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a b s t r a c t

This article presents basic concepts and recent research directions about the stability of sampled-data
systems with aperiodic sampling. We focus mainly on the stability problem for systems with arbitrary
time-varying sampling intervals which has been addressed in several areas of research in Control Theory.
Systems with aperiodic sampling can be seen as time-delay systems, hybrid systems, Input/Output
interconnections, discrete-time systems with time-varying parameters, etc. The goal of the article is to
provide a structural overview of the progress made on the stability analysis problem. Without being
exhaustive, which would be neither possible nor useful, we try to bring together results from diverse
communities and present them in a unified manner. For each of the existing approaches, the basic
concepts, fundamental results, converse stability theorems (when available), and relations with the other
approaches are discussed in detail. Results concerning extensions of Lyapunov and frequency domain
methods for systems with aperiodic sampling are recalled, as they allow to derive constructive stability
conditions. Furthermore, numerical criteria are presented while indicating the sources of conservatism,
the problems that remain open and the possible directions of improvement. At last, some emerging
research directions, such as the design of stabilizing sampling sequences, are briefly discussed.

© 2016 Elsevier Ltd. All rights reserved.
1. Introduction

The last decade haswitnessed an enormous interest in the study
of networked and embedded control systems (Chen, Johansson,
Olariu, Paschalidis, & Stojmenovic, 2011; Hespanha, Naghshtabrizi,
& Xu, 2007; Hristu-Varsakelis & Levine, 2005; Zhang, Branicky,
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& Phillips, 2001). This interest is mainly due to the ubiquitous
presence of embedded controllers in relevant application domains
and the growing demand in industry on systematic methods to
model, analyse and design systems where sensor and control
data are transmitted over a digital communication channel.
The study of systems with aperiodic sampling emerged as a
modelling abstraction which allows to understand the behaviour
of Networked Control Systems (NCS) with sampling jitters,
packet drop-outs or fluctuations due to the inter-action between
control algorithms and real-time scheduling protocols (Antsaklis
& Baillieul, 2007; Astolfi, Nesic, & Teel, 2008; Zhang et al., 2001).
With the emergence of event-based and self-triggered control
techniques (Årzén, 1999; Åström & Bernhardsson, 1999; Heemels,
Johansson, & Tabuada, 2012; Velasco, Fuertes, & Marti, 2003), the
study of aperiodic sampled-data systems constitutes nowadays a
very popular research topic in control. In this survey, we focus
on questions arising in the control of systems with arbitrary
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time-varying sampling intervals. Important practical questions
such as the choice of the sampling frequency, the evaluation of
necessary computational and energetic resources or the robust
control synthesis aremainly related to stability issues. These issues
often lead to the problem of estimating the Maximum Sampling
Interval (MSI) forwhich the stability of a closed-loop sampled-data
system is ensured.

The study of aperiodic sampled-data systems has been ad-
dressed in several areas of research in Control Theory. Systems
with aperiodic sampling can be seen as particular time-delay sys-
tems. Sampled-and-hold in control and sensor signals can be mod-
elled using hybrid systems with impulsive dynamics. Aperiodic
sampled-data systems have also been studied in the discrete-
time domain. In particular, Linear Time Invariant (LTI) sampled-
data systems with aperiodic sampling have been analysed using
discrete-time Linear Parameter Varying (LPV) models. The effect of
sampling can be modelled using operators and the stability prob-
lem can be addressed in the framework of Input/Output inter-
connections as typically done in modern Robust Control. While
significant advances on this subject have been presented in the
literature, problems related to both the fundamentals of such
systems and the derivation of constructive methods for stability
analysis remain open, even for the case of linear system. The objec-
tive of the article is to present in a unified and structured manner
a collection of significant results on this topic.

The core of the article is dedicated to the analysis of systems
with arbitrary varying sampling intervals. We will only consider
the deterministic aspects of the problem. The case when sampling
intervals are random variables given by a probability distribution
will not be discussed here. After presenting some generalities
and motivations concerning sampled-data systems with aperiodic
sampling (in Section 2), some basic qualitative results are recalled
in Section 3. Section 4 presents the main stability analysis
approaches. At last, in Section 5, we briefly discuss some emerging
research problems, such as the design of stabilizing sampling
sequences. We indicate themain challenges, the relations with the
arbitrary sampling problem and some perspectives on which the
current approaches and tools for aperiodic sampled-data systems
may be useful in the future.
Notations: Throughout the paper, R+ denotes the set {λ ∈ R, λ ≥

0}, ∥x∥ represents any norm of the vector x and ∥x∥p , p ∈ N, the
p norm of a vector x. For a matrix M , MT denotes the transpose of
M andM⋆, its conjugate transpose. For square symmetric matrices
M, N , M ≽ N (resp. M ≻ N) means that M − N is a positive
(resp. definite positive)matrix. ∗, in a symmetricmatrix represents
elements thatmay be induced by symmetry. ∥M∥p , p ∈ N denotes
the induced p-norm of a matrix M . σ̄ (M) denotes the maximum
singular value ofM . C0(X, Y ), for twometric spaces X and Y , is the
set of continuous functions from X to Y . Ln

p(a, b), p ∈ N denotes
the space of functions φ : (a, b) → Rn with norm ∥φ∥Lp = b

a ∥φ(s)∥p ds
 1

p
, and Ln

2e[0, ∞) is the space of functions φ :

[0, ∞) → Rn which are square integrable on finite intervals.

2. Generalities

2.1. System configuration

In this paper we study the properties of sampled-data systems
consisting of a plant, a digital controller, and appropriate interface
elements. A general configuration of such a sampled-data system
is illustrated by the block diagram of Fig. 1. In this configuration,
y(t) is a continuous-time signal representing the plant output (the
plant variables that can bemeasured). This signal is represented as
a function of time t , y : R+ → Rp.
Fig. 1. Classical sampled-data system configuration.

The digital controller is usually implemented as an algorithm
on an embedded computer. It operates with a sampled version of
the plant output signal, {yk}k∈N, obtained upon the request of a
sampling trigger signal at discrete sampling instants tk and using
an analog-to-digital converter (the sampler block, S, in Fig. 1). This
trigger may represent a simple clock, as in the classical periodic
sampling paradigm, or a more complex scheduling protocol which
may take into account the sensor signal, a memory of its last
sampled values, etc. The sampling instants are described by a
monotone increasing sequence of positive real numbers σ =

{tk}k∈N where

t0 = 0, tk+1 − tk > 0, lim
k→∞

tk = ∞. (1)

The difference between two consecutive sampling times hk =

tk+1−tk is called the kth sampling interval. Assuming that the effect
of quantizers may be neglected, the sampled version of the plant
output is the sequence {yk}k∈N where yk = y(tk).

In a sampled-data control loop, the digital controller produces
a sequence of control values {uk}k∈N using the sampled version of
the plant output signal {yk}k∈N. This sequence is converted into a
continuous-time signal u(t), where u : R+ → Rm (corresponding
to the plant input) via a digital-to-analog interface. We consider
that the digital-to-analog interface is a zero-order hold (the hold
block, H , in Fig. 1). Furthermore, we assume that there is no delay
between the sampling instant tk and the moment the control uk
(obtained based on the kth plant output sample, yk) is effectively
implemented at the plant input. Then the input signal u(t) is a
piecewise constant signal u(t) = u(tk) = uk, ∀t ∈ [tk, tk+1).

In this survey, we will consider that the plant is modelled by a
finite dimensional ordinary differential equation of the form
ẋ = F (t, x, u) ,
y = H (t, x, u) ,

(2)

where x ∈ Rn represents the plant state-variable. Here F : R+ ×

Rn
× Rm

→ Rn with F(t, 0, 0) = 0, ∀t ≥ 0, and H : R+ × Rn
×

Rm
→ Rp. It is assumed that for each constant control and each

initial condition (t0, x0) ∈ R+ × Rn the function F describing the
plant model (2) is such that a unique solution exists for an interval
[t0, t0 + ϵ) with ϵ large enough with respect to the maximum
sampling interval. The discrete-time controller is considered to be
described by an ordinary difference equation of the form
xck+1 = F c

d


k, xck, yk


,

uk = Hc
d


k, xck, yk


,

(3)

where xck ∈ Rnc is the controller state. Here, F c
d : N × Rnc ×

Rp
→ Rn

c and Hc
d : N × Rnc × Rp

→ Rm. We will use
the denomination sampled-data system for the interconnection
between the continuous-time plant (2) with the discrete-time
controller (3) via the relations

yk = y(tk), u(t) = uk, ∀t ∈ [tk, tk+1), ∀k ∈ N, (4)

under a sequence of sampling instants σ = {tk}k∈N satisfying (1).
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The different concepts and results will be mostly illustrated on
Linear Time Invariant (LTI) models

ẋ = Ax + Bu, (5)

under a static linear state feedback,

uk = Kxk, k ∈ N, (6)

with xk = x(tk). However, when possible, we will present exten-
sions to more general nonlinear systems.

2.2. Classical design methods

There are various approaches for the design of a sampled-data
controller (3) (see the classical textbooks (Åström & Wittenmark,
1996; Chen & Francis, 1993) and the tutorial papers (Laila, Nešić, &
Astolfi, 2006; Monaco & Normand-Cyrot, 2001, 2007; Nešić & Teel,
2001)).
Emulation. The simplest approach consists in designing first a
continuous-time controller using classical methods (Isidori, 1995;
Khalil, 2002; Krstic, Kanellakopoulos, & Kokotovic, 1995; Sastry,
1999). Next, a discrete-time controller of the form (3) is obtained
by integrating the controller solutions over the interval [tk, tk+1).
This approach is usually called emulation. Generally, it is difficult
to compute in a formal manner the exact discrete-time model
and approximations must be used (Laila et al., 2006; Monaco &
Normand-Cyrot, 2007). In the LTI case (5) with state feedback (6),
the emulation simply means that the gain K is set such that the
matrix A + BK is Hurwitz and that the plant is driven by the
control u(t) = Kx(tk), ∀t ∈ [tk, tk+1), k ∈ N. While the intuition
seems to indicate that for sufficiently small sampling intervals
the obtained sampled-data control gives an approximation of
the continuous-time control problem, no guarantee can be given
when the sampling interval increases, even for constant sampling
intervals. In order to compensate for the effect of controller
discretization, re-designmethodsmay be used (Grüne,Worthmann,
& Nešić, 2008; Nešić & Grüne, 2005).
Discrete-time design. In this framework, a discrete-time model
of the plant (2) is derived by integration. The obtained model
represents the evolution of the plant state x(tk) = xk at sampling
times.1 Then, a discrete-time controller (3) is designed using the
obtained discrete-time model. In the simplest LTI case (5), (6), the
evolution of the state between two consecutive sampling instants
tk and tk+1 is given by

x(t) = Λ(t − tk)x(tk), ∀t ∈ [tk, tk+1], k ∈ N, (7)

with a matrix function Λ defined on R as

Λ(θ) = Ad(θ) + Bd(θ)K = eAθ
+

 θ

0
eAsdsBK . (8)

Evaluating the closed-loop system’s evolution at t = tk+1 andusing
the notation hk = tk+1 − tk leads to the linear difference equation

xk+1 = Λ(hk)xk, ∀k ∈ N (9)

representing the closed-loop system at sampling instants. When
the sampling interval is constant, hk = T , ∀k ∈ N, a large variety
of discrete-time control design methodologies is available in the
literature (see Åström & Wittenmark, 1996 and Chen & Francis,
1993 and the references within). It is well known for this case that

1 Note that generally approximations of the system model must be used since
the discretized plant model is difficult to compute formally (Monaco & Normand-
Cyrot, 1985; Veliov, 1997). Even for the case of LTI systems with constant sampling
intervals, the numerical computation of the matrix exponential (or its integral) is
subject to approximations (Moler & Van Loan, 2003).
system (9) is asymptotically stable if and only if the matrix Λ(T )
is Schur. In other words, to design a stabilizing control law (6), the
matrix K must be set such as all the eigenvalues of Λ(T ) lay in the
open unit disk.

For nonlinear systems with constant sampling intervals, an
overview of control design methodologies and related issues
can be found in Laila et al. (2006), Monaco and Normand-Cyrot
(2001, 2007) and Nešić and Teel (2001). Note that the discrete-
time models such as (9) do not take into consideration the
inter-sampling behaviour of the system. Relations between the
performances of the discrete-time model and the performances
of the sampled-data loop, can be deduced using the methodology
proposed in Nešić, Teel, and Sontag (1999).

Sampled-data design. Infinite dimensional discrete-time models
which take into account the inter-sampling system behaviour
using signal lifting (Bamieh & Pearson, 1992; Bamieh, Pearson,
Francis, & Tannenbaum, 1991; Tadmor, 1992; Toivonen, 1992a;
Yamamoto, 1994) have been proposed in the literature for the case
of linear systems. Specific design methodologies, which are able
to take in consideration continuous-time system performances,
inter-sample ripples and robustness specifications, can be found
in the textbook (Chen & Francis, 1993) for the case of linear time
invariant systems with periodic sampling.

2.3. Complex phenomena in aperiodic sampling

While in the last fifty years an intensive research has been
dedicated to the analysis and design of sampled-data systems
under periodic sampling, the study of systems with time-
varying sampling intervals is quite underdeveloped compared to
the periodic counterpart. The following examples illustrate the
rich complexity of phenomena that may occur under aperiodic
sampling.

Example 1 (Zhang, 2001). Consider an LTI sampled-data system of
the form (5), (6) where

A =


1 3
2 1


, B =


1
0.6


, K = −


1 6


. (10)

For this example, system’s (9) transition matrix Λ(T ) is a Schur
matrix for any constant sampling interval in T ∈ T = {T1, T2},
with T1 = 0.18, and T2 = 0.54. Then, in the case of periodic
sampling, the sampled-data system is stable for constant sampling
intervals taking values in T . An illustration of the system’s
evolution for constant sampling intervals T1, T2, is given in Fig. 2.
Clearly, when the sampling interval hk is arbitrarily varying in T ,
the Schur property of Λ(T ), ∀ T ∈ T , represents a necessary
condition for stability of the sampled-data system (1), (5), (6).
However, it is not a sufficient one. For example, the sampled-
data systemwith a sequence of periodically time-varying sampling
intervals {hk}k∈N = {T1, T2, T1, T2, . . .} is unstable, as it can be
seen in Fig. 3. This is due to the fact that the Schur property of
matrices is not preserved under matrix product (i.e. the product of
two Schur matrices is not necessarily Schur). Indeed, the discrete-
time system representation over the two sampling instants can be
written as

xk+2 = Λ(T2)Λ(T1)xk, ∀k ∈ 2N,

and the transition matrix Λ(T2)Λ(T1) over two sampling intervals
T1 and T2, is not Schur. This example shows the importance of
taking into consideration the evolution of the sampling interval
hk when analysing the stability of sampled-data systems since
variations of the sampling interval hk may induce instability.
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Fig. 2. Stability of the system in Example 1 with periodic sampling intervals.

Fig. 3. Instability of the system in Example 1 with a periodic sampling sequence
T1 → T2 → T1 · · · .

Fig. 4. Periodic sampling sequence with a stable behaviour.

Example 2 (Gu, Kharitonov, & Chen, 2003). Consider now an LTI
system with

A =


0 1

−2 0.1


, B =


0
1


K =


1 0


. (11)

Assume that the sampling interval hk is restricted to the set T =

{T1, T2} with T1 = 2.126 and T2 = 3.950. The system is unsta-
ble for both constant sampling intervals T1 and T2 since for these
values system’s (9) transition matrix Λ(T ), T ∈ T is not a Schur
matrix. However, the product of transition matrices Λ(T1)Λ(T2)
has the Schur property. Therefore, the sampled-data system is sta-
ble under a periodic evolution of the sampling interval {hk}k∈N =

{T1, T2, T1, T2, . . .}. An example of system evolution with this par-
ticular sampling sequence is provided in Fig. 4. In this example the
sampling hk can act on the sampled-data system as a second con-
trol parameter which ensures the system’s stability while the pos-
sible constant sampling configurations are not able to guarantee
this property.
2.4. Problem set-ups

The core of the survey is dedicated to the robust analysis of
sampled-data systems with sampling sequences of the form (1)
where the sampling interval hk = tk+1 − tk takes arbitrary values
in some set T = [h, h] ⊂ R+. This first problem set-up may
correspond, for example, to the sampling triggering mechanism
from Fig. 1 with a clock submitted to jitter (Wittenmark, Nilsson,
& Torngren, 1995), or with some scheduling protocol which is too
complex to be modelled explicitly (Hespanha et al., 2007; Zhang
et al., 2001). Basically, for the case of LTI models (5) with linear
state feedback (6) under a sampling sequence (1) we will address
the robust stability of the closed-loop system (12) given belowẋ(t) = Ax(t) + BKx(tk), ∀t ∈ [tk, tk+1), ∀k ∈ N,
tk+1 = tk + hk, ∀k ∈ N,
t0 = 0, x(t0) = x0 ∈ Rn

(12)

as if hk is a time-varying ‘‘perturbation’’ taking values in a bounded
set T .

In Section 5 we briefly indicate some basic ideas concerning
a recently emerging research topic where the sampling interval
hk plays the role of a control parameter that may be changed
according to the plant state or output. This problem set-up
corresponds to the design of a scheduling mechanism. For the case
of system (12), hk is considered as an additional input which, by
an appropriate open/closed-loop choice, can ensure the system
stability.

