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A New H, Filter Design for Linear
Time Delay Systems

E. Fridman and Uri Shakedrellow, IEEE

Abstract—A new delay-dependent H, filtering design is combination to be estimated. The time defays assumed to
proposed for linear, continuous, time-invariant systems with time  pe known, and the matrices,, A;, B, andL are constant ma-
delay. The obtained filter is of the Luenberger observer type. The trices of appropriate dimensions. Assuming that this system is

design guarantees that theH ,-norm of the system, relating the totically stabl d ai 0 K iterion that
exogenous signals to the estimation error, is less than a prescribedasymp olically stable and given> U, we seek a criterion tha

level. The filter is based on the application of a newly derived Will ensure that the performance index
version of the bounded real lemma for time-delayed systems. 00
This novel approach is compared, via an example, with another J(w) = / (sz _ ,YQwTw) dr )
solution that appears in the literature. 0
Index Terms—Bounded real lemma, delay-dependent stability, is negativev w(t) € 53[07 o<].

H filtering, linear matrix inequalities, time-delay systems. Representing (1) in the equivalent descriptor form

&(t) =5(t),

I. INTRODUCTION
0 = —7i(t) + (Ao + A1)z(t)

HE H.. filtering problem for linear systems with delay- t
dependent [1]-[3] and (more conservative) delay-indepen- - A / y(s)ds + Bw(t) 3)
dent [4], [5] designs have received a lot of attention recently. The t=h
prevailing methods are based on bounded real lemma (BRL)tire following Lyapunov—Krasovskii functional has been sug-
terms of Riccati algebraic equations or linear matrix inequalitigested in [6] and [7] for the system (1):
(LMIs), which guarantee a prescribed attenuation level. Unfor-

t
tunately, these criteria provide only sufficient conditions for the V(t) = [a;T(t) yT(t)] EP {f( )}
required attenuation, and they may lead, in many cases, to a con- . y(t)
servative filter design. L
Recently, a new efficient criterion has been introduced for + /_h /Hey (5)Ry(s) ds df )

verifying the stability and théd,-norm of time delayed sys- where
tems [6], [7]. We derive below a new delay-dependent version

of this criterion, which we apply to the adjoint system in order E— |:In 0}
to solve the filtering problem. 0 0]’
Notation: Throughout the paper, the superscript’ ‘stands A0
for matrix transposition;R” denotes then dimensional Eu- P= P P’ P>0, >0 ()

clidean spacgR™*™ is the set of alh x m real matrices, and the
notation” > 0, for P € R™*", means thaP’ is symmetric and
positive definite. The space of functions’Rf that are square
integrable ovef0 oo) is denoted byCi[0, o).

Based on this functional, an efficient BRL has been derived in

[7], in terms of an LMI, which provides the required criterion.
Lemma 2.1 [7]: Consider the system of (1). For a prescribed

~ > 0, the cost function (2) achieve§w) < 0 for all nonzero

w € L3[0, 0o) if there existd < Py, P», P3,andR = RT ¢

Il. NEW VERSION OF THEBOUNDED REAL LEMMA R™*™ that satisfy the LMI in (6), shown at the bottom of the

Given the systen; next page.
The proof is based on the following idea. It is first noted that
() = Aoz (t) + A1 (f — h) + Bu(t) (a) P g
2(t) = La(t), x=0,Vte[-h0] (1b) [a;T yT] EP {f} =27 Pz
Yy

wherez(t) € R™ is the system state vectan(t) € £3[0, x]

is the exogenous disturbance signal, af € R? is the state Thus, differentiating of the first term of (4) with respecttave

get
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Substituting in the right-hand side of (7), the expressions for Applying Lemma 2.1 [LMI (8)] to systenx., we obtain the
4 and 0 in (3) and applying the standard technique for delafg!lowing LMI:
dependent LMI conditions (see e.g., [8]), it is obtained that

