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Abstract

This paper is aimed at application of the passification based adaptive control to decentralized
synchronization of dynamical networks. We consider Lurie type systems with hyper-minimum-phase
linear parts and two types of nonlinearities: Lipschitz and matched. The network is assumed to have both
instant and delayed time-varying interconnections. Agent model may also include delays. Based on the
speed-gradient method decentralized adaptive controllers are derived, i.e. each controller measures only
the output of the node it controls. Synchronization conditions for disturbance free networks and ultimate
boundedness conditions for networks with disturbances are formulated. The proofs are based on
Passification lemma in combination with Lyapunov–Krasovskii functionals technique. Numerical
examples for the networks of 4 and 100 interconnected Chua systems are presented to demonstrate the
efficiency of the proposed approach.
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1. Introduction

Adaptive synchronization of dynamical networks has attracted a growing interest during recent
years [2–11]. It is motivated by a broad area of potential applications: networks of robots,
formations of flying and underwater vehicles, control of industrial, electrical, communication,
and production networks, etc. Although problems of decentralized control for networks of
coupled systems were studied before, most of the existing works, e.g. [3–8], deal with full state
feedback and linear interconnections. Moreover, control variables usually appear in all equations
of the network model. Such system models are quite restrictive for applications, where
uncertainties of the system, nonlinear interconnections, switching structure of the network
topology, nonlinear dynamics of the local subsystems and incomplete measurement of their
states should be taken into account.

The key to solve the above problem is application of the passification approach. It was initially
proposed in 1974 for a SIMO plant [12] and later was extended to a broad class of MIMO linear
and nonlinear systems. Related versions are also known under names “adaptive systems with
implicit reference models” [13], “adaptive control based on feedback Kalman–Yakubovich
lemma” [14] and “simple adaptive control” [15,16]. Adaptive system design proposed in the
1970s was sensitive to disturbances: an arbitrary small disturbance was able to destroy
boundedness of the trajectories. Later regularization tricks to overcome difficulties were
proposed, e.g. negative parametric feedback used in this paper. In the early articles on the
passification based approach the restrictive hyper-minimum-phase condition was imposed.
However later the so-called “parallel feedforward compensator” (shunt) was proposed by
Barkana in [17,18] and extended in [19] that allowed one to relax hyper-minimum-phase
condition requiring only minimum phaseness, without “relative degree one” property. Thus,
relative degree one restriction has been removed. To simplify exposition and make more clear
basic ideas we do not use shunts in this paper. The idea of shunt trick can be found in [19,20]
while detailed exposition is to appear elsewhere.

A passification based approach to decentralized adaptive synchronization of the Lurie type
networks with incomplete measurements and incomplete control was proposed in [21]. Here we
extend these results to the case of time-varying unknown interconnection delays and bounded
disturbances.

For the synchronization of networks with delayed couplings and disturbances quite a number
of papers have already been published [22–29]. However, again, adaptive control laws were
derived only for a narrow class of networks, such as fully-controlled and fully-measured agents.
Some of these works deal with non-switching topology or provide non-adaptive control.

In the current work we propose an adaptive decentralized algorithm for synchronization of
networks with nonlinear delayed couplings that depend on time. We consider partly unknown
Lurie type nonlinear systems with delayed interconnections and bounded disturbances. The
controller does not use any information about system parameters, but to ensure synchronization it is
required that all subsystems belong to a special class described below (see conditions of Theorems
1–4). Our approach is based on Passification lemma [30] and Lyapunov–Krasovskii method.

Notations used throughout the paper is fairly standard. The fields of real and complex numbers are
denoted by R, C. Rn is n-dimensional Euclidean space with Euclidean norm JxJ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑n

i ¼ 1x
2
i

p
.

C½a; b� is a space of continuous functions mapping the interval ½a; b� into Rn with a norm
JϕJC ¼maxsA ½a;b� JϕðsÞJ . As usual I is an identity matrix, AT is transposed matrix A, λmaxðAÞ is the
maximum eigen value of a square matrix A, sign p¼ �1 for po0, 0 for p¼0 and 1 for p40.

Some preliminary results were presented in [1].
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1.1. Passification method
Definition 1. For given AARn�n, BARn, CARl�n, gARl a transfer function gTWðsÞ ¼
gTCðsI�AÞ�1B is called hyper-minimum-phase if the polynomial gTWðsÞdetðsI�AÞ is Hurwitz
and gTCB is a positive number.

To formulate main results we will need Passification lemma in the following form [31].

Lemma 1 (Passification lemma). Let the matrices AARn�n, BARn, CARl�n, gARl be given.
Then for existence of a positive-definite n� n-matrix P¼ PT40 and a vector θnARl such that

PAn þ AT
n
Po0; PB¼CTg; ð1Þ

where An ¼ A�BθT
n
C, it is necessary and sufficient that the function gTWðsÞ ¼ gTCðsI�AÞ�1B

is hyper-minimum-phase.

Remark 1. Consider a linear system

_x ¼ Axþ Bu; y¼Cx: ð2Þ
It follows from Passification lemma (see [20] for details) that if gTCðsI�AÞ�1B is hyper-
minimum-phase then there exists θn such that the input u¼ �θT

n
yþ v makes the system (2)

strictly passive with respect to a new input v, i.e. there exist a nonnegative scalar function V(x)
and a scalar function ρðxÞ, where ρðxÞ40 for xa0, such that

VðxÞrVðx0Þ þ
Z t

0
vðtÞTgTyðtÞ�ρðxðtÞÞ� �

dt

for any solution of the system (2) satisfying xð0Þ ¼ x0.
The last inequality has a simple physical interpretation. Function V(x) is an analog of system

total energy. The term vðtÞTgTyðtÞ can be interpreted as the power transmitted to the system,
meaning that

R t
0 vðtÞTgTyðtÞ dt is the energy transmitted to the system. The term ρðxðtÞÞ reflects

dissipation rate that arises due to energy loss (friction, for instance). Therefore, the last inequality
is an energy balance for a system without internal energy sources.

