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a b s t r a c t

We study derivative-dependent control of the nth-order stochastic systems where derivatives are not
available for measurements. The derivatives are approximated by finite differences giving rise to a
delayed feedback. In the deterministic case, an efficient simple LMI-based method for designing of such
static output-feedback and its sampled-data implementation was suggested recently. In the present
paper, we extend this design to stochastic systems. We present two methods: the direct one that
employs a stochastic extension of Lyapunov functionals used previously in the deterministic case, and
the method which is based on neutral type model transformation and employs either augmented or
simple Lyapunov functionals. Numerical examples illustrate the efficiency of the method.
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1. Introduction

Control laws that depend on the output and its derivatives are
used to stabilize linear systems. The derivatives are not available,
but can be approximated by finite differences giving rise to a
delayed feedback. The delay-induced stability can be checked us-
ing frequency-domain technique (Kharitonov, Niculescu, Moreno,
& Michiels, 2005; Niculescu & Michiels, 2004; Ramírez, Mondié,
Garrido, & Sipahi, 2016; Ramírez, Sipahi, Mondié, & Garrido,
2017) and complete Lyapunov–Krasovskii functionals (Gu, Chen,
& Kharitonov, 2003), which give necessary and sufficient sta-
bility conditions. Simple LMIs for delay-induced stability of the
2nd-order systems were introduced in Fridman and Shaikhet
(2016, 2019) and extended to the nth-order systems in Frid-
man and Shaikhet (2017) and Selivanov and Fridman (2018b),
where the delayed terms were represented by Taylor’s expansion
with the remainders. The results for the nth-order deterministic
systems were essentially improved in Selivanov and Fridman
(2018a), where the derivative terms were presented as finite
differences with remainders and where sampled-data implemen-
tation, for the first time, was achieved by using consecutive
sampling measurements.

✩ This work was supported by the Planning and Budgeting Committee (PBC)
Fellowship from the Council for Higher Education, Israel, by Israel Science
Foundation (grant no. 673/19) and by Chana and Heinrich Manderman Chair
at Tel Aviv University. The material in this paper was partially presented at
the 58th IEEE Conference on Decision and Control, December 11–13, 2019,
Nice, France. This paper was recommended for publication in revised form by
Associate Editor Akira Kojima under the direction of Editor Ian R. Petersen.

∗ Corresponding author.
E-mail addresses: zhangjin1116@126.com (J. Zhang), emilia@eng.tau.ac.il

(E. Fridman).

Systems with state multiplicative noise are encountered in
many areas of applications, e.g. aircraft engineering, process con-
trol, population dynamics (Gershon & Shaked, 2019; Shaikhet,
2013; Yaesh, Shaked, & Yossef, 2004). Multiplicative noise ap-
pears due to the system parameters that undergo random pertur-
bations of white noise process and due to nonlinearities (Gershon
& Shaked, 2019; Shaikhet, 2013). There are many important re-
sults reported on systems with multiplicative noise (see e.g. Frid-
man & Shaikhet, 2019; Mao, 2007; Wang & Zhu, 2015; Xie &
Duan, 2010). It is well-known that for stochastic systems, the
design of observer-based controller is very complicated (Gershon
& Shaked, 2019). Therefore, a simple static output-feedback is
very attractive in the stochastic case.

In this paper, we consider derivative-dependent control of the
nth-order stochastic systems where derivatives are not available
for measurements. Under assumption of the stabilizability of the
system by a state-feedback that depends on the output and its
derivatives up to the order n−1, a delayed static output-feedback
that stabilizes the system is found. Our objective is to present
improved LMI-based method for the delayed feedback and its
sampled-data implementation in the stochastic case.

We present two methods for continuous-time delayed static
output-feedback and its sampled-data implementation (that may
be used for practical application of such controller):

(1) The direct method that presents a stochastic extension
of Selivanov and Fridman (2018a). Note that Lyapunov
functionals of Selivanov and Fridman (2018a) depend on
the nth-order derivative, and, thus, are not applicable in
the stochastic case. This is because a solution of a stochas-
tic system does not have a derivative. We propose novel
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Lyapunov functionals that depend on the deterministic and
stochastic parts of the system.

(2) The method based on the neutral type model transfor-
mation, where we present the derivative of the order
i (i = 1, . . . , n − 1) in the form of the finite-difference
with the remainder in the form of time-derivative of the
integral term. The latter term depends on the same ith
derivative (and not on (i + 1)th derivative as in Seli-
vanov & Fridman, 2018a) which is well-defined in the
stochastic case. We employ either augmented or simple
(i.e. non-augmented) Lyapunov functionals (as was pro-
posed in Fridman & Shaikhet, 2019 for the 2nd-order sys-
tems). However, to compensate sampling, we still have to
use Lyapunov functionals that depend on the deterministic
and stochastic parts of the system.

The efficiency of the method is illustrated by numerical exam-
ples. In the continuous-time case, for larger stochastic pertur-
bations, the second method via the simple Lyapunov functional
leads to less conservative results with less decision variables
in LMIs than the first method. Moreover, the second method
with augmented Lyapunov functional improves the results via
the simple Lyapunov functional and via the first method (but on
the account of computational complexity). In the sampled-data
case, the second method leads to more conservative results if
the stochastic perturbations are small. However, it allows larger
stochastic perturbations even via the simple Lyapunov functional.

Summarizing, we have extended the efficient method (i.e. time-
delay implementation of derivative-dependent feedback of Seli-
vanov & Fridman, 2018a) from deterministic to stochastic case,
and improved the deterministic results by using neutral type
model transformation and augmented Lyapunov functionals. We
have also extended results of Fridman and Shaikhet (2019) to the
higher-order systems and to sampled-data control. A conference
version of this paper confined to the 3rd-order systems was
presented in Zhang and Fridman (2019).

Notations. Throughout this paper, Ik is the identity k× k matrix,
the superscript T stands for matrix transposition. Rn denotes the
n-dimensional Euclidean space with Euclidean norm |·|, Rn×m

denotes the set of all n×m real matrices with the induced norm
|·|. Denote by diag{. . . } and col{. . . } the block-diagonal matrix
and block-column vector, respectively, diag{Ri}

n
i=1 is the block-

diagonal matrix with Ri (i = 1, . . . , n) being on the diagonal.
X > 0 means that X is a positive definite symmetric matrix, and
for any square matrix X , sym{X} denotes XT

+ X . Denote by EX
the mathematical expectation of stochastic variable X . For matrix
S and vector X with appropriate dimensions |X |

2
S := XT SX .

We now present two useful Lemmas:

Lemma 1 (Jensen’s Inequality, Fridman, 2014; Solomon & Fridman,
2013). Denote G =

∫ a
b f (s)x(s)ds, where f : [a, b] → [0,∞],

x : [a, b] → Rn and the integration concerned is well defined. Then
for any n × n matrix R > 0 the following inequality holds:

GTRG ≤
∫ a
b f (s)ds

∫ a
b f (s)xT (s)Rx(s)ds.

Lemma 2 (Exponential Wirtinger’s Inequality, Selivanov & Fridman,
2016). Let x(t) : (a, b) → Rn be absolutely continuous with ẋ ∈

L2(a, b) and x(a) = 0 or x(b) = 0. Then for any α ∈ R and n × n
matrix W > 0 the following inequality holds:∫ a

b e2αtxT (s)Wx(s)ds ≤ e2|α|(b−a) 4(b−a)2

π2

∫ b
a e2αt ẋT (s)Wẋ(s)ds.

2. Continuous-time control

Consider the nth-order stochastic system

y(n)(t) =
∑n−1

i=0 (Ai + Ciẇ(t))y(i)(t) + Bu(t), (1)

where y(t) = y(0)(t) ∈ Rk is the measurement, y(i)(t) is the ith
derivative of y(t), u(t) ∈ Rm is the control input, w(t) is the one-
dimensional Brownian motion (Mao, 2007; Shaikhet, 2013), Ai,
Ci ∈ Rk×k and B ∈ Rk×m are constant matrices. Let

x(t) = col{y(0)(t), . . . , y(n−1)(t)}
= col{x0(t), . . . , xn−1(t)} ∈ Rnk,

A =

⎡⎢⎣ 0 Ik 0 · · · 0
0 0 Ik · · · 0
· · · · · · · · · · · · · · ·

0 0 0 · · · Ik
A0 A1 A2 · · · An−1

⎤⎥⎦ ∈ Rnk×nk,

B̄ = col{0, B} ∈ Rnk×m,

C = col{0, C̄} ∈ Rnk×nk, C̄ = [C0, . . . , Cn−1] ∈ Rk×nk.