0 if the following LMI holds: ¥ pr {LOT} hpT LH
1
o PT {g} hPT H } [0 L]P s 0 <0 (3
1
h[0 AP 0 —hR
0 BI|P I <0 ® '
where
hlo Af]P 0 —hR
E—PT[ 0 I}Jr[o (A0+A1)}P
where (AT +47) —1] " |1 -I
r[ 0 I 0 (AF +47) BBT 0
= . 14
v=r |:(AO+A1) —I} {I —I F Tl o wr a4
+ [LTL 0 } ) 9) Itis obvious from the requirement 6f< Py, and the fact thatin
0 AR (6) —(Ps+P]") must be negative definite, th&tis nonsingular.
The latter LMI is equivalent to (6). Defining
Unfortunately, the structure of the resulting LMI is not . Q1 0
amenable to solving the corresponding filtering problem. We P =0= Qs Qs (152)
therefore derive another version of the BRL, which is more A =diag(Q, I,+n} (15b)
- LV ST

suitable for the filter design.
We begin by noting that thé&l.-norm of the systent; of we multiply (13) by A7 and A, on the left and on the right,
(1) is given by respectively. Applying Schur formula (see, e.g., [10]) to the
o guadratic term irf) and toh.R2, we find the following inequality:
1)l = sup E{L (jwl, — Ao — Aye—9"h) B} (10)
wCR

v Lol ofo] e 3]
wherez{ D} denotes the largest singular valuelof Since '
[0 L] —2I 0 0 0
o{H(jw)} =0 {H (—jw)} RO A 0 “hR 0 0 <0
for all the transfer function matrice(s) with real coefficients, | [BY 0] Q 0 0 —1, 0
it follows that theH..-norm of¥; is equal to thell.-norm of | [0 1]Q 0 0 0 —hR™! |
the following system: (16)
where

—&(t) = ATE(1) + ATE(t + h) + LT 3(2) 0 s
p(t) = BTe(t), =0,Vtel0 h 11 ¢ = } +T[
a(t) =BTE), ¢ oA @Y (4 ar) 1)@
We thus obtain the following.
n o = - Lemma 2.2: Consider the system of (1) and the cost function
tyeR Z(t) € RY d t) € R4, .
SRt Hbe and i (t) € of (2). For a prescribed < v, J(w) < 0 for all nonzerow €
Note that the latter system represents the backward adjointaf0, o0) if there existQ; > 0, R = RY = R™1,Q2, Qs, allin

0 (Ao+ Al):|
I I '
where

¥ [9]. Its forward representatio, is described by R, that satisfy the LMl in (17), shown at the bottom of the
) next page. We note that if the latter LMI possesses a solution for
() = ATE(r) + ATe(r — h) + LY 3(7) h = h > 0,then because of the special dependence of the matrix
() = BT¢(r), £€=0,Vte[-h 0] (12) entries of the LMI on the delay length, it will also posses a

solution for allh < h.
Since the characteristic equationsf and>; are identical, = Lemma 2.2 can readily be applied to solving the filtering
the former system is asymptotically stablef is as well. problem.

(AT + ATV P+ PF (Ao + A+ LTL P — P+ (AT +AT)Ps PfB I PlA
P — Py + PI(4o + A4y) —P;— PY 4 hR PTB  hPTA;
BT P, BT Py —y21, 0
hAT P, hAT Py 0 —hR

(6)
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[ll. FILTERING PROBLEM the bottom of the page. If the existence of the matriges R,
Qs, andY is affirmative, the filter gain is given by

Ko=0Q.'Y. (23)

The result of the Theorem 3.1 is applied to the following ex-

wherey(t) € R" is the measurement vector, and the matricénple.

