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Robust Sampled – Data Control of Switched Affine Systems

Laurentiu Hetel and Emilia Fridman, Senior Member, IEEE

Abstract—This technical note considers the stabilization problem for
switched affine systems with a sampled-data switching law. The switching
law is assumed to be a function of the system state at sampling instants
and the sampling interval may be subject to variations or uncertainty. We
provide a robust switching law design that takes into account the sam-
pled-data implementation and uncertainties. The problem is addressed
from the continuous-time point of view. The method is illustrated by
numerical examples.

Index Terms—Linear matrix inequalities (LMIs), sampled-data control,
switched affine systems, switching control.

I. INTRODUCTION

In the last decade, the design of switching controllers has represented
an important problem in the hybrid system community [3], [4], [15],
[16], [21], [23], [25]. This problem is very challenging for the case of
switched affine systems where, generally, the different subsystems do
not share a common equilibrium point. The study is motivated by the
wide range of applications to power electronics (see e.g., [5]). Different
stabilization solutions exist in the literature based on the existence of
stable convex combinations [2], [5], on optimal control methods [12],
[20], or on the use of sliding modes [6], [24]. A characterization of the
set of attainable equilibrium points using quadratic Lyapunov functions
and conic switching laws has been provided in [2], [5].
The next phase toward practical application of switching control is

to study its sampled-data implementation. For results on sampled-data
control we point to the discrete-time methods in [1], [14], [19] the input
delay-approach [8], [17], [22] and the impulsive system method [18].
Recently, increasing attention has been given to the sampled-data con-
trol of switched systems [9], [12]. This aspect is crucial in the switched
affine system context since, due to sampling, one can no longer drive
the state exponentially towards the equilibrium point, but only towards
a limit cycle or to some attractive compact set containing the equilib-
rium. Moreover, in many practical applications timing imperfections
due to sampling jitters or delays in switching law may affect the con-
trol performances. Recently, a discrete-time analysis has been provided
in [12] based on control Lyapunov functions and the use of a nonlinear
optimization solvers for quadratically constrained quadratic programs.
However, it is still a problem to choose the control Lyapunov function
so as to optimize the robustness with respect to sampling or the size
of the attractive set around the desired equilibrium. Moreover, for an
accurate study, it is of interest to exactly describe the continuous-time
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behavior. For systems with sampled-data switching control, this study
is very challenging. The switching control is often described by a dis-
crete-event system with transitions ruled by a partition of the state
space. Then the sampling usually induces a delay in the discrete-event
system variable. This may imply a mismatch in the control: one system
mode may be active in other state zones then the one for which it has
been designed. If not appropriately taken into account, the sampling
may be a source of poor performance and even may lead to unbounded
solutions.
The goal of the technical note is to present a continuous-time ap-

proach to sampled-data switching control design that ensures robust-
ness with respect to sampling and to potential implementations imper-
fections (jitters, uncertainty etc.). Simple criteria are given to optimize
the choice of Lyapunov functions.
The technical note is organized as follows: in Section II we formalize

the problem under study and we provide simple conditions for practical
stabilization based on the existence of stable convex combinations. The
case of systems with parametric uncertainties is also presented. In Sec-
tion III it is shown how the presented methodology may be improved
by using switching Lyapunov functions. Numerical examples are given
in Section IV. Preliminary results on the quadratic stabilization of un-
certainty-free systems were presented in [13].

Notations

We denote the transpose of a matrix by . The symbol de-
notes a block that can be inferred by symmetry. By (or ) we de-
note the identity (or the null) matrix with the appropriate dimension.

denotes the Euclidean vector norm. For a square symmetric ma-
trix, ( ) indicates that is positive (negative) defi-
nite. By we denote the minimum eigenvalue of a square
symmetric matrix . For a given set , the symbol denotes the
convex hull of the set. Given a finite set of index and a set of scalars
indexed by the elements in , we denote

.

II. PRACTICAL STABILIZATION BASED ON

STABLE CONVEX COMBINATIONS

A. Problem Formulation

Given positive integers and , consider matrices
and vectors . We

are interested in the class of switched systems described by

(1)

where represents the system state and
a switching control. Consider the simplex

the

convex combinations of matrices ,
, and a subset of associated to Hurwitz matrices:

It has
been shown in [2], [5] that associated to each there exists
an equilibrium point to which (1) may be
exponentially stabilized using a continuous-time switching function.
Without loss of generality, we may consider system’s (1) stabiliza-

tion with respect to the equilibrium point , i.e., we may consider
that there exists s.t. . The stabilization with respect
to an equilibrium point , may always be
reformulated as a null equilibrium point problem by considering the
error state vector and the model representing the
error dynamics , with and
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, for which . Under the
hypothesis that there exists s.t. , system (1) is sta-
bilized to the origin using a switching law of the form

(2)

where is a symmetric positive definite matrix satisfying
.