Then (1) can be presented as

dx(t) = (Ax(t) + B̄u(t))dt + Cx(t)dw(t). (2)

Assume that (A, B̄) is stabilizable. Then there exist K̄i ∈ Rm×k

(i = 0, . . . , n − 1) such that

D = A + B̄K̄ , K̄ = [K̄0, . . . , K̄n−1] (3)

is Hurwitz. Then system (2) with a small enough stochastic per-
turbation (i.e. small enough |C |) is mean-square stabilized by the
state-feedback

u(t) =
∑n−1

i=0 K̄ixi(t), K̄i ∈ Rm×k. (4)

However, differently from the state-feedback case with the full
knowledge of the system state, we consider the output-feedback
control, where the derivatives xi(t) (i = 1, . . . , n − 1) in (4) are
not available. As in Selivanov and Fridman (2018a), we employ in
this paper their finite-difference approximations:

x̄0(t) = x0(t),
xi(t) ≈ x̄i(t) =

x̄i−1(t)−x̄i−1(t−h)
h

=
1
hi

∑i
j=0

(
i
j
)
(−1)jx0(t − jh), i = 1, . . . , n − 1

(5)

with a constant delay h > 0 and the binomial coefficients(
i
j
)

=
i!

j!(i−j)! . By replacing xi(t), (i = 0, . . . , n − 1) in (4) with
their approximations, we have the following delay-dependent
feedback

u(t) =
∑n−1

i=0 K̄ix̄i(t) =
∑n−1

i=0 Kix0(t − ih), (6)

where x0(t) = x0(0) for t < 0 and

Ki = (−1)i
∑n−1

j=i

(
j
i

) 1
hj
K̄j, i = 0, . . . , n − 1. (7)

As in the deterministic case (see e.g. French, Ilchmann, and
Mueller (2009)), we will show that for small enough stochastic
perturbations, if (2) is stabilized by the derivative-dependent
feedback (4), then it can be stabilized by static output-feedback
(6) with small enough h > 0. Note that an alternative output-
feedback is an observer-based controller. However, the imple-
mentation of such controller is essentially more complicated es-
pecially for stochastic systems (see e.g. (7) in Gershon and Shaked
(2019)). Here we provide a much simpler static output-feedback
(6). Such a feedback can be easily applied e.g. via sampled-data
implementation (see Section 3).

Moreover, as mentioned in Ramírez et al. (2016, 2017), the
main problem with the derivative-dependent control stems from
the noisy measurements of the derivative terms. Here measure-
ment noise problems are mitigated since the finite differences
mimic pure derivatives, and controller (6) does not rely on the
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measurements of the derivatives. Note also that the suggested
design method is efficient provided the measurements of x0(t) are
accurate (not noisy).

Following the idea of Selivanov and Fridman (2018a), we
present the approximation errors xi(t) − x̄i(t) (i = 1, . . . , n − 1)
as

x̄i(t) = xi(t) −
∫ t
t−ih ϕi(t − s)ẋi(s)ds, (8)

where ϕ1(v) =
h−v
h , v ∈ [0, h] and for i = 1, . . . , n − 2

ϕi+1(v) =

⎧⎪⎨⎪⎩
∫ v
0
ϕi(λ)
h dλ+

h−v
h , v ∈ [0, h]∫ v

v−h
ϕi(λ)
h dλ, v ∈ (h, ih).∫ ih

v−h
ϕi(λ)
h dλ, v ∈ [ih, ih + h].

The functions ϕi(v) (i = 1, . . . , n − 1) have the following proper-
ties:⎧⎪⎪⎪⎨⎪⎪⎪⎩

0 ≤ ϕi(v) ≤ 1, v ∈ [0, ih],
ϕi(0) = 1, ϕi(ih) = 0,∫ ih
0 ϕi(v)dv =

ih
2 ,

d
dvϕi(v) ∈ [−

1
h , 0], v ∈ [0, ih].

(9)

Compared with Selivanov and Fridman (2018a), this paper ad-
ditionally gives the lower bound of d

dvϕi(v) that can be easily
verified since 0 ≤ ϕi(v) ≤ 1. This property is employed in the
stochastic case for the stability analysis under the sampled-data
feedback (see e.g. (47) where ψi(v) = −

d
dvϕi(v)).

The system (2), (4) takes the form

dx(t) = Dx(t)dt + Cx(t)dw(t), (10)

where D is given by (3). Via (8), the system (2), (6) takes the form

dx(t) = f1(t)dt + Cx(t)dw(t) (11)

with the same D and

f1(t) = Dx(t) +
∑n−1

i=1 B̄K̄iκi(t),
κi(t) = −

∫ t
t−ih ϕi(t − s)ẋi(s)ds.

(12)

2.1. Stability of (11): direct method

For the sake of simplicity, we denote that for i = 1, . . . , n−1

Hi = [0k×ik Ik 0k×(n−i−1)k], φi(λ) =
∫ ih
λ
ϕi(v)dv. (13)

The LMI conditions are derived by using Lyapunov functional

V1 = VP +
∑n−1

i=1
ih
2 VRi + VF1 , (14)

where
VP = xT (t)Px(t),
VRi =

∫ t
t−ih e

−2α(t−s)φi(t − s)|xi+1(s)|2Rids, i = 1, . . . , n − 2,
VRn−1 =

∫ t
t−(n−1)h e

−2α(t−s)φn−1(t − s)|Hn−1f1(s)|2Rn−1
ds,

VF1 =
∫ t
t−(n−1)h e

−2α(t−s)φn−1(t − s)|Hn−1Cx(s)|2F1ds,
P > 0, Ri > 0, i = 1, . . . , n − 1, F1 > 0.

Note that the terms VRi (i = 1, . . . , n− 2) are from Selivanov and
Fridman (2018a), whereas the terms VRn−1 and VF1 are stochastic
extensions of Lyapunov functionals that depend on ẋ(t).

Theorem 1. Given K̄i (i = 0, . . . , n − 1) let the derivative-
dependent feedback (4) exponentially stabilizes (2), where C = 0,
with a decay rate ᾱ > 0.
(i) Given tuning parameters h > 0 and α ∈ (0, ᾱ), let there exist
nk× nk matrix P > 0, k× k matrices Ri > 0 (i = 1, . . . , n− 1) and
F1 > 0 that satisfy

Φ1 < 0, (15)

where Φ1 is the symmetric matrix composed from

Φ11 = sym{PD} + 2αP + CTPC
+

∑n−2
i=1

(ih)2
4 |Hi+1|

2
Ri +

(n−1)h
2 |Hn−1C |

2
F1 ,

Φ12 = PB̄[K̄1, . . . , K̄n−1],

Φ14 =
(n−1)h

2 DTHT
n−1Rn−1,

Φ22 = −diag{e−2αihRi}
n−1
i=1 ,

Φ23 = [0k×(n−2)k,−e−2α(n−1)hRn−1]
T ,

Φ24 =
(n−1)h

2 [K̄1, . . . , K̄n−1]
T B̄THT

n−1Rn−1,

Φ33 = −e−2α(n−1)h(Rn−1 + F1), Φ44 = −Rn−1

with D given by (3). Then the delay-dependent feedback (6) with
a time-delay h > 0 and controller gains (7) exponentially mean-
square stabilizes (2) with a decay rate α > 0.
(ii) Given any α ∈ (0, ᾱ), the LMI of item (i) is always feasible for
small enough stochastic perturbations and h > 0 (meaning that the
delay-dependent feedback (6) with controller gains (7) exponentially
stabilizes (2) with a decay rate α > 0).

