N;<2"

For a constant dag,, we have aj, = alf .

Following the time-delay approach to averaging, we integrate
(5.1)on [t—e¢, t] for t > et1+hy. Then we arrive at the following
time-delay system for t > ety + hy

2(t) = [Aqw + Adav + AA(L) + AA(L)]IX(2)
- fol A(é - ftt £0 X(s)dsd6 (5.5)
— [ Ad(t — X(s)dsdo,

where z(t) is given by (2.8). Compared to system (2.9), the latter
system has an additional integral term that via (5.4) can be
presented as

_f01 Ad(é

(5.4)

ft e0—h(t—e0h)

N,
fr co—h(t—eq) X(8)dsdO = — > i1 AgiYai(t),
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where

Yi(t) fo fai(§ = 6) ft[—sﬁ—h(t—aﬁ) X(s)dsdo. (5.6)

Then system (5.5) can be rewritten as
2(t) = [Aaw + Adar + AA(L) + AAd(£)] X(t)
— YN AY() — YN AgYa(t), > et + g,

where Yj(t) and Yg(t) are given by (2.12) and (5.6), respectively.
Note that (5.1) is stable if the time-delay system (5.7) is stable.
The latter system is a perturbation of the averaged system

(5.7)

Xq(t) = [Aav + Adav + AA( )+ AA4(E ]Xav , Xq(t) €RT,

which is exponentially stable for small enough o and oy.
Let f* (i = 1,...,N) be defined by (2.13). Denote by fd’; >0
(j=1,...,Ny) the following bounds:

Jo (€0 + hlfy(r —0)do <ff Vo =14+, (5.8)

We can always choose fd’]‘- < % + hy since fg € [0, 1].
We now present the stability conditions for (5.1):

Theorem 5.1. Assume A6 and A7. Given matrices Agy, Adav, Ai
(i=1,...,N),Aq (j=1,...,Ny) and constants ¢ > 0, o4 > 0,
a >0, & > 0and hy > 0, let there exist n x n matrices P > 0,
R>0H >0@{i=1...,N,Q >00=1,...,Ng), S > 0,
Ry > 0, U and scalars . > 0, A4 > 0 that satisfy the following LMIs:

Ry U
[ . R, ] >0, (5.9)
[f g;f]<o, i=1,...,N, j=1,...,Ng. (5.10)
Here 2 is the symmetric matrix composed of
211 = P(Agy + Adav) + (Aqy + Adav)TP + 2aP
+Ar0 %y + Agolly + St — ‘2°‘“MR1,

912 = _(Aav +Adau )TP - 2051)’
213 = =223 = —P[Aq, ..., An],
§$214 = 218 = —S§224 = —S§23 =P,
§215 = §256 = e_zahM(Rl u),
216 = ﬁeﬂahMU,
§217 = —$227 = —P[Aa1, . .. 7Ade]7 (5'11)
2y = —2e 2 R+ 2aP,
243 = —2e’2"‘8*diag{fi*H1, -y peHN),

1 N
§244 = —Aly,
$255 = —p-€ 2*™(2R; — U —U"),
-QGG — _(372ahMS1 _ ﬁefzahMRh
277 = —2e 2 digg{ LQy, ..., 5 Qu,),

fa fing

§288 = —Aqly,
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and other blocks are zero matrices with f* (i = 1,...,N) and fd’;
(j=1,...,Ny) defined by (2.13) and (5.8) respectively, and
VerAT Ay VhuAl A,
Oy = Ov+2)nn Ov+2)n,n ,
VAL AT VhyAfA;
Ong+2mn Ovg+2)nn (5.12)
60, = —diag{A4, A},
Ay =R+ (Hi+---+Hy)+(Q + - - + Quy),

Ay =Ry +2(Q1 + -+ - + Quy)-

Then system (5.1) is exponentially stable with a decay rate « for all
e € (0, &*] and h(t) € [0, hy ], meaning that there exists My > 0
such that for all ¢ € (0, e*], h(t) € [0, hy] the solutions of (5.1)
initialized by ¢ € C[—hy, 0] satisfy
X(t)]* < Moe™>**[|pllg vt > 0. (5.13)

Moreover, if the LMIs (5.9) and (5.10) hold with o« = O, then
system (5.1) is exponentially stable with a small enough decay rate
o =uag > 0forall e € (0,&*] and h(t) € [0, hy].

Proof. Differentiating Vp(t) given by (2.17) along (5.7), we have
FVe() =2[x(t) — TP[(AW + Aday + AA(L)
+AA()N(E) Z, 1A Yi(t) = Y1, AgiYa (D).

We use (2.19) and (2.22) to compensate the G(t)- and Y;(t)-terms
n (5.14). For the Yg;(t)-terms, we choose

N,
= Zjdl VQ,

(5.14)

VQ; =2 fo fr e0—hy € e 2= (5.15)
X(s — t + €0 + hy X" (s)Q;x(s)dsdo
with Q; > 0. Differentiating VQj(t), we have
SVo,() + 2aVg(t) =2 /0 (€6 + hy)XT(£)Qix(t)do
—2a(t— s
Zfo ft ae hM e (5)Qix(s)dsdo (5.16)
(8 + 2hM Q_,X
—2e~2a( 6”‘M)f f[ co—n(t—soyX (5)QX(s)dsd6).