3. Qualitative properties of sampled-data systems

In this sectionwe recall some aspects concerning the qualitative
behaviour of sampled-data systems with time-varying sampling
intervals. First, we discuss the existence of a sufficiently small
sampling interval that preserves asymptotic stability when
discretizing a continuous-time stabilizing controller. Next, we
present qualitative stability results which can be deduced for
nonlinear sampled-data systems using linearization.

3.1. Small sampling interval approximations

The choice of sampling intervals is a critical issue in the
emulation approach. Intuitively, choosing a sufficiently large
sampling frequency should preserve the stability under a sampled-
data implementation. This conjecture has been confirmed in
Herrmann, Spurgeon, and Edwards (1999, 2000) and Teel, Nešić,
and Kokotović (1998) for systems with periodic sampling. For
the case of aperiodic sampling, various classes of systems have
been treated in the literature (Burlion, Ahmed-Ali, & Lamnabhi-
Lagarrigue, 2006; Hsu & Sastry, 1987; Owens, Zheng, & Billings,
1990). The case of LTI systems (5) with linear state feedback (6)
has been addressed long ago in Hsu and Sastry (1987).

Theorem 1 (Hsu & Sastry, 1987). Consider that system ẋ = (A +

BK)x is exponentially stable. Then there exists a scalar h > 0 such that
the closed-loop system (12) is Exponentially Stable for any sequence
σ = {tk}k∈N of the form (1) satisfying hk = tk+1 − tk < h, ∀k ∈ N.

The proof is based on the existence of a quadratic Lyapunov
function for the continuous-time closed-loop system ẋ = (A +

BK)x. An extension to a more general class of (input affine)
nonlinear systems is given below.

Theorem 2 (Hsu & Sastry, 1987). Let x = 0 be a globally expo-
nentially stable equilibrium point of system ẋ = f (x) + g(x)u with
u = K(x), where f : Rn

→ Rn, g : Rn
→ Rn×m, K : Rn

→ Rm,
and let V : Rn

→ R+ be a radially unbounded C1 function such
that V (0) = 0, V (x) > 0 for all x ≠ 0. Assume that the following
conditions are satisfied:
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• the functions f (.) and K(.) are globally Lipschitz;
• there exists G > 0 such that ∥g(x)∥ ≤ G for all x ∈ Rn;
• there exist c1, c2 > 0 such that for any x ∈ Rn

∂V
∂x

(f (x) + g(x)K(x)) ≤ −c1 ∥x∥2 ,

∂V
∂x

 ≤ c2 ∥x∥ ;

• given a closed set B1 and a bounded open set B2 with B1 ⊂ B2 ⊂

Rn there exists a scalar s(B1, B2) > 0 such that, if the initial con-
dition η(0) ∈ B1, then the trajectory η(t) of η̇ = f (η) satisfies
η(t) ∈ B2, for all t ≤ s(B1, B2).

Then there exists a scalar h > 0 such that x = 0 is a Globally
Exponentially Stable Equilibrium point of the system

ẋ(t) = f (x(t)) + g (x(t)) K (x(tk)) , (13)

t ∈ [tk, tk+1), k ∈ N, for any sequence of sampling instants σ =

{tk}k∈N of the form (1) satisfying hk = tk+1 − tk < h, ∀k ∈ N.

In Hsu and Sastry (1987) it was further shown that if the
continuous-time control system ẋ = f (x) + g(x)K(x) is asymptot-
ically stable (instead of exponentially stable), then only practical
stability is guaranteed for the sampled-data system (13). A more
general case, dealing with the emulation of dynamical controllers
based on Euler discretization was provided in Burlion et al. (2006)
and Hsu and Sastry (1987). An alternative to Theorem 2 can be
found in Owens et al. (1990) and concerns the same issue but the
drift f (x) is not required to satisfy any Lipschitz property. However,
the continuous-time control loop should ensure the exponential
decay of a quadratic Lyapunov function along its solutions. Further-
more, the result only states the practical stability of the sampled-
data control loop. Another extension to a more general class of
NetworkedControl Systems can be found inNešić and Teel (2004c).
There it is shown that if a continuous-time controller is designed
such that it yields input-to-state stability with respect to external
disturbances, then the same controller will achieve a semi-global
practical input-to-state stability property when implemented in a
sampled-data control loop via an exact emulation. Qualitative re-
sults for the existence of both a sufficiently small sampling interval
and a stabilizing sampled-data controller can be found in Karafyllis
and Kravaris (2009b).

3.2. Linear approximations

The study of sampled-data systems with linear models and
controllers is often easier to address than the nonlinear case. For
some classes of nonlinear sampled-data systems, local stability can
be deduced from the properties of a linearized model around the
equilibrium (Hou, Michel, & Ye, 1997; Hu & Michel, 2000).

Consider the following nonlinear system
ẋ = F (x, u) ,
y = H (x) ,

(14)

the discrete-time controller
xck+1 = F c

d


xck, yk


,

uk = Hc
d


xck, yk

 (15)

and the interconnection yk = y(tk), u(t) = uk, ∀t ∈ [tk, tk+1),
∀k ∈ N, for sampling sequences σ = {tk}k∈N as defined in (1). The
closed-loop system can be represented by the set of equations

ẋ(t) = f

x(t), xk, xck


, t ∈ [tk, tk+1)

xck+1 = g

xk, xck


, k ∈ N,

(16)

where f (x, xk, xc) = F

x,Hc

d


xck,H(xk)


, g

xk, xck


= F c

d


xck,

H(xk)

and xk = x(tk). For f (x, v, w) and g(v, w) let A =

∂ f
∂x


0,
A0 =
∂ f
∂v


0, B =

∂ f
∂w


0, C =

∂g
∂w


0,D =

∂g
∂v


0. To system (16) the

following linear model is associated
ẋ(t) = Ax(t) + A0xk + Bxck, t ∈ [tk, tk+1),

xck+1 = Cxck + Dxk, k ∈ N.
(17)

Integrating the system over a sampling interval and letting zTk =
xTk xck

T  leads to the following linear time-varying discrete-time
system

zk+1 = Ω(hk)zk, ∀k ∈ N, (18)

with

Ω(hk) =

eAhk +

 hk

0
eAsdsA0

 hk

0
eAsdsB

D C

 . (19)

The following theorem establishes conditions for the stability
of the nonlinear system (16) under arbitrary variations of the
sampling interval.

Theorem 3 (Hu & Michel, 2000). Assume that, for every possible
sequence σ = {tk}k∈N defined in (1), one has hk = tk+1 − tk ≤ h,
and for any k ∈ N, ∥Ω(hk)∥2 < q < 1, where h and q are constant
scalars. Then the equilibrium point


xT xc T


= 0 of system (16) is

Exponentially Stable.

The nature of the result is in the spirit of the Lyapunov’s first
method (Khalil, 2002), as it permits to guarantee the stability of the
equilibrium of the nonlinear system, by studying the stability of its
linearization at the origin. In the same way, it remains qualitative
and it does not provide any estimate of the domain of attraction.
However, the result does not require the sampling intervals to be
small.

The following theorem uses the linear model (18) in order to
provide conditions for the stability of the nonlinear sampled-data
system (16) with a fixed sequence of sampling instants.

Theorem 4 (Hu & Michel, 2000). Let σ = {tk}k∈N be a sequence
defined in (1) with supk∈N{tk+1 − tk} = h < ∞, where h is a given
constant. Assume that either

(i) lim supk→∞ ∥Ω(hk)∥2 < 1, or
(ii) lim supk→∞ {max |eig(Ωk)|} < 1 and every subsequence of

{Ω(hk)}k∈N converges to a Schur matrix and the solutions Pk of
ΩT (hk)PkΩ(hk)−Pk = −I satisfy lim supk→∞ ∥Pk+1 − Pk∥2 <
1, or

(iii) Ω(hk) converges to a Schur matrix.

Then the equilibrium point

xT xc T


= 0 of system (16) with the

sampling sequence σ is Exponentially Stable.

Note that, in the conditions of Theorem 4, the matrix Ω(hk) is
not required to be Schur for all the values of k ∈ N. One may find
particular sequences of sampling instants σ = {tk}k∈N satisfying
the conditions (i) or (iii) in Theorem 4 for which the eigenvalues
of Ω(hk) are outside the unit disk for some values of k. The result
is interesting when the sampling interval hk can be considered
as a control parameter, for scheduling the sampling instants in
an appropriate manner. The theorem may be used to determine
scheduling mechanisms with sampling intervals larger than in a
periodic sampling configuration.

4. Stability analysis under arbitrary time-varying sampling

The previous results are qualitative and prove some nice
properties of sampled-data systems. However, they do not provide
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any method for estimating the set of sampling intervals for which
the stability properties are still guaranteed. In the following,
we review some results which provide such an estimation for
sampled-data systems with sampling intervals that are arbitrary
varying. More formally, over the section, we present results that
address the following problem:

• Problem A (Arbitrary sampling problem): Consider the
sampled-data system (1), (2), (3), (4) and a bounded subset
T ⊂ R+. Determine if the sampled-data system is stable (in
some sense) for any arbitrary time-varying sampling interval
hk = tk+1 − tk with values in T .

Often the set T is considered of the form T = (0, h] where h is
some positive scalar. The largest value of h for which the stability
of the closed loop system is ensured is called Maximum Sampling
Interval (MSI).

Several perspectives for addressing Problem A exist. First, we
present results that are based on a time-delay modelling of the
sampled-data system (1), (2), (3), (4). Next, we show how the
problem can be addressed from the point of view of hybrid
systems. We continue with approaches that use the explicit system
integration in-between successive sampling instants, such as the
ones classically used in the discrete-time framework. Last, results
addressing Problem A from the robust control theory point of view
are presented.

4.1. Time-delay approach

To the best of our knowledge, this technique was initiated
in Åström and Wittenmark (1989) and Mikheev, Sobolev, and
Fridman (1988), and further developed in Fridman (1992), Louisell
(2001) and Teel et al. (1998) and in several other works. For the
case of an LTI system with sampled-data state feedback (12), we
may re-write

u(t) = Kx(tk) = Kx(t − τ(t)),
τ (t) = t − tk, ∀t ∈ [tk, tk+1),

(20)

where the delay τ is piecewise-linear, satisfying τ̇ (t) = 1 for
t ≠ tk, and τ(tk) = 0. This delay indicates the time that has passed
since the last sampling instant. An illustration of a typical delay
evolution is given in Fig. 5. The LTI system with sampled-data (12)
is then re-modelled as an LTI system with a time-varying delay

ẋ(t) = Ax(t) + BKx(t − τ(t)), ∀t ≥ 0. (21)

This permits to adapt the tools for the analysis of systems with fast
varying delays (Fridman & Shaked, 2003; Gu & Niculescu, 2003;
Niculescu & Gu, 2004; Richard, 2003). This model is equivalent
to the original sampled-data system when considering that the
sampling induced delay has a known derivative τ̇ (t) = 1, for all
t ∈ [tk, tk+1), k ∈ N.

4.1.1. Theoretical foundation
For system (21) it is natural to consider, as a state variable, the

functional xt(θ) = x(t + θ), ∀θ ∈ [−h̄, 0], and, as state space, the
set C0


−h, 0


, Rn


of continuous functions mapping the interval

−h, 0


into Rn (Fridman, 2014; Niculescu, 2001; Niculescu,
Verriest, Dugard, & Dion, 1998). The most popular generalization
of the direct Lyapunov method for time-delay system has been
proposed by Krasovskiı̆ (1963). It uses the existence of functionals
V (t, xt) depending on the state vector xt . In the sampled-data case
(Fridman, 2010; Fridman, Seuret, & Richard, 2004; Liu & Fridman,
2012) functionals V (t, xt , ẋt) depending both on xt and ẋt (see
Kolmanovskii & Myshkis, 1992, p. 337) are useful.
Fig. 5. Sampling seen as a piecewise-continuous time-delay.

Denote byW [−h, 0] the Banach space of absolutely continuous
functions φ : [−h, 0] → Rn with φ̇ ∈ Ln

2(−h, 0) (the space of
square integrable functions) with the norm

∥φ∥W = max
s∈[−h,0]

∥φ(s)∥ +

 0

−h

φ̇(s)
2 ds 1

2

.

Theorem 5 (Lyapunov–Krasovskii Theorem (Kolmanovskii &Myshkis,
1992)). Consider f : R+ × C0

[−h, 0] → Rn continuous in both ar-
guments and locally Lipschitz in the second argument. Assume that
f (t, 0) = 0 for all t ∈ R+ and that f maps R× (bounded sets in
C0

[−h, 0]) into bounded sets of Rn. Suppose that α, v,w : R+ →

R+ are continuous nondecreasing functions, α(s), β(s) and γ (s) are
positive for s > 0, lims→∞ α(s) = ∞ and α(0) = β(0) = 0. The
trivial solution of

ẋ(t) = f (t, xt)

is Globally Uniformly Asymptotically Stable if there exists a continu-
ous functional V : R × W [−h, 0] × Ln

2(−h, 0) → R+, which is
positive-definite, i.e.

α(∥φ(0)∥) ≤ V (t, φ, φ̇) ≤ β(∥φ∥W ),

for all φ ∈ W [−h, 0], t ∈ R+, and such that its derivative along the
system’s solutions is non-positive

V̇ (t, xt , ẋt) ≤ −γ (∥xt(0)∥). (22)

The functional V satisfying the conditions of Theorem 5 is called
a Lyapunov–Krasovskii Functional (LKF). In the general case of
sampled-data nonlinear systems, the underlying delay system ẋ =

f (t, xt) used in Theorem 5 from Kolmanovskii and Myshkis (1992)
is described by a function f which is piecewise continuous with
respect to t . However, the proof of the result in Kolmanovskii
and Myshkis (1992) can be adapted to cover this case. For
the case of sampled-data systems, in Fridman et al. (2004) the
Lyapunov–Krasovskii Theorem was extended to linear systems
with a discontinuous sawtooth delay by use of the Barbălat
lemma (Barbălat, 1959). Another extension to linear sampled-data
systems has been provided in Fridman (2010), where the LKF is
allowed to have discontinuities at sampling times.

4.1.2. Tools and basic steps
The derivation of stability conditions using LKFs usually

involves quite elaborate developments. To give an idea of the
procedure involved in this approach and to provide a glimpse of
its technical flavour, we present first the derivation of LMI stability
conditions for the case of LTI systems (12) with the associated time
delay model (21). Based on elementary considerations, we expose
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themain difficulties and themost relevant tools. The basic steps for
deriving constructive stability conditions are illustrated as follows.
Step 1. Propose a candidate Lyapunov–Krasovskii functional V . The
LKF that is necessary and sufficient for the stability of LTI systems
with delay has a rather complex form, even for the case of constant
delays (Fridman & Niculescu, 2008; Kolmanovskii & Myshkis,
1999). In order to provide constructive stability conditions,
simplified forms are used, such as

V (xt , ẋt) = xT (t)Px(t) + h̄
 0

−h̄

 t

t+θ

ẋT (s)Rẋ(s)dsdθ (23)

with P, R ≻ 0, which was considered in Fridman and Shaked
(2002b).
Step 2. Compute the derivative of V . For the functional (23) this
leads to

V̇ (xt , ẋt) = 2ẋT (t)Px(t) + h̄2ẋT (t)Rẋ(t)

− h̄
 t

t−h̄
ẋT (s)Rẋ(s)ds. (24)

The difficulty now comes from the last integral term, J(ẋt , h̄) =

−
 t
t−h̄ ẋ

T (s)Rẋ(s)ds, which is an impediment to the analysis of the
sign of (24). Such terms are common in the derivative of LKFs and
they need to be taken into account in an appropriated manner.

Step 3. Over-approximate the integral terms. This procedure is ap-
plied in order to replace the integral terms bymore simple expres-
sions. Unavoidably, using such over-approximations introduces
some conservatism in the analysis. A relevant tool is Jensen’s in-
equality, which is recalled here.

Lemma 6 (Jensen’s Inequality Gu et al., 2003). Given R ≻ 0, θ ≥ 0,
and a differentiable function x : [t − θ, t] → Rn, the following
inequality holds:

J(ẋt , θ) = −

 t

t−θ

ẋ(s)Rẋ(s)ds

≤ −
1
θ

(x(t) − x(t − θ))T R (x(t) − x(t − θ)) . (25)

For the case presented in (24), splitting the integral in two terms
and applying Jensen’s inequality leads to

d
dt

V (xt , ẋt) ≤ 2ẋT (t)Px(t) + h̄2ẋT (t)Rẋ(t)

− ζ (t)TR (τ (t)) ζ (t) (26)

where ζ (t) =


x(t) − x (t − τ(t))

x (t − τ(t)) − x(t − h̄)


, and

R (τ (t)) =


h̄

τ(t)
R 0

0
h̄

h̄ − τ(t)
R


is a matrix depending on the delay value. At this step, sufficient
conditions of stability are provided by the negativity of the right-
hand side of the inequality (26). However, the obtained conditions
need to be checked for all the values of τ(t) ∈ (0, h], due to the
dependence on τ(t) of the matrix R̄(.).
Step 4. Over-approximate the delay dependent terms. The last step
consists in over-approximating the elements that depend on τ(t)
by simpler expressions which are constant or depend only on the
upper bound h. For example, in Fridman et al. (2004), stability
conditions are obtained by noting that h̄
τ(t) ≥ 1 and h̄

h̄−τ(t)
≥ 0,

which implies that

R (τ (t)) ≽


R 0
0 0


(27)

holds for all delay τ in the interval [0, h̄]. Of course, this over-
approximation still introduces some conservatism in the analysis.
However, for the case of LTI systems (12), over-approximating the
terms in (26) leads to

d
dt

V (xt , ẋt) ≤


x(t)

x (t − τ(t))

T
Ψ (P, R)


x(t)

x (t − τ(t))


with

Ψ (P, R) =


PA + ATP P(BK)

(BK)TP 0


+ h̄2


AT

(BK)T


R

A BK


−


I

−I


R

I −I


, (28)

fromwhich LMI stability conditions can be derived (Fridman et al.,
2004; Fridman & Shaked, 2002b) simply by checking the negative
definiteness of Ψ (P, R).