Proof. (i) Let L be the generator of the system (11) (Fridman &
Shaikhet, 2019; Mao, 2007). Via (9), we have

LVP + 2αVP = 2xT (t)Pf1(t) + xT (t)CTPCx(t)
+ 2αxT (t)Px(t),

LVRi + 2αVRi =
ih
2 |xi+1(t)|2Ri

−
∫ t
t−ih e

−2α(t−s)ϕi(t − s)|xi+1(s)|2Rids,
i = 1, . . . , n − 2,

LVRn−1 + 2αVRn−1 =
(n−1)h

2 |Hn−1f1(t)|2Rn−1

−
∫ t
t−(n−1)h e

−2α(t−s)ϕn−1(t − s)|Hn−1f1(s)|2Rn−1
ds,

LVF1 + 2αVF1 =
(n−1)h

2 |Hn−1Cx(t)|2F1
−

∫ t
t−(n−1)h e

−2α(t−s)ϕn−1(t − s)|Hn−1Cx(s)|2F1ds.

(16)

Using Lemma 1 and via (12), we obtain
ih
2

∫ t
t−ih e

−2α(t−s)ϕi(t − s)|xi+1(s)|2Rids
≥ e−2αihκT

i (t)Riκi(t), i = 1, . . . , n − 2,
nh−h

2

∫ t
t−(n−1)h e

−2α(t−s)ϕn−1(t − s)|Hn−1f1(s)|2Rn−1
ds

≥ e−2α(n−1)h
|
∫ t
t−(n−1)h ϕn−1(t − s)Hn−1f1(s)ds|

2

Rn−1

= e−2α(n−1)h
|κn−1(t) + ϱ1(t)|2Rn−1

,

(17)

where

ϱ1(t) =
∫ t
t−(n−1)h ϕn−1(t − s)Hn−1Cx(s)dw(s).

By Itô integral properties (see e.g. Fridman & Shaikhet, 2019; Mao,
2007) and via (9), we have for any matrix F1 > 0

Ee−2α(n−1)hϱT
1 (t)F1ϱ1(t)

= Ee−2α(n−1)h
∫ t
t−(n−1)h ϕ

2
n−1(t − s)|Hn−1Cx(s)|2F1ds

≤ E
∫ t
t−(n−1)h e

−2α(t−s)ϕn−1(t − s)|Hn−1Cx(s)|2F1ds.
(18)

In view of (16)–(18), we obtain

ELV1 + E2αV1 ≤ Eξ T1 Φ̄1ξ1 + E (nh−h)2
4 |Hn−1f1(t)|2Rn−1

, (19)

where ξ1 = col{x(t), κ1(t), . . . , κn−1(t), ϱ1(t)} and Φ̄1 is obtained
from Φ1 given by (15) by taking away the last block-column and
block-row. Substituting f1(t) given by (12) into (19) and further
applying Schur’s complement, we arrive at ELV1 + E2αV1 ≤ 0
since Φ1 < 0, which implies that (7) exponentially mean-square
stabilizes (2) with a decay rate α > 0.
(ii) If (4) exponentially stabilizes (2), where C = 0, with a decay
rate ᾱ > 0, then for any α ∈ (0, ᾱ) there exists 0 < P ∈ Rnk×nk

such that sym{PD} + 2αP < 0. Thus,

sym{PD} + 2αP + CTPC < 0 (20)
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for small enough |C |. We choose Ri = F1 =
1

√
h
Ik (i = 1, . . . , n−1).

By using Schur’s complement, Φ̄1 < 0 is equivalent to

sym{PD} + 2αP + CTPC +
√
h(G1 + hG2) < 0, (21)

where

G1 =
n−1
2 |Hn−1C |

2
+

∑n−2
i=1 e2αih|PB̄K̄i|

2
+ 2e2α(n−1)h

|PB̄K̄n−1|
2
,

G2 =
∑n−2

i=1
i2
4 |Hi+1|

2.

Inequality (20) implies (21) for small enough h > 0 since
√
h(G1+

hG2) → 0 for h → 0, implying the feasibility of Φ̄1 < 0 for small
enough h > 0. Finally, applying Schur’s complement to the last
block-column and block-row of Φ1 given by (15), we find that
Φ1 < 0 for small enough h > 0 if Φ̄1 < 0 is feasible. Therefore,
the LMI of item (i) is always feasible for small enough h > 0 and
|C |. □

Remark 1. Based on the analysis LMIs (e.g. LMI (15) of
Theorem 1), the LMI-based design can be derived as follows:
we first set P−1

= X = [Xj,i]n×n and multiply (15) by diag{
X,

∑n
i=1 X2,i, . . . ,

∑n
i=1 Xn,i,

∑n
i=1 Xn,i, R−1

n−1

}
and its transpose

from the right and the left, respectively. By denoting

Y = K̄X = [Y0, . . . , Yn−1],

R̂i =
∑n

j=1 Xi+1,jRi
∑n

j=1 Xj,i+1 (i = 1, . . . , n − 1),
F̂1 =

∑n
j=1 Xn,jF1

∑n
j=1 Xj,n,

applying Schur’s complement and employing

−
∑n

j=1 Xj,i+1R̂−1
i

∑n
j=1 Xi+1,j ≤ R̂i −

∑n
j=1(Xj,i+1 + Xi+1,j)

and the similar inequality for F̂1-term, we arrive at the following
design LMI Φ̂ < 0, where Φ̂ is the symmetric matrix composed
from

Φ̂11 = sym{AX + B̄Y } + 2αX,
Φ̂12 = B̄[Y1, . . . , Yn−1],

Φ̂14 =
(n−1)h

2 (XAT
+ Y T B̄T )HT

n−1,

Φ̂15 = X[
h
2H

T
2 , . . . ,

(n−2)h
2 HT

n−1],

Φ̂16 = XCT
[Ink,

√
(n−1)h

2 HT
n−1],

Φ̂22 = −diag{e−2αihR̂i}
n−1
i=1 ,

Φ̂23 = [0k×(n−2)k,−e−2α(n−1)hR̂n−1]
T ,

Φ̂24 =
(n−1)h

2 [Y1, . . . , Yn−1]
T B̄THT

n−1,

Φ̂33 = −e−2α(n−1)h(R̂n−1 + F̂1),

Φ̂44 = R̂n−1 −
∑n

i=1(Xi,n + Xn,i),

Φ̂55 = diag{R̂j −
∑n

i=1(Xi,j+1 + X2,j+1)}n−2
j=1 ,

Φ̂66 = diag{−X, F̂1 −
∑n

i=1(Xi,n + Xn,i)}

with the decision variables X > 0, R̂i > 0 (i = 1, . . . , n−1), F̂1 > 0
and Y to be determined, and tuning scalar parameters h > 0
and α > 0. If the above design LMI is feasible, the stabilizing
controller gain is given by K̄ = YX−1. Note that differently from
the analysis LMI, the feasibility of the design LMI for small enough
values of h and α cannot be proved even for C = 0. The examples
below show that the design LMI is feasible for the 2nd- and
3rd-order systems, but unfeasible for the 4th-order system (see
Remark 3).

2.2. Stability via neutral type model transformation

In this section, we derive stability conditions by using neutral
type model transformation (Fridman & Shaikhet, 2017, 2019;

Niculescu, 2001). First, we show that the integrals κi(t) (i =

1, . . . , n − 1) given by (12) can be presented as

κi(t) = −
d
dt ϑi(t), ϑi(t) =

∫ t
t−ih ϕi(t − s)xi(s)ds. (22)

Indeed, differentiating ϑi(t), employing (9) and further integrat-
ing by parts we have

d
dt ϑi(t) = xi(t) + µi(t) (23)

with

µi(t) = −
∫ t
t−ih

dϕi(t−s)
ds xi(s)ds

= −xi(t) +
∫ t
t−ih ϕi(t − s)ẋi(s)ds

that implies (22).
Then system (11) can be presented as

dz(t) = Dx(t)dt + Cx(t)dw(t),
z(t) = x(t) +

∑n−1
i=1 B̄K̄iϑi(t)

(24)

with ϑi(t) given by (22). As in Fridman and Shaikhet (2019), we
do not need to check further the stability of difference equation
z(t).

