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A New H Filter Design for Linear
Time Delay Systems

E. Fridman and Uri Shaked, Fellow, IEEE

Abstract—A new delay-dependent filtering design is
proposed for linear, continuous, time-invariant systems with time
delay. The obtained filter is of the Luenberger observer type. The
design guarantees that the -norm of the system, relating the
exogenous signals to the estimation error, is less than a prescribed
level. The filter is based on the application of a newly derived
version of the bounded real lemma for time-delayed systems.
This novel approach is compared, via an example, with another
solution that appears in the literature.

Index Terms—Bounded real lemma, delay-dependent stability,
-filtering, linear matrix inequalities, time-delay systems.

I. INTRODUCTION

T HE filtering problem for linear systems with delay-
dependent [1]–[3] and (more conservative) delay-indepen-

dent [4], [5] designs have received a lot of attention recently. The
prevailing methods are based on bounded real lemma (BRL) in
terms of Riccati algebraic equations or linear matrix inequalities
(LMIs), which guarantee a prescribed attenuation level. Unfor-
tunately, these criteria provide only sufficient conditions for the
required attenuation, and they may lead, in many cases, to a con-
servative filter design.

Recently, a new efficient criterion has been introduced for
verifying the stability and the -norm of time delayed sys-
tems [6], [7]. We derive below a new delay-dependent version
of this criterion, which we apply to the adjoint system in order
to solve the filtering problem.

Notation: Throughout the paper, the superscript “” stands
for matrix transposition, denotes the dimensional Eu-
clidean space, is the set of all real matrices, and the
notation , for , means that is symmetric and
positive definite. The space of functions in that are square
integrable over is denoted by .

II. NEW VERSION OF THEBOUNDED REAL LEMMA

Given the system

(1a)

(1b)

where is the system state vector,
is the exogenous disturbance signal, and is the state
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combination to be estimated. The time delayis assumed to
be known, and the matrices , , , and are constant ma-
trices of appropriate dimensions. Assuming that this system is
asymptotically stable and given , we seek a criterion that
will ensure that the performance index

(2)

is negative .
Representing (1) in the equivalent descriptor form

(3)

the following Lyapunov–Krasovskii functional has been sug-
gested in [6] and [7] for the system (1):

(4)

where

(5)

Based on this functional, an efficient BRL has been derived in
[7], in terms of an LMI, which provides the required criterion.

Lemma 2.1 [7]: Consider the system of (1). For a prescribed
, the cost function (2) achieves for all nonzero

if there exist , , , and
that satisfy the LMI in (6), shown at the bottom of the

next page.
The proof is based on the following idea. It is first noted that

Thus, differentiating of the first term of (4) with respect to, we
get

(7)
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Substituting in the right-hand side of (7), the expressions for
and 0 in (3) and applying the standard technique for delay-

dependent LMI conditions (see e.g., [8]), it is obtained that
if the following LMI holds:

(8)

where

(9)

The latter LMI is equivalent to (6).
Unfortunately, the structure of the resulting LMI is not

amenable to solving the corresponding filtering problem. We
therefore derive another version of the BRL, which is more
suitable for the filter design.

We begin by noting that the -norm of the system of
(1) is given by

(10)

where denotes the largest singular value of. Since

for all the transfer function matrices with real coefficients,
it follows that the -norm of is equal to the -norm of
the following system:

(11)

where

and

Note that the latter system represents the backward adjoint of
[9]. Its forward representation is described by

(12)

Since the characteristic equations of and are identical,
the former system is asymptotically stable iff is as well.

Applying Lemma 2.1 [LMI (8)] to system , we obtain the
following LMI:

(13)

where

(14)

It is obvious from the requirement of , and the fact that in
(6) must be negative definite, thatis nonsingular.
Defining

(15a)

diag (15b)

we multiply (13) by and , on the left and on the right,
respectively. Applying Schur formula (see, e.g., [10]) to the
quadratic term in and to , we find the following inequality:

(16)
where

We thus obtain the following.
Lemma 2.2:Consider the system of (1) and the cost function

of (2). For a prescribed , for all nonzero
if there exist , , , , all in

, that satisfy the LMI in (17), shown at the bottom of the
next page. We note that if the latter LMI possesses a solution for

, then because of the special dependence of the matrix
entries of the LMI on the delay length, it will also posses a
solution for all .