It follows from Passification lemma that if gTWðsÞ is hyper-minimum-phase then there exist
P40, θn, ε40 such that

PAn þ AT
n
Po�εI; PB¼ CTg; ð3Þ

where An ¼ A�BθT
n
C.

The first inequality means that matrix An degree of stability is ελ�1
maxðPÞ. The value ελ�1

maxðPÞ
has a crucial meaning for synchronization and we would like it to be as big as possible. The
second relation PB¼CTg will be used to construct a realizable controller.

2. Problem statement

We will study networks dynamics of which are given by the following equations:

_xiðtÞ ¼ AxiðtÞ þ φ0 t; xiðtÞð Þ þ ∑
N

j ¼ 1
φij t; xjðtÞ

� �
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þ ∑
N

j ¼ 1
ψ ij t; xjðt�τðtÞÞ� �þ BuiðtÞ; ð4Þ

yiðtÞ ¼CxiðtÞ; tZ t0; i¼ 1;…;N;

with states xiARn, inputs uiAR, measurable outputs yiARl, and constant matrices A, B, C
having appropriate dimensions. Time-varying delay τðtÞ is assumed to be a differentiable
function such that �hot�τðtÞot (h40) and _τðtÞrdo1 for all tZ t0. Functions φ0, φij and
ψij describe local dynamics of the nodes and their interactions. Note that the network model
(4) admits delay in local agent dynamics described by the term ψ iiðt; xiðt�τðtÞÞÞ.
Throughout the paper we assume that φij and ψij satisfy Lipschitz condition with respect
to the second argument with nonnegative constants Lij and Mij, i.e. for all tZ t0 and any
x; yARn

Jφijðt; xÞ�φijðt; yÞJrLij Jx�yJ ;
Jψ ijðt; xÞ�ψ ijðt; yÞJrMij Jx�yJ : ð5Þ

Functions φ0, φij and ψij are assumed satisfying standard conditions for existence and
uniqueness of solutions of (4) for any piecewise continuous ui(t) (see, e.g. [32] for details).
Discontinuity of φij, ψij in t reflects the switching character of the network.

Initial conditions for the system (4) are given by continuous functions x0i AC½�h; 0�, i¼1,…,N
as follows:

xiðtÞ ¼ x0i ðtÞ; 8 tA ½�h; 0�: ð6Þ
Here we deal with the problem of synchronization, therefore it is necessary to assume that the

network (4) admits a synchronous solution xðtÞ. Suppose that the system is synchronized and we
do not need to control it, i.e. x1ðtÞ ¼⋯¼ xNðtÞ ¼ xðtÞ and u1ðtÞ ¼⋯¼ uNðtÞ ¼ 0 for all tZ t0. By
substituting this values in Eq. (4) we derive that there should exist functions Φðt; xÞ and Ψ ðt; xÞ
such that for all i¼1,…,N and all tZ t0

∑
N

j ¼ 1
φijðt; xðtÞÞ ¼Φðt; xðtÞÞ;

∑
N

j ¼ 1
ψ ijðt; xðtÞÞ ¼ Ψ ðt; xðtÞÞ: ð7Þ

Here we assume that the controller of the i-th subsystem does not possess any information
about other nodes. Then, to synchronize the network, a leader system is required:

_xLðtÞ ¼ AxLðtÞ þ φ0ðt; xLðtÞÞ þΦðt; xLðtÞÞ þ Ψ t; xL t�τðtÞð Þð Þ þ BuLðtÞ;
yLðtÞ ¼ CxLðtÞ; ð8Þ

where uL is a known input signal. Initial condition for this system is given by x0LAC½�h; 0�.
We will also assume that the controller does not know all system parameters. Therefore, in the

control law the entries of A, B, C will not be used, although to prove the convergence we need to
know that the system belongs to a special class of systems given below.

The problem is formulated as follows: find functions ui ¼Uiðt; yi; yL; uLÞ such that for all
solutions of the system (4), (6), (8) for all i¼1,…,N

lim
t-1

JxiðtÞ�xLðtÞJ ¼ 0: ð9Þ
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The problem is complicated by the fact that the system (4) is not fully controlled: subsystems
are n-dimensional while control signals ui are scalars. Therefore, the goal (9) cannot be always
achieved (e.g. when B¼0). Nevertheless, (9) can be satisfied in a special case, namely, we
assume the following.

Assumption 1. There exists gARl such that gTCðsI�AÞ�1B is hyper-minimum-phase.

3. Controller design

First, by taking the difference between (4) and (8) we derive equations for the errors
eiðtÞ ¼ xiðtÞ�xLðtÞ

_eiðtÞ ¼ AeiðtÞ þ φ0 t; xiðtÞð Þ�φ0 t; xLðtÞð Þ� �
þ ∑

N

j ¼ 1
φij t; xjðtÞ

� ��φij t; xLðtÞð Þ� �
þ ∑

N

j ¼ 1
ψ ij t; xjðt�τðtÞÞ� ��ψ ij t; xLðt�τðtÞÞð Þ� �

þB uiðtÞ�uLðtÞ½ �;
yiðtÞ�yLðtÞ ¼ C xiðtÞ�xLðtÞ½ �; i¼ 1;…;N: ð10Þ

The idea of the control algorithm is the following. If the system is synchronized than in view
of (7) it is sufficient to apply zero forces to the subsystems (10), i.e. ui¼uL. If the system is not
synchronized than it is reasonable that the bigger difference yi�yL is the bigger force we should
apply. Thereby, we arrive to the controllers:

uiðtÞ�uLðtÞ ¼ �θTi yiðtÞ�yLðtÞ
� �

: ð11Þ
Since the system is uncertain the values of θi are adjusted adaptively using the speed-gradient

method [33].
Let us fix i¼1,…,N. Consider a goal function V0 eið Þ ¼ 1

2e
T
i Pei. Denote ωiðei; θiÞ ¼

∇eiV0ðeiÞ
� �T

_ei, where _ei is given by (10) and (11). Decentralized speed-gradient algorithm is
introduced as follows:

_θ i ¼ �Γi∇θiωiðei; θi; tÞ ¼ ΓiðeTi PBÞfyi�yL�;
i¼ 1;…;N, where Γi ¼ ΓT

i 40 is l� l-matrix. As soon as the conditions (3) are satisfied,
PB¼CTg, therefore _θ i ¼ ΓiðeTi CTgÞ½yi�yL� ¼ Γið½yi�yL�TgÞ½yi�yL�. The term ½yi�yL�Tg is a
scalar, thus we can rewrite this equation in the form _θ i ¼ Γi½yi�yL�½yi�yL�Tg. Finally, we
derived the following adaptive controllers:

uiðtÞ ¼ �θiðtÞT yiðtÞ�yLðtÞ
� �þ uLðtÞ;

_θ iðtÞ ¼ Γi yiðtÞ�yLðtÞ
� �

yiðtÞ�yLðtÞ
� �T

g: ð12Þ
Initial values for θiðtÞ can be chosen arbitrarily.