Before presenting the LMI conditions, we use the following
notations
ℓ0 = [Ink 0nk×lk],

ℓi = [0k×ik Ik 0k×(l−i−1)k], i = 1, . . . , l,
Ξ1 = col{ℓ0 +

∑n−1
i=1 B̄K̄iℓi, ℓ1, . . . , ℓn−1},

Ξ2 = col{Dℓ0,H1ℓ0 + ℓn, . . . ,Hn−1ℓ0 + ℓ2n−2},

(25)

where the value of l corresponds to the later derived LMIs.

Theorem 2. Given K̄i (i = 0, . . . , n − 1) let the derivative-
dependent feedback (4) exponentially stabilizes (2), where C = 0,
with a decay rate ᾱ > 0.
(i) Given tuning parameters h > 0 and α ∈ (0, ᾱ), let there exist
(2n − 1)k × (2n − 1)k matrix P = [Pij]n×n, k × k matrices Ri > 0
and Si > 0 (i = 1, . . . , n − 1) that satisfy

Ψ > 0, Φ2aug < 0, (26)

where

Ψ = Ξ̄ T
1 PΞ̄1 +

∑n−1
i=1

2
ih e

−2αihℓTi Siℓi,
Φ2aug = Φ̄2aug + sym{Ξ T

1 PΞ2} + 2αΞ T
1 PΞ1.

Here Ξ̄1 coincides with the first n block-rows of Ξ1 given by (25)
and Φ̄2aug is the symmetric matrix composed from

Φ11 = CTP11C +
∑n−1

i=1 |Hi|
2
(ih)2
4 Ri+Si

,

Φ22 = −diag{e−2αihRi}
n−1
i=1 ,

Φ33 = −diag{e−2αihSi}n−1
i=1 .

Then the delay-dependent feedback (6) with a time-delay h > 0 and
controller gains (7) exponentially mean-square stabilizes (2) with a
decay rate α > 0.
(ii) Given tuning parameters h > 0 and α ∈ (0, ᾱ), let there exist
nk×nk matrices P11 > 0 and k×k matrices Ri > 0 (i = 1, . . . , n−1)
that satisfy

Φ2sim < 0, (27)

where Φ2sim is obtained from Φ2aug given by (26) by taking away
the last n − 1 block-columns and block-rows and setting P =

diag{P11, 0}. Then the delay-dependent feedback (6) with a time-
delay h > 0 and controller gains (7) exponentially mean-square
stabilizes (2) with a decay rate α > 0.
(iii) Given any α ∈ (0, ᾱ), the LMIs of items (i) and (ii) are
always feasible for small enough stochastic perturbations and h >
0 (meaning that the delay-dependent feedback (6) with controller
gains (7) exponentially stabilizes (2) with a decay rate α > 0).
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Proof. (i) Inspired by Fridman and Shaikhet (2019), we consider
the augmented functional

V2 = VP +
∑n−1

i=1 (
ih
2 VRi + VSi ), (28)

where
VP = ζ T (t)Pζ (t),
VRi =

∫ t
t−ih e

−2α(t−s)φi(t − s)|xi(s)|2Ridvds,
VSi =

∫ t
t−ih e

−2α(t−s)ϕi(t − s)|xi(s)|2Sids,
ζ (t) = col{z(t), ϑ1(t), . . . , ϑn−1(t)},
Ri > 0, Si > 0, i = 1, . . . , n − 1.

Compared with V1 of (14), the functional V2 does not depend
on the deterministic or stochastic terms due to the neutral type
model transformation. Notice that the terms VRi compensate ϑi(t),
whereas the terms VSi compensate µi(t). Let L be the generator
of the system (24) (Fridman & Shaikhet, 2019; Mao, 2007). Via
(9), (23) and (24), we obtain

LVP + 2αVP = 2ζ T (t)P ζ̄ (t)
+ xT (t)CTP11Cx(t) + 2αζ T (t)Pζ (t),

LVRi + 2αVRi =
ih
2 |xi(t)|2Ri

−
∫ t
t−ih e

−2α(t−s)ϕi(t − s)|xi(s)|2Rids,
LVSi + 2αVSi = |xi(t)|2Si

−
∫ t
t−ih e

−2α(t−s)ψi(t − s)|xi(s)|2Sids,

(29)

where ζ̄ (t) = Ξ2ξ2 with ξ2 = col{ξ̄2, µ1(t), . . . , µn−1(t)}, ξ̄2 =

col{x(t), ϑ1(t), . . . , ϑn−1(t)}. Using Lemma 1, we obtain
ih
2

∫ t
t−ih e

−2α(t−s)ϕi(t − s)|xi(s)|2Rids ≥ e−2αihϑT
i (t)Riϑi(t),∫ t

t−ih e
−2α(t−s)ψi(t − s)|xi(s)|2Sids ≥ e−2αihµT

i (t)Siµi(t).
(30)

From (29) and (30), it follows that

LV2 + 2αV2 ≤ ξ T2Φ2augξ2, (31)

whereΦ2aug is given by (26) and ξ2 is given below (29). Moreover,
by Lemma 1 and via (9)

VSi ≥
2
ih e

−2αihϑi(t)T Siϑi(t), (32)

then V2 is positive definite since

V2 ≥ VP +
∑n−1

i=1 VSi ≥ ξ̄ T2 Ψ ξ̄2 (33)

with Ψ given by (26). Therefore, the delay-dependent feedback
(6) with a time-delay h > 0 and controller gains (7) exponentially
mean-square stabilizes (2) with a decay rate α > 0.
(ii) If LMI Φ2sim < 0 holds with P11 > 0, Ri > 0 (i = 1, . . . , n−1),
then for Si = ρiI (i = 1, . . . , n−1) with small enough ρi > 0 LMIs
Ψ > 0 and Φ2aug < 0 hold with the same P11, Ri (i = 1, . . . , n−1)
and others blocks of P being 0. Therefore, the result follows
from (i).
(iii) The proof of (iii) is similar to (ii) of Theorem 1. □

Remark 2. Note that (ii) of Theorem 2 can be derived directly by
using the simple (non-augmented) Lyapunov functional defined
by (28) with P = diag{P11, 0} and following arguments of (i).
As shown in the examples below, for larger stochastic pertur-
bations (which is the main interest in this paper), the simple
Lyapunov functional gives almost the same results as the aug-
mented Lyapunov functional, but by much lower computational
price.

2.3. Examples: chains of three and four integrators

To illustrate the efficiency, we consider chains of three and
four integrators. The deterministic version of these examples
was considered in Selivanov and Fridman (2018a). However, we
choose the controller gains below (which are different from Se-
livanov & Fridman, 2018a) that allow to treat essentially larger
stochastic perturbations.

Example 1 (Chain of Three Integrators). Consider (1) with

Ai = 0, B = 1, Ci = σ ∈ R. (34)

Using the pole placement, we find that for (4) with

K̄0 = −1.32, K̄1 = −3.62, K̄2 = −3.3, (35)

the eigenvalues of D are −1, −1.1, −1.2.

Example 2 (Chain of Four Integrators). Consider (1) with (34).
Using the pole placement, we find that for (4) with

K̄0 = −1.716, K̄1 = −6.026, K̄2 = −7.91, K̄3 = −4.6, (36)

the eigenvalues of D are −1, −1.1, −1.2, −1.3.

It is clear that with the above gains, matrix D defined by
(3) is Hurwitz. Therefore, the derivative-dependent feedback (4)
with these gains given by (35) and (36) stabilizes chains of three
and four integrators, respectively, for small enough stochastic
perturbations.

For different values of σ and α = 0.01, the maximum values of
delay h that preserve the exponential mean-square stability are
presented in Tables 1 and 2. In the deterministic case (σ = 0),
LMIs Φ1 < 0 and Φ2sim < 0 give the same results whereas LMIs
Ψ > 0 and Φ2aug < 0 (for brevity we write them as Φ2aug <
0) admit a slightly better result. Indeed, this improvement is
achieved on the account of computational complexity (see the
number of decision variables in Table 3). With the larger h, one
can obtain via (7) the smaller gains Ki (i = 0, . . . , n−1). For large
stochastic perturbations, LMI Φ2sim < 0 leads to efficient results
that are close to the results via LMI Φ2aug < 0 and that essentially
show improvements compared with the results via LMI Φ1 < 0.