In a sampled-data implementation, the values of system state are
available at sample times , with

. The sampling interval may be
unknown and time-varying, with where is a
known bound. In this technical note we consider that the implemented
switching law is a function of , although an implementation based on

may also be of interest in practical applications. With a sampled-
data implementation, the switched system becomes

(3)

where is constant for all and represents the dis-
crete-time implementation of the switching law (2), i.e.

(4)

Note that with the sampled-data control sliding modes may not occur
since and only one system mode is actif for .
However, due to the sampling, for and we
generally have , i.e., the equilib-
rium point is no longer invariant. Moreover, the system state cannot
be driven to the equilibrium point of the continuous-time switched
system, but only to a neighborhood of the equilibrium, whose size may
grow with the sampling interval. Our goal is to provide methods for
the design of sampled-data switching laws that are practically
stabilizing the system (3) to a ball, i.e., to find switching laws of the
form (4) that guarantee that is exponentially converging to the ball

when , where is positive and
satisfies as . The latter recovers the ex-
ponential stability of the system under the continuous-time switching,
where .

B. Design Conditions

In this subsection, simple design conditions for switching law (4)
are provided by requiring the decrease of the function

with respect to its value at sampling instants. The idea is
to use a continuous function , differentiable over

, with and , ,
satisfying the following condition:

(5)

for some , . By the comparison principle,
(5) yields

i.e.

(6)

which means that exponentially converges to the attractive ellip-
soid given by

(7)

By -procedure, (5) leads to the following implication:

(8)

Hence, (5) guarantees that
whenever . Then the function

may be related to a Lyapunov function for the discrete-
time system representation. For the particular case where

(9)

with , , the function
becomes a Lyapunov–Krasovskii functional as in [8]. Sta-

bilization conditions are presented in the following theorem, as shown
in (10) at the bottom of the page.
Theorem 1: Consider system (3), (4) with and a given

scalar tuning parameter . Assume that , and that there
exists a s.t. .

(10)
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(i) Let there exist matrices in , a scalar
such that

(11)

(12)

, where

Then (3), (4) is practically stabilizable to the set , that is
is exponentially attracted to the ellipsoid for .

(ii) Under conditions of (i), if for some , then
for all .

Proof:
(i) We will show that (11), (12) imply (5) with and
given by (9).
Assume that and denote ,
with , for all . Using the Jensen
inequality it is seen that

Furthermore,
. Therefore, (5) holds with and

if

(13)

for all , where . Note
that for all if satisfies the relation

.
Multiplying the latter inequality by , and summing for
yields i.e.

(14)

where the relation has been used. Since
whenever (14) holds, using the – procedure by adding the left
side of (14) to the left side of (13), we arrive to

where

Since

, then

(15)

(16)

are sufficient to guarantee that the function sat-
isfies the condition (5) along the solutions of system (3) with
the switching law (4). Note that implies

. Therefore (11), (12) yield (15), (16).
(ii) If (11), (12) are feasible, then (5) and, thus, (8) are satis-

fied. The inequality implies
since . Let . Assume

that for some we have
and that

for all . Then for
, which after integration yields

. The latter implies that
, since . Hence, the system solution

cannot exit between the sampling instants.
Remark 1: The parameter from Theorem 1 corresponds to the

system decay rate. For fixed , conditions (11), (12) represent LMIs.
The optimization of the decay rate may be addressed by combining
LMI-based methods for (11), (12) with a line search on .
Remark 2: For the case of , the conditions from

the previous theorem are reduced to the existence of in
such that

(17)

, are feasible. In this case the zero solution of (3), (4) is expo-
nentially stable.
Remark 3: Note that solutions of (11), (12) depend on
. Given , the feasibility of (11), (11) with some

guarantees that for the trajecto-
ries of the resulting system approach to the ball ,
where

LMIs (11), (12) for are reduced to

(18)

which guarantees the exponential stability of the continuous-time
system. For small enough , the feasibility of (18) implies the
feasibility of (11), (12):
Corollary 1: Given and , let be the solution

of (18). Then for any there exists a sufficiently small
such that (11), (12) are feasible with
and for all . Thus, for all
the solutions of (3), (4) are exponentially attracted to the

ball as , where (the – independent)
constant is given by .