By using Jensen’s inequality (1.2), taking into account (5.4) and
employing the notations (5.8), we obtain

Yi(£)QYy(t)

= fol ftt—ge—h(t gg)fdj(L — 0)dsdo
Xfolfdf(é - fr cO—h(t—s0) X X" (s)Qix(s)dsdo

= fol(ge + h(t — ‘99))fdj(* —0)dé (5.17)
x fol ftt £0—h(t—c0) (5)Qjx(s)dsdo

=f4 fo f[ cO—h(t—s0) X X7 ()Qix(s)dsd6.

Then

SVo () + 2a V() < (& + 2hy KT (£)Q(E) o)

2 ,—2 h T
e Y E(OQ i)

Note that via (2.10) and (5.4
follows

Xt) = YL f(HA(L)

), we can present system (5.1) as

+ 30 fa(SAgix(t — h(t). (5.19)
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Substitution of the latter representation into (5.18) leads to the
delayed state x(t — h(t)). To compensate x(t — h(t)), we add the
following standard terms for delay-dependent stability (see p. 90
in Fridman (2014)) to Lyapunov functional

Vs, (6) = [, e KT (s)Six(s)ds,  S1 >0, (5.20)

1

Ve, () = [ g (8 — £ P )e X )Ry X(s)ds,

R1>O.

(5.21)

We have
d
EVgl(t) + ZOlel(f) (522)
= xT(£)S1x(t) — e~ 2@ xT(t — hp)Six(t — hy).
Further by Park et al. (2011), we obtain
,_%VR1( )+2aVR1( )
R]X -[t b
< AT (OR1&(0)— S [
Ry U x(t) — x(t — h(t))
|« R Xt —h(t) = X(t — hy)

where matrix U satisfies (5.9).
We now define a Lyapunov functional for system (5.7):

V3(t) = Vp(t) + Vr(t) + Vy(t) + Vo(t) + Vs, (t) + Vg, (t),

= hyx"( e 2¢t=9)%T ()R x(s)ds

x(t) — x(t — h(t))
x(t — h(t))— x(t — hy)

(5.23)

]T

(5.24)

where Vp(t), Vr(t), Vu(t), Vo(t), Vs, (t) and Vi, (t) are, respectively,
given by (2.17), (2.19), (2.22), (5.15), (5.20) and (5.21). It is clear
from (2.25) that V5(t) is positive-definite for all ¢ € (0, &*],
where due to (2.25) V5(t) > Vp(t) + Vi(t) > cq|x(t)|* for some
e-independent c¢; > 0.

Taking into account (2.21), (2.23), (5.14), (5.18), (5.22) and
(5.23), we have

V3(t) + 2aVs(t) < &5 (£)82&5(t)

o . (5.25)
+X ()" A 4+ hy AQX(t), t > ety + hy,
where
Tpy _ rel T(p T(p _
& () = [&/ (), X" (t — h(t)), x' (t — hu), (5.26)

Ya(6), - Yoy, (0, xT (D) AAL(D)],

and &(t) is given by (2.28), £2 is the symmetric matrix composed
of (5.11), and A; and A; are given by (5.12). Substituting (5.19)
into (5.25) and applying Schur complements, via (5.10) we arrive
at

LVs(t) +2aV5(t) <0, t> ety +hy. (5.27)
The latter implies
alx(t)]* < Va(t) < em2=en=mmyy(ery + hy), (5.28)
t >et+ hy.
Denote x:(0) = x(t + 0), 0 € [—hy, 0].
et1+hy
Viters +) < o 2+ [ o) 6529)
g(r1—1)

for some e-independent ¢, > 0. From (5.1), it follows that

¢(t +0), t+6 <0,
x(0) = 0)+ fo PIAC (s (5.30)
—i—Ad(s) X(s — (s))]ds, t+6>0.
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From (5.30), we arrive at

t
Ixellc < l@lic + [y c3llxslicds,

for some e-independent c3 > 0. By the Gronwall inequality, the
latter implies

t €[0, ety + hyl

I%cllc < eS'llpllc, te€[0, ety + hyl. (5.31)
From (5.1) and (5.31) we find
X(0)* < callplz, t [0, ety + hyl (5.32)

with some e-independent ¢, > 0. So, from (5.29), (5.31) and
(5.32), we obtain

V3(eti + hy)

<0 [ 2c3(et1+hpy) ”¢”C +f“1+hM (533)

&(r1—1)

callg2ds]

< cse~2eenithn)] )12

for some e-independent c¢s > 0. Clearly, (5.28) and (5.33) imply
(5.13) for some e-independent My > 0. O

We further extend our results to the ISS analysis of the per-
turbed system
X(t) = A(E)x(t) 4 Aa(5 )x(t — h(t)) 4 B(£)w(t), (5.34)

Assume A5 - A7 and let (2.10), (4.2) and (5.4) hold. By using
arguments of Theorems 4.1 and 5.1, we arrive at the following
ISS result:

t>0.