Theorem 7 (Adapted From Fridman et al., 2004 and Fridman &
Shaked, 2002b). Assume that there exists P ≻ 0 and R ≻ 0, such
that the following linear matrix inequality Ψ (P, R) ≺ 0 holds with
Ψ (P, R) as defined in (28). Then, the sampled-data system (12) is
Asymptotically Stable for all sampling sequences σ = {tk}k∈N with
hk = tk+1 − tk ≤ h̄.

Theorem 7 is a simplified reformulation of the result in Fridman
et al. (2004), where a more general case of polytopic systems is
considered using a descriptor model (Fridman & Shaked, 2002a,b).

4.1.3. Directions of improvement
The main sources of conservatism in this approach are due to

the choice of the LKF (Step 1) and the over-approximation of its
derivative (Steps 3 and 4).
Step 1. The conservatism related to Step 1 can be reduced by adding
new integral components to the LKF. For example the triple inte-
gral term V (ẋt) =

h̄2
2

 0
−h̄

 0
θ

 t
t+λ

ẋT (s)Rẋ(s)dsdλdθ introduced by
Sun, Liu, Chen, and Rees (2010) for systems with fast varying delay
might also be useful in the sampled-data case. For other forms of
LKF see also Ariba and Gouaisbaut (2009), Fridman (2014), Seuret,
Gouaisbaut, and Fridman (2013), Shao and Han (2012) and Park,
Kwon, Park, and Lee (2011). We point in particular to the results
in Fridman (2010), Liu, Suplin, and Fridman (2010), Naghshtabrizi,
Hespanha, and Teel (2008) and Seuret (2012), which have been
specifically developed for the analysis of sampled-data systems.
There, the proposed LKFs allow for taking into account the par-
ticular sawtooth evolution of the sampling induced delay (τ̇ (t) =

1, ∀t ∈ [tk, tk+1)) while in the classical fast varying delay approach
the delay derivative is assumed to be unknown and arbitrary vary-
ing. For example, it has been shown in Fridman (2010) that the
standard time-independent term

 0
−h̄

 t
t+θ

ẋT (s)Rẋ(s)dsdθ used in
Fridman et al. (2004) can be advantageously replaced by the term
(tk+1 − t)

 t
tk
ẋT (s)Rẋ(s)ds, which provides derivative-dependent

stability conditions. It leads to an LKF of the form (Fridman, 2010):

V (t, x(t), ẋt)

= xT (t)Px(t) + (hk − τ(t))
 t

t−τ(t)
ẋT (s)Rẋ(s)ds (29)

which improves (23), as the information τ̇ = 1 can be explicitly
taken into accountwhen evaluating its derivative in Step 2. See also
Seuret (2009) for an alternative LMI formulation.
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Step 3. Concerning the conservatism related to the over-
approximation of integral terms (Step 3), the accuracy of Jensen’s
inequality has been addressed in Briat (2011), Gouaisbaut and
Peaucelle (2006) and Seuret and Gouaisbaut (2013). Alternatively
to the use of Jensen’s inequality, the integral terms may also
be over-approximated using extensions of Wirtinger’s inequality
(Gyurkovics, 2015; Liu et al., 2010; Seuret & Gouaisbaut, 2013,
2014). Further refinements were developed in Lee, Park, Jung,
Kwon, and Lee (2014), where the authors considered a discretized
version of this inequality, in Zeng, He, Wu, and She (2015), where
additional free-weighted matrices are introduced or in Park, Lee,
and Lee (2015) using auxiliary functions. Other improvements
have been presented in Seuret and Gouaisbaut (2014, 2015) based
on Bessel’s inequality and Legendre polynomials. Finally, following
the description given in Step 1, the application of the Wirtinger-
based inequality to the case of triple integral-type of LKFs was con-
sidered in Park, Kwon, Park, Lee, and Cha (2015).
Step 4. The reduction of the conservatism induced by the over-
approximations of delay dependent terms (Step 4) has been
considered by several authors over the last few years (He, Wang,
Lin, & Wu, 2007; Park, Ko, & Jeong, 2011; Shao, 2009). To the
best of our knowledge, for the moment, the most accurate over-
approximation of delay dependent terms is provided in Park,
Ko et al. (2011). This result encompasses several of the existing
approximation techniques proposed in the literature (Fridman
et al., 2004; He et al., 2007) and allows for an LMI formulation.

4.1.4. A more recent result
Clearly, considering more complex LKFs and more advanced

over-approximation techniques increases the complexity of the
proposed LMI stability criteria (in terms of readability). In
the sequel, we present the simple stability conditions from
Fridman (2010), which take into account some of the presented
conservatism reduction techniques and provide a fair compromise
between accuracy and complexity.

Theorem 8 (Fridman, 2010). Let there exist P ≻ 0, R ≻ 0, P2 and P3
such that the LMI
Φs P − PT

2 + (A + BK)TP3
∗ −P3 − PT

3 + hR


≺ 0, (30)Φs P − PT

2 + (A + BK)TP3 −hPT
2 A

∗ −P3 − PT
3 −hPT

3 A

∗ ∗ −hR

 ≺ 0, (31)

withΦs = PT
2 (A+BK)+(A+BK)TP2, are feasible. Then system (12) is

Exponentially Stable for all sampling sequences σ = {tk}k∈N with
hk = tk+1 − tk ≤ h̄.

The result takes into account information about the sawtooth
shape of the delay, which is the specificity of the time-delaymodel
(21) when representing exactly the sampled-data system (12). It
can ensure the stability for time-varying delays τ(t) which are
longer than any constant delay that preserves stability, provided
that τ̇ (t) = 1.

The research on LKFs for sampled-data systems is still a wide-
open domain. Currently, an important effort is dedicated to finding
better LKFs and better over-approximations of the derivatives.
Note that providing improvements (in terms of conservatism
reduction) at one step usually requires changes at all the others
steps. For this reason, the derivation of constructive stability
conditions may be quite an elaborate analytical process and it is
not always very intuitive. However, a notable advantage of this
methodology is the fact that for linear systems the approach can
be easily extended to control design (Fridman et al., 2004; Liu &
Fridman, 2012; Suplin, Fridman, & Shaked, 2007) and to the case of
systems with parameter uncertainties (Fridman, 2010; Gao, Sun, &
Shi, 2010; Orihuela, Millán, Vivas, & Rubio, 2010; Peng, Han, Yue, &
Tian, 2011; Seuret, 2012), delays (Gao, Chen, & Lam, 2008; Mazenc
& Normand-Cyrot, 2012, 2013; Seuret, 2011; Suplin, Fridman,
& Shaked, 2009; Van de Wouw, Naghshtabrizi, Cloosterman, &
Hespanha, 2010) and scheduling protocols (Liu, Fridman, & Hetel,
2015, 2012; Liu, Fridman, & Johansson, 2015). See also Hetel,
Fridman, and Floquet (2015) and Hetel and Fridman (2013) for
the use of LKFs in the case of systems with switching control and
Fridman and Bar Am (2013) and Fridman and Blighovsky (2012) for
the control of semilinear 1-D heat equations.

4.1.5. An extension to nonlinear systems
Concerning nonlinear systems, Mazenc, Malisoff, and Dinh

(2013) has extended the ideas in Fridman et al. (2004) for the case
of control affine non-autonomous systems. Consider the nonlinear
system:

ẋ(t) = f (t, x(t)) + g(t, x(t))u(t), (32)

with the state x(t) ∈ Rn and the input u(t) ∈ Rm, and with
functions f , g that are locally Lipschitz with respect to x and
piecewise continuous in t . Assume that a C1 controller u(t) =

K(t, x) is designed in order to make the system (32) Globally
Uniformly Asymptotically Stable. Moreover, assume that there
exist aC1 positive definite and radially unbounded function V , and
a continuous positive definite functionW such that:

−

∂V
∂t

(t, x) +
∂V
∂x

(f (t, x) + g(t, x)K(t, x))


≥ W (x), (33)

for all t ≥ t0 and x ∈ Rn. Also, consider K(t, 0) = 0 for all
t ∈ R. Hence, V is a strict Lyapunov function for ẋ = f (t, x) +

g(t, x)K(t, x), and one can fix class K∞ functions α1 and α2 such
that α1(∥x∥2) ≤ V (t, x) ≤ α2(∥x∥2), for all t ≥ t0 and x ∈ Rn.
Define the function

ρ(t, x) =
∂K
∂t

(t, x) +
∂K
∂x


f (t, x) + g(t, x)K(t, x)


. (34)

Theorem 9 (Adapted From Mazenc et al., 2013). Suppose that there
exist constants c1, c2, c3 and c4 such that:∂K

∂x
(t, x)g(t, x)

2
2

≤ c1,
∂V

∂x
(t, x)g(t, x)

2
2

≤ c2,

∥ρ(t, x)∥2
2 ≤ c3W (x),∂V

∂x
(t, x)g(t, x)K(t, x)


2

≤ c4(V (t, x) + 1),

hold for all t ≥ t0 and x ∈ Rn. Consider the system (32) in closed-
loop with: u(t) = K(tk, x(tk)), t ∈ [tk, tk+1), σ = {tk}k∈N as
defined in (1) and hk = tk+1 − tk ∈ [h, h], ∀k ∈ N. Then, the
closed-loop system is Globally Uniformly Asymptotically Stable if h ≤

(4c1 + 8c2c3)−1/2.

The stability is proven by means of a Lyapunov functional of the
form

U(t, xt) = V (t, x(t)) +
ϵ

h

 0

−h

 t

t+θ

∥Ψ (s, xs)∥2
2 dsdθ,

where Ψ (t, xt) =
∂K
∂t (t, xs(0)) +

∂K
∂x (t, xt(0)) ẋt(0) and ϵ > 0.

This functional is reminiscent of the form (29) used in Fridmanet al.
(2004) to study LTI systems. However, differently from the LTI case,
it is far more complex to determine how conservative the result is.
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4.1.6. Further reading
Aside from the Lyapunov–Krasovskii method, the stability of

sampled-data systems can also be analysed using the method pro-
posed by Razumikhin (1956). Connections between Razumikhin’s
method and the ISS nonlinear small gain theorem (Sontag, 1998)
have been established in Teel (1998). This relation has been used
in Teel et al. (1998) in order to show the preservation of ISS proper-
ties under sufficiently fast sampling for nonlinear systems with an
emulated sampled-data controller. Razumikhin’s method has been
used in Fiter, Hetel, Perruquetti, and Richard (2012a) for the case
of LTI sampled-data systems. In Karafyllis and Kravaris (2009a),
the Razumikhin method is explored for nonlinear sampled-data
systems on the basis of vector Lyapunov–Razumikhin functions.
For more general extensions to the control design problem see
Karafyllis and Krstic (2012a), concerning the case of nonlinear
feed-forward systems and Karafyllis and Krstic (2012b), for non-
linear sampled-data system with input delays. At last, we would
like to mention the Input/Output approach for the analysis of time-
delay systems (Fu, Li, & Niculescu, 1998; Gu et al., 2003; Kao &
Lincoln, 2004), which makes use of classical robust control tools
(Megretski & Rantzer, 1997; Zhou, Doyle, & Glover, 1996). The ap-
plication of the Input/Output approach for the case of sampled-
data systems has been discussed in Mirkin (2007) and Liu et al.
(2010). The approach was further developed by Chen and Fujioka
(2014), Fujioka (2009c) and Omran, Hetel, and Richard (2012);
Omran, Hetel, Richard, and Lamnabhi-Lagarrigue (2013, 2014a,b)
without passing through the time-delay system model. It will be
presented in more detail in Section 4.4.

4.2. Hybrid system approach

Due to the existence of both continuous and discrete dynamics,
it is quite natural to model sampled-data systems as hybrid
dynamical systems (Goebel, Sanfelice, & Teel, 2009, 2012; Haddad,
Chellaboina, &Nersesov, 2014). The firstmentions to sampled-data
systems as hybrid dynamical systems date back to the middle of
the ’80s (Mousa, Miller, & Michel, 1986). Later on, in the ’90s, the
use of hybrid models has been developed for linear sampled-data
systems with uniform and multi-rate sampling as an interesting
approach for the H∞ and H2 control problems (Kabamba & Hara,
1993; Sun, Nagpal, & Khargonekar, 1993; Toivonen, 1992b). The
approach has also been developed for nonlinear sampled-data
systems in Hou et al. (1997) and Ye, Michel, and Hou (1998).
For systems with aperiodic sampling, impulsive models had been
used starting with Dullerud and Lall (1999), Michel and Hu (1999)
and Toivonen (1992b). Recently, more general hybrid models have
been proposed in the context of Networked Controlled Systems by
Nešić and Teel (2004b) and Nešić, Teel, and Carnevale (2009). A
solid theoretic foundation has been established for hybrid systems
in the framework proposed by Goebel et al. (2009, 2012) and it
proves to be very useful in the analysis of sampled-data systems.

In this section we will present some basic hybrid models
encountered in the analysis of sampled-data systems. The
extensions of the Lyapunov stability theory for hybrid systemswill
be introduced together with constructive numerical and analytic
stability analysis criteria.

4.2.1. Impulsive models for sampled-data systems
Consider the case of LTI sampled-data systems with linear state

feedback, as in system (12). Let x̂ denote a piecewise constant
signal representing themost recent statemeasurement of the plant
available at the controller, x̂(t) = x(tk), for all t ∈ [tk, tk+1), k ∈ N.
Using the augmented system state χ(t) = [xT (t), x̂T (t)]T ∈ Rnχ

with nχ = 2n, the dynamics of the LTI sampled-data system (12)
can be written under the form
χ̇(t) = Fχ(t), t ≠ tk, k ∈ N,

χ(tk) = Jχ(t−k ), k ∈ N,
(35)

with

χ(t−) = lim
θ↑t

χ(θ), F =


A BK
0 0


, J =


I 0
I 0


. (36)

Similar models can be determined by considering an augmented
state vector χ including the most recent control value imple-
mented at the plant û(t) = u(tk), the sampling error e(t) =

x(t) − x̂(t), the actuation error eu(t) = u(t) − û(t), etc. Models
of the form (35), (36) fit into the framework of impulsive dynami-
cal systems (Bainov & Simeonov, 1993; Haddad et al., 2014; Laksh-
mikantham, Baı̆nov, & Simeonov, 1989; Milman & Myshkis, 1960)
(sometimes also called discontinuous dynamical systems or simply
jump systems). More general nonlinear sampled-data systems lead
to impulsive systems of the form (Naghshtabrizi et al., 2008; Nešić
& Teel, 2004b)

χ̇(t) = Fk(t, χ(t)), t ≠ tk, k ∈ N, (37a)

χ(tk) = Jk(tk, χ(t−k )), k ∈ N, (37b)

where the augmented state may also include the controller
state and some of its sampled components (state, output, etc.).
Generally, for an impulsive system, (37a) is called the system’s flow
dynamicswhile (37b) is the jump dynamics.

4.2.2. Lyapunov methods for impulsive systems
The stability of equilibria for the impulsive systems of the

form (37) can be ensured by the existence of candidate Lyapunov
functions that depend both on the system state and on time, and
evolve in a discontinuous manner at impulse instants (Bainov &
Simeonov, 1993; Haddad et al., 2014; Naghshtabrizi et al., 2008).

Theorem 10 (Naghshtabrizi et al., 2008). Consider system (37) and
denote τ(t) = t − tk, ∀t ∈ [tk, tk+1). Assume that Fk and Jk are
locally Lipschitz functions from R+ ×Rnχ to Rnχ such that Fk(t, 0) =

0, Jk(t, 0) = 0, for all t ≥ 0. Let there exist positive scalars c1, c2, c3,
b and a Lyapunov function V : Rnχ × R → R, such that

c1∥χ∥
b
≤ V (χ, τ ) ≤ c2∥χ∥

b, (38)

for all χ ∈ Rnχ , τ ∈ [0, h]. Suppose that for any impulse sequence
σ = {tk}k∈N such that h ≤ tk+1 − tk ≤ h, k ∈ N, the corresponding
solution χ(·) to (37) satisfies:

dV (χ(t), τ (t))
dt

≤ −c3V (χ(t), τ (t)) , ∀t ≠ tk, ∀k ∈ N,

and V (χ(tk), 0) ≤ limt→t−k
V (χ(t), τ (t)) , ∀k ∈ N. Then, the

equilibrium point χ = 0 of system (37) is Globally Uniformly
Exponentially Stable over the class of sampling impulse instants,
i.e. there exist c, λ > 0 such that for any sequence σ = {tk}k∈N that
satisfies h ≤ tk+1 − tk ≤ h, k ∈ N,

∥χ(t)∥ ≤ c∥χ(t0)∥e−λ(t−t0), ∀t ≥ t0.