If the derivative-dependent feedback (4) is chosen with the
gains of Selivanov and Fridman (2018a), both LMIs Φ1 < 0 and
Φ2sim < 0 with σ = α = 0 lead to 2.529 and 0.169 (respectively,
for Examples 1 and 2) as in Selivanov and Fridman (2018a).
However, the resulting maximal σ = 0.004 that preserves the
stability is essentially smaller than σ = 2 in Tables 1 and 2.

Remark 3. By solving the design LMI of Remark 1 and letting
α = 0.01, σ = 0.4 and h = 0.2, we manage to find for the 3rd-
and 2nd-order systems in Examples 1 and 3 (see Section 3.3) the
stabilizing controller gains

K̄ = −[1.4328 1.7076 2.3288]

and

K̄ = [3.1359 0.0697 0.4147 0.1407]

respectively. However, for Example 2 (the 4th-order system), the
design LMI becomes unfeasible with any h > 0, α ≥ 0 and
σ ≥ 0. This conservatism stems from the transformation of the
nonlinear terms. A more efficient LMI design may be a topic for
future research.

Remark 4. To select the tuning parameters α, σ and h, we
suggest the following algorithm: choose K̄i (i = 0, . . . , n − 1) via
pole-placement such that the derivative-dependent feedback (4)
with controller gains K̄i (i = 0, . . . , n−1) exponentially stabilizes
(2), where C = 0, with a decay rate ᾱ > 0. For a high efficiency,
when solving the LMIs with σ = 0 and small enough h > 0, we
apply the binary search method to find a critical maximal value
of α as α∗ < ᾱ. Similarly, by choosing α ∈ [0, α∗

] with small
enough h > 0, we find a critical maximum value of σ as σ ∗. Then
for α ∈ [0, α∗

] and σ ∈ [0, σ ∗
], we can obtain a critical maximal

value of h = h∗ such that for h > h∗ the LMI becomes unfeasible.
We choose this maximal h = h∗ that leads to smaller gains Ki
(i = 0, . . . , n − 1).
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Table 1
Max. delay h for different σ (Example 1).
σ 0 0.2 0.5 1 1.5 2

Φ1 < 0 0.289 0.271 0.184 0.051 0.012 –
Φ2aug < 0 0.317 0.313 0.293 0.233 0.140 0.008
Φ2sim < 0 0.289 0.284 0.262 0.206 0.126 0.008

Table 2
Max. delay h for different σ (Example 2).
σ 0 0.2 0.5 1 1.5 2

Φ1 < 0 0.128 0.117 0.090 0.030 0.011 0.002
Φ2aug < 0 0.138 0.136 0.130 0.107 0.077 0.040
Φ2sim < 0 0.128 0.125 0.116 0.093 0.066 0.035

Table 3
Complexity of LMI conditions.
LMIs Decision variables

Φ1 < 0 0.5(n2k2 + nk2 + 2nk)
Φ2aug < 0 0.5(4n2k2 − 2nk2 + 4nk − k2 − 3k)
Φ2sim < 0 0.5(n2k2 + nk2 + 2nk − k2 − k)

3. Sampled-data control

For practical application of the delayed feedback (6), in this
section we suggest its sampled-data implementation. We assume
that the measurement y(t) = x0(t) is available only at the
discrete-time instants tk = kh, k ∈ N0. Here h > 0 is the
sampling period. Then the derivative-dependent feedback (4) is
approximated by the sampled-data feedback

u(t) =
∑n−1

i=0 K̄ix̄i(tk) =
∑n−1

i=0 Kix0(tk−i),
t ∈ [tk, tk+1), k ∈ N0,

(37)

where x0(t) = x0(0) for t < 0, x̄i(t) and Ki are given by (5) and
(7), respectively. Note that the feedback (37) depends only on n
discrete-time measurements y(tk−n+1), . . . , y(tk), which is easy to
implement. One may store n − 1 measurements y(tk−n+1), . . . ,
y(tk−1) in the buffer.

Introduce the errors due to sampling

x̄0(tk) = x0(t) −
∫ t
tk
ẋ0(s)ds,

x̄i(tk) = x̄i(t) −
∫ t
tk

˙̄xi(s)ds, i = 1, . . . , n − 1.

Via (8), we have

x̄i(tk) = xi(t) −
∫ t
t−ih ϕi(t − s)ẋi(s)ds −

∫ t
tk

˙̄xi(s)ds,
i = 1, . . . , n − 1.

Then the system (2), (37) takes the form

dx(t) = f2(t)dt + Cx(t)dw(t), (38)

where

f2(t) = Dx(t) + B̄K̄0δ0(t) +
∑n−1

i=1 B̄K̄i(κi(t) + δi(t)),
δi(t) = −

∫ t
tk

˙̄xi(s)ds, i = 0, . . . , n − 1
(39)

with D, κi(t) given by (3), (12), respectively.

3.1. Stability of (38): direct method

To compensate δi(t) (i = 0, . . . , n− 1) in the stability analysis
of (38) we follow Selivanov and Fridman (2018a) and consider

VWi = h2
∫ t
tk
e−2α(t−s)

|˙̄xi(s)|
2
Wi
ds

−
π2

4 e−2αh
∫ t
tk
e−2α(t−s)

|δi(s)|2Wi
ds,

Wi > 0, i = 0, . . . , n − 1, t ∈ [tk, tk+1).

(40)

Since δ̇i(t) = −BK̄i ˙̄xi(t) and δi(tk) = 0, Lemma 2 implies VWi ≥ 0.
Using the generator L (Fridman & Shaikhet, 2019; Mao, 2007), we
obtain

LVWi + 2αVWi = h2
|˙̄xi(t)|

2
Wi

−
π2

4 e−2αhδTi (t)Wiδi(t),
i = 0, . . . , n − 1.

(41)

Differentiating (8) and via (5), (38), we have ˙̄x0(t) = x1(t) and

˙̄xi(t) =
∫ t
t−ih ψi(t − s)xi+1(s)ds, i = 1, . . . , n − 2,

˙̄xn−1(t) =
∫ t
t−(n−1)h ψn−1(t − s)Hn−1f2(s)ds
+

∫ t
t−(n−1)h ψn−1(t − s)Hn−1Cx(s)dw(s).

(42)

To compensate the terms x̄i(t), i = 1, . . . , n − 2, we consider

V̄Wi =
∫ t
t−ih e

−2α(t−s)ϕi(t − s)|xi+1(s)|2Wi
ds,

i = 1, . . . , n − 2.
(43)

Via (9) and using Lemma 1, we have

LV̄Wi + 2αV̄Wi ≤ |xi+1(t)|2Wi
− e−2αih

|˙̄xi(t)|
2
Wi
. (44)

For the deterministic part of ˙̄xn−1(t), we consider

VQ =
∫ t
t−(n−1)h e

−2α(t−s)ϕn−1(t − s)|Hn−1f2(s)|2Q ds (45)

with Q > 0. Lemma 1 leads to

LVQ + 2αVQ ≤ |Hn−1f2(t)|2Q − e−2α(n−1)hϱT
2 (t)Qϱ2(t), (46)

where

ϱ2(t) =
∫ t
t−(n−1)h ψn−1(t − s)Hn−1f2(s)ds.

Similarly, we define

ϱ3(t) =
∫ t
t−(n−1)h ψn−1(t − s)Hn−1Cx(s)dw(s).