Remark 2. The control law (12) includes undefined terms Γi. Synchronization conditions will
be proved for all Γi40. The concrete values of Γi determine the speed of convergence. If Γi is
too small, then the convergence will be slow. At the same time, large Γi may cause undesirable
oscillations of θi. Therefore, the question of optimal definition of Γi is still to be investigated. In
the simulations presented here we took Γi ¼ I.
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Adaptive decentralized controller (12) of the i-th node does not require the knowledge of yj
with ja i. At the same time the terms φij, ψij depend on yj and may prevent the system from
synchronization. Therefore, to synchronize the system with (12) one need to ensure that the
influence of φij, ψij is small enough. Note that unlike the so-called pinning control [34–37] we do
not impose any conditions that guarantee that pinning terms ϕij, ψij have a positive effect on
synchronization. In what follows we derive conditions on Lipschitz constants Lij, Mij such that
(12) ensures (9) for the network under consideration.

4. Synchronization conditions

In order to formulate synchronization conditions for the system (4), (6), (8), (12) we introduce
notations:

L ¼ max
i ¼ 1;…;N

∑
N

j ¼ 1
Lij þ Lji
� �

;

M ¼ max
i ¼ 1;…;N

∑
N

j ¼ 1
Mij þ

Mji

1�d

� �
; ð13Þ

where Lij, Mij are from (5), d is the upper bound for derivative of a time-varying delay: _τðtÞrd.
Values L and M have the meaning of couplings' strengths. As soon as the controllers (12) are
decentralized this values are required to be small.

4.1. Lipschitz type nonlinearity

Synchronization conditions will be formulated for two types of nonlinearity φ0. We begin with
Lipschitz type nonlinearity.

Assumption 2. Function φ0ðt; xÞ satisfies Lipschitz condition with respect to x uniformly on
tZ t0 with a positive constant L0, that is for all tZ t0 and any x; yARn

Jφ0ðt; xÞ�φ0ðt; yÞJrL0 Jx�yJ :

Theorem 1 (Lipschitz nonlinearity). Consider the network (4) subject to (5) and the leader
system (8). Let Assumption 1 hold with gARl and, thus, (3) is feasible for some P40, ε40, and
θn. Let Assumption 2 be valid with some L040. If the following inequality holds

2L0 þ L þMo ε

λmaxðPÞ
ð14Þ

where L and M are given by (13), then the adaptive control algorithm (12) ensures
synchronization (9). Moreover, all tunable parameters θiðtÞ will tend to constant values.

Proof. Denote eti ¼ eiðt þ θÞ; θA ½�τðtÞ; 0� and consider the following Lyapunov–Krasovskii
functional

Vðt; et1;…; etNÞ ¼ V1 þ V2 þ V3; ð15Þ
where

V1 ¼ ∑
N

i ¼ 1
eTi ðtÞPeiðtÞ; V2 ¼ ∑

N

i ¼ 1
ðθi�θnÞTΓ�1

i ðθi�θnÞ;
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V3 ¼ ∑
N

i ¼ 1

Z t

t� τðtÞ
eTi ðsÞQieiðsÞ ds;

with Qi ¼ λmaxðPÞ=ð1�dÞ∑N
j ¼ 1MjiIZ0.

Now calculate a derivative of V along the trajectories of the system (10) and (12).

_V1 ¼ ∑
N

i ¼ 1
½eTi ðtÞP_eiðtÞ þ _eTi ðtÞPeiðtÞ� ¼ ∑

N

i ¼ 1
eTi ðtÞ½PAþ ATP�eiðtÞ

þ2 ∑
N

i ¼ 1
eTi ðtÞPfφ0ðt; xiðtÞÞ�φ0ðt; xLðtÞÞ�

þ2 ∑
N

i ¼ 1
eTi ðtÞP ∑

N

j ¼ 1
½φijðt; xjðtÞÞ�φijðt; xLðtÞÞ�

þ2 ∑
N

i ¼ 1
eTi ðtÞP ∑

N

j ¼ 1
½ψ ijðt; xjðt�τÞÞ�ψ ijðt; xLðt�τÞÞ�

�2 ∑
N

i ¼ 1
eTi ðtÞPBθTi ðtÞ½yiðtÞ�yLðtÞ�:

In view of Assumption 2

2 ∑
N

i ¼ 1
eTi ðtÞP φ0 t; xiðtÞð Þ�φ0 t; xLðtÞð Þ� �

r2λmaxðPÞL0 ∑
N

i ¼ 1
JeiðtÞJ2: ð16Þ

Further,

			2 ∑
N

i ¼ 1
eTi ðtÞP ∑

N

j ¼ 1
φij t; xjðtÞ

� ��φij t; xLðtÞð Þ� �			
r

			 ∑
N

i ¼ 1
∑
N

j ¼ 1
2λmaxðPÞLijeTi ðtÞejðtÞ

			
r ∑

N

i ¼ 1
∑
N

j ¼ 1
λmaxðPÞLij JeiðtÞJ2 þ JejðtÞJ2

� �
¼ λmaxðPÞ ∑

N

i ¼ 1
JeiðtÞJ 2 ∑

N

j ¼ 1
Lij þ Lji
� �

rλmaxðPÞL ∑
N

i ¼ 1
JeiðtÞJ2 ð17Þ

and

			2 ∑
N

i ¼ 1
eTi ðtÞP ∑

N

j ¼ 1
ψ ij t; xjðt�τÞ� ��ψ ij t; xLðt�τÞð Þ� �			

r
			 ∑

N

i ¼ 1
∑
N

j ¼ 1
2λmaxðPÞMije

T
i ðtÞejðt�τÞ

			
r ∑

N

i ¼ 1
∑
N

j ¼ 1
λmaxðPÞMij JeiðtÞJ2 þ Jejðt�τÞJ2� �

:



A. Selivanov et al. / Journal of the Franklin Institute 352 (2015) 52–72 59
Thus,

_V 1r ∑
N

i ¼ 1
eTi ðtÞ PAþ ATP

� �
eiðtÞ

þ2λmaxðPÞL0 ∑
N

i ¼ 1
JeiðtÞJ2 þ λmaxðPÞL ∑

N

i ¼ 1
JeiðtÞJ2

þ ∑
N

i ¼ 1
∑
N

j ¼ 1
λmaxðPÞMij JeiðtÞJ2 þ Jejðt�τðtÞÞJ2� �

�2 ∑
N

i ¼ 1
eTi ðtÞPBθTi ðtÞ yiðtÞ�yLðtÞ

� �
:

Now keeping in mind that CTg¼ PB we calculate a derivative of V2:

_V 2 ¼ 2 ∑
N

i ¼ 1
ðθiðtÞ�θnÞTΓ�1

i
_θ iðtÞ

¼ 2 ∑
N

i ¼ 1
ðθiðtÞ�θnÞT ½yiðtÞ�yLðtÞ�½yiðtÞ�yLðtÞ�Tg

¼ 2 ∑
N

i ¼ 1
ðθiðtÞ�θnÞT ½yiðtð�yLðtÞ�eTi ðtÞCTg

¼ 2 ∑
N

i ¼ 1
eTi ðtÞPBθTi ðtÞ½yiðtÞ�yLðtÞ�

�2 ∑
N

i ¼ 1
eTi ðtÞPBθTnCeiðtÞ:

Finally, a derivative of V3 is

_V 3 ¼ ∑
N

i ¼ 1
eTi tð ÞQiei tð Þ� 1� _τ tð Þð ÞeTi t�τð ÞQiei t�τð Þ� �

r ∑
N

i ¼ 1
Jei tð ÞJ2

λmaxðPÞ
1�d

∑
N

j ¼ 1
Mji� 1�dð ÞJei t�τ tð Þð ÞJ 2 λmaxðPÞ

1�d
∑
N

j ¼ 1
Mji

" #
:

Summing up all derivatives and using notation An ¼ A�BθT
n
C we obtain

_Vr ∑
N

i ¼ 1
eTi ðtÞ½PAn þ AT

n
P�eiðtÞ þ 2L0λmaxðPÞð

þLλmaxðPÞ þMλmaxðPÞ
�
∑
N

i ¼ 1
JeiðtÞJ 2

r ð�εþ 2L0λmaxðPÞ þ LλmaxðPÞ þMλmaxðPÞÞ ∑
N

i ¼ 1
JeiðtÞJ2:

Thus,

_Vr�μ ∑
N

i ¼ 1
JeiðtÞJ 2r0;
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where μ¼ ε�2L0λmaxðPÞ�LλmaxðPÞ�MλmaxðPÞ40. Function VtðtÞ ¼ Vðt; et1;…; etNÞ can be
presented as

VtðtÞ ¼ Vtð0Þ þ
Z t

0

_V tðsÞ dsrVtð0Þ�μ

Z t

0
∑
N

i ¼ 1
JeiðsÞJ2 ds:

As far as x0i ; x
0
LACð½�h; 0�Þ, i.e. bounded functions, Vtð0Þo1 and thus Vt(t) is bounded. But if

( i¼ 1;…;N : θiðtÞt-1


!1 then VtðtÞt-1


!1 which is not possible. Thus all θiðtÞ are bounded.
As soon as Vt is bounded and Vtð0Þ is finite,

R t
0 ∑

N
i ¼ 1 JeiðsÞJ2 dso1. By applying Barbalat's

lemma [38] we conclude that eiðtÞ-0 while t-1 for all i¼1,…,N. In other words, zero
solution of the system (10) and (12) is asymptotically stable. Since φ0ðt; xÞ satisfies Lipschitz
condition all solutions of (4) and (8) exist for all tZ t0. Therefore limt-1 JxiðtÞ�xLðtÞJ ¼ 0 for
i¼1,…,N.
Finally, to prove that all θiðtÞ tend to some constant values let us integrate the second equation

of (12):

θiðtÞ ¼ θið0Þ þ Γi

Z t

0
½yiðsÞ�yðsÞ�½yiðsÞ�yðsÞ�Tg ds

¼ θið0Þ þ Γi

Z t

0
eTi ðsÞCTgCeiðsÞ ds:

The term
R1
0 eTi ðsÞCTgCeiðsÞ ds is finite as far as

R1
0 eTi ðsÞPeiðsÞ dso1 and therefore there exist

finite limt-1θiðtÞ ¼ θið0Þ þ Γi

R1
0 eTi ðsÞCTgCeiðsÞ ds. □

Remark 3. Note that the boundedness of xi(t) is not proved in the theorem. In fact the
trajectories xi may be unbounded. However, if xL(t) is bounded then xi(t) are bounded too.

4.2. Matched nonlinearity

Now we consider the second class of nonlinearities.

Assumption 3. There exists a function h0ðt;CxÞ : ½t0;1Þ � Rl such that

φ0ðt; xÞ ¼ Bh0ðt;CxÞ
and for all initial conditions from C½�h; 0� and piecewise continuous ui Eqs. (4) and (8) have
solutions for all tZ t0.

Function φ0 that satisfies Assumption 3 is called matched nonlinearity since it can be canceled
by a control signal u¼ �h0ðt; yÞ. Further we consider the case where h0 is unknown.