The previous stability theorem requires in (38) the candidate
Lyapunov function to be positive at all times. For the case of system
(37) with globally Lipschitz Fk, k ∈ N, the condition can be relaxed
by requiring the Lyapunov function to be positive only at impulse
times (Naghshtabrizi et al., 2008), i.e. c1∥χ(tk)∥b

≤ V (χ(tk), 0) ≤

c2∥χ(tk)∥b, ∀k ∈ N, instead of (38).
In the case of impulsive systems (35), with linear flow and jump

dynamics, candidate Lyapunov functions of the form V (χ, τ ) =

χ TP(τ )χ , with P : [0, h̄] → Rnχ ×nχ a differentiable matrix func-
tion, have been used (Briat, 2013; Naghshtabrizi et al., 2008; Sun
et al., 1993; Toivonen, 1992a). Sufficient stability conditions can be
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obtained from Theorem 10 in terms of existence of a differentiable
matrix function P : [0, h] → Rnχ ×nχ , c1I ≺ P(τ ) ≺ c2I , satisfying
the parametric set of LMIs

F TP(θ1) + P(θ1)F + c3P(θ1) +
∂P
∂τ

(θ1) ≺ 0,

∀ θ1 ∈ [0, h], (39a)

JTP(0)J − P(θ2) ≺ 0, ∀ θ2 ∈ [h, h], (39b)

with positive scalars c1, c2, c3. This formulation is reminiscent of
the Riccati equation approach used for robust sampled-data con-
trol in Sun et al. (1993) and Toivonen (1992b). Alternatively, stabil-
ity can also be checked by analysing the behaviour at impulse times
(Briat, 2013; Briat & Seuret, 2012a,b; Hetel, Daafouz, Tarbouriech,
& Prieur, 2013; Michel, 1999; Ye et al., 1998). The following result
for impulsive systemswith linear flowand jumpdynamics is stated
from Hetel et al. (2013).

Theorem 11 (Hetel et al., 2013). Consider system (35) with tk+1 −

tk ∈ [h, h], for all k ∈ N. The equilibrium point χ = 0 of
system (35) is Globally Uniformly Exponentially Stable if and only if
there exists a positive definite function Vd : Rnχ → R+ strictly
convex,

Vd(χ) = χ TP[χ ]χ,

homogeneous (of the second order), P[·] : Rnχ → Rnχ ×nχ , P[χ ] =

P T
[χ ]

= P[aχ ] ≻ 0, ∀χ ≠ 0, a ∈ R, a ≠ 0, V (0) = 0, such that

Vd(χ(tk)) > Vd(χ(tk+1)),

for all χ(tk) ≠ 0, k ∈ N.

The result has been obtained using a linear difference inclu-
sion χ(tk+1) ∈ F (χ(tk)) with F (χ) =


JeFθχ, θ ∈ [h, h]


representing the exact system integration between two impulse
instants together with converse Lyapunov theorems for linear
difference inclusions (Hetel, Kruszewski, Perruquetti, & Richard,
2011; Molchanov & Pyatnitskiy, 1989). More general results, con-
cerning the impulsive systems with nonlinear dynamics, can be
found in Michel (1999) and Ye et al. (1998). Particularizing the re-
sult of Theorem 11 to the case of quadratic Lyapunov candidate
functions Vd(χ) = χ T Lχ , sufficient stability conditions are ob-
tained by checking the existence of a positive definitematrix L ≻ 0
such that
JeFθ

T
L

JeFθ


− L ≺ 0, ∀ θ ∈ [h, h], (40)

which is also a parametric LMI, similar to (39). Less conservative
conditions can be obtained using composite quadratic Lyapunov
functions of the form Vd(χ) = maxi∈{1,...,M} χ TPiχ , where Pi, i =

1, . . . ,M , form a finite set of symmetric positive definite matrices
(Hetel et al., 2013).

A relation between the existence of a continuous-time Lya-
punov function, V (χ, τ ) = χ TP(τ )χ , and the existence of a
quadratic Lyapunov function, Vd (χ(tk)) = χ T (tk)Lχ(tk), decreas-
ing at impulse times, is provided in the following theorem.

Theorem 12 (Briat, 2013). The following statements are equivalent:
(a) There exists L ≻ 0 such that

eFθ J
T

L

eFθ J


− L ≺ 0, ∀ θ ∈ [h, h]. (41)

(b) There exists a differentiable matrix function P : [0, h] → Rnχ ×nχ ,
P(τ ) = PT (τ ), P(0) ≻ 0 and a positive scalar ϵ such that

F TP(θ1) + P(θ1)F +
∂P
∂τ

(θ1) ≼ 0, ∀ θ1 ∈ [0, h], (42a)

JTP(0)J − P(θ2) + ϵI ≼ 0, ∀ θ2 ∈ [h, h]. (42b)

Moreover, when one of the above holds, the equilibrium χ = 0 of
the impulsive system (35) is Asymptotically Stable for any of the
possible impulse sequences {tk}k∈N satisfying tk+1 − tk ∈ [h, h]
for all k ∈ N.

Condition (b) in the previous theorem is a sufficient condition
for the existence of a candidate Lyapunov function V (χ, τ ) =

χ TP(τ )χ such that

dV (χ(t), τ (t))
dt

≤ 0, ∀t ≠ tk, ∀k ∈ N, (43)

and

V (χ(tk), 0) < lim
t→t−k

V (χ(t), τ (t)) , ∀k ∈ N, (44)

which is slightly different from the conditions (39) obtained
based on Theorem 10. For the case described in Theorem 12, (b),
V (χ, τ ) may be constant between impulse instants provided that
it decays at impulse times. According to the previous theorem, the
existence of such a candidate Lyapunov function is equivalent to
the existence of a quadratic Lyapunov function Vd(χ) = χ T Lχ
which is strictly decreasing at impulse times. Note that from
Theorem 11, the latter is only a sufficient condition for stability.
The main point is that the existence of a function of the form
V (χ, τ ) = χ TP(τ )χ satisfying (43), (44) is not a necessary
condition for the stability of the impulsive system (35). Other
forms of Lyapunov functions need to be considered to improve the
existing conditions.

4.2.3. Numerically tractable stability criteria
In practice, the difficulty of checking the existence of candidate

Lyapunov functions using LMI formulations such as (39) or (41)
comes from the fact that the set of LMIs are parametrized by
elements in [0, h̄] or [h, h], which leads to an infinite number of
LMIs. As follows we will discuss the derivation of a finite number
of LMIs from (39). Numerical tools (Briat & Seuret, 2012a,b; Hetel
et al., 2013) for the resolution of LMIs similar to (41), involving
uncertain matrix exponential terms, are discussed in Section 4.3
in the context of the discrete-time approach.

Concerning the parametric set of LMIs (39), a finite number
of LMI conditions can be derived by considering particular forms
for the matrix function P(τ ). For example, consider a matrix P(τ )
linear with respect to τ

P(τ ) = P1 + (P2 − P1)
τ

h
, (45)

for some positive definite matrices P1, P2, as in Allerhand and
Shaked (2011) and Hu, Lam, Cao, and Shao (2003). There, such a
Lyapunov matrix has been used for sampled-data systems with
multi-rate sampling and switched linear systems. For a candidate
Lyapunov function V (χ, τ ) = χ TP(τ )χ , with P(τ ) as defined
in (45), a finite set of LMIs that are sufficient for stability can be
obtained from (39) using simple convexity arguments:

F TP1 + P1F + c3P1 +
P2 − P1

h
≺ 0, (46a)

F TP2 + P2F + c3P2 +
P2 − P1

h
≺ 0, (46b)

JTP1J ≺ P2, (46c)

JTP1J ≺ P1 + (P2 − P1) h/h. (46d)

For the particular case of LTI sampled-data systems represented by
(35), (36), Lyapunov functions of the form V (χ, τ ) = χ TP(τ )χ are
proposed in the literature by summing various terms such as:

V1(χ, τ ) = xTP0x, (47)

V2(χ, τ ) =

x − x̂

T Q x − x̂

(h − τ), (48)
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V3(χ, τ ) =

x − x̂

T R x − x̂

e−λτ , (49)

V4(χ, τ ) = e−λτχ T

eF

T (h̄−τ)SeF
T (h̄−τ)


χ, (50)

V5(χ, τ ) = χ T
 0

−τ

(s + h)(FeFs)T Ũ(FeFs)ds

χ, (51)

where Ũ :=


U 0
0 0


, λ > 0 and P0, Q , R, S, U are symmetric

positive definitematrices. Using such particular forms of Lyapunov
functions, LMI stability conditions have been derived in the litera-
ture (Forni, Galeani, Nešić, & Zaccarian, 2014; Goebel et al., 2012;
Hu et al., 2003; Naghshtabrizi et al., 2008; Nešić et al., 2009; Om-
ran,Hetel, Richard, & Lamnabhi-Lagarrigue, 2012).Wepoint in par-
ticular to the term (51) used in Naghshtabrizi et al. (2008) which
provided a significant improvement in what concerns the conser-
vatism reduction. This term is inspired by Lyapunov–Krasovskii
functionals from the input-delay approach, like the one in Frid-
man et al. (2004). Note that the term (51) can also be written as t
t−τ

(s + h − t)ẋT (s)Uẋ(s)ds. It has been motivated by the term 0
−h

 t
t+θ

ẋT (s)Uẋ(s)dsdθ used in the time-delay approach (see Frid-
man et al., 2004). Vice versa, the hybrid system approach has
also inspired the use of discontinuous Lyapunov functionals in the
time-delay approach (see for example the functional (29)). Note
that the term (hk − τ)

 t
t−τ

ẋT (s)Rẋ(s)ds in the functional (29) can

be re-written as (hk − τ)χ T
 0

−τ
(FeFs)T R̃(FeFs)ds


χ , with

R̃ =


R 0
0 0


and R ≻ 0. Then, for the impulsive system (35), (36), the func-
tional (29) can be interpreted as a Lyapunov function of the form
V (χ, τ , hk) = χ TP(τ , hk)χ . Similarly to the time delay approach,
the LMI formulations can be adapted to cope with uncertainties in
the system matrices.

Last, note that alternatively to the LMI formulation, numerical
stability criteria based on polynomial matrix functions P(τ )
and Sum-of-Squares programming (Prajna, Papachristodoulou, &
Parrilo, 2002) have been proposed in Briat (2013).

4.2.4. More general hybrid models
A large variety of hybrid dynamical systems, including sampled-

data and impulsive models, can be re-formulated in the unifying
theoretical framework proposed by Goebel et al. (2009, 2012).
Several fundamental properties have been investigated in this
framework, providing a solid theory for hybrid dynamical systems.
The main advantage of this generic hybrid formulation (Goebel
et al., 2009, 2012) is that the associated theoretic properties can
be directly transferred to sampled-data systems with aperiodic
sampling. The general formulation proposed in Goebel et al. (2009,
2012) considers models of the form

ż = Fz(z), z ∈ C, (52a)

z+
= Jz(z), z ∈ D, (52b)

with state z ∈ Rnz . The system state evolves according to an
ordinary differential equation (52a) when the state is in some
subset C of Rnz and according to a first order recurrence equation
(52b) when the state is in the subset D of Rnz . z+ denotes the next
value of state given as a function of the current state z via the map
Jz(·). C is called the flow set and D is called the jump set. Here, we
assume that Fz and Jz are continuous functions from C to Rnz and D
to Rnz , respectively. C and D are assumed to be closed sets in Rnz .

Note that in the impulsive system formulation of sampled-
data systems, the system jumps are time-triggered. However, the
dynamics of the triggering mechanism is in some sense hidden.
In the framework proposed by Carnevale, Teel, and Nešić (2007),
Dacic and Nešić (2007), Goebel et al. (2009, 2012) and Nešić et al.
(2009), the mechanism triggering the system jumps is modelled
explicitly by augmenting the system state with the clock variable
τ(t) = t − tk, ∀t ∈ [tk, tk+1), ∀k ∈ N. Consider the LTI sampled-
data systems (12) with the notations x̂(t) = x(tk), τ(t) = t − tk
for all t ∈ [tk, tk+1), k ∈ N. The system can be represented by the
following hybrid model

ẋ = Ax + BK x̂
˙̂x = 0
τ̇ = 1

 τ ∈ [0, h],

x+
= x

x̂+
= x

τ+
= 0

 τ ∈ [h, h].

(53)

Then, system (12) with hk ∈ [h, h] (or equivalently (35), (36))
can be re-modelled in the form (52) with zT =


xT x̂T τ


=

χ T τ

,

C =

z ∈ Rnz : τ ∈ [0, h]


,

D =

z ∈ Rnz : τ ∈ [h, h]


,

Fz(z) =

Ax + BK x̂
0
1


, Jz(z) =

x
x
0


. (54)

Solutions φ of the general hybrid system (52) are parametrized
by both the continuous time t and the discrete time k: φ(t, k)
represents the state of the hybrid system after t time units and k
jumps. Such solutions are defined on a hybrid time domain, which
for the case of sampled-data systems is given as the union of the
intervals [tk, tk+1] × {k}. A solution φ(·, ·) is a function defined on
a hybrid time domain such that φ(·, k) is continuous on [tk, tk+1],
continuously differentiable on (tk, tk+1) for each k in the domain,
and such that

φ̇(t, k) = Fz (φ(t, k)) ,

if φ(t, k) ∈ C, t ∈ (tk, tk+1), k ∈ N, and

φ(tk+1, k + 1) = Jz (φ(tk+1, k)) ,

if φ(tk+1, k) ∈ D, k ∈ N. For sampled-data systems as (53) such
solutions may be roughly interpreted as a generalization of the
state lifting approach proposed in Yamamoto (1994) for systems
with periodic sampling.

A particularity of the model (53) in the context of stability
analysis is the fact that although the matrix K is designed such
that x (and consequently x̂) converges to zero, the clock variable τ
does not converge. For each sampling interval [tk, tk+1), the timer τ
visits successively the points of the interval [0, h] up to hk = tk+1−

tk. The main consequence is that the hybrid system (53) does not
have an asymptotically stable equilibrium point. For such systems
the stability of the compact set A = {0} × {0} × [0, h] is usually
investigated instead. Studying this property allows to conclude on
the convergence of x. One of the main results allowing to state
the asymptotic stability of a set for hybrid systems is given below.
This result is expressed in terms of the pre-asymptotic stability of a
set A (see Goebel et al., 2009 for a detailed definition). The prefix
‘‘-pre’’ is used since the completeness of all system solutions2 is
not required. Only complete solutions need to converge to A. The
concept of pre-asymptotic stability used in the following theorem
is equivalent to standard asymptotic stability of the set A when all
system solutions are complete, which is the case for sampled-data
systems.

2 A solution φ(t, k) is called complete if dom φ is unbounded.
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Theorem 13 (Goebel et al., 2009). Consider the hybrid system (52)
and the compact set A ⊂ Rnz such that Jz (A ∩ D) ⊂ A. If there
exists a candidate Lyapunov function3 V such that

∂V
∂z

Fz(z) < 0 for all z ∈ C \ A, (55a)

V (Jz(z)) − V (z) < 0 for all z ∈ D \ A, (55b)

then the set A is pre-asymptotically stable.

Various relaxations of the above result are provided in Chapter
3 in Goebel et al. (2012). A converse Lyapunov theorem is given
below.

Theorem 14 (Goebel et al., 2009). For the hybrid system (52), if
the compact set A is globally pre-asymptotically stable, then there
exist a C∞ function V : Rnz → R+ and α1, α2 ∈ K∞ such that
α1 (|z|A) ≤ V (z) ≤ α2 (|z|A) , ∀z ∈ Rnz , where | · |A denotes the
distance from the set A, and

∂V
∂z

Fz(z) ≤ −V (z), ∀z ∈ C, (56a)

V (Jz(z)) ≤ V (z)/2, ∀z ∈ D. (56b)

Note that with respect to the case of sampled-data systems such
as (53) (or equivalently (35), (36)) where solutions are complete,
the previous theorem shows that asymptotic stability implies
the existence of a C∞ Lyapunov function of the form V (z) =

Ṽ (χ, τ ), to be related with the sufficient conditions for stability
in Theorem 10.

4.2.5. An estimation of the MSI for nonlinear systems
For nonlinear sampled-data systems the stability properties

have been studied in the more general context of Networked
Control Systems with scheduling protocols (Carnevale et al., 2007;
Nešić & Teel, 2004b). This approach has been particularized to the
sampled-data case in Nešić et al. (2009). Consider the plant:
ẋ = F (x, u) ,
y = H (x, u) ,

(57)

where x is the plant state, u is the control input, y is the measured
output. Suppose that asymptotic stability is guaranteed by the
continuous-time output feedback:
ẋc = F c xc, y ,
u = Hc xc, y , (58)

where xc is the controller state. Under an exact sampled-data
implementation of the controller and a perfect knowledge of the
sampling sequenceσ = {tk}k∈N, the sampled-data implementation
of the closed-loop system can bewritten in the following impulsive
form:

ẋ = F(x, û), t ∈ [tk, tk+1),
y = H(x), t ∈ R+,
ẋc = F c(xc, ŷ), t ∈ [tk, tk+1),
u = Hc(xc), t ∈ R+,
˙̂y = 0, t ∈ [tk, tk+1),
˙̂u = 0, t ∈ [tk, tk+1),

ŷ(tk) = y(t−k ),

û(tk) = u(t−k ),

(59)

3 V is continuous and non-negative on (C ∪ D) \ A ⊂ domV , it is continuously
differentiable on an open set satisfying C\A ⊂ domV , and limz→A,z∈domV∩(C∪D) V (z)
= 0. Furthermore, for global pre-asymptotic stability, the sublevel sets of V (.) are
required to be compact.
where û represents the control being implemented at the plant and
ŷ the most recent plant output measurements that are available
at the controller. In order to express the system in the general
framework of Goebel et al. (2012), consider the augmented state
vector η(t) ∈ Rnη and the sampling-induced error e(t) ∈ Rne :

η(t) :=


x(t)
xc(t)


, e(t) =


ey(t)
eu(t)


:=


ŷ(t) − y(t)
û(t) − u(t)


.