Co € R'*", O] € R™*" andDs 1 € R"™? are constant Example 1: We consider the same system as found in [8] to

matrices. We seek a filter of the following observer form: ~ Which a state-feedback has been applied. We assume that the
measurement equation is the same as (18), witk 0, and we

B(t) = Ao@(t) + Ari(t — h) + Ko(y(t) — Coi(t)) (19) seek an optimal observer that achieves a minimum estimation

level. The matrices in (1) and (18) are as follows:

such that the,-norm of the resulting transference between 0 0 . 1 1

the exogenous signal and the estimation erraris less thana A = [0 1} , A= [ 0 —0 9}

prescribed value,, where '

We consider the system of (1a), with the measurement Iaw%F’

y(t) = co{ Cox(t), Crx(t — h)} + D2 1w (18)

B:H 8}, L=[1 0]

CO = [0 ].]7 1 =0, Doy = 0.01, h =0.999 s.

We begin solving the problem for the simpler case WheWe note that the system is unstable. By Theorem 3.1, we obtain

C1 = 0. In this case, it follows from (1a), (18) and (19) thata minimum value ofy = 22.8784 with a filter gain matrixk =
the estimation error is described by the following model: [4790 18139]

(1) 2 L(x(t) — 2(t)). (20)

The above results were obtained for the case where no delay is

&(t) = (Ao — KoCo)e(t) + Are(t — h) encountered in the measurement. In case the measurement also

+ (B — KoDa2,1)w (218) includes a delayed state informatiafi[in (18) is not zero], we
z(t) = Le(t) (21b) add an additional component, in series with the delayed compo-
nent ofy. The state space model of this component is given by

wheree(t) 2 z(t) — #(¢). The problem then becomes one of .
finding t(h3e filter( g)ainKE) iuch that theH ..-norm of the system i) = =pleyn(®) +10 - ple, Jy(®) (24)
of (21) will be less than a prescribed value. Applying Lemm#or 1 < p. Denoting the augmented state vectordgy) =
2.2 and denotind” = Q1 K, we obtain the following. col{z(t), n(¢)}, the augmented system is then described by
Theorem 3.1:Consider the system of (1a), (18), and (19) SN P -
with C; = 0 and the cost function (2), where is defined §(t) = Aot(t) + Ant(t = ) + Bu (25)
in (21b). For a prescribed < v, J(w) < 0 for all nonzero where
w € L£4]0, 0o) if there existQ > 0, R = B, Q2, Qs, allin . Ay O - [4 0
R andY € R™ that satisfy the LMI in (22), shown at - { } T {pCl 0}

i Q2+ Q3F Qs — QF +Q1(Ao + Ar) 0 0 Q1B hQ1
QF — Qs + (AT + A7) @, Gi—F 1T RATR 0 hof
0 L —~2 0 . 0
_ T _ <0 (17)
0 hRA, 0 —hR
BTQ, 0 : . -1, 0
i hQs hQs 0 .0 -hE]
[ Q2+ QF Q3—QF +Q1(Ao+ A)-YC, 0 0 QB-YD;; hQi
QY —Qa+ (AF + A7) Q- CFY™ -Q3—QF L™  hATR 0 hQ3
0 L 2L, 0 : 0
_ _ 22
0 KRA, 0 _iE <0 (22
BTQ,—D} YT 0 : : 1, 0
L hQ2 hQs 0 . 0 —hR ]
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and it follows from Theorem 3.2 that if there exists a solution to the
B B LMI of (22), then the estimate af(¢) is given by
o p[O I7,2]D2 1 .
W der the followi 7 d fiter: B(t) = Aok (t) + Ar2(t — h) + Ko o([Lr, OJy(t) — Co)
e consider the following augmented filter: + Ko 1(n— ). (31)
" SN SN Whenl « p andr; = 0 (namely, when all the measurements
£(t) = Aog(t) + Aré(t — 1) are delayed), the latter equation, together with the one obtained
from (26) for7, leads to the following filter:
+ K (col{[L, Oly(t), n(H)} - C&®)  (26) 56) = An(t) + As(t — B)
where + Kyt —h)—Ci12(t—h)+A  (32a)
o Co 0 where
- { 0 I, } ' K =(pl, + K1) *pKor + O(p ™) (32b)

The resulting estimation error vector is denotedfly = £(t)—  and whereA = O(p !, ). The latter filter, withA = 0, will
&(t), and we obtain the following state space representation fachieve the required estimation accuracy ifs chosen large
this error vector: enough.