Theorem 2 (Matched nonlinearity). Consider the network (4) subject to (5) and the leader
system (8). Let Assumption 1 hold with gARl and, thus, (3) is feasible for some P40, ε40, and
θn. Let Assumption 3 be valid and assume that h0 satisfies

ðζ1�ζ2ÞTgðh0ðt; ζ1Þ�h0ðt; ζ2ÞÞr0; 8ζ1; ζ2ARl: ð18Þ
If the following inequality holds

L þMo ε

λmaxðPÞ
; ð19Þ

where L and M are given by (13), then the adaptive control algorithm (12) ensures
synchronization (9). Moreover, all tunable parameters θiðtÞ tend to constant values.



Proof is similar to the proof of Theorem 1. Consider the functional (15) with the same V1, V2,
V3. Calculating the bound for _V yields

_Vr�μ0 ∑
N

i ¼ 1
JeiðtÞJ2

þ2 ∑
N

i ¼ 1
eTi ðtÞP φ0 t; xiðtÞð Þ�φ0 t; xLðtÞð Þ� �

;

where μ0 ¼ ε�LλmaxðPÞ�MλmaxðPÞ40. As far as φ0ðt; xÞ ¼ Bh0ðt;CxÞ, PB¼CTg and h0
satisfies (18), we obtain

2 ∑
N

i ¼ 1
eTi ðtÞP φ0 t; xiðtÞð Þ�φ0 t; xLðtÞð Þ� �
¼ 2 ∑

N

i ¼ 1
eTi ðtÞPB h0 t;CxiðtÞð Þ�h0 t;CxLðtÞð Þ½ �

¼ 2 ∑
N

i ¼ 1
yiðtÞ�yLðtÞ
� �T

g h0 t; yiðtÞ
� ��h0 t; yLðtÞ

� �� �
r0:

Therefore, _Vr�μ0∑N
i ¼ 1 JeiðtÞJ2. The end of the proof is similar to the end of the proof for

Theorem 1. □

Remark 4. Note that (14) turns into (19) when L0 ¼ 0. That is, condition (19) are less restrictive.
This relaxation is received by imposing structural conditions on φ0. Hence we can conclude that
if φ0 is matched nonlinearity with h0 satisfying (18) then it is reasonable to use Theorem 2. If it is
not then Theorem 1 should be applied.

Remark 5. Results of Theorems 1 and 2 are delay-independent, i.e. it is not important how big
the value of τðtÞ is.
Remark 6. Sometimes it is necessary to consider a case of nonequal delays. In this case the delayed
term in (4) is replaced by ∑N

j ¼ 1ψ ij t; xjðt�τijðtÞÞ
� �

, where τijðtÞ are such that _τ ijrd. For this
instance the convergence conditions are same as in Theorems 1 and 2. To prove that one should take
V3 ¼ λmaxðPÞ=ð1�dÞ∑N

i ¼ 1∑N
j ¼ 1Mji

R t
t� τijðtÞ e

T
i ðsÞeiðsÞ ds. Unfortunately, to ensure the existence of

the synchronous solution for the system (4) with ui � 0 we should assume that 8 i; k

∑
N

j ¼ 1
ψ ijðt; xðt�τijðtÞÞÞ ¼ ∑

N

j ¼ 1
ψ kjðt; xðt�τkjðtÞÞÞ:

This assumption is too formal because its fulfillment in general depends mainly on the values of the
particular process x(t) in different moments of time. That seems to have no practical implementation.

5. Ultimate boundedness of disturbed system

An important issue for control system design is providing its robustness with respect to
disturbances unmodelled dynamics. It is well known however that many adaptive systems do not
possess such a property that makes their behavior very sensitive to inevitable impreciseness of
the plant model. Even boundedness of the closed loop system trajectories cannot be guaranteed
in many cases. Among various robustification methods one of the most popular ones is
introduction of negative feedback into the adaptation algorithm (σ-modification). However, this
method was not examined before for the plants affected by delay. Below it is demonstrated that
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σ-modification ensures robust behavior and ultimate boundedness for the controlled network
affected by both delays and bounded disturbances.
Consider the system (4) with disturbances:

_xiðtÞ ¼ AxiðtÞ þ φ0 t; xiðtÞð Þ þ ∑
N

j ¼ 1
φij t; xjðtÞ

� �
þ ∑

N

j ¼ 1
ψ ij t; xjðt�τðtÞÞ� �þ BuiðtÞ þ wiðtÞ; ð20Þ

yiðtÞ ¼ CxiðtÞ; tZ t0; i¼ 1;…;N;

where xi, ui, yi, A, B, C, φ0, φij, ψij are the same as in (4) and wiARn are unknown bounded
disturbances: Jwi JrΔi. In contrast to (4) here we assume that time-varying delay τðtÞ is a
bounded differentiable function such that 0rτðtÞrh and _τðtÞrdo1 for all tZ t0.
Since the system contains disturbances instead of (9) we consider the following control goal:

lim
t-1

∑
N

i ¼ 1
JxiðtÞ�xLðtÞJ 2ob: ð21Þ

It turns out that in this case under the control law (12) tuning parameters θi tend to infinity, that
is Jθi J-1 while t-1. To ensure boundedness of θi a regularized controller will be used:

uiðtÞ ¼ �θiðtÞT yiðtÞ�yLðtÞ
� �þ uLðtÞ;

_θ iðtÞ ¼ Γi yiðtÞ�yLðtÞ
� �

yiðtÞ�yLðtÞ
� �T

g�αθiðtÞ; ð22Þ
where Γi ¼ ΓT

i 40 is l� l-matrix and α40.
To formulate the following result we introduce notation:

Mh ¼ max
i ¼ 1;…;N

∑
N

j ¼ 1
eαhMij þ

Mji

1�d

� �
; ð23Þ

where Lij, Mij are from (5), h and d are upper bounds for the time-varying delay and its
derivative: 0rτðtÞrh, _τðtÞrdo1, and α is a controller parameter.
As previous, two types of nonlinearities φ0 will be considered: Lipschitz continuous and

matched nonlinearities.