Proof: Given , there exists s.t. and
. When (18) holds, there exists a suffi-

ciently small such that
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and

and . By Schur complements and classical
manipulation, and lead to (11) and (12), respectively
(with , ).
Remark 4: Theorem 1 guarantees that is decreasing out-

side with respect to its values at sampling times only. For
the case when is outside there may exist time instants

such that while
. However, once is in the attractive ellipsoid, the

state will stay there as shown by (ii) of Theorem 1.

C. LMI Conditions for Systems With Parametric Uncertainties

The conditions (11), (12) presented in the previous subsection are not
affine in the systems parameters. This makes difficult their use for time-
varying parametric uncertainties. The conditions may be modified to
cope with this important case using the descriptor method [7]. Consider
the system

(19)

where for all the system matrices have the form
, with
and . represent the nominal

parameters while represent the vertices of perturbations with
respect to the nominal values. Note that for the uncertain case, even in
the continuous-time case, we only have practical stabilization to a ball
around the origin and not exponential stabilization. Robust practical
stabilization conditions for the sampled-data case are given as shown
in (20) at the bottom of the page.
Corollary 2: Consider (19), (4) with . Assume that

and that there exists a such that .
Given the scalar tuning parameter , let there exist matrices

, and scalars such that
conditions (10) are feasible. Then for solutions of (19),
(4) are exponentially attracted to the ellipsoid

(21)

Proof: Following the arguments in the proof of Theorem 1 with
and given by (9), a sufficient condition for (5) is

(22)

whenever . Using the descriptor method

(23)

Summing (14), (22), (23) and using convexity arguments, the condi-
tions (10) are obtained.
Remark 5: The set of matrix inequalities (10) for are

reduced to the conditions

(24)

, which ensures that under the continuous-
time switching law, the (uncertain) system state is exponentially
attracted to the ellipsoid as
(and not to the equilibrium point).

III. PRACTICAL STABILIZATION BASED ON

SWITCHED LYAPUNOV FUNCTIONS

In this section we show how the presented methodology may be gen-
eralized for systems that do not admit a stable convex combination
by using switched Lyapunov functions. We extend the methodology
in [15], where the switched linear systems were studied, to the case of

(20)
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switched affine systems under the sampled-data measurements. Con-
sider the sets

Similarly to the case of quadratic stabilization, it may be shown that
the stabilization to an equilibrium point may always be re-
formulated as a stabilization problem with a null equilibrium point by
considering the dynamics of the error vector ,

with
and , for which . For the case
when the barycentric coordinates are not unique, i.e., there exist
vectors such that ,
we may use switched Lyapunov functions. To each we asso-
ciate a quadratic form , where . For the
quadratic forms with the minimum value are indicated by the index set

(25)

Consider a pair

(26)

We define as a switching function. The function asso-
ciated to is used for indicating the active index in the switched
Lyapunov function

(27)

The following theorem provides practical stabilization conditions:
Theorem 2: Consider system (3), (26) with and scalar

tuning parameters , . Assume that
and that there exists vectors , such that , .
Let there exist matrices in and a
scalar such that the set of matrix inequalities (20) (given at the
bottom of the page) hold. Then for solutions of (3), (26)
are exponentially attracted to the ball

(28)

Proof: The definition of switching and Lyapunov functions in
(26) and (27) respectively guarantees, for the fixed , a unique
definition for the Lyapunov function as the function with the
index associated to . is piecewise differentiable
for any and does not grow in the jumps, i.e.

(29)

Moreover, it is positive definite, radially unbounded and zero at .
As in the quadratic case, we use a continuous function given by (9)
and show that (20) imply (5), where is changed by .
From (5), (29) it follows that for

i.e., that is exponentially attracted to as .
The inequality (5) is satisfied for

if

for all whenever

(30)

(31)

Following arguments of Theorem 1, a sufficient condition for (5) to
hold with and is:

(32)

for all , with , .
Multiplying (31) by and (30) by , summing and expressing

leads to

(33)

To end the proof, add (33) to (32) and use convexity arguments.
Remark 6: Theorem 2 allows to reduce the conservatism of the

stabilization conditions by using switching Lyapunov functions (27).
It may be used to stabilize a switched affine system to equilibrium
points in the set for which is not Hurwitz. However,
the resulting stabilization conditions represent essentially more com-
plicated matrix inequalities with many additional tuning parameters

comparatively to the conditions of Theorem 1 and
Corollary 2. They represent a non-convex optimization problem due
to the products of variables and . It is similar to the problem
of choosing the Metzler matrix in the design conditions related to
switching strategies [10] for switched linear systems with continuous-
time switching laws. Such Bilinear Matrix Inequalities (BMIs) may
be addressed via LMI-based numerical approaches by combining the
path-following method in [11] and the direct iteration with as vari-
ables [15]. However, for the moment, there is no guarantee to find the
global optimal solution.
Remark 7: There are two main sources of conservatism for the

results in the technical note. The first one stems from the choice of
(quadratic or switching) Lyapunov functions. Another is related to
the form of . Using additional terms in may reduce the
conservatism of the design conditions, but on the account of the
computational complexity.
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Fig. 1. Example 1: evolution of system states under the control law based on
Theorem 1 with a fixed sampling interval .