By Itô integral properties and via (9), we obtain

Ehe−2α(n−1)hϱT
3 (t)F2ϱ3(t)

= Ehe−2α(n−1)h
∫ t
t−(n−1)h ψ

2
n−1(t − s)|Hn−1Cx(s)|2F2ds

≤ E
∫ t
t−(n−1)h e

−2α(t−s)ψn−1(t − s)|Hn−1Cx(s)|2F2ds.
(47)

Using the additional term

VF2 =
∫ t
t−(n−1)h e

−2α(t−s)ϕn−1(t − s)|Hn−1Cx(s)|2F2ds (48)

with F2 > 0 to compensate ϱ3(t), we have

ELVF2 + E2αVF2 ≤ E|Hn−1Cx(t)|2F2
− Ehe−2α(n−1)hϱT

3 (t)F2ϱ3(t).
(49)

We now consider the functional

V3 = V1 + V̄3, (50)

where V1 is defined by (14) with f1(t) changed by f2(t) and

V̄3 = VW0 +
∑n−2

i=1 (VWi + h2e2αihV̄Wi ) + VWn−1

+
(nh−h)2

4 VQ +
(n−1)h

2 VF2 .
(51)
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Then LMI conditions are derived as follows:

Theorem 3. Given K̄i (i = 0, . . . , n − 1) let the derivative-
dependent feedback (4) exponentially stabilizes (2), where C = 0,
with a decay rate ᾱ > 0.
(i) Given tuning parameters h > 0 and α ∈ (0, ᾱ), let there exist
nk × nk matrix P > 0, and k × k matrices W0 > 0, Ri > 0, Wi > 0
(i = 1, . . . , n − 1), F1 > 0, F2 > 0 and Q > 0 that satisfy

Φ3 < 0, Ω < 0, (52)

where Φ3 and Ω are the symmetric matrices composed from

Φ11 = sym{PD} + 2αP + CTPC + h2
|H1|

2
W0

+
∑n−2

i=1 |Hi+1|
2
(ih)2
4 Ri+h2e2αihWi

+
(n−1)h

2 |Hn−1C |
2
F1+F2 ,

Φ12 = PB̄[K̄1, . . . , K̄n−1], Φ14 = PB̄K̄ ,

Φ15 =
(n−1)h

2 DTHT
n−1(Rn−1 + Q ),

Φ22 = −diag{e−2αihRi}
n−1
i=1 ,

Φ23 = [0k×(n−2)k,−e−2α(n−1)hRn−1]
T ,

Φ25 =
(n−1)h

2 [K̄1, . . . , K̄n−1]
T B̄THT

n−1(Rn−1 + Q ),
Φ33 = −e−2α(n−1)h(Rn−1 + F1),

Φ44 = −
π2

4 e−2αhdiag{Wi}
n−1
i=0 ,

Φ45 =
(n−1)h

2 K̄ T B̄THT
n−1(Rn−1 + Q ),

Φ55 = −Rn−1 − Q ,
Ω11 = Wn−1 −

(n−1)2
4 e−2α(n−1)hQ , Ω12 = Wn−1,

Ω22 = Wn−1 −
n−1
2 e−2α(n−1)hF2

with D and K̄ given by (3). Then the sampled-data feedback (37)
with a sampling period h > 0 and controller gains (7) exponentially
mean-square stabilizes (2) with a decay rate α > 0.
(ii) Given any α ∈ (0, ᾱ), the LMI of item (i) is always feasible for
small enough stochastic perturbations and h > 0 (meaning that the
sampled-data feedback (37) with controller gains (7) exponentially
stabilizes (2) with a decay rate α > 0).

Proof. (i) Following arguments of Theorem 1 and in view of
(40)–(49), we obtain

ELV3 + E2αV3 ≤ Eξ T3 Φ̄3ξ3 + Eh2ηTΩη

+ E (nh−h)2
4 |Hn−1f2(t)|2Rn−1+Q ,

(53)

where ξ3 = col{ξ1, δ0(t), . . . , δn−1(t)} with ξ1 given by (19), η =

col{ϱ2(t), ϱ3(t)} and Φ̄3 is obtained from Φ3 given by (52) by
taking away the last block-column and block-row. Therefore, by
substituting f2(t) given by (39) and applying Schur’s complement
the system (38) is exponentially mean-square stable with a decay
rate α.
(ii) The proof of (ii) is similar to (ii) of Theorem 1. □

3.2. Stability via neutral type model transformation

As in the previous section, we also use neutral type model
transformation. Then the system (38) is equivalent to

dz(t) = (Dx(t) +
∑n−1

i=0 B̄K̄iδi(t))dt + Cx(t)dw(t) (54)

with D, z(t) and δi(t) given by (3), (24) and (39), respectively. For
(54), we consider the functional

V4 = V2 + V̄3, (55)

where V2 and V̄3 are given by (28) and (51), respectively. For the
term VP of V2, we have

LVP + 2αVP = 2ζ T (t)P ζ̃ (t)
+ xT (t)CTP11Cx(t) + 2αζ T (t)Pζ (t),

(56)

where ζ̃ (t) = Ξ̄2ξ2 with ξ2 given below (29) and

Ξ̄2 = Ξ2 + col{
∑n−1

i=0 B̄K̄iℓ2n+i−1, 0nk×lk}. (57)

Here Ξ2 is defined by (25). When we differentiate V4, we will
employ (46) that depends on f2. If the definition (39) of f2(t) is
directly applied, then the terms κi(t) (i = 1, . . . , n − 1) should
be compensated that complicates the stability analysis. To avoid
this, we use (23) to obtain a different representation

f2(t) = D̄x(t) + B̄K̄0δ0(t) +
∑n−1

i=1 B̄K̄i(δi(t) − µi(t)),
D̄ = D −

∑n−1
i=1 B̄K̄iHi.

(58)

By using V4 of (55) and in view of (56), (58), we arrive at the
following LMI conditions for the system (54):

Theorem 4. Given K̄i (i = 0, . . . , n − 1) let the derivative-
dependent feedback (4) exponentially stabilizes (2), where C = 0,
with a decay rate ᾱ > 0.
(i) Given tuning parameters h > 0 and α ∈ (0, ᾱ), let there exist
(2n − 1)k × (2n − 1)k matrix P = [Pij]n×n, k × k matrices W0 > 0,
Ri > 0, Si > 0, Wi > 0 (i = 1, . . . , n − 1), F2 > 0 and Q > 0 that
satisfy

Ψ > 0, Φ4aug < 0, Ω < 0, (59)

where Ψ and Ω are given by Theorems 2 and 3, and

Φ4aug = Φ̄4aug + sym{Ξ T
1 PΞ̄2} + 2αΞ T

1 PΞ1.

Here Ξ1 and Ξ̄2 are given by (25) and (57), and Φ̄4aug is the
symmetric matrix composed from

Φ11 = CTP11C +
∑n−1

i=1 |Hi|
2
(ih)2
4 Ri+Si

+
∑n−2

i=0 h2e2αih|Hi+1|
2
Wi

+
nh−h

2 |Hn−1C |
2
F2 ,

Φ15 =
(n−1)h

2 D̄THT
n−1Q ,

Φ22 = −diag{e−2αihRi}
n−1
i=1 ,

Φ33 = −diag{e−2αihSi}n−1
i=1 ,

Φ35 = −
(n−1)h

2 [K̄1, . . . , K̄n−1]
T B̄THT

n−1Q ,

Φ44 = −
π2

4 e−2αhdiag{Wi}
n−1
i=0 ,

Φ45 =
(n−1)h

2 K̄ T B̄THT
n−1Q , Φ55 = −Q

with K̄ given by (3). Then the sampled-data feedback (37) with
a sampling period h > 0 and controller gains (7) exponentially
mean-square stabilizes (2) with a decay rate α > 0.
(ii) Given tuning parameters h > 0 and α ∈ (0, ᾱ), let there exist
nk × nk matrix P11 > 0, k × k matrices W0 > 0, Ri > 0, Si > 0,
Wi > 0 (i = 1, . . . , n − 1), F2 > 0 and Q > 0 that satisfy

Φ4sim < 0, Ω < 0, (60)

where Φ4sim is obtained from Φ4aug given by (59) by setting P =

diag{P11, 0} and Ω is given by Theorem 3. Then the sampled-data
feedback (37) with a sampling period h > 0 and controller gains (7)
exponentially mean-square stabilizes (2) with a decay rate α > 0.
(iii) Given any α ∈ (0, ᾱ), the LMIs of items (i) and (ii) are
always feasible for small enough stochastic perturbations and h > 0
(meaning that the sampled-data feedback (37) with controller gains
(7) exponentially stabilizes (2) with a decay rate α > 0).
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Table 4
Max. delay h for different σ (continuous-time).
σ 0 0.05 0.1 0.2 0.3 0.4