The dynamics in (59) with hk ∈ [h, h] can be modelled by the
following hybrid system:

η̇ = f (η, e)
ė = g(η, e)
τ̇ = 1


τ ∈ [0, h],

η+
= η

e+
= 0

τ+
= 0

 τ ∈ [h, ∞),

(60)

with η ∈ Rnη , e ∈ Rne , τ ∈ R+. The functions f and g are ob-
tained by direct calculations from the sampled-data system (59)
(see Nešić et al., 2009):

f (η, e) =


F(x,Hc(xc) + eu)
F c(xc,H(x) + ey)


,

g(η, e) =

−
∂H
∂x

F(x,Hc(xc) + eu)

−
∂Hc

∂xc
F c(xc,H(x) + ey)

 .

It should be noted that η̇ = f (η, 0) is the closed loop systemwith-
out the sampled-data implementation. The following theorempro-
vides a quantitative method to estimate theMSI, using model (60).

Theorem 15 (Nešić et al., 2009). Assume that f and g in (60) are
continuous. Suppose there exist ∆̃η , ∆̃e > 0, a locally Lipschitz
function W : Rne → R+, a locally Lipschitz, positive definite, radially
unbounded function V : Rnη → R+, a continuous function Θ :

Rnη → R+, real numbers L > 0, γ > 0, functions αW , αW ∈ K∞

and a continuous, positive definite functionϱ such that, for all e ∈ Rne :

αW (∥e∥) ≤ W (e) ≤ αW (∥e∥),

and for almost all ∥η∥ ≤ ∆̃η and ∥e∥ ≤ ∆̃e:

∂W
∂e

g(η, e) ≤ LW (e) + Θ(η),

∂V
∂η

f (η, e) ≤ −ϱ(∥η∥) − ϱ(W (e)) − Θ2(η) + γ 2W 2(e).

Finally, consider that 0 < h ≤ h < T (γ , L), with

T (γ , L) :=



1
Lr

arctan(r), γ > L,

1
L
, γ = L,

1
Lr

arctanh(r), γ < L,

and r =

 γ 2

L2
− 1

. Then, for all sampling intervals less than h the

set A = {(η, e, τ ) : η = 0, e = 0, τ ∈ [0, h]} is Uniformly
Asymptotically Stable for system (60).

Theorem 15 provides an explicit formulation of the MSI for
nonlinear sampled-data systems. It is applicable for both constant
and variable sampling intervals. For a constructive application to
the case of bilinear systems see Omran et al. (2012). A numerical
formulation using Sum-of-Squares (Prajna et al., 2002) has also
been provided in Bauer, Maas, and Heemels (2012).
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4.2.6. Further reading
In the impulsive system framework, control design conditions

have been proposed in Briat (2013). For observer design conditions
we point to the works in Ahmed-Ali, Postoyan, and Lamnabhi-
Lagarrigue (2009), Andrieu and Nadri (2010), Dinh, Andrieu, Nadri,
and Serres (2015), Ferrante, Gouaisbaut, Sanfelice, and Tarbouriech
(2014), Nadri, Hammouri, and Grajales (2013) and Postoyan and
Nešić (2012). Some extensions of the hybrid systems approach
for sampled-data systems with delay can be found in Bauer et al.
(2012), Fridman and Shaked (2000) and Naghstabrizi, Hespanha,
and Teel (2010). When constructing a hybrid model for linear
sampled-data system, it is also possible to consider as state variable
a decreasing counter θ(t) = hk − τ(t) with θ̇ = −1. Aside from
themethodology presentedhere, the stability of impulsive systems
can also be analysed using discrete-time approaches (Hetel et al.,
2013) based on convex embedding methods and looped Lyapunov
functionals (Briat & Seuret, 2012a,b). Thesemethods are presented
for the particular case of sampled-data systems in Section 4.3.

4.3. Discrete-time approach and convex-embeddings

In this sub-section we present several approaches which use
either the system integration over the sampling interval or convex
embeddings of the transition matrix between sampling times in
order to derive stability conditions. We will start with extensions
of the discrete-time approach for the case of linear systems with
aperiodic sampling; next a technique based on Delta operators will
be given, followed by a continuous-time approach and a discrete-
time approach based on functionals, similar to the ones used in
the time-delay approach. At last, an extension of the discrete-time
approach to nonlinear systems with aperiodic sampling will be
presented.

4.3.1. Theoretical results for LTI systems using the discrete-time
approach

Let us consider the LTI system with sampled linear static state
feedback (12) where hk = tk+1 − tk takes values in the set T =

[h, h]. Recall the notations xk = x(tk),

Λ(θ) = eAθ
+

 θ

0
eAsdsBK , (61)

for θ ∈ R. One can verify that the closed-loop system (12) satisfies

xk+1 = Λ(hk)xk (62)

with hk ∈ T = [h, h]. Model (62) belongs to the class of discrete-
time Linear Parameter Varying (LPV) systems (Kamen & Khar-
gonekar, 1984; Molchanov & Pyatnitskiy, 1989; Rugh & Shamma,
2000). It captures the behaviour of system (12) at sampling times,
without consideration of the intersample behaviour. However, in
Fujioka (2009c), the following proposition has shown that for LTI
sampled-data system, the asymptotic stability in continuous-time
and in discrete-time are equivalent.

Proposition 16 (Fujioka, 2009c). Consider the sampled-data sys-
tem (12)with hk = tk+1 − tk ∈ [h, h]. For a given x(t0), the following
conditions are equivalent:

(1) limt→∞ x(t) = 0
(2) limk→∞ x(tk) = 0.

Various methods are available for studying the stability of
discrete-time LPV systems. Stability criteria have been proposed
by analysing the joint spectral radius (Ahmadi, Jungers, Parrilo, &
Roozbehani, 2014; Blondel & Nesterov, 2005) or by checking the
existence of quasi-quadratic (Hu & Blanchini, 2010; Molchanov
& Pyatnitskiy, 1989), parameter dependent (Daafouz & Bernussou,
2001), path-dependent (Lee, 2006), non-monotonic (Ahmadi &
Parrilo, 2008; Kruszewski, Wang, & Guerra, 2008; Megretski,
1996) and composite quadratic (Hu & Blanchini, 2010) Lyapunov
functions.

The following theorem from Hetel et al. (2011) addresses
specifically the case of model (62).

Theorem 17 (Hetel et al., 2011). Consider the continuous-time
system (12) and the discrete-time model (62) with T = [h, h]. The
following statements are equivalent:
(1) The equilibrium point x = 0 of (62) is Globally Uniformly Expo-

nentially Stable.
(2) There exist a P ≻ 0 and N > 0 such that

N
i=1

Λ(θi)

T

P


N
i=1

Λ(θi)


− P ≺ 0, (63)

for any N-length sequence {θi}
N
i=1 with values in T , i.e. the func-

tion V̄ (x) = xTPx satisfies V̄ (xk+N) < V̄ (xk) for all xk ≠ 0,
k ∈ N.

(3) There exists a positive definite function V : Rn
→ R+ strictly

convex, homogeneous (of the second order), V (x) = xTP[x]x,with
P[·] : Rn

→ Rn×n, P[x] = P T
[x] = P[ax], ∀x ≠ 0, a ∈ R, a ≠ 0

such that:

V (x) − max
θ∈T

V (Λ(θ)x) > 0, ∀x ≠ 0. (64)

Condition (2) in Theorem 17 corresponds to the existence of
a non-monotonic Lyapunov function V̄ (x) = xTPx, Ahmadi and
Parrilo (2008), Kruszewski et al. (2008) and Megretski (1996)
which is decreasing every N samples. If the system is stable, then
necessarily there exist a finiteN and amatrix P such that (63) holds.
However, checking the existence of a matrix P satisfying (63) for
a given N represents a set of LMIs which are sufficient only for
stability. Condition (3) corresponds to the existence of a quasi-
quadratic Lyapunov function (Hu & Blanchini, 2010; Molchanov
& Pyatnitskiy, 1989) V (x) = xTP[x]x. Theorem 17 shows the
equivalence between quasi-quadratic Lyapunov functions and
non-monotonic Lyapunov functions and provides necessary and
sufficient conditions for the exponential stability of system (62).
A simple stability criterion which is sufficient for stability can be
obtained using classical quadratic Lyapunov functions, which are
decreasing at each sample.

Theorem 18 (Zhang & Branicky, 2001). The origin of system (62) is
Globally Uniformly Exponentially Stable for all sampling sequences
σ = {tk}k∈N with hk = tk+1 − tk ∈ [h, h], k ∈ N, if there exists
P ≻ 0 such that

ΛT (θ)PΛ(θ) − P ≺ 0, ∀θ ∈ T = [h, h]. (65)

The LMI (65) is a particular case of condition (2) in Theorem17with
N = 1. In a similar way, it is also a particular case of condition
(3) with P[x] = P , for all x ∈ Rn. The condition ensures that the
candidate Lyapunov function V (x) = xTPx satisfies the relation

1V (k) = V (xk+1) − V (xk) < 0, ∀xk ≠ 0. (66)

Finally, let us note that, similarly to conditions (39) or (41) used for
the hybrid system approach, the stability conditions (63) and (65)
represent sets of LMIs that are parametrized by θ ∈ T = [h, h].
They are not computationally tractable problems by themselves.
Approximate solutions, based on evaluation of the condition for
a finite set of values of θ have been presented in Sala (2005),
Skaf and Boyd (2009) and Zhang and Branicky (2001). A finite
set of sufficient tractable numerical conditions can be obtained
using normed-bounded and/or polytopic convex embeddings of
the transition matrix Λ(θ).
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4.3.2. Tractable criteria
Inwhat follows,we try to give an idea about themanner to solve

parametric LMIs involving matrix exponentials such as the one in
(65). First, we present briefly the approach proposed by Fujioka in
Fujioka (2009a). Consider a nominal sampling interval T0 ∈ [h, h].
For a scalar δ, the transition matrix Λ(·) satisfies the relation

Λ(T0 + δ) = Λ(T0) + ∆(δ)Ψ (T0), (67)

where ∆(δ) :=
 δ

0 eAsds, Ψ (T0) = AΛ(T0) + BK . Using classical
properties of the matrix exponential (Loan, 1977), the induced
Euclidean norm of ∆(δ) can be over-bounded

∥∆(δ)∥2 ≤

 δ

0
eµ(A)sds, (68)

where µ(A) is the maximum eigenvalue of A+AT
2 . System (62) can

be expressed as a nominal discrete-time LTI system with a norm-
bounded uncertainty

xk+1 = Λ(T0)xk + ∆(δk)Ψ (T0)xk (69)

where δk = hk − T0, for which classical H∞ criteria (Gahinet &
Apkarian, 1994) can be used. A simplified version of themain result
in Fujioka (2009a) is given as follows.

Theorem 19 (Fujioka, 2009a). Let T0 > 0 be given. If there exist
X ≻ 0 and γ > 0 satisfying

M(T0, X, γ )

:=


Λ(T0) I
Ψ (T0) 0

 
X 0
0 I

 
Λ(T0) I
Ψ (T0) 0

T
−


X 0
0 γ 2I


≺ 0, (70)

then (65) is satisfied with P = X−1 for all θ ∈ T (T0, γ ) :=
h(T0, γ ), h(T0, γ )


∩ (0, ∞), with

h(T0, γ ) =


T0 − γ −1, if µ(−A) = 0,
−∞, if µ(−A) ≤ −γ ,

T0 −
log


1 + γ −1µ(−A)


µ(−A)

, otherwise,
(71)

h(T0, γ ) =


T0 + γ −1, if µ(A) = 0,
∞, if µ(A) ≤ −γ ,

T0 +
log


1 + γ −1µ(A)


µ(A)

, otherwise.
(72)

Condition (70) is sufficient for the asymptotic stability of system
(62) under time-varying sampling intervals hk ∈ [h, h] with h
and h given in (71) and (72), respectively. Other norm-bounded
approximations of the transition matrix Λ(·) exist in the literature
(Balluchi, Murrieri, & Sangiovanni-Vincentelli, 2005; Fujioka &
Oishi, 2011; Kao & Fujioka, 2013; Suh, 2008; Zhang & Yu, 2011).
For example, stability conditions have been provided using the
Schur decomposition in Suh (2008)while Zhang andYu (2011) uses
the Jordan normal form. In Fujioka and Oishi (2011) the transition
matrix Λ(T0 + δ) is decomposed as

Λ(T0 + δ) = Λ(T0) + δL(T0) + ∆2(δ)AL(T0)

with L(T0) = eAT0(A + BK), ∆2(δ) :=
 δ

0

 ρ

0 eAsdsdρ, and stability
conditions are provided by computing the induced Euclidean
norm of ∆2(δ). See also Kao and Fujioka (2013) where stability
conditions have been derived using Integral Quadratic Constraints
(IQC), by studying the positive realness of ∆(δ). More general
Lyapunov functions have been used in Fujioka, Nakai, and Hetel
(2010).
Alternatively to the use of norm bounded approximations,
tractable numerical conditions can also be obtained using poly-
topic embeddings of the transition matrix Λ(·) in system (62). The
set

W
[h,h] := {Λ(θ), θ ∈ [h, h]}

is embedded in a larger convex polytope with a finite number of
vertices Λi, i ∈ I := {1, . . . ,Nv},

W :=

 Nv
i=1

αiΛi | αi ≥ 0, i ∈ I,

Nv
i=1

αi = 1

, (73)

in such a way that W
[h,h] ⊆ W . Using a polytopic embedding,

system (62) can be expressed as a

xk+1 =

Nv
i=1

αi(hk)Λixk, (74)

where
Nv

i=1 αi(hk) = 1, αi(hk) ≥ 0, i ∈ I. This is a classi-
cal discrete-time system with polytopic uncertainty (Daafouz &
Bernussou, 2001). Here
α(hk) =


α1(hk) α2(hk) · · · αNv (hk)

T represent the barycen-
tric coordinates of Λ(hk) in the polytope W . The properties of the
over-approximating polytopic setW make it possible to derive a fi-
nite number of sufficient stability conditions from (65), by writing
simple LMIs over the polytope vertices:

P ≻ 0, ΛT
i PΛi − P ≺ 0, ∀i ∈ I. (75)

The same procedure can also be applied for the condition (63)—see
Hetel et al. (2011) for details. However, for the case of conditions
(63), the numerical complexity is increasing in an exponential
manner with respect to the chosen parameter N . One of the
advantages of the polytopic embedding is the fact that it allows
the use of parameter dependent Lyapunov functions (Cloosterman
et al., 2010; Daafouz & Bernussou, 2001; Hetel, Daafouz, & Iung,
2006) Ṽ (x, α) = xTP(α)x, P(α) =

Nv
i=1 αiPi, which lead to refined

stability conditions under a reasonable numerical complexity:

∃ Pi = PT
i ≻ 0, ΛT

i PjΛi − Pi ≺ 0, ∀ (i, j) ∈ I × I. (76)

With respect to Theorem 17, the set of conditions (76) represents
also a sufficient criterion for the existence of a quasi-quadratic
Lyapunov function (Hetel et al., 2013), V (x) = xTP[x]x =

maxi∈{1,...,Nv} xTPix.
The main difficulty in constructing the polytope W̄ is the

exponential dependence of the transition matrix Λ(θ) = eAθ
+ θ

0 eAsdsBK in the parameter θ over the interval [h, h]. Several
approaches exist for the computation of a convex polytope
embedding an uncertain matrix exponential. See for example
Cloosterman, van de Wouw, Heemels, and Nijmeijer (2009);
Cloosterman et al. (2010), Lombardi, Olaru, Niculescu, and Hetel
(2012), Olaru and Niculescu (2008) and Oishi and Fujioka (2010)
for techniques based on the real Jordan form, Gielen et al. (2010)
for a construction that uses the Cayley–Hamilton theorem and
Cloosterman, van de Wouw, Heemels, and Nijmeijer (2006) for
an approach studying interval matrices. One may remark that the
transition matrix Λ(·) can be re-expressed as

Λ(θ) = I + ∆(θ) (A + BK) (77)

which involves only one uncertain matrix term ∆(θ) =
 θ

0 eAsds.
Then the stability problem can be addressed by constructing a
polytopic approximation of ∆(θ) for θ ∈ [h, h]. To give an idea
about the manner such a convex polytope can be constructed, let
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us consider a simple casewhere thematrix A has n real eigenvalues
λi ≠ 0, i ∈ {1, . . . , n} with multiplicity equal to one, i.e.

A = T−1


λ1 0 0 · · · 0
0 λ2 0 · · · 0
...

. . .
...