5.1. Lipschitz type nonlinearity
Theorem 3 (Boundedness with Lipschitz nonlinearity). Consider the network (20) subject to (5)
and the leader system (8). Let Assumption 1 hold with gARl and, thus, (3) is feasible for some
P40, ε40, and θn. Let Assumption 2 be valid with some L040. If

μ¼ ε

λmaxðPÞ
�2L0�L�Mh�αZ0 ð24Þ

where L and Mh are given by (13) and (23), then the adaptive control algorithm (22) ensures
(21) with

b¼ λmaxðPÞ
αμλminðPÞ

∑
N

i ¼ 1
Δ2
i þ

1
λminðPÞ

∑
N

i ¼ 1
θT
n
Γ�1
i θn: ð25Þ
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Moreover, all tunable parameters θiðtÞ stay bounded on the time interval ½0;1Þ for all i¼1,…,
N.

Proof. Denote eti ¼ eiðt þ θÞ; θA ½�τðtÞ; 0� and consider the following functional:

Vðt; et1;…; etNÞ ¼ V1 þ V2 þ V4; ð26Þ
where V1 and V2 are the same as in (15) and

V4 ¼ ∑
N

i ¼ 1

Z t

t� τðtÞ
e�αðt� sÞeTi ðsÞQieiðsÞ ds;

with Qi ¼ λmaxðPÞ=ð1�dÞ∑N
j ¼ 1MjiIZ0.

By subtracting (8) from (20) we derive equations for the errors ei(t). Derivative of V is given
by

_V1 ¼ ∑
N

i ¼ 1
½eTi ðtÞP_eiðtÞ þ _eTi ðtÞPeiðtÞ� ¼ ∑

N

i ¼ 1
eTi ðtÞ½PAþ ATP�eiðtÞ

þ2 ∑
N

i ¼ 1
eTi ðtÞP φ0 t; xiðtÞð Þ�φ0 t; xLðtÞð Þ� �

þ2 ∑
N

i ¼ 1
eTi ðtÞP ∑

N

j ¼ 1
φij t; xjðtÞ

� ��φij t; xLðtÞð Þ� �
þ2 ∑

N

i ¼ 1
eTi ðtÞP ∑

N

j ¼ 1
ψ ij t; xjðt�τÞ� ��ψ ij t; xLðt�τÞð Þ� �

�2 ∑
N

i ¼ 1
eTi ðtÞPBθTi ðtÞ yiðtÞ�yLðtÞ

� �þ 2 ∑
N

i ¼ 1
eTi ðtÞPwiðtÞ:

Note that			2 ∑
N

i ¼ 1
eTi ðtÞP ∑

N

j ¼ 1
ψ ij t; xjðt�τÞ� ��ψ ij t; xLðt�τÞð Þ� �			

r
			 ∑

N

i ¼ 1
∑
N

j ¼ 1
2λmaxðPÞMije

T
i ðtÞejðt�τðtÞÞ

			
r ∑

N

i ¼ 1
∑
N

j ¼ 1
λmaxðPÞMij e

αh JeiðtÞJ2 þ e�αh Jejðt�τÞJ 2� �

and

2 ∑
N

i ¼ 1
eTi tð ÞPwi tð Þrμ ∑

N

i ¼ 1
eTi tð ÞPei tð Þ þ

1
μ
∑
N

i ¼ 1
wT
i tð ÞPwi tð Þ:

Using the last two inequalities and (16) and (17) we find that

_V 1r ∑
N

i ¼ 1
eTi tð Þ PAþ ATP

� �
ei tð Þ

þ2λmax Pð ÞL0 ∑
N

i ¼ 1
Jei tð ÞJ2 þ λmax Pð ÞL ∑

N

i ¼ 1
Jei tð ÞJ2

þ ∑
N

i ¼ 1
∑
N

j ¼ 1
λmax Pð ÞMij e

αh JeiðtÞJ 2 þ e�αh Jejðt�τðtÞÞJ2� �
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�2 ∑
N

i ¼ 1
eTi tð ÞPBθTi tð Þ yiðtÞ�yLðtÞ

� �þ μ ∑
N

i ¼ 1
eTi tð ÞPei tð Þ

þ 1
μ
∑
N

i ¼ 1
wT
i tð ÞPwi tð Þ:

Now keeping in mind that CTg¼ PB we calculate a derivative of V2:

_V 2 ¼ 2 ∑
N

i ¼ 1
ðθiðtÞ�θnÞTΓ�1

i
_θ iðtÞ

¼ 2 ∑
N

i ¼ 1
ðθiðtÞ�θnÞT yiðtÞ�yLðtÞ

� �
yiðtÞ�yLðtÞ
� �T

g

�2α ∑
N

i ¼ 1
ðθiðtÞ�θnÞTΓ�1

i θiðtÞ

¼ 2 ∑
N

i ¼ 1
eTi ðtÞPBθTi ðtÞ yiðtÞ�yLðtÞ

� ��2 ∑
N

i ¼ 1
eTi ðtÞPBθTnCeiðtÞ

�α ∑
N

i ¼ 1
ðθiðtÞ�θnÞTΓ�1

i ðθiðtÞ�θnÞ þ α ∑
N

i ¼ 1
θT
n
Γ�1
i θn:

Derivative of V4 is

_V 4 ¼ ∑
N

i ¼ 1
eTi ðtÞQieiðtÞ
�

�ð1� _τðtÞÞe�ατðtÞeTi ðt�τðtÞÞQieiðt�τðtÞÞ��αV4

r ∑
N

i ¼ 1
Jei tð ÞJ2

λmaxðPÞ
1�d

∑
N

j ¼ 1
Mji

"

� 1�dð Þe�αh Jei t�τ tð Þð ÞJ 2 λmaxðPÞ
1�d

∑
N

j ¼ 1
Mji

#
�αV4:

Summing up all derivatives we obtain

_V þ αV�βrη ∑
N

i ¼ 1
Jei tð ÞJ2 þ

λmaxðPÞ
μ

∑
N

i ¼ 1
Δ2
i þ α ∑

N

i ¼ 1
θT
n
Γ�1
i θn�β;

where η¼ �εþ 2L0λmaxðPÞ þ LλmaxðPÞ þMhλmaxðPÞ þ μλmaxðPÞ þ αλmaxðPÞ. From the condi-
tions of the theorem it follows that there exists μ40 such that ηo0. Let β¼
λmaxðPÞ=μ∑N

i ¼ 1Δ
2
i þ α∑N

i ¼ 1θ
T
n
Γ�1
i θn. Then

_Vr�αV þ β:

From the comparison principle [38] it follows that

V t; et1;…; etN
� �

r V t0; e
t0
1 ;…; et0N

� �� β

α

� �
e�αðt� t0Þ þ β

α
: ð27Þ

Therefore,

lim
t-1

∑
N

i ¼ 1
JeiðtÞJ 2rb
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with

b¼ β

λminðPÞα
¼ λmaxðPÞ

αμλminðPÞ
∑
N

i ¼ 1
Δ2
i þ

1
λminðPÞ

∑
N

i ¼ 1
θT
n
Γ�1
i θn:

From (27) it follows that V is bounded, therefore all θi are bounded. □

5.2. Matched nonlinearity
Theorem 4 (Boundedness with matched nonlinearity). Consider the network (20) subject to (5)
and the leader system (8). Let Assumption 1 hold with gARl and, thus, (3) is feasible for some
P40, ε40, and θn. Let Assumption 3 be valid and assume that h0 satisfies

ðζ1�ζ2ÞTgðh0ðt; ζ1Þ�h0ðt; ζ2ÞÞr0; 8ζ1; ζ2ARl: ð28Þ
If the following inequality holds

μ¼ ε

λmaxðPÞ
�L�Mh�αZ0; ð29Þ

where L and Mh are given by (13) and (23), then the adaptive control algorithm (22) ensures
(21) with

b¼ λmaxðPÞ
αμλminðPÞ

∑
N

i ¼ 1
Δ2
i þ

1
λminðPÞ

∑
N

i ¼ 1
θT
n
Γ�1
i θn: ð30Þ

Moreover, all tunable parameters θiðtÞ stay bounded on the time interval ½0;1Þ for all i¼1,…,
N.

Proof of Theorem 4 is similar to the proof of Theorems 2 and 3 and, therefore, is omitted here.

6. Numerical example

To demonstrate the efficiency of the proposed algorithm we make use of a celebrated Chua
circuit [39]. A network of four connected Chua circuits with disturbances where the first
component of each system is measured and controlled can be presented in the form:

_siðtÞ ¼ AsiðtÞ þ Bh0ðξiðtÞÞ þ BuðtÞ þ ∑
4

j ¼ 1
φijðt; sjðtÞÞ

þ ∑
4

j ¼ 1
ψ ijðt; sjðt�τðtÞÞÞ þ wiðtÞ; ð31Þ

ξiðtÞ ¼ CsiðtÞ; i¼ 1;…; 4;

where si ¼ ðxi; yi; ziÞT , h0ðξÞ ¼ �p=2ðm0�m1Þðjξþ 1j�jξ�1j�2ξÞ, p40, q40, m0om1o0,

A¼
�ð1þ m0Þp p 0

1 �1 1

0 �q 0

0
B@

1
CA; B¼

1

0

0

0
B@

1
CA; C¼

1

0

0

0
B@

1
CA

T

:

Suppose that the values of m0 and m1 are known while p, q are unknown. The only
information that we possess about p, q is that they belong to some intervals of possible values,
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i.e. pA ½p1; p2�, qA ½q1; q2� (p140, q140). Consider the following interconnections:

φ12ðt; s2Þ ¼ σð0:5 sin x2; 0; 0ÞT ; φ13ðt; s3Þ ¼ σð0; 0:5y3 sin t; 0ÞT ;
φ21ðt; s1Þ ¼ σð0:5 cos x1signð sin tÞ; 0; 0ÞT ; φ24ðt; s4Þ ¼ σð0; 0; 0:5z4signð cos tÞÞT ;

φ32ðt; s2Þ ¼ σð0; 0:5y2 sin t; 0ÞT ; φ34ðt; s4Þ ¼ σð0; 0; 0:5 sin z4ÞT ;
φ41ðt; s1Þ ¼ σð0:5 cos x1; 0:5 cos y1; 0ÞT ; φ43ðt; s3Þ ¼ σð0; 0; 0:5z3signð cos tÞÞT ;

ψ12ðt; s2Þ ¼ σð0; 0; 0:45 cos z2ÞT ; ψ13ðt; s3Þ ¼ σð0:45 sin x3 cos t; 0; 0ÞT ;
ψ21ðt; s1Þ ¼ σð0; 0:45 sin y1signð sin tÞ; 0ÞT ; ψ24ðt; s4Þ ¼ σð0:45x4; 0; 0ÞT ;
ψ31ðt; s1Þ ¼ σð0; 0:45y1signð cos tÞ; 0ÞT ; ψ34ðt; s4Þ ¼ σð0; 0; 0:45 cos z4ÞT ;

ψ42ðt; s2Þ ¼ σð0:45 sin x2; 0; 0ÞT ; ψ43ðt; s3Þf ¼ σð0; 0:45y3 sin t; 0ÞT ;

φii t; sið Þf ¼ �∑
4

j ¼ 1
ja i

φij t; sið Þ; ψ ii t; sið Þf ¼ �∑
4

j ¼ 1
ja i

ψ ij t; sið Þ;

with σ ¼ 0:01. Other φij, ψij are assumed to be zeroes. Note that φij and ψij depend on the states
si(t) and siðt�τðtÞÞ correspondingly. Calculating (13) and (23) for h¼9 yields L ¼ 0:04 and
Mh � 0:04.
Along with the system (31) consider the leader system of the form (8) with uLðtÞ � 0,

