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a b s t r a c t

This paper investigates the stability of systems with fast-varying piecewise-continuous
coefficients and non-small delays. Starting from a recent constructive time-delay ap-
proach to periodic averaging, that allowed finding upper bound on small parameter
ϵ > 0 preserving the stability of the original delay-free systems, here we extend the
method to systems with non-small delays and provide their input-to-state stability
(ISS) analysis. The original time-delay system is transformed into a neutral type one
embedding both initial non-small delay, whose upper bound is essentially larger than ϵ

and does not vanish for ϵ → 0, and an additional induced delay due to transformation,
whose length is proportional to ϵ. By exploiting Lyapunov–Krasovskii theory, we derive
ISS conditions expressed as Linear Matrix Inequalities (LMIs), whose solution allows
evaluating upper bounds both on small parameter ϵ and non-small delays preserving
the ISS of the original time-delay system, as well as the resulting ultimate bound of
its solutions. We further apply our results to stabilization of delayed affine systems by
time-dependent switching. Three numerical examples illustrate the effectiveness of the
approach.

© 2022 Elsevier Ltd. All rights reserved.

1. Introduction

Averaging is one of the most powerful tools to deal with the stability of time-varying systems with a small parameter
> 0. [1–3]. The key idea of averaging relies in the approximation of the solution of a time-varying system by the one of
he averaged system. It has been proven that, under the assumption of exponential stability of the averaged system, the
symptotic stability of the original one can be also guaranteed if ϵ is small enough [1]. However, as pointed out in [4],
he main drawback of this classical approach is the inability to provide an efficient quantitative upper bound on the small
arameter ϵ till which stability is still ensured, thus fixing its proper value on the basis of numerical simulations [5].
o overcome this limitation, a time-delay-based approach to periodic averaging has been recently introduced in [4],
here the focus is to present original system as a neutral type system whose delay length is equal to ϵ. This kind of
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representation enables the derivation of input-to-state stability (ISS) conditions in terms of Linear Matrix Inequalities
(LMIs) by leveraging Lyapunov-Krasovskii theory for time-delay systems. These LMIs allow finding the upper bound of
the small parameter preserving the stability for a certain decay rate. Moreover, different from classical averaging theory,
where system coefficients are assumed continuous in time [1], this new approach allows considering them as piecewise-
continuous, thus covering also the class of fast switching systems. An extension of this approach can be found in [6],
where ISS and L2-gain analysis are provided both for deterministic and stochastic systems, while in [7] the time-delay
pproach has been applied for extremum seeking systems.
The classical averaging for systems with delays was presented in [5,8,9]. For instance, the stabilization of the inverted

endulum in the presence of feedback delays and periodic disturbances has been studied in [5] via classical averaging tools,
ut fixing both ϵ and delay values on the basis of numerical simulations and without providing stability conditions able
o find their upper bounds preserving stability performances. The significance of [5] is that it shows that the appropriate
veraged equations retain the delay term, as opposed to earlier results which suggest that the delay term can be neglected.
he time-delay approach to periodic averaging for systems with small delays of the order of ϵ was developed in [4].
owever, constructive conditions with efficient quantitative bounds for systems with non-small delays whose upper
ound is essentially larger than ϵ and does not vanish for ϵ → 0 is still an open problem.
As a subclass of hybrid systems, switched systems have received wide attention and there exist many contributions

aiming at stabilizability [10], synchronization [11] and fault estimation [12]. Among switched systems family, the switched
affine systems have attracted great interests due to its practical applications including DC–DC power conversion [13,14]
and biochemical networks [15]. The control goal is first to find a region of attainable equilibrium points and then
designing a proper switching function to drive the state trajectories to the desired one. In general, the switched affine
system have several equilibrium points which may not be equilibrium point of any isolated subsystem [16]. Thus, the
control is very challenging and requires an appropriate switching rule in order to achieve practical stabilization in the
neighborhood of the desirable equilibrium point [14,17–21]. For designing the switching function that stabilizes unstable
linear systems, the existence of Hurwitz convex combination guarantees existence of both state- and time-dependent
stabilizing switching rules [22]. For stabilization of the switched affine systems, most of the works suggest the state-
dependent switching [18,19]. Recently state-dependent switching was extended to affine systems with state delay [23,24].
Furthermore, to enlarge switching frequency, switching control together with event-triggered mechanism have been
employed for general LPV systems [25–27].