0 · · · · · · 0 λn

 T (78)

for some invertible matrix T ∈ Rn×n. Then the uncertain matrix
∆(θ) takes the form:

∆(θ) = T−1


ρ1(θ) 0 0 · · · 0
0 ρ2(θ) 0 · · · 0
...

. . .
...

0 · · · · · · 0 ρn(θ)

 T (79)

where ρi(θ) =
1
λi


eλiθ − 1


, i = 1, . . . , n. By computing ρmin

i

and ρmax
i the minimum and maximum values of ρi(θ) over [h, h],

the uncertain matrix ∆(θ) is embedded in a convex polytope with
Nv = 2n vertices

∆(θ) ∈ conv

D1,D2, . . . ,DNv


:= conv


T−1diag(ρ1, . . . , ρn)T : ρi ∈ {ρmin

i , ρmax
i },

i = 1, . . . , n

.

Using (77), the polytopic set (73) can be constructed with Λi =

I+Di(A+BK), i ∈ I. A similar embedding procedure can be applied
in the general case (when the eigenvalues of A have multiplicity
different than one or when they are complex)—see Cloosterman
et al. (2010).

As the numerical complexity of the obtained LMI conditions
depends significantly on the number of verticesNv of the polytopic
approximation, one of the challenges is to provide accurate convex
polytopes while reducing the number of vertices. For the Jordan
decomposition procedure, the number of vertices Nv increases
exponentially with the order of the system. A method for reducing
the number of vertices has been provided in Lombardi, Olaru,
and Niculescu (2009); Lombardi et al. (2012) and Olaru and
Niculescu (2008). However, themethod provides a larger polytopic
embedding and may result in a conservative stability condition.
Methods that are independent of the order of the systems have
been proposed by combining polytopic embeddings with norm
bounded approximations (Donkers, Heemels, Van De Wouw, &
Hetel, 2011; Donkers, Hetel, Heemels, van de Wouw, & Steinbuch,
2009; Hetel et al., 2006; Hetel, Daafouz, & Iung, 2008). We present
briefly an adaptation of the approach based on Taylor series
approximation in Hetel et al. (2006, 2008), originally used for
sampled-data systems with input delay. Note that the transition
matrix Λ(hk) with hk ∈ [h, h] can be rewritten as

Λ(hk) = Λ(h) + ∆(ρk)Ψ (h)

where ρk = hk − h ∈ [0, h − h], ∆(ρ) =
 ρ

0 eAsds and Ψ (h) =

AΛ(h) + BK . Using a Taylor series approximation of the matrix
exponential, ∆(ρ) can be expressed as

∆(ρ) = TM(ρ) + RM(ρ)

where TM(ρ) =
M

i=1
Ai−1ρi

i! is theMth order Taylor series approx-
imation and RM(ρ) is the remainder. The procedure proposed in
Hetel et al. (2006, 2008) allows to embed TM(ρ) in a convex poly-
tope with Nv = M + 1 vertices

TM(ρ) ∈ conv {Ui, i = 1, . . . ,M + 1} , ∀ ρ ∈ [0, h − h],

where U0 = 0, Ui+1 =
(h−h)iAi−1

i! + Ui, i = 1, . . . ,M . Furthermore,
an upper bound on the induced Euclidean norm of RM(ρ) can be
computed using the method proposed in Liou (1966). To obtain an
embedding with ∥RM(ρ)∥2 < γR for all ρ ∈ [0, h − h] the approx-
imation orderM must be chosen such that
∥A∥2 (h − h)

M + 2
< 1,

andAM

2 (h − h)M+1

(M + 1)!
M + 2

M + 2 − ∥A∥2 (h − h)
≤ γR.

For this approach the number of vertices is linear in the orderM of
the Taylor approximation. Stability criteria are obtained in a direct
manner by combining LMImethods for polytopic systemswith the
ones for systems with norm-bounded uncertainty.

Note that for both norm-bounded and polytopic embeddings
approaches, the accuracy of the approximation may be signifi-
cantly increased by dividing [h, h] into several subintervals and ap-
plying the embedding procedure locally (Donkers, Heemels et al.,
2011; Fujioka, 2009a; Hetel et al., 2013; Oishi & Fujioka, 2010).
For example, in the case of the norm-bounded embedding used
in Theorem 19, the idea is to consider a grid of r ‘‘nominal’’
sampling intervals {T1 < T2 < · · · < Tr} and to verify the
existence of a symmetric positive definite matrix X and of r pa-
rameters γi, i = 1, . . . , r , such that M(Ti, X, γi) ≺ 0 for all
i = 1, . . . , r . When this condition is satisfied, system (62) is sta-
ble for any time-varying sampling interval hk ∈ ∪

r
i=1 T (Ti, γi)

where T (Ti, γi) =

h(Ti, γi), h(Ti, γi)


are defined using (71),

(72). Furthermore, it has been shown in Fujioka (2009a) that us-
ing this approach one can approximate the condition (65) as ac-
curately as desired, in the sense that if the condition (65) holds
for θ ∈ [h, h], then necessarily there exists a matrix X = P−1,
a sufficiently tight grid of parameters Ti, i = 1, . . . , r and posi-
tive scalars γi, i = 1, . . . , r , such that M(Ti, X, γi) ≺ 0 for all i =

1, . . . , r , and [h, h] ⊂ ∪
r
i=1 T (Ti, γi). Such an asymptotic exactness

property has also been discussed for other embedding approaches
(Donkers, Heemels et al., 2011; Oishi & Fujioka, 2010; Skaf & Boyd,
2009). The main issue is that, using convex embeddings, the con-
servatismwith respect to the quadratic stability condition (65) can
be reduced to any degree at the cost of increased computational
complexity. However, the analysis of the asymptotic exactness
property does not take into account all numerical implementa-
tion aspects. Most of the methods are based on the computation
of the matrix exponential for nominal sampling intervals, on the
use of the eigenvalues/eigenvectors of the state matrix A or of its
characteristic polynomial, etc. Computing any of these elements
introduces approximations (Moler & Van Loan, 2003) which might
influence the numerical implementation of the embedding. The ef-
fect of these approximations on the accuracy of the stability anal-
ysis needs to be further analysed.

4.3.3. Analysis based on delta-operators
One of the drawbacks of the discrete-time analysis as the one

proposed in (65) is the fact that the matrix Λ(θ) is close to
identity when θ is small. For small values of the lower bound of
the sampling interval h, the inequality may be difficult to handle
numerically. To avoid this numerical drawback, a condition which
encompasses (65) has been proposed in Oishi and Fujioka (2010).

Theorem 20. System (12) is Exponentially Stable for any arbitrary
sampling sequence with tk+1 − tk ∈ [h, h] if there exists X ≻ 0 such
that

Ω(θ)X + XΩT (θ) + θΩT (θ)XΩ(θ) ≺ 0, (80)

for all θ ∈ [h, h] where

Ω(θ) =
1
θ

(Λ(θ) − I) =
1
θ

 θ

0
eAsds (A + BK) . (81)
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This condition is obtained from an extension of the Delta-
operator approach (Middleton &Goodwin, 1990). System (12)with
hk ∈ [h, h] satisfies the relation

δkx = Ω(hk)x(tk), ∀ k ∈ N, (82)

where δkx :=
x(tk+1)−x(tk)

hk
, ∀k ∈ N, andΩ(·) as defined in (81). Note

thatwhen h tends to zero, thematrixΩ(h) converges toA+BK . The
model (82) provides a smooth transition from the continuous-time
control loop ẋ = (A + BK)x (obtained when the sampling interval
tends to zero) and the discrete-time representation (62). Condition
(80) implies that the candidate Lyapunov function V (x) = xTX−1x
satisfies

δkV :=
V (xk+1) − V (xk)

hk
< 0 (83)

for all xk ≠ 0, hk ∈ [h, h], k ∈ N. When θ tends to zero, (80)
converges to the classical stability conditions for the continuous-
time control loop:

(A + BK)X + X(A + BK)T ≺ 0. (84)

Similarly to the discrete-time analysis in condition (65), the
parametric conditions (80) can be replaced by a finite number of
LMIs using a convex embedding of the matrix Ω(θ). See Oishi and
Fujioka (2010), where a polytopic embedding procedure based on
the Jordan normal form and the mean value theorem has been
proposed. See also Briat and Jönsson (2011) for an approach using
more general Lyapunov functions.

4.3.4. Continuous-time analysis using embeddings
In practice it is important to provide an estimate of the system’s

performance in between sampling instants. A continuous-time
approach based on convexification arguments has been proposed
in Fiter et al. (2012a) and Hetel et al. (2011) for LTI systems. The
approach takes into account the relation

x(t) = Λ(t − tk)x(tk), ∀ t ∈ [tk, tk+1), k ∈ N, (85)

still referring to the definition of the transition matrix Λ(t − tk)
= I +

 t−tk
0 eAsds(A + BK) of system (12). The classical condition

V̇ (x(t)) < −λV (x(t)) ensuring the exponential decay of a candi-
date Lyapunov function V (x) = xTPx for some positive λ can be
expressed as the following parametric LMI
Λ(θ)
I

T 
ATP + PA + λP PBK

K TBTP 0

 
Λ(θ)
I


≺ 0,

for all θ ∈ [0, h̄]. A finite number of LMIs can be obtained simi-
larly to the discrete-time case, by embedding the matrix Λ(θ) in a
convex polytope

W̃ := conv{Λ̃1, Λ̃2, . . . , Λ̃Nv }, (86)

that is Λ(θ) ∈ W̃, ∀ θ ∈ [0, h]. Sufficient stability conditions
(Hetel et al., 2011) are given by the existence of a matrix P ≻ 0
and of matrices G1,G2 ∈ Rn×n solution to
ATP + PA + λP + G1 + GT

1 PBK − G1Λ̃i + GT
2

K TBTP − Λ̃T
i G

T
1 + G2 −G2Λ̃i − Λ̃T

i G
T
2


≺ 0,

for all i = 1, . . . ,Nv . For a less conservative approach using the
Lyapunov–Razumikhin method, see Fiter et al. (2012a). A robust
analysis faced to perturbations has been proposed in Fiter, Hetel,
Perruquetti, and Richard (2015).
4.3.5. Looped functionals
While convex embeddings allow for approximating the stability

conditions (65) as accurately as desired, including parametric
uncertainties in the analysis is quite difficult. Recently, a discrete-
time approach based on the so-called looped-functionals has been
considered in Seuret (2012) to deal with this issue. The key idea is
to apply the functional framework, as in the time-delay approach,
while preserving the accuracy of discrete-time stability conditions.
The approach relies on an unusual formulation of sampled-data
systems inspired from the liftingmodelling (Yamamoto, 1994). For
all k ∈ N, consider a lifted state function χk(·) satisfying χk+1(0) = χk(hk), ∀ k ∈ N, hk ∈ [h, h],

d
dτ

χk(τ ) = Aχk(τ ) + BKχk(0), ∀τ ∈ [0, hk].
(87)

The function χk(τ ), τ ∈ [0, hk] represents the trajectory of the
sampled-data systemover the interval [tk, tk+1]. Define the setK =

h∈[h,h] C0 ([0, h], Rn) so to represent such a class of functions.
The following theorem establishes a relation between a discrete-
time stability analysis (as in (66)) and an analysis using functionals
(as in the time-delay approach).

Theorem 21 (Seuret, 2012). Consider system (12) and the lifted
model (87). Let V : Rn

→ R+ be a differentiable function for
which there exist positive scalars µ1 < µ2 such that for all x ∈

Rn, µ1 ∥x∥2
≤ V (x) ≤ µ2 ∥x∥2 . The two following statements are

equivalent.

(i) The increment of the candidate Lyapunov function V (·) is strictly
negative at sampling instants, i.e.

1V (k) = V (χk(hk)) − V (χk(0)) < 0,

for all k ∈ N and hk ∈ [h, h̄];
(ii) There exists a continuous and differentiable functional V :

[0, h̄] × K → R which satisfies for all h ∈ [h, h̄], z ∈

C0 ([0, h], Rn) ⊂ K

V(h, z(·)) = V(0, z(·)), (88)

and such that, for all (k, hk, τ ) ∈ N × [h, h̄] × [0, hk],

Ẇ(τ , χk) =
d
dτ

[V (χk(τ )) + V(τ , χk)] < 0. (89)

Moreover, if one of these two statements is satisfied, then the null
solution of system (12) is Asymptotically Stable for any sampling
sequence with tk+1 − tk ∈ [h, h].

The main difference compared with the Lyapunov–Krasovskii
approach used in the time-delay framework remains in the design
of the functional. The positive definiteness condition of the LKF
is exchanged with a looping-condition, a two-point algebraic
equality (88) that the functional should verify; see e.g. Briat and
Seuret (2012a,b, 2013), Seuret (2012) and Seuret and Peet (2013).
There are two main methods for building loop functionals. The
first manner follows the construction of discontinuous Lyapunov-
functionals, as for instance (48), (50) or the ones provided in
Fridman (2010), Liu et al. (2010), Naghshtabrizi et al. (2008) and
Seuret (2009). The previous theorem first states that if a term of
the functional meets the looping condition (88), then the positive
definiteness of this term can be relaxed. The second method
enters into the framework of polynomials functions (Briat & Seuret,
2012a,b, 2013; Seuret & Peet, 2013) and of sum of squares tools
(Prajna et al., 2002). For example, in Seuret and Peet (2013),
a polynomial looped-functional was introduced and it has the
following form

V(τ , χk) =


χk(τ )
χk(0)

T
M(τ , hk)


χk(τ )
χk(0)
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where M is a polynomial matrix function from [0, h̄] × [h, h̄] to
the set of 2n × 2n symmetric matrices. The looping condition (88)
is ensured by adding the following constraints onM:

∀h ∈ [h, h̄],

I
I

T
M(0, h)


I
I


= 0, and M(h, h) = 0.

This method can easily deal with polytopic uncertainties in the
system matrices.

4.3.6. A discrete-time approach for nonlinear systems
Results on discrete-time approaches for the control of nonlinear

systems with time-varying sampling intervals are quite rare. We
present as follows an adaptation of the result from van de Wouw,
Nešić, and Heemels (2012) which extends earlier stability criteria
from Nešić and Teel (2004a), Nešić, Teel, and Kokotović (1999) and
Nešić, Teel, and Sontag (1999). Consider the nonlinear system
ẋ(t) = F (x(t), u(t)) (90)
with F(x, u) globally Lipschitz, i.e. there exists βf > 0 such that
∥F(xa, ua) − F(xb, ub)∥ ≤ βf (∥xa − xb∥ + ∥ua − ub∥)

for all xa, xb ∈ Rn and ua, ub ∈ Rm. The control takes the form
u(t) = uk for all t ∈ [tk, tk+1) and the sampling interval is bounded
hk = tk+1 − tk ∈ T = [h, h], ∀ k ∈ N. The exact discrete-time
model of the system over the sampling interval is given by

xk+1 = F e
hk(xk, uk) := xk +

 tk+hk

tk
F (x(s), uk) ds (91)

where xk = x(tk). Note however that (91) is not known in general
since it is rare to obtain an analytic solution to a nonlinear initial
value problem. In practical problems, approximations are usually
used (Nešić & Teel, 2004a; Stuart & Humphries, 1998). A simple
example is given by the Euler model of (90):
xk+1 = xk + hkF (xk, uk) .

Other approximations can be found in standard books (Stuart &
Humphries, 1998) and tutorials (Monaco & Normand-Cyrot, 2001,
2007). The approach in van de Wouw et al. (2012) considers an
approximate model

xk+1 = F a
h∗ (xk, uk) , (92)

obtained for some nominal sampling interval h∗
∈ [h, h]. Model

(92) is assumed to be one-step consistent (Stuart & Humphries,
1998) with the exact discrete-time plant, i.e. there exists ρ̂ ∈ K∞

such that ∥F a
h∗ (x, u) − F e

h∗ (x, u) ∥ ≤ h∗ρ̂(h∗) (∥x∥ + ∥u∥), for all
x ∈ Rn, u ∈ Rm. It is considered that the approximate model (92)
has been used to design a controller
uk = Kh∗ (xk) (93)
parametrized by the nominal sampling interval h∗, and that
the closed-loop system (92), (93) is asymptotically stable. More
formally, it is assumed that there exists a candidate Lyapunov
function for the approximate closed-loop system (92), (93), i.e. a
function Vh∗(x) and αi > 0, i = 1, 2, 3 such that the involved
conditions hold for some r > 1 : α1 ∥x∥r

≤ Vh∗(x) ≤ α2 ∥x∥r

and

Vh∗


F a
h∗ (x, Kh∗(xk))


− Vh∗(x)

h
≤ −α3∥x∥r (94)

for all x ∈ Rn. Furthermore, the control law Kh∗(·) is considered to
be linearly bounded, i.e. there exists βu > 0 such that ∥Kh∗(x)∥ ≤

βu∥x∥ for all x ∈ Rn. The following theorem provides generic
results for the robust stability of the exact closed-loop system

xk+1 = F e
hk (xk, Kh∗(xk)) , (95)

using the fact that the control law uk = Kh∗(xk) is a stabilizer for
the approximate model (92).
Theorem 22 (van de Wouw et al., 2012). Consider system (95) with
hk ∈ [h, h] for all k ∈ N. Consider the following notation

βa =


2 + βu + (1 + max(1, βu))(eβf h − 1)


+ h∗ρ̂(h∗)(1 + βu). (96)

Assume that the Lyapunov candidate function Vh∗(x) is locally
Lipschitz and there exists βv > 0 such that

sup
z∈∂Vh∗ (x)

∥z∥ ≤ βv∥x∥r ,

for all x ∈ Rn, where ∂Vh∗(x) denotes the generalized differential of
Clarke. If there exists β ∈ (0, 1) such that

βvβ
r−1
a

h∗


h∗ρ̂(h∗)(1 + βu) + ρh(h∗,Mh)


≤ (1 − β)α3 (97)

is satisfied where

ρh(h∗,Mh) = eβf h∗

(1 + βu)


eβf Mh − 1


with Mh = maxh∈[h,h] |h − h∗

|, then there exist c, λ > 0 such
that ∥xk∥ ≤ c∥x0∥e−λkh. In other words, system (95) is Globally
Exponentially Stable, Uniformly for all hk ∈ [h, h] and all k ∈ N.