Theorem 5.2. Assume A5 - A7. Given matrices Aqy, Adav, Ai (i =
1,...,N), Ay G = 1,...,Ng), B (I = 1,...,N), and constants
o > 004 >0 a >0 & > 0and hyy > 0, let there exist
n x n matrics P > O,R > 0, H; >0(i =1,...,N),Q >0

G=1,...,Ng), S1 > 0,R; > 0, U and scalars A > 0, Aq > 0 and
b>0(=0 N) that satisfy (5.9) and the following LMIs:
2 Pu g, i=1,....N, j=1....Ng
* (DZZ Os =1 N
* ®, -
(5.35)
with
A T
P =[P —P Oningtan] [Bi By Onn,],
O
_ (5.36)
@ijl = Oan,n Oan,n s
VeBl A1 /Bl A;

where &, is given by (4.9), 2 is the symmetric matrix composed
of (5.11), and ®;;, ®,, A1 and A, are given by (5.12). Then system
(5.34) is ISS for all ¢ € (0, e*] and h(t) € [0, hy], meaning that
there exists My > 0 such that for all ¢ € (0, £*], h(t) € [0, hy]
and locally essentially bounded w, the solutions of system (5.34)
initialized by ¢ € C[—hy, 0] satisfy (4.10) with |x(0)|* changed by
||¢>||%. Moreover, given A > 0, the ellipsoid X given by (4.11) is
exponentially attractive (meaning that x(t) approaches X for t —
oo) with a decay rate « for all ¢ € C[—hy, 0] and essentially
bounded w with esssup,~q |w(t)] < A. In addition, if the LMIs
(5.9) and (5.35) hold with « = 0, then system (5.34) is ISS for all
e € (0, &*] and (4.10) with |x(0)|* changed by ||¢||% holds with a
small enough decay rate o« = ag > 0.

Example 5.1. Consider a delayed version of the switched uncer-
tain system considered in Example 2.2:

X(t) =
(Adt + AAn(D)X(t — h(t)), t € [ke, ke + Be), (5.37)
(Aaz + AAp(L)X(t — h(t)), t € [ke + Be. (k+ 1)e),
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where ¢ > 0,k = 0,1,... and B € (0, 1). Here Agy, AAgi(L),
Ag and A;\dz(é) are equal to A;, A;\l(g). A, and AAz(é) given
by (2.37) respectively. Then by using the functions x; and x»
defined below (2.38), system (5.37) can be presented as (5.34)
with A(t) = 0 and

Adt) = 30, xi(T)Agi + AAgi(T)),
t=1elkk+1), k=01,...,

Choose B = 0.4 that leads to Hurwitz
Aw + Adav = BAq1 + (1 — BlAg2,
and

AA(T) = 0,
AA((T) = [} ABar(T — 0)d0 + [, AAar(t — 0)do

(5.38)

implying o 0 and o4 = g; with g; given by (2.37). Note
that Ag, = 0 in this example is not Hurwitz. Since A4(7) is not
continuous, the classical results with asymptotic methods (Hale
& Lunel, 1990; Lehman & Weibel, 1999) are not applicable here.

The bounds (5.8) in this example can be found as
Jo (£%0 + hu)xa(x — 0)do
<0561 — (1— P+ hup = fj, i
[(£70 + ) xa(t — 0)d6
<05e%(1— )+ hy(1— B) = f;. i=3.4.
We verify the feasibility of LMIs (5.9) and (5.10) in the four
vertices given by (2.39) with A; changed by Ay (also here two
vertices for g = 0). We find the following upper bounds hy; that
preserve the exponential stability of (5.37) either with a small
enough decay rate (for « = 0) or with a decay rate « = 0.005 for

all ¢ € (0, ¢*] and h(t) € [0, hy] (to be compared with the results
given by (2.41) for h(t) = 0):

1,2,
(5.39)

g1 =0, e* = 0.05 : a=0, hy = 0.0516;
a =0.005,  hy = 0.0259;
g1 =001, & =00015: «=0, hy = 0.0140;
a =0.005,  hy = 0.0010.

Thus, the perturbed switched uncertain system (5.37) is ISS for
€ (0, ¢*] and h(t) € [0, hy].

6. Conclusions

This paper has presented a constructive method to averag-
ing of linear systems with piecewise-continuous almost periodic
coefficients. The introduced time-delay approach allows, for the
first time, to derive efficient LMI-based conditions on the upper
bound of the small parameter that preserves the stability. The
method has been extended to persistently excited systems and to
ISS analysis, as well as to averaging of systems with time-varying
delay.

We have suggested some simple Lyapunov functionals for the
transformed time-delay system, and we expect that in the future
the results may be improved e.g. by using advanced Lyapunov-
based methods (for example, by using augmented Lyapunov func-
tionals with appropriate integral inequalities). The time-delay
approach may be further extended to more general classes of
systems and applied to various control problems that employ
averaging. These problems may include vibrational control, stabi-
lization by switching and extremum seeking (Scheinker & Krstic,
2017).
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