. N Ly L . We demonstrate the use of the results of Theorem 3.2 in the

et) = (AO - KC) &(t) + Are(t — h) following example.

Example 2: We consider the system of Example 1, with the
+ (f} - K [I,, 0] Do, 1) w(t). (27) measurement delayed by 0.9 s. The matrices of the state space
model are given in Example 1, with the difference being that
Letting 2 = [L 0]e and considering
Co=0, C;=[0 1] and h=09s

_ o A 2T
1= /0 (72 = y*wlw) dr (28) By Theorem 3.2, we obtain, using= 10'°, a minimum value

) _ of v = 128.406 for the gain matrixK = [—0.8450 0.2045].
we apply Lemma 2.2 and obtain the following:

Theorem 3.2: Consider the system of (25), (18), and (26) and
the cost function (28). For a prescrib@d< ~ and forp > 1,
J1 < 0 for all nonzerow € L]0, oo) if there existQ, > 0, The problem ofH ., filtering for linear, continuous, time-in-
R =RT,Q,,Qs,allin RU+m)x(n+m) andy” ¢ R(+mxrthat variant systems with time delay has been solved. The solution
satisfy the LMI in (29), shown at the bottom of the page. If therocedure is based on applying an observer type filter and pro-
existence of the matrice8,, R, Q», Qs, andY is affirmative, Vides a sufficient condition for achieving a prescribed estima-

IV. CONCLUSIONS

the filter gain is given by tion accuracy. Since our results are only sufficient, the question
. . arises as to how big an overdesign is entailed in our method and
K=0Q;Y. (30) whether or not it is smaller than the one encountered in other

The existence of a solution to (22) guarantees that the fil d?3|gns appearing in the literature. To answer this question, one

that is built from the series connection of (24) and (26) wi jas to bear in mind that the filter designs are based, one way or

. . S another, on a related bounded real lemma (BRL) that provides
achieve the required performance as lon@ asp. Considering, - o .
. the sufficient condition for a system with delay to possess an
however,1 <« p and denoting

H_,-norm that is less than a prescribed value. The overdesign

i Koo Ko of the corresponding filter design will strongly depend on the
| Ko Kin conservatism of the BRL used. In this paper, we have used the
[ Q2+ Qf Qs=QF +Q1 (Ad+41)-YC 0 0 QB-Y[L, 0[D21 hQE]
Q¥ —Q2 + (AOT + AIT) Q.- CTYT —Qs—QF (L o RATR 0 hQT
0 L 0] L, 0 : 0 | <o
0 hRA, 0 —hR
BTQ-DI. (I, o'Y” 0 : : ~I, 0
L hQ- hQs 0 . 0 —hR ]

(29)
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BRL that is less conservative than all the other BRLs and thel E. Fridman received the M.Sc. degree from Kuiby-
fore obtained the best filtering solution. ; ;ZZVthit;tﬁ 5323?2'3&55'%?2%@ LSJ;?SU Qvé?s?til
The solution method in thl_s note is based on achieving a st Voroneg, USSR, in 1986, all in mathematics. ’
space model for the estimation error of order equal to the orc From 1986 until 1992, she was Assistant and
of the process to be filtered. In spite of the fact that the LMIs {:;Sa"t%zte}(sifg’gﬁzsflx:guigeo?ggﬁwf;‘;gn%fin'\é':g'
(22) and (29) are affine in the system matrices, the constraint Since 1993, she has been a Senior Researcher in the
the order of the estimation model prevents the application of ¢
results to the case where the system parameters are uncert

Department of Electrical Engineering—Systems,
Tel Aviv University, Tel Aviv, Israel. Her research
interests includé? .. control, singular perturbations,

time-delay systems, asymptotic methods, and nonlinear control.
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