Lemma 2.2 can readily be applied to solving the filtering
problem.

(6)
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III. FILTERING PROBLEM

We consider the system of (1a), with the measurement law of

col (18)

where is the measurement vector, and the matrices
, , and are constant

matrices. We seek a filter of the following observer form:

(19)

such that the -norm of the resulting transference between
the exogenous signal and the estimation erroris less than a
prescribed value , where

(20)

We begin solving the problem for the simpler case where
. In this case, it follows from (1a), (18) and (19) that

the estimation error is described by the following model:

(21a)

(21b)

where . The problem then becomes one of
finding the filter gain such that the -norm of the system
of (21) will be less than a prescribed value. Applying Lemma
2.2 and denoting we obtain the following.

Theorem 3.1:Consider the system of (1a), (18), and (19)
with and the cost function (2), where is defined
in (21b). For a prescribed , for all nonzero

if there exist , , , , all in
, and that satisfy the LMI in (22), shown at

the bottom of the page. If the existence of the matrices, ,
, , and is affirmative, the filter gain is given by

(23)

The result of the Theorem 3.1 is applied to the following ex-
ample.

Example 1: We consider the same system as found in [8] to
which a state-feedback has been applied. We assume that the
measurement equation is the same as (18), with , and we
seek an optimal observer that achieves a minimum estimation
level. The matrices in (1) and (18) are as follows:

s

We note that the system is unstable. By Theorem 3.1, we obtain
a minimum value of with a filter gain matrix

.
The above results were obtained for the case where no delay is

encountered in the measurement. In case the measurement also
includes a delayed state information [in (18) is not zero], we
add an additional component, in series with the delayed compo-
nent of . The state space model of this component is given by

(24)

for . Denoting the augmented state vector by
col , the augmented system is then described by

(25)

where

(17)

(22)
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and

We consider the following augmented filter:

col (26)

where

The resulting estimation error vector is denoted by
, and we obtain the following state space representation for

this error vector:

(27)

Letting and considering

(28)

we apply Lemma 2.2 and obtain the following:
Theorem 3.2:Consider the system of (25), (18), and (26) and

the cost function (28). For a prescribed and for ,
for all nonzero if there exist ,
, , , all in , and that

satisfy the LMI in (29), shown at the bottom of the page. If the
existence of the matrices , , , , and is affirmative,
the filter gain is given by

(30)

The existence of a solution to (22) guarantees that the filter
that is built from the series connection of (24) and (26) will
achieve the required performance as long as . Considering,
however, and denoting

it follows from Theorem 3.2 that if there exists a solution to the
LMI of (22), then the estimate of is given by

(31)

When and (namely, when all the measurements
are delayed), the latter equation, together with the one obtained
from (26) for , leads to the following filter:

(32a)

where

(32b)

and where . The latter filter, with , will
achieve the required estimation accuracy ifis chosen large
enough.

We demonstrate the use of the results of Theorem 3.2 in the
following example.

Example 2: We consider the system of Example 1, with the
measurement delayed by 0.9 s. The matrices of the state space
model are given in Example 1, with the difference being that

and s

By Theorem 3.2, we obtain, using , a minimum value
of for the gain matrix .

IV. CONCLUSIONS

The problem of filtering for linear, continuous, time-in-
variant systems with time delay has been solved. The solution
procedure is based on applying an observer type filter and pro-
vides a sufficient condition for achieving a prescribed estima-
tion accuracy. Since our results are only sufficient, the question
arises as to how big an overdesign is entailed in our method and
whether or not it is smaller than the one encountered in other
designs appearing in the literature. To answer this question, one
has to bear in mind that the filter designs are based, one way or
another, on a related bounded real lemma (BRL) that provides
the sufficient condition for a system with delay to possess an

-norm that is less than a prescribed value. The overdesign
of the corresponding filter design will strongly depend on the
conservatism of the BRL used. In this paper, we have used the

(29)
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BRL that is less conservative than all the other BRLs and there-
fore obtained the best filtering solution.

The solution method in this note is based on achieving a state
space model for the estimation error of order equal to the order
of the process to be filtered. In spite of the fact that the LMIs of
(22) and (29) are affine in the system matrices, the constraint on
the order of the estimation model prevents the application of our
results to the case where the system parameters are uncertain.
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