Φðt; xÞ � 0, Ψ ðt; xÞ � 0.
For the system (31) Assumption 3 is fulfilled with matched nonlinearity φ0ðsiÞ ¼ Bh0ðξiÞ

where h0 satisfies (18) for any g40. Therefore, Theorem 4 can be applied.
Assumption 1 is fulfilled since for all p40, q40 and g40, φðλÞ ¼ gTWðλÞdetðλI�AÞ ¼

gpðλ2 þ λþ qÞ is Hurwitz and gTCB¼ g40.
To check the condition (29) we try to enlarge ελ�1

maxðPÞ such that (3) are satisfied. Introducing
P1 ¼ ð1=εÞP, η¼ λ=ε we reformulate the task in terms of matrix inequalities, where θn will be
treated as a tuning parameter:

η-min
Fig. 1. Phase portrait of the leader system.
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ðA�BθT
n
CÞTP1 þ P1ðA�BθT

n
CÞo� I;

P1oηI; εP1B¼ CTg; P140: ð32Þ
Obviously, if ηn is a solution of this task then ελ

�1
maxðPÞ ¼ 1=ηn. Since (32) is affine in A, one have

to solve linear matrix inequalities (32) simultaneously for the four vertices given by A1 ¼ Ajp ¼ p1
q ¼ q1

,

A2 ¼ Ajp ¼ p1
q ¼ q2

, A3 ¼ Ajp ¼ p2
q ¼ q1

, A4 ¼ Ajp ¼ p2
q ¼ q2

, with the same tunable parameter θn and the same decision

variables P140 and η.
Fig. 2. The value of ∑4
i ¼ 1 JξiðtÞ�ξLðtÞJ2: A — during 35 s of simulation; B — during 500 s of simulation.
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For simulations we take m0 ¼ �8=7, m1 ¼ �5=7 and suppose that pA ½5; 15�, qA ½14; 15�. In
this case the numerical solution of (32) for θn ¼ 150 yields

P1 ¼
0:8191 0 0

0 9:9520 �0:5448

0 �0:5448 0:7117

0
B@

1
CA; ηn ¼ 9:9863:

Thus, g¼0.8191 and ελ�1
maxðPÞ ¼ 1=ηn ¼ 0:1. We take α¼ 0:01. In this case μ¼ 0:1 and,

therefore, (29) is true. Thereby an adaptive control algorithm:

uiðtÞ ¼ �θiðtÞT ξiðtÞ�ξLðtÞ½ �;
_θ iðtÞ ¼ 0:8191 � Γi ξiðtÞ�ξLðtÞ½ �2�0:01 � θiðtÞ;

with any Γi40 ensures the achievement of the goal

lim
t-1

∑
4

i ¼ 1
JξiðtÞ�ξLðtÞJ2ob;

where the value of b depends on Γi and the noise bounds Δi.
For simulations we take p¼9, q¼14.286. For simplicity Γi ¼ 1 for all i¼ 1;…; 4. Initial

functions s0i ¼ ðx0i y0i z0i ÞT are random linear functions such that Jx0i JCo5, Jy0i JCo5,
Jz0i JCo5. Initial function for the leader system is chosen as s0LðtÞ ¼ ð0:1 0:1 0:1ÞT for
tA ½�9; 0�. Initial values for all θi are zeroes.
In Fig. 1 a phase portrait of the leader system is presented. It is a well known fact that for

chosen values of system parameters Chua circuit exhibits a chaotic behavior. In Fig. 2 one can
see the value of ∑4

i ¼ 1 JξiðtÞ�ξLðtÞJ2 stays bounded during the time of simulation. In Fig. 3 the
evolution of θi is depicted.
Note that for big enough θi (e.g. for θi ¼ θn which solves (3) subject to (19)) static output feedback

(11) ensures synchronization of the system (4) and (8). In this case θimay have big magnitudes leading
Fig. 3. Evolution of θi (i¼ 1;…; 4).
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to high-gain control which can cause undesirable behavior of the closed loop system. On the other
hand, the adaptive controller (12) perform adaptive tuning of the unknown parameters θi with a smaller
gain. In the presented example the task (32) is not feasible for θno10. For θno150 smaller values of
λ�1
maxðPÞε are obtained. At the same time, as it can be seen in Fig. 3, all θi after the transient period are
smaller than 8. That is, the adaptive controller (12) allows one to ensure ultimate boundedness of a
network (4) and (8) with a small enough control gain.

In Fig. 4 one can see the results of numerical simulations for 100 interconnected Chua circuits.
All system parameters are same as previously and the topology of the network was chosen
randomly such that L ¼ 0:04 and Mh ¼ 0:04. In this case Theorem 4 guarantees ultimate
boundedness of the value ∑100

i ¼ 1 JξiðtÞ�ξLðtÞJ2.
Fig. 4. The value of ∑100
i ¼ 1 JξiðtÞ�ξLðtÞJ2: A — during 35 s of simulation; B — during 500 s of simulation.
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7. Conclusion

We examined the problem of decentralized adaptive control for dynamical networks with
instant and delayed nonlinear interconnections. In contrast to overwhelming majority of the
previous results we proposed an adaptive control algorithm for both incomplete state
measurements and incomplete control (the number of control variables is less than the number
of the state variables). Controllability of the local dynamics is not required. Instead passifiability
(hyper-minimum-phase property) of the linear part of local dynamics is assumed. Compared with
a number of the previous works on decentralized control of interconnected systems [40–44]
mainly dealing with Model Reference Adaptive Control, our passification based design provides
more simple controllers. On the other hand, like in the previous designs, the proposed adaptive
controllers (12) and (21) are decentralized, and therefore, interconnections are required to be
weak enough.
For the disturbance free case the convergence of each agent trajectory to the leader trajectory

(synchronization) is proved. For the networks with disturbances ultimate boundedness of the
trajectories is proved. Two types of agent nonlinearity φ0 were considered. First, for Lipschitz
continuous functions it is required that Lipschitz constant is small enough. Then for a special
class of matched nonlinearity the monotonicity (18) is imposed. All results are formulated for the
case of slowly-varying time delay.
The proposed method is illustrated by numerical examples of 4 and 100 controlled Chua circuits.

According to simulation results all adaptation parameters stay bounded and after a transient period
are less than the parameters of the stabilizing static output feedback under the same uncertainty.
Thus, the proposed adaptive output feedback controller allows to synchronize a network with
smaller values of control gains that is more appropriate in practice.
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