The above theorem is a natural extension of the result in
Nešić and Teel (2004a) and Nešić, Teel, and Kokotović (1999) for
sampled-data systems with constant sampling intervals. The main
condition (97) involves two terms. The first term βvβ

r−1
a ρ̂(h∗)(1+

βu) reflects the effect of approximatively discretizing the nominal
system using a nominal sampling interval h∗; the second one,
βvβr−1

a
h∗ ρh(h∗,Mh) reflects the effect of uncertainty in the sampling

interval.

4.3.7. Further reading
Control design methodologies based on convex embeddings

have been presented in Cloosterman et al. (2010), Fujioka and
Nakai (2010), Hetel et al. (2006, 2008), and Mustafa and Chen
(2013). See also Robert, Sename, and Simon (2010) for an LPV
design of controllers that are adapted in real time to the value
of the sampling interval and Hetel, Daafouz, Richard, and Jungers
(2011) for the case of systems with delay scheduled controllers.
Extensions of the discrete-time approach for networked control
systems with scheduling protocols can be found in Cela, Ben
Gaid, Li, and Niculescu (2014), Donkers, Heemels et al. (2011);
Donkers et al. (2009) and Li, Cela, Niculescu, and Reama (2010);
Li, Cela, Niculescu, and Wen (2014). For model predictive control
of networked control systems see also Gielen, Olaru, and Lazar
(2009), Lombardi et al. (2012) and Olaru and Niculescu (2008).
Lie algebraic criteria for the analysis of systems with time varying
sampling have been proposed in Felicioni and Junco (2008). A
mixed continuous–discrete approach has also been proposed in
Li, Zhang, Cela, and Niculescu (2011). The relation between clock
dependent and looped Lyapunov functionals has been investigated
in Briat (2015).

4.4. Input/output stability approach

In this subsection we present several methods that study
sampled-data systems from a robust control point of view. The
main idea of the Input/Output stability approach is to consider
the sampling error as a perturbation with respect to a nominal
continuous-time control-loop. Classical robust control tools are
used in order to assess the stability of the sampled-data systems
(Megretski &Rantzer, 1997; Petersen&Tempo, 2014; Zames, 1966;
Zhou et al., 1996). Some of the presented methods are reminiscent
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from the Input/Output stability approach used for the analysis of
time delay systems (Fridman & Shaked, 2006; Gu et al., 2003;
Huang & Zhou, 2000; Jun & Safonov, 2001; Kao & Lincoln, 2004;
Kao & Rantzer, 2007; Niculescu, 2001), and have been further
developed independently of the time delay approach.

4.4.1. Basic idea
Note that the LTI sampled-data system (12) can be re-expressed

in the form (Mirkin, 2007)

ẋ(t) =

A + BK  

:=Acl


x(t) + BK

:=Bcl

(x(tk) − x(t)  
:=e(t)

), (98)

where Acl corresponds to the state matrix of the nominal
continuous-time control loop while e(t) represents the error
induced by sampling. An essential fact in this approach is that the
sampling induced error e(t) = x(tk) − x(t) can be equivalently
re-expressed as

e(t) = −

 t

tk
ẋ(θ)dθ, ∀t ∈ [tk, tk+1). (99)

Considering y(t) = ẋ(t) as an auxiliary output for system (98),
the sampled-data system (12) can be represented equivalently by
the feedback interconnection of the operator ∆sh : Ln

2e[0, ∞) →

Ln
2e[0, ∞), ∆sh : y → e, defined by:

e(t) = (∆sh y)(t) = −

 t

tk
y(θ)dθ, ∀t ∈ [tk, tk+1), (100)

with the system
ẋ(t) = Aclx(t) + Bcle(t), x(0) = x0 ∈ Rn,
y(t) = Cclx(t) + Dcle(t) = ẋ(t), (101)

where Ccl = Acl = A + BK and Dcl = Bcl = BK . Note that
the nominal system (101) is LTI. It represents the dynamics of
the continuous-time system with an additive input perturbation
e. The operator ∆sh captures both the effects of sampling and its
variations. An alternativemodel can also be derived by considering
the actuation error eu(t) = K(x(tk) − x(t)) (see Fujioka, 2009c).
The stability of the sampled-data system (12) can then be studied
by analysing the interconnection (100), (101).

4.4.2. Small gain conditions
To provide constructive stability conditions, the Small Gain

Theorem (Gu et al., 2003; Huang & Zhou, 2000; Zames, 1966; Zhou
et al., 1996) constitutes a simple and powerful tool in the robust
control framework. Let G : Ln

2[0, ∞) → Ln
2[0, ∞) be the linear

operator described by the transfer function

Ĝ(s) = s(sI − Acl)
−1Bcl (102)

associated to system (101). The operator G captures the behaviour
of (101) for null initial conditions. Considering the free response of
system (101), f (t) = AcleAcltx0, ∀ t ≥ 0, the interconnection (100),
(101) can be re-expressed as
y = Ge + f
e = ∆shy

(103)

(see Fig. 6). A direct consequence of the Small Gain Theorem is the
fact that if

∥G∥2,2∥∆sh∥2,2 < 1, (104)

then the interconnection (103) is L2 stable, i.e. there exists a
positive scalar C such that t

0


∥y(θ)∥2

+ ∥e(θ)∥2 dθ ≤ C
 t

0
∥f (θ)∥2 dθ (105)
Fig. 6. Equivalent representation of the sampled-data system, froma robust control
theory point of view.

for any t > 0. Here ∥G∥2,2, ∥∆sh∥2,2 denote the induced L2 norms
of G and ∆sh, respectively.4 Inequality (104) is known as the small
gain condition. Due to the linearity of G, its induced L2 norm can
be readily computed (Zhou et al., 1996) using the H∞ norm of its
transfer function:

∥G∥2,2 = ∥G∥∞ := sup
ω∈R

σ̄

Ĝ(jω)


.

Furthermore, for the case of LTI sampled-data systems,L2 stability
of the interconnection (103) implies asymptotic stability5 of the
sampled-data control loop (12):

Theorem 23 (Fujioka, 2009c). Suppose that Acl is Hurwitz. System
(12) is Uniformly Asymptotically Stable if the feedback interconnec-
tion (103) is L2 stable.

Therefore, providing tractable stability conditions for system
(12) leads to providing an estimate for the induced L2 norm of
the operator ∆sh. An upper bound of this norm has been computed
in Kao and Lincoln (2004) using a more general uncertain delay
operator:

∆d : y(t) → e(t) = (∆dy)(t) := −

 t

t−τ(t)
y(θ)dθ, (106)

where τ(t) ∈ [0, h]. The operator ∆sh is a particular case of ∆d
with τ(t) = t − tk, ∀t ≥ 0, k ∈ N.

Lemma 24 (Kao & Lincoln, 2004). The L2-induced norm of the
operator ∆d in (106) is bounded by h.

Using this property, and the fact that the operator ∆d satisfies
M∆d = ∆dM for all M ∈ Rn×n, Mirkin (2007) provided the
following L2 stability conditions

∃M ∈ Rn×n, M ≻ 0 such that ∥MĜ(s)M−1
∥∞ <

1

h
, (107)

which is a consequence of the Scaled Small Gain Theorem
(Skelton, Iwasaki, & Grigoriadis, 1998). Interestingly, it is also
shown that (107) is related to the condition in Fridman et al.
(2004) which is obtained using the input-delay approach and the
Lyapunov–Krasovskii functional (23). The same LMI can be used
to check both conditions. Mirkin then showed that the bound on
theL2 induced norm can be enhanced by exploiting the properties
of ∆sh.

Lemma 25 (Mirkin, 2007). TheL2-induced norm of the operator ∆sh
is bounded by δ0 =

2
π
h, and thus

+∞

0
∥(∆shy)(θ)∥2dθ ≤


+∞

0
δ2
0∥y(θ)∥2dθ, (108)

for all y ∈ Ln
2[0, ∞).

4 Given an operator G : Ln
2[0, ∞) → Ln

2[0, ∞), its induced L2 norm is defined

as ∥G∥2,2 := supu≠0
∥Gu∥L2
∥u∥L2

.
5 For relations with exponential stability see also Fridman (2014).
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This bound on the induced L2 norm of ∆sh is actually exact and
it is attained when there exists an index k ∈ N such that tk+1 −

tk = h. This leads to the following sufficient L2 stability condition,
improving (107):

∃M ∈ Rn×n, M ≻ 0 such that ∥MĜ(s)M−1
∥∞ <

π

2h
. (109)

Note that the upper bound on induced L2 norm of ∆sh can also
be related to the Wirtinger’s inequalities (Liu et al., 2010) used
in the time delay approach. In practice, condition (109) is readily
verifiable via standard LMI for the estimation of the H∞ norm of
LTI systems (Gu et al., 2003; Mirkin, 2007; Skelton et al., 1998)

XAcl + AT
clX

2
π
hXBK AT

clY

∗ −Y
2
π
hK TBTY

∗ ∗ −Y

 ≺ 0 (110)

to be solved for X, Y ≻ 0 (obtained with Y = M2).
Recently, an extension of the Input–Output stability approach

has been proposed (Chen & Fujioka, 2014) for nonlinear systems
ẋ = f (x) + g(x)u,
y = H(x), (111)

with a sampled-data output feedback

u(t) = K (y(tk)) , ∀t ∈ [tk, tk+1). (112)

Here f (0) = 0 and all the functions are supposed to be contin-
uously differentiable. The closed-loop system (111), (112) can be
re-expressed as

ẋ(t) =

f (x) + g(x)K (H(x))  

:=fcl(x)



− g(x)

K (y(t)) − K (y(tk))  
:=eu(t)

 , (113)

where fcl(x) represents the dynamics of a nominal closed-loop sys-
tem and eu the error of sampling at controller level. This model can
be related with (60) used in the impulsive approach by Nešić and
Teel (2004b). The sampling error satisfies

eu(t) =

 t

tk
z(θ)dθ, ∀t ∈ [tk, tk+1), (114)

where z(t) = dK (y(t)) /dt . Stability conditions can be derived
based on Input-to-State stability and small gain analysis.

Theorem 26 (Chen & Fujioka, 2014). Consider system (111) under
the control law (112). Assume that tk+1 − tk ∈ [0, h]. Suppose that
the following auxiliary system

ẋ(t) = fcl (x(t)) − g (x(t)) eu(t)

z(t) =
dK (H(x(t)))

dt

(115)

with input eu and output z has the following Input-to-State and Input-
to-Output Stability properties

∥x(t)∥ ≤ max

βx (∥x(τ0)∥, t − τ0) , γx


∥eu[τ0,t]∥


, (116)

∥z(t)∥ ≤ max

β (∥x(τ0)∥, t − τ0) , γ


∥eu[τ0,t]∥


, (117)

∀t ≥ τ0 ≥ 0, where ∥eu[τ0,t]∥ := supt∈[τ0,t] ∥eu(t)∥, β, βx are
class KL functions and γ , γx are class K functions. If γ (s) < s/h
for all s > 0, then the equilibrium point x = 0 of the closed-loop
system (111), (112) is Globally Asymptotically Stable for any initial
condition in Rn.
4.4.3. Integral quadratic constraints and extensions
For the case of LTI sampled-data systems (12), the properties

of the operator ∆sh in (100) can be further exploited in the
framework of Integral Quadratic Constraints (IQC) (Megretski
& Rantzer, 1997). Less conservative stability conditions can be
obtained. While very general definitions of IQCs are available in
the literature (Megretski & Rantzer, 1997), we restrict ourselves
here to IQCs defined by symmetric matrices Π with real elements,
that have been used for stability analysis of systemswith aperiodic
sampling. Roughly speaking, the bounded operator ∆sh in (100),
with input y and output e, is said to satisfy the IQC defined by the
symmetric matrix Π if

∞

0


y(θ)
e(θ)

T
Π


y(θ)
e(θ)


dθ ≥ 0 (118)

for all y ∈ Ln
2[0, ∞) and e = ∆shy. We present as follows a sim-

plified version of the classical IQC Theorem (Megretski & Rantzer,
1997) that can be used in order to derive stability conditions for
the interconnection (103).

Theorem 27 (Megretski & Rantzer, 1997). Consider the intercon-
nection (103) describing the LTI sampled-data system (12) and the
bounded operator ∆sh in (100). Suppose that Acl = A + BK is Hur-
witz and assume that there exists a matrix

Π =


Π11 Π12

Π T
12 Π22


(119)

with Π11, Π12, Π22 ∈ Rn×n, Π11 ≽ 0, Π22 ≼ 0, such that the
operator ∆sh satisfies the IQC defined by Π ; there exists ϵ > 0 such
that
Ĝ(jω)

I

⋆

Π


Ĝ(jω)

I


≼ −ϵI, ∀ ω ∈ R. (120)

Then the interconnection (103) is L2 stable.

Using Theorem 23, the conditions of Theorem 27 also imply
uniform asymptotic stability of the sampled-data system (12).
Condition (120) can be converted into a frequency independent
finite dimensional LMI using the Kalman–Yakubovich–Popov
Lemma (Rantzer, 1996):
AT
clP + PAcl PBcl

BT
clP 0


+


Ccl Dcl
0 I

T
Π


Ccl Dcl
0 I


≺ 0 (121)

to be solved for P ≻ 0.
As an example, a simple IQC can be obtained directly from

Lemma 25. Note that inequality (108) implies that ∆sh satisfies the
IQC defined by

Π =



2h
π

2

I 0

0 −I

 . (122)

For this IQC, condition (120) yields to the standard small gain
criteria

2h
π

2

Ĝ⋆(jω)Ĝ(jω) ≺ I, ∀ ω ∈ R, (123)

which corresponds to a simple condition on the H∞ norm of
G : ∥Ĝ(s)∥∞ < π

2h
.

Fujioka (2009c) showed that the operator ∆sh also satisfies the
following passivity-like property.
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Lemma 28 (Fujioka, 2009c). The operator ∆sh defined in (100) sat-
isfies

+∞

0
yT (θ)(∆shy)(θ)dθ ≤ 0, (124)

for all y ∈ Ln
2[0, ∞).

It is important to note that if∆sh satisfies several IQC defined by
matrices Π1, Π2, . . . , Πr , then a sufficient condition for stability
that takes into account all the properties is given by the existence
of positive scalars α1, α2, . . . , αr such that condition (120) holds
with Π = α1Π2 + α2Π2 + · · · , αrΠr . The properties of ∆sh in
Lemma25 and Lemma28 can be generalized (Fujioka, 2009c) using
scaling matrices 0 ≼ Y ∈ Rn×n, 0 ≺ X ∈ Rn×n and grouped into
the following IQC:

∞

0


y(θ)
e(θ)

T 
δ2
0X −Y

−Y −X

 
y(θ)
e(θ)


dθ ≥ 0 (125)

which holds for all y ∈ Ln
2[0, ∞) and e = ∆shy with δ0 =

2h
π
.

Using the integral property (125) and Theorem 23, Fujioka (2009c)
has proposed the following stability condition.

Theorem 29 (Fujioka, 2009c). The system (12) is Globally Uniformly
Asymptotically Stable for any sampling sequence with tk+1 − tk ≤ h
if there exist 0 ≺ P ∈ Rn×n, 0 ≺ X ∈ Rn×n, 0 ≼ Y ∈ Rn×n satisfying
AT
clP + PAcl PBcl

BT
clP 0


+


Ccl Dcl
0 I

T 
δ2
0X −Y

−Y −X

 
Ccl Dcl
0 I


≺ 0. (126)

Taking into account more properties of the operator ∆sh may lead
to less conservative results. Nevertheless, since the analysis is of
a frequency domain nature, the IQC approach is only applicable
to LTI systems. However, one may note that input delays, several
performance specifications and classical nonlinearities (sector
bounded, saturations, etc.) can be characterized by elementary
operators and IQCs (Megretski & Rantzer, 1997). A more complex
system can be described by an interconnection of an LTI system
and a single block diagonal operator representing the different
perturbing elements. Once the IQCs for the different perturbing
elements are available, stability of more complex systems is then
a rather straightforward matter of defining a single aggregate IQC.
This point enhances the applicability of the IQC approach.