Differently from the state-dependent switching, the time-dependent switching law does not need to perform mea-
surements and calculations. The time-dependent switching law of linear systems with Hurwitz convex combination and
uncertainties can be designed by using periodic averaging as was suggested recently in [4], where the switching period
can be found from LMIs. However, results of [4] were confined to linear uncertain systems (without the affine terms),
whereas the delay was of the order of O(ϵ).

The aim of this work is to extend the time-delay approach to periodic averaging to the class of linear systems with
fast-varying coefficients in the presence of non-small delays. For this class of systems we consider the ISS analysis, which
allows providing the explicit expression of the Ultimate Bound (UB) for the solutions of the original systems. The result
of the proposed procedure are LMI-based conditions for finding upper bounds both on small parameter ϵ and non-small
delays preserving ISS for desired decay rate. Therefore, the main contributions of the work can be summarized as follows:
(i) different from [4] (see Sect. 5), where state delays upper bound is of order of O(ϵ), through this paper we relax this
ssumption on delays size by considering non-small delays; (ii) the ISS analysis for this class of systems via Lyapunov-
rasovskii theory leads to bounds on both delay and ϵ ensuring stability, as well as an explicit form of the UB; (iii) the
esults are applied to delayed switched affine systems allowing simple time-dependent switching in the presence of delays
nd system uncertainties. As pointed out in [5], extension of averaging to delays whose upper bound is essentially larger
han ϵ is important in many practical applications due to non-small delays that appear in feedback controllers or internal
ynamics latencies. To achieve this goal, we use a novel neutral-type transformation with respect to [4] which implies
lso the need of a novel Lyapunov-Krasovskii functional. This latter leads for the first time to stability conditions that
llows analytically finding upper bounds on ϵ and non-small delays, whose value is essentially larger than ϵ.
The structure of the paper is given as follows. The time-delay approach to periodic averaging for fast-varying systems

ith non-small delays and its ISS analysis are presented in Section 2 and Section 2.2, respectively, while a numerical
xample is carried out in Section 2.3. In Section 3 the results are applied to delayed switched affine systems, with
imulations presented in Section 3.1. Finally, conclusions are drawn in Section 4.

.1. Notation and useful lemma

Throughout the manuscript Rn denotes the n-dimensional Euclidean space with the vector norm | · |, while Rn×m is
he set of n×m real matrices with induced matrix norm ∥·∥. The superscript ⊤ stands for matrix transposition, while the
notation P > 0 with P ∈ Rn×n means that P is symmetric and positive definite, where its symmetric elements are denoted
by ⋆. C[−hM , 0] is the Banach space of continuous functions φ : [−hM , 0] → Rn with the norm ∥φ∥C = maxθ∈[−hM ,0] |φ(θ )|.
We also denote by W [−hM , 0] the space of absolutely continuous functions φ : [−hM , 0] → Rn, with dφ

dθ ∈ L2(−hM , 0)

nd with the norm ∥φ∥W = ∥φ∥C +

 dφ
 . L∞(0, t) is the space of essentially bounded functions φ : (0, t) → Rn with
dθ L2

2
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the norm ∥φ[0, t]∥∞ = ess supθ∈(0,t) |φ(θ )|. Moreover, a vector function h(ϵ) is of the order of ϵ, i.e. h(ϵ) ∼ O(δ(ϵ)), if
here exist positive constants k and c such that |h(ϵ)| ≤ k|δ(ϵ)|, ∀|ϵ| < c (see Definition 10.1 on p. 383 of [1]).

The following useful lemma on Jensen’s inequality and its extended version is given in the sequel that is instrumental
hrough the paper [28].

emma 1 ([29]). For any n × n matrix R > 0, scalars α ≤ β , functions f : [α, β] → R and φ : [α, β] → Rn such that the
ntegration concerned are well defined, the following Jensen’s inequality∫ β

α

φ⊤(s) dsR
∫ β

α

φ(s) ds ≤ (β − α)
∫ β

α

φ⊤(s)Rφ(s) ds, (1)

s well as the extended Jensen’s inequalities hold:∫ β

α

f (s)φ⊤(s) dsR
∫ β

α

f (s)φ(s) ds ≤

∫ β

α

|f (θ )| dθ
∫ β

α

|f (s)|φ⊤(s)Rφ(s) ds, (2)∫ β

α

∫ β

s
φ⊤(θ ) dθ dsR

∫ β

α

∫ β

s
φ(θ ) dθ ds ≤

(β − α)2

2

∫ β

α

∫ β

s
φ⊤(θ )Rφ(θ ) dθ ds. (3)