Φ1 < 0 0.508 0.501 0.476 0.353 0.127 0.015
Φ2aug < 0 0.639 0.638 0.637 0.634 0.626 0.358
Φ2sim < 0 0.508 0.508 0.508 0.505 0.500 0.358

Table 5
Max. sampling period h for different σ (sampled-data).
σ 0 0.05 0.1 0.2 0.3 0.4

Φ3 < 0 0.103 0.102 0.098 0.075 0.028 0.003
Φ4aug < 0 0.099 0.098 0.096 0.088 0.054 0.010
Φ4sim < 0 0.065 0.063 0.060 0.050 0.027 0.006

3.3. Example: Furuta pendulum

Example 3 (Selivanov & Fridman, 2018a). Consider a model of
Furuta pendulum given by (2) with x = col{θ, φ, θ̇ , φ̇} and

[
A B̄

]
=

⎡⎢⎢⎣
0 0 1 0 0

0 0 0 1 0

37.377 0 −0.515 0.142 −35.42

−8.228 0 0.113 −0.173 43.28

⎤⎥⎥⎦ , (61)

where θ is the angular position of the pendulum, φ is the angle of
the rotational arm. The nonlinear model of Furuta pendulum con-
sists of two coupled nonlinear 2nd-order differential equations
with respect to θ and φ. We consider a model linearized in the
unstable equilibrium point 0. Following the classical arguments
for stochastic systems (see e.g. Shaikhet, 2013; Yaesh et al., 2004),
while considering a linearized system (two coupled 2nd-order
differential equations) we add multiplicative noise that models
the error due to linearization (this error increases when state
becomes larger). We therefore consider (2) with (61) and Ci = σ I2
(i = 0, 1), where σ ∈ R. The continuous-time state-feedback is
given by (4) with gains from Selivanov and Fridman (2018a):

K̄0 = [1.2826 0.0013], K̄1 = [0.1209 0.0086]. (62)

Consider now the system under the continuous-time delayed
controller (6). For different values of σ and α = 0.01, the
maximum values of delay h that preserve the exponential mean-
square stability are presented in Table 4. Note that the stability
conditions of Fridman and Shaikhet (2019) lead to the same
results as shown in Table 4. However, they are not applicable to
the nth-order systems for n > 2 and to sampled-data control for
n ≥ 2.

Consider next the sampled-data feedback given by (37) with
K̄0 and K̄1 in (62). For different values of σ and α = 0.01, Table 5
presents the maximum values of sampling period h via LMIsΦ3 <

0 and Ω < 0, LMIs Ψ > 0, Φ4aug < 0 and Ω < 0, LMIs Φ4sim < 0
and Ω < 0 (for brevity we write them as Φ3 < 0, Φ4aug < 0 and
Φ4sim < 0, respectively). In the deterministic case (σ = 0), the
result via LMI Φ3 < 0 coincides with the one of Selivanov and
Fridman (2018a). Clearly, LMI Φ4aug < 0 improves the results via
Φ4sim < 0, and LMI Φ4sim < 0 leads to efficient results for large
stochastic perturbations.

Fig. 1 plots |x| with x(0) = [π, 0, 0, 0]T . From Fig. 1, it is
clear that the sampled-data static output-feedback (37) leads
almost to the same performance as the full state-feedback (4).
Compared with the state-feedback (4) that requires the continu-
ously measured full system state [θ, φ, θ̇ , φ̇]

T , the sampled-data
feedback (37) uses only the sampled measurements θ (tk−1), θ (tk)
and φ(tk−1), φ(tk).

Fig. 1. Dynamics of (2) with (61) and σ = 0.4 under the state-feedback (4)
(black solid line), delay-dependent feedback (6) with h = 0.358 (blue dashed
line), and sampled-data feedback (37) with h = 0.010 (red dotted line).

4. Conclusions

This paper presented the time-delay and sampled-data im-
plementations of derivative-dependent control for the nth-order
stochastic systems. This was done by extending the recent ef-
ficient results in the deterministic case and by developing two
methods (direct method and neutral type model transforma-
tion). The presented methods can be extended to PID control of
stochastic systems. This may be a topic for future research.

References

French, M., Ilchmann, A., & Mueller, M. (2009). Robust stabilization by linear
output delay feedback. SIAM Journal on Control and Optimization, 48(4),
2533–2561.

Fridman, E. (2014). Introduction to time-delay systems: analysis and control. Basel:
Birkhäuser.

Fridman, E., & Shaikhet, L. (2016). Delay-induced stability of vector second-order
systems via simple Lyapunov functionals. Automatica, 74, 288–296.

Fridman, E., & Shaikhet, L. (2017). Stabilization by using artificial delays: an LMI
approach. Automatica, 81, 429–437.

Fridman, E., & Shaikhet, L. (2019). Simple LMIs for stability of stochastic systems
with delay term given by Stieltjes integral or with stabilizing delay. Systems
& Control Letters, 124, 83–91.

Gershon, E., & Shaked, U. (2019). Robust predictor based control of state
multiplicative noisy retarded systems. Systems & Control Letters, 132, Article
104499.

Gu, K., Chen, J., & Kharitonov, V. L. (2003). Stability of time delay systems. Boston:
Birkhäuser.

Kharitonov, V. L., Niculescu, S. -I., Moreno, J., & Michiels, W. (2005). Static output
feedback stabilization: necessary conditions for multiple delay controllers.
IEEE Transactions on Automatic Control, 50(1), 82–86.

Mao, X. (2007). Stochastic differential equations and applications. Chichester:
Horwood.

Niculescu, S. -I. (2001). On delay-dependent stability under model transforma-
tions of some neutral linear systems. International Journal of Control, 74(6),
609–617.

Niculescu, S. -I., & Michiels, W. (2004). Stabilizing a chain of integrators using
multiple delays. IEEE Transactions on Automatic Control, 49(5), 802–807.

Ramírez, A., Mondié, S., Garrido, R., & Sipahi, R. (2016). Design of proportional-
integral-retarded (PIR) controllers for second-order LTI systems. IEEE
Transactions on Automatic Control, 61(6), 1688–1693.

Ramírez, A., Sipahi, R., Mondié, S., & Garrido, R. (2017). An analytical approach
to tuning of delay-based controllers for LTI-SISO systems. SIAM Journal on
Control and Optimization, 55(1), 397–412.

Selivanov, A., & Fridman, E. (2016). Observer-based input-to-state stabilization
of networked control systems with large uncertain delays. Automatica, 74,
63–70.

Selivanov, A., & Fridman, E. (2018a). An improved time-delay implementation of
derivative-dependent feedback. Automatica, 98, 269–276.

Selivanov, A., & Fridman, E. (2018b). Sampled-data implementation of derivative-
dependent control using artificial delays. IEEE Transactions on Automatic
Control, 63(10), 3594–3600.