In the nonlinear case, an extension (Omran et al., 2013, 2014a,b)
of the IQC approach is possible using methods inspired by the
Dissipativity Theory (VijaySekhar &Haddad, 2003;Willems, 1972).
Consider the following nonlinear affine system:

ẋ(t) = f

x(t)


+ g


x(t)


K

x(tk)


, ∀t ∈ [tk, tk+1), k ∈ N. (127)

The functions f : Rn
→ Rn with f (0) = 0, and g : Rn

→ Rn×m

are considered to be sufficiently smooth and the controller K :

Rn
→ Rm is a continuously differentiable function. Considering

fcl(x) = f (x)+g(x)K(x),w(t) = K

x(tk)


−K


x(t)


and an auxiliary

output y =
∂K
∂x ẋ, system (127) can be represented by

ẋ = fcl (x) + g (x) w

y =
∂K
∂x

(fcl (x) + g (x) w)

w = ∆shy.

(128)

Here we consider that ∆sh : Lm
2e[0, ∞) → Lm

2e[0, ∞), with ∆sh
defined similarly to (100). The main idea in Omran et al. (2013,
2014a,b) is to re-interpret the properties of the operator ∆sh in
terms of ‘‘supply’’ functions S

y, w


such that t

tk
S

y(θ), w(θ)


dθ ≤ 0, ∀t ∈ [tk, tk+1). (129)

The following result provides an extension of Theorem 29 to the
nonlinear affine case.

Theorem 30 (Omran et al., 2013). Consider the sampled-data
system (127), and the equivalent representation (128), with ∆sh as
given in (100). Consider the quadratic form

S

y, w


=


y
w

T 
−δ2

0X Y
Y X

 
y
w


, (130)

with δ0 =
2
π
h, 0 ≺ X ∈ Rm×m, and 0 ≼ Y ∈ Rm×m. Consider a

neighbourhood D ⊂ Rn of the equilibrium point x = 0, and suppose
that there exist a differentiable positive definite function V : D →

R+, a scalar α > 0, and class K functions β1 and β2, such that

β1(∥x∥) ≤ V (x) ≤ β2(∥x∥), ∀x ∈ D, (131)

and the following inequality is satisfied:

∂V
∂x


fcl(x) + gcl(x)w


+ αV


x


≤ S

y, w


e−αθ , (132)

for any θ ∈ {0, h̄}, x ∈ D, w ∈ Rm. Then, the equilibrium x = 0
of system (127) is Locally Uniformly Asymptotically Stable for any
sampling sequence with tk+1 − tk ≤ h.

For particular classes of systems, such as LPV, bilinear or
more general polynomial sampled-data systems, the conditions of
Theorem 30 can be re-written as tractable numerical criteria (LMIs
or Sum-Of-Squares decomposition) (Omran, Hetel, Petreczky,
Richard, & Lamnabhi-Lagarrigue, 2016; Omran et al., 2013,
2014a,b). These conditions can be enhanced by givingmore insight
into the mathematical model of the sampling operator ∆sh. This
would lead to new characterizations of supply functions used in
the dissipativity-based approach. However, finding newproperties
for the operator ∆sh or a better way to rewrite the sampled-data
systemas an interconnected systemhas beenproven to be difficult,
and research is still in progress.

4.4.4. Further reading
Some of the elements presented in Section 4.3 concerning the

use of norm-bounded approximations of the matrix exponential
(Fujioka, 2009a) can also be interpreted in the Input/Output
approach as the application of the Small Gain Theorem to a
discrete-time model. Other IQCs can be found in Fujioka (2009b,
2011). An approach based on IQCs for the discrete-time model
has been proposed recently in Kao and Fujioka (2013). For more
general nonlinear networked systems, approaches considering
sampling as a perturbations can be found in Nešić and Teel (2004b)
and Walsh, Beldiman, and Bushnell (2001). The boundedness
properties of the sampling operator ∆sh from Lemma 25 from
Mirkin (2007) can be relatedwith theWirtinger’s inequalities used
in the time delay approach (Liu et al., 2010; Seuret & Gouaisbaut,
2013, 2014). Motivated by the approach presented in Fridman
(2010) in the input delay framework, the sampling effect has been
recently described by a new operator in Kao and Wu (2014).

5. Sampling as a control parameter—an emerging area

In this section we briefly present the main research directions
and some problems concerning the case when the sampling
interval hk (or equivalently the sequence of sampling σ = {tk}k∈N)
is considered to be a control parameter that can be modified
in order to ensure desired properties in terms of stability and
resource utilization. From the real-time control point of view, this
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formulation corresponds to designing a scheduling mechanism
that triggers the sampler (Åström, 2008; Velasco et al., 2003). The
problem has attracted sporadically the attention of the control
system’s community since the early ages of sampled-data control
(Dorf, Farren, & Phillips, 1962; Jury & Mullin, 1959). With the
spring of event- and self-triggered control techniques (Årzén, 1999;
Åström & Bernhardsson, 1999; Velasco et al., 2003) it has become
a very popular topic (Heemels et al., 2012; Miskowicz, 2015).

Let us consider the nonlinear system (2) and the controller (3)
with a given sampling sequence σ = {tk}k∈N. Clearly, the asymp-
totic stability of system holds when the sampling sequence σ sat-
isfies hk = tk+1 − tk ∈ (0, h̄] for all k ∈ N, where h̄ represents
the MSI for which the system is asymptotically stable under arbi-
trary sampling. A basic problem in designing a sampling sequence
σ = {tk}k∈N is to ensure the stability of the system while op-
timizing some Performance Index associated to the frequency of
sampling. Most of the time, sampling sequences are compared in
simulation based on themean sampling interval. Given σ , one pos-
sible choice of Performance Index to be maximized could be

J(σ ) = lim inf
N→∞

1
N

N−1
k=0

(tk+1 − tk). (133)

Note that the limit inferior of the sequence is needed since, given a
nonlinear system (2), (3), it is not obvious that over an infinite time
horizon themean value interval converges. Generally, the goal is to
find sequences that ensure stability and have the mean sampling
interval larger then the maximum sampling interval admissible in
the periodic and arbitrary varying case. Using the Performance In-
dex (133), the following basic problem can be formulated:
• Problem B (Optimal sampling sequence): Consider the nonlin-

ear system (2) and the controller (3). Design a sampling se-
quence σ maximizing the Performance Index J(σ ) in (133)
while ensuring the stability of the closed-loop system (1), (2),
(3), (4).

Of course, the problem makes sense only for systems where the
control action is necessary. It is not meaningful for open-loop sta-
ble systems, where the sampling interval can be made arbitrarily
large. Various alternative formalizations of Problem B can be imag-
ined by considering other performance indexes or Cost Functions
(e.g.Jc(σ ) =


∞

k=0 e
−(tk+1−tk)) to bemaximized orminimized (see

for instance Hsia, 1974 and Ma & Schlueter, 1976 for a finite hori-
zon formulation). A stochastic formulation of the problem can be
found in Cogill, Lall, and Hespanha (2007) and Molin and Hirche
(2013). It is possible to formulatemore complex problems inwhich
one needs to find simultaneously the sampling sequence and sys-
tem input, as in theminimum attention control formulation (Brock-
ett, 1997; Donkers, Tabuada, & Heemels, 2011; Marchand, Durand,
& Castellanos, 2013), or to optimize not only the sampling cost but
also a more classical performance index (LQR, LQG, L2-gain, etc.)
(Antunes & Heemels, 2014; Åström & Bernhardsson, 2002; Gom-
mans, Antunes, Donkers, Tabuada, & Heemels, 2014; Henningsson,
Johannesson, & Cervin, 2008).

While the research in the case of arbitrary sampling has reached
an advanced phase of development, Problem B is largely open.
Due to the complexity of Problem B, simplified versions are
under study. For example, stability of sampled-data systems over
periodic sequences of sampling has been investigated in Jury and
Mullin (1959), Li et al. (2010) and Seuret (2012). The optimization
of sampling sequences over a finite horizon has been considered
since the early works in Hsia (1974) and Ma and Schlueter
(1976). For both practical and theoretical reasons, the design of
state-dependent (closed-loop) sampling sequences, in which the
sampling is triggered according to the system state, represents a
topic of interest. Basic ideas appeared in the ’60s in the context of
adaptive sampling (de la Sen, 1996; Dorf et al., 1962) and the topic
is currently under study in the framework of event-/self-triggered
control (Årzén, 1999; Åström, 2008; Åström& Bernhardsson, 1999;
Heemels et al., 2012; Miskowicz, 2015; Velasco et al., 2003).

5.1. Event-Triggered (ET) control

The basic idea of event-triggered control schemes (Årzén,
1999; Åström & Bernhardsson, 1999, 2002; Heemels et al., 2012;
Miskowicz, 2015) is to continuously monitor the system state and
to trigger the sampling only when necessary, according to the
desired performance of the system. A sampling event is generated
when the system’s state crosses some frontier in the state-space.
Let us re-consider the hybridmodel of an LTI sampled-data system

ẋ = Ax + BK x̂
˙̂x = 0
τ̇ = 1

 
x, x̂, τ


∈ C,

x+
= x

x̂+
= x

τ+
= 0

 
x, x̂, τ


∈ D,

(134)

where x̂ represents the sampled version of the state and τ the clock
measuring the time since the last sampling instant. In the classical
time-triggered sampling context (53), the sets C and D implicitly
indicating the sampling moments are defined only according to
the clock variable τ : when uniform sampling with period T is
considered, C is defined by τ ∈ [0, T ] and D by τ = T . In event-
triggered control the idea is to define the sampling triggering sets
according to the state variable x and x̂. For example, it may be of
interest to trigger onlywhen the error x− x̂ becomes too largewith
respect to the system state, i.e. when ∥x(t) − x(tk)∥ ≥ γ ∥x(t)∥
where γ > 0 is a design parameter (see Tabuada, 2007). For this
example the sets C and D are:

C =

(x, x̂, τ ) ∈ Rn

× Rn
× R : ∥x − x̂∥ ≤ γ ∥x∥


,

D =

(x, x̂, τ ) ∈ Rn

× Rn
× R : ∥x − x̂∥ ≥ γ ∥x∥


.

Various other types of triggering conditions have been proposed
in the literature: send-on-delta (Lebesgue sampling, absolute
triggering) (Åström & Bernhardsson, 2002; Cervin & Aström, 2007;
Otanez, Moyne, & Tilbury, 2002), send-on-energy (Miśkowicz,
2005), send-on-area (Miskowicz, 2007), Lyapunov sampling (Fiter
et al., 2015; Postoyan, Tabuada, Nesic, & Anta, 2015; Seuret, Prieur,
& Marchand, 2013; Velasco, Marti, & Bini, 2009), etc.

Note that in event-triggering control, the sampling sequence
σ = {tk}k∈N is implicitly defined as:

tk+1 = min

t : t ≥ tk, (x, x̂, τ ) ∈ D


. (135)

The value h∗ forwhich tk+1−tk ≥ h∗ for all k ∈ N and all initial con-
ditions is called the minimum inter-event time. In the general case
the implicit definition of the sampling sequence does not guaran-
tee anything about the ‘‘well posedness’’ of the closed-loop system
in terms of existence of solutions, or concerning the existence of
a minimum interval between two consecutive events. In particu-
lar cases of event-triggered control Zeno phenomena may occur,
i.e. the minimum inter-event time h∗ is zero6 (Borgers & Heemels,
2014; Donkers & Heemels, 2012; Marchand et al., 2013). This rep-
resents an important drawback since the system is converging to
a continuous-time control implementation instead of a sampled-
data one. To avoid it, various systematic design methodologies
for event-triggered control with stability guarantees and no Zeno
behaviour have been proposed: see Tabuada (2007), Lunze and
Lehmann (2010) and Wang and Lemmon (2008, 2009) based on
the Input/Output stability approach, Donkers and Heemels (2012),

6 The system requires infinitely fast sampling.
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Forni et al. (2014), Postoyan et al. (2015) and Seuret et al. (2013)
using hybrid models, Fiter et al. (2015), Peng and Han (2013) and
Yue, Tian, and Han (2013) based on the time-delay approach. Note
that Zeno phenomena can be easily avoided by including restric-
tions on the clock variable when defining the jump set D. For ex-
ample, one may add next to the constraints on x and x̂, a constraint
that guarantees that sampling occurs only if τ is greater than some
minimum desired inter-execution time (Fiter et al., 2015; Forni
et al., 2014; Postoyan et al., 2015). Additionally, the triggering
condition may be verified on a discrete sequence of time, as in
the Periodic Event-Trigger (PET) control (Heemels, Donkers, & Teel,
2013; Heemels, Dullerud, & Teel, 2015; Postoyan, Anta, Heemels,
Tabuada, & Nesic, 2013), or in Eqtami, Dimarogonas, and Kyri-
akopoulos (2010), where the event-triggered control problem is
formulated directly in discrete-time.

5.2. Self-Triggered (ST) control

The term self-triggered controlwas initially proposed by Velasco
et al. (2003) in the context of real time systems. The recent articles
(Anta & Tabuada, 2010;Wang & Lemmon, 2009) have attracted the
attention of the control system community. Note that basic ideas
related to self-triggered control appeared in the ’60s (see de la Sen,
1996; Dorf et al., 1962; Hsia, 1974 and the references therein). We
point also to the pioneering work in Hsu and Sastry (1987) where
elements concerning the use of Lyapunov arguments for the design
of self-triggering control laws can be found.

In self-triggering, at each sampling time it is computed both the
sampled-data control value (to be sent to the actuators) and the
next sampling instant. Themain idea is to use the value of the state
at sampling times and knowledge about the system dynamics in
order to predict the next time instant a control update is needed. A
self-triggering control scheme is described by a sampling function
h : Rn

→ R+
\{0}which, at each sampling time tk, k ∈ N, indicates

the value of the current sampling interval according to the system
state. The sampling sequence σ = {tk}k∈N is formulated explicitly
as

tk+1 = tk + h (xk) , (136)

where xk = x(tk). Very often, the synthesis of a self-triggered
control scheme is based on a pre-existing event-triggered control
mechanism. In this context, it is aimed at designing the sampling
function bypre-computing, at each sampling instant, an estimation
of the next time a sampling event has to be generated. For the
example of the LTI system (12) with the event-triggered control
condition ∥x(t) − x(tk)∥ ≥ γ ∥x(t)∥, one may want to design the
sampling function:

h(xk) = sup {θ > 0 : ∥(Λ(s) − I)xk∥ < γ ∥Λ(s)xk∥,
∀ s ≤ θ } , (137)

where Λ(θ) = eAθ
+
 θ

0 eAsdsBK . An important issue is the com-
plexity of the algorithms used for the online implementation of the
sampling function h(x). Even for the simple case (137), the algo-
rithmsmay be quite complex since they involve solving hyperbolic
inequalities. In practice, simple approximations of such sampling
function must be used.

Self-triggered control mechanisms with stability guarantees
have been proposed in Anta and Tabuada (2010), Di Benedetto,
Di Gennaro, and D’Innocenzo (2013), Forni, Galeani, Nešić, and
Zaccarian (2010) and Wang and Lemmon (2009, 2010) using
the Input/Output stability approach, in Maalej, Fiter, Hetel, and
Richard (2012), Mazo, Anta, and Tabuada (2010) and Tiberi and
Johansson (2013) using discrete-time Lyapunov functions, in Fiter
et al. (2012a, 2015) using convex embeddings, in Postoyan, Anta,
Nešić, and Tabuada (2011) using a hybrid formulation and in Fiter,
Hetel, Perruquetti, and Richard (2012b) using a time-delay system
approach.
5.3. Relations with the arbitrary sampling problem

A basic problem in both event- and self-triggered control
is to design the trigger (or the sampling map h(xk)) so as to
enlarge the minimum inter-event time h∗ while guaranteeing
the stability of the system. Providing a quantitative estimation
of the minimum inter-event time h∗ guarantees the existence of
a sub-optimal solution to Problem B with a performance index
J ≥ h∗. Recently, connections between the arbitrary sampling
problem (Problem A) and Problem B have been made in Dolk,
Borgers, and Heemels (in press), Fiter, Hetel, Perruquetti, and
Richard (2011); Fiter et al. (2012a, 2015), Postoyan et al. (2015)
and Tallapragada and Chopra (2014). It has been shown that, for
some Lyapunov-based triggering conditions, the minimum inter-
event time h∗ corresponds to the Maximum Sampling Interval h̄
admissible in the arbitrary sampling configuration. This issue is
interesting since triggering control schemes could be constructed
by upper-bounding the derivatives of Lyapunov functions, as the
ones used for solving Problem A. See, for instance, the results
in Fiter et al. (2012b, 2015) where triggering mechanisms are
optimized off-line using LMI criteria so as to enlarge the minimum
inter-event time. However, the potential of the approaches used
for the arbitrary sampling problem is far frombeing fully exploited.
The tools presented in Section 4 may be useful for various aspects
in Problem B: deriving new event-/self-triggering mechanisms,
providing less conservative estimations of the minimum inter-
event time h∗, etc.

6. Conclusion

This article has presented basic concepts and recent research
directions in sampled-data systems: time-delay, hybrid, discrete-
time and input–output models; Lyapunov and frequency domain
methods for the stability of systems with arbitrary sampling in-
tervals; converse Lyapunov theorems and constructive numerical
criteria. It is to be emphasized that this overview is far from being
exhaustive. The research topic of systems with time-varying sam-
pling is still wide open and continuously growing. In particular, the
control of sampling is presently receiving a lot of attention, as it
was shown in Section 5. It is worth noticing that the subject lies
at the intersection of four important axes in Control Theory (time-
delay, hybrid, LPV and input–output approaches) andwe hope this
will have a stimulating impact in the control community. Meth-
ods and tools are being transferred from one approach to another
and the perspectives of cross-fertilization and generalization are
numerous.
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