IV. NUMERICAL EXAMPLES

Example 1: Quadratic Stabilization: Consider a switched affine
system (1) consisting of four affine subsystems with and
the following matrices [2]:

Each individual subsystem is unstable. For , ,
and , the is Hurwitz and . Using

Theorem 1 we find that the system is practically stabilizable under vari-
able sampling with . Conditions (11), (12) are
found to be feasible with

(34)

, and . An illustration of system evo-
lution with an arbitrary initial condition is shown in Fig. 1. Numerical
simulations under uniform sampling show that the system is pratically
stable for bigger sampling intervals with , which
illustrates the conservatism of the proposed method.
Example 2: Uncertain System: We illustrate the applicability of our

results on an example from power electronics. Consider the DC-DC
converter from [12], where the model has the form

with

(35)

, with , ,
and . For , the matrix

is Hurwitz and the system may be stabilized to the equilibrium
point using a continuous-time
switching law. Consider the error dynamics

For the numerical tests, the time scale change with is
used to cope with large numerical values in the system matrices and to
avoid ill conditioned matrix inequalities. The system of the form (3) is
obtained with , , ,

. Note that the trajectories are invariant with respect to time
scaling. Furthermore, the switching laws are equivalent, since

Concerning the robust switching law design, conditions (11), (12) of
Theorem 1 are feasible for any (time-varying) sampling intervals with

.
In order to compare with [12] the estimates of the attraction domains,

consider the particular case studied in [12], with .
The conditions in Theorem 1 allow to design a switching law that guar-
antees that for , , which is not very far from the
value for obtained in [12] by using
the exact integration over a sampling interval. The obtained numerical
values (solutions of (11), (12)) are ,

To illustrate the use of our method for uncertain systems, choose
and assume that the resistor is subject to unknown

time-varying uncertainties . Then each of the
matrices is varying in a polytope corresponding to the two vertices

. Considering the equivalent error dynamics and using the
same time scale change, a model of the form (19) is obtained with two
vertices for each subsystem. The conditions in Corollary 2 are feasible
with

, , which implies that as
. The error system evolution with the initial condition

is shown in Fig. 2. The figure presents the attractive ellipsoids for both
the sampled-data case ( , obtained based on Corollary 2) and for
the continuous-time switching implementation ( , representing the
limiting set when ). Due to sampling and to parametric
uncertainties the system state (in black) does not converge to the equi-
librium point (the center of the ellipsoid) but only to a bounded region
which is not far from the border of . Numerical simulations under
an uniform sampling show that the same attractive
ellipsoid is achieved for bigger , to be compared
with proved in theory under the variable sampling.
The latter may illustrate the conservatism of the method.
Example 3: Switched Lyapunov Functions: Consider the example

adapted from [15] with

(36)

, All of thematrices , ,
2, 3, are neutrally stable and there exists no Hurwitz convex combina-
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Fig. 2. Example 2: trajectory in the error state space with a control law based on
Corollary 2 under variations in the resistor value from 35 to 65 with a fixed
sampling interval (solid black line), the attractive sets
obtained for the continuous-time case (dashed line) and for
(solid line).

tion . Therefore the quadratic stabilizationmethodology cannot be
applied. We achieve practical stabilization by using a switching Lya-
punov function (Theorem 2) of the form (27), switching among
quadratic forms. BMIs (20) are feasible for with

, and

, . We used
a dichotomy search for , at each step alternating and as
decision variables. Then, for fixed or conditions (20) are LMIs.
The matrices were initialized with the values from [15].

V. CONCLUSION

This technical note presented a sampled-data switching design
method for practical stabilization of switched affine systems. The
results are robust with respect to sampling and to potential im-
plementation imperfections such as sampling jitters or parametric
uncertainties. The method uses LMI-based methods for the optimiza-
tion of Lyapunov functions and it is illustrated by numerical examples.
Improvement of the presented method by e.g., using sum-of-squares
or by modifying the Lyapunov–Krasovskii functional may be topics
for the future research.
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