http://refhub.elsevier.com/S0005-1098(20)30299-5/sb1
http://refhub.elsevier.com/S0005-1098(20)30299-5/sb1
http://refhub.elsevier.com/S0005-1098(20)30299-5/sb1
http://refhub.elsevier.com/S0005-1098(20)30299-5/sb1
http://refhub.elsevier.com/S0005-1098(20)30299-5/sb1
http://refhub.elsevier.com/S0005-1098(20)30299-5/sb2
http://refhub.elsevier.com/S0005-1098(20)30299-5/sb2
http://refhub.elsevier.com/S0005-1098(20)30299-5/sb2
http://refhub.elsevier.com/S0005-1098(20)30299-5/sb3
http://refhub.elsevier.com/S0005-1098(20)30299-5/sb3
http://refhub.elsevier.com/S0005-1098(20)30299-5/sb3
http://refhub.elsevier.com/S0005-1098(20)30299-5/sb4
http://refhub.elsevier.com/S0005-1098(20)30299-5/sb4
http://refhub.elsevier.com/S0005-1098(20)30299-5/sb4
http://refhub.elsevier.com/S0005-1098(20)30299-5/sb5
http://refhub.elsevier.com/S0005-1098(20)30299-5/sb5
http://refhub.elsevier.com/S0005-1098(20)30299-5/sb5
http://refhub.elsevier.com/S0005-1098(20)30299-5/sb5
http://refhub.elsevier.com/S0005-1098(20)30299-5/sb5
http://refhub.elsevier.com/S0005-1098(20)30299-5/sb6
http://refhub.elsevier.com/S0005-1098(20)30299-5/sb6
http://refhub.elsevier.com/S0005-1098(20)30299-5/sb6
http://refhub.elsevier.com/S0005-1098(20)30299-5/sb6
http://refhub.elsevier.com/S0005-1098(20)30299-5/sb6
http://refhub.elsevier.com/S0005-1098(20)30299-5/sb7
http://refhub.elsevier.com/S0005-1098(20)30299-5/sb7
http://refhub.elsevier.com/S0005-1098(20)30299-5/sb7
http://refhub.elsevier.com/S0005-1098(20)30299-5/sb8
http://refhub.elsevier.com/S0005-1098(20)30299-5/sb8
http://refhub.elsevier.com/S0005-1098(20)30299-5/sb8
http://refhub.elsevier.com/S0005-1098(20)30299-5/sb8
http://refhub.elsevier.com/S0005-1098(20)30299-5/sb8
http://refhub.elsevier.com/S0005-1098(20)30299-5/sb9
http://refhub.elsevier.com/S0005-1098(20)30299-5/sb9
http://refhub.elsevier.com/S0005-1098(20)30299-5/sb9
http://refhub.elsevier.com/S0005-1098(20)30299-5/sb10
http://refhub.elsevier.com/S0005-1098(20)30299-5/sb10
http://refhub.elsevier.com/S0005-1098(20)30299-5/sb10
http://refhub.elsevier.com/S0005-1098(20)30299-5/sb10
http://refhub.elsevier.com/S0005-1098(20)30299-5/sb10
http://refhub.elsevier.com/S0005-1098(20)30299-5/sb11
http://refhub.elsevier.com/S0005-1098(20)30299-5/sb11
http://refhub.elsevier.com/S0005-1098(20)30299-5/sb11
http://refhub.elsevier.com/S0005-1098(20)30299-5/sb12
http://refhub.elsevier.com/S0005-1098(20)30299-5/sb12
http://refhub.elsevier.com/S0005-1098(20)30299-5/sb12
http://refhub.elsevier.com/S0005-1098(20)30299-5/sb12
http://refhub.elsevier.com/S0005-1098(20)30299-5/sb12
http://refhub.elsevier.com/S0005-1098(20)30299-5/sb13
http://refhub.elsevier.com/S0005-1098(20)30299-5/sb13
http://refhub.elsevier.com/S0005-1098(20)30299-5/sb13
http://refhub.elsevier.com/S0005-1098(20)30299-5/sb13
http://refhub.elsevier.com/S0005-1098(20)30299-5/sb13
http://refhub.elsevier.com/S0005-1098(20)30299-5/sb14
http://refhub.elsevier.com/S0005-1098(20)30299-5/sb14
http://refhub.elsevier.com/S0005-1098(20)30299-5/sb14
http://refhub.elsevier.com/S0005-1098(20)30299-5/sb14
http://refhub.elsevier.com/S0005-1098(20)30299-5/sb14
http://refhub.elsevier.com/S0005-1098(20)30299-5/sb15
http://refhub.elsevier.com/S0005-1098(20)30299-5/sb15
http://refhub.elsevier.com/S0005-1098(20)30299-5/sb15
http://refhub.elsevier.com/S0005-1098(20)30299-5/sb16
http://refhub.elsevier.com/S0005-1098(20)30299-5/sb16
http://refhub.elsevier.com/S0005-1098(20)30299-5/sb16
http://refhub.elsevier.com/S0005-1098(20)30299-5/sb16
http://refhub.elsevier.com/S0005-1098(20)30299-5/sb16


J. Zhang and E. Fridman / Automatica 119 (2020) 109101 9

Shaikhet, L. (2013). Lyapunov functionals and stability of stochastic functional
differential equations. Springer Science & Business Media.

Solomon, O., & Fridman, E. (2013). New stability conditions for systems with
distributed delays. Automatica, 49(11), 3467–3475.

Wang, H., & Zhu, Q. (2015). Finite-time stabilization of high-order stochastic
nonlinear systems in strict-feedback form. Automatica, 54, 284–291.

Xie, X. -J., & Duan, N. (2010). Output tracking of high-order stochastic nonlinear
systems with application to benchmark mechanical system. IEEE Transactions
on Automatic Control, 55(5), 1197–1202.

Yaesh, I., Shaked, U., & Yossef, T. (2004). Simplified adaptive control of F16
aircraft pitch and angle-of-attack loops. In 44st Israel annual conference on
aerospace sciences (pp. 25–26).

Zhang, J., & Fridman, E. (2019). Derivative-dependent control of stochastic
systems via delayed feedback implementation. In 58th IEEE conference on
decision and control (pp. 66–71).

Jin Zhang received the Ph.D. degree in control the-
ory and control engineering from Shanghai University,
Shanghai, China, in 2018. Since October 2018, he
has been a Post-Doctoral Fellow with the School of
Electrical Engineering, Tel Aviv University, Tel Aviv,
Israel. His research interests include time-delay sys-
tems, networked control systems, and event-triggered
control.

Emilia Fridman received the M.Sc. degree from Kuiby-
shev State University, USSR, in 1981 and the Ph.D.
degree from Voronezh State University, USSR, in 1986,
all in mathematics. From 1986 to 1992 she was an
Assistant and Associate Professor in the Department
of Mathematics at Kuibyshev Institute of Railway En-
gineers, USSR. Since 1993 she has been at Tel Aviv
University, where she is currently Professor of Electrical
Engineering-Systems. She has held visiting positions
at the Weierstrass Institute for Applied Analysis and
Stochastics in Berlin (Germany), INRIA in Rocquencourt

(France), Ecole Centrale de Lille (France), Valenciennes University (France),
Leicester University (UK), Kent University (UK), CINVESTAV (Mexico), Zhejiang
University (China), St. Petersburg IPM (Russia), Melbourne University (Australia),
Supelec (France), KTH (Sweden).

Her research interests include time-delay systems, networked control sys-
tems, distributed parameter systems, robust control, singular perturbations
and nonlinear control. She has published more than 180 articles in interna-
tional scientific journals. She is the author/co-author of two monographs. She
serves/served as Associate Editor in Automatica, SIAM Journal on Control and
Optimization and IMA Journal of Mathematical Control and Information. In 2014
she was Nominated as a Highly Cited Researcher by Thomson ISI. Since 2018, she
has been the incumbent for Chana and Heinrich Manderman Chair on System
Control at Tel Aviv University. She is IEEE Fellow since 2019. She is currently a
member of the IFAC Council.

http://refhub.elsevier.com/S0005-1098(20)30299-5/sb17
http://refhub.elsevier.com/S0005-1098(20)30299-5/sb17
http://refhub.elsevier.com/S0005-1098(20)30299-5/sb17
http://refhub.elsevier.com/S0005-1098(20)30299-5/sb18
http://refhub.elsevier.com/S0005-1098(20)30299-5/sb18
http://refhub.elsevier.com/S0005-1098(20)30299-5/sb18
http://refhub.elsevier.com/S0005-1098(20)30299-5/sb19
http://refhub.elsevier.com/S0005-1098(20)30299-5/sb19
http://refhub.elsevier.com/S0005-1098(20)30299-5/sb19
http://refhub.elsevier.com/S0005-1098(20)30299-5/sb20
http://refhub.elsevier.com/S0005-1098(20)30299-5/sb20
http://refhub.elsevier.com/S0005-1098(20)30299-5/sb20
http://refhub.elsevier.com/S0005-1098(20)30299-5/sb20
http://refhub.elsevier.com/S0005-1098(20)30299-5/sb20

	Improved derivative-dependent control of stochastic systems via delayed feedback implementation
	Introduction
	Continuous-time control
	Stability of m1-15: direct method
	Stability via neutral type model transformation
	Examples: chains of three and four integrators

	Sampled-data control
	Stability of m2-2: direct method
	Stability via neutral type model transformation
	Example: Furuta pendulum

	Conclusions
	References