. Periodic averaging of systems with non-small delays

Given piecewise-continuous A : [0, ∞) → Rn×n and B : [0, ∞) → Rn×nw , a constant matrix Ad ∈ Rn×n and a small
parameter ϵ > 0, we consider the following class of fast-varying systems (see [8]):

ẋ(t) = A( t
ϵ
)x(t) + (Ad + ∆Ad(t))x(t − h(t)) + B( t

ϵ
)w(t), t ≥ 0, (4)

here x(t) ∈ Rn is the system state and w(t) ∈ Rnw is the disturbance, assumed to be locally essentially bounded,
.e. w(t) ∈ L∞(0, t), ∀t > 0. Moreover, ∆Ad(t) stands for parameter uncertainties affecting the delayed part such that
∆Ad(t)∥ ≤ κd, with κd > 0 a known constant. The function h(t) is the delay, assumed to be time-varying and bounded,
.e. 0 ≤ h(t) ≤ hM . Initial conditions of system (4) are given as x(θ ) = φ(θ ), θ ∈ [−hM , 0] and φ absolutely continuous
ith φ̇ ∈ L2[−hM , 0].

emark 1. System (4) contains both fast time t
ϵ
and slow time t . To deal with the interaction of slow and fast variables,

lassical averaging procedure has been deeply exploited [1,8]. Note that, compared to classical LPV system ẋ(t) = A(t)x(t),
the introduction of small parameter ϵ > 0 rescales this latter to the fast-time t

ϵ
. Thus, for ϵ small enough, A( t

ϵ
) varies

aster than A(t).

Let us introduce the following assumptions that are instrumental through the paper.

ssumption 1. The following holds:

1
ϵT

∫ t

t−ϵT
A(

s
ϵ
)ds = Aav + ∆A( t

ϵ
), ∥∆A( t

ϵ
)∥ ≤ κ, ∀

t
ϵ

≥ T , (5)

where Aav + Ad is Hurwitz matrix, T is the averaging period and κ > 0 is a small enough constant.

If Aav + Ad is Hurwitz, then the unperturbed averaged system

ẋav(t) = [Aav + ∆A( t
ϵ
)]xav(t) + (Ad + ∆Ad(t))xav(t − h(t)) (6)

is exponentially stable for small enough κ > 0, κd > 0 and hM ∼ O(ϵ) [4,29]. Here ∆A( t
ϵ
) involves system uncertainty,

hose norm is upper bounded by a known constant κ > 0.

ssumption 2. Following [4], we assume that all the entries akj( tϵ ) of A( t
ϵ
) in (4) belong to some finite intervals,

.e., akj( tϵ ) ∈ [akj, ākj] for
t
ϵ

≥ T , meaning that all akj are uniformly bounded, ∀k, j = 1, . . . , n.

If Assumption 2 is fulfilled, then A(τ ) in (4) with τ =
t
ϵ
can be expressed as the following convex combination:

A(τ ) =

N∑
i=1

ρi(τ )Ai ∀τ ≥ T , ρi ≥ 0,
N∑
i=1

ρi = 1, 1 ≤ N ≤ 2n2 , (7)

being Ai constant matrices with entries akj or ākj.

Assumption 3. All the entries bkv( tϵ ), v = 1, . . . , nw , of B( tϵ ) in (4) belong to some finite intervals, i.e., bkv( tϵ ) ∈ [bkv, b̄kv]
for t

≥ T , meaning that all b are uniformly bounded.

ϵ kv

3
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If Assumption 3 holds, then B(τ ) can be presented as

B(τ ) =

N̄∑
l=1

fl(τ )Bl, ∀τ ≥ T , fl ≥ 0,
N̄∑
l=1

fl = 1, 1 ≤ N̄ ≤ 2n×nw , (8)

where Bl are constant matrices whose entries are bkv or b̄kv .

2.1. Transformation to a neutral type system

Following the time-delay approach to averaging [4], we will present (4) in the form of neutral type system with
additional distributed delays of the length of ϵT . Let us introduce the following notations:

g(t, ϵ) = A( t
ϵ
)x(t) + B( t

ϵ
)w(t), (9)

G(t, ϵ) ≜
1
ϵT

∫ t

t−ϵT
(s − t + ϵT )g(s, ϵ) ds. (10)

or shortness, we omit the dependence on ϵ throughout this paper of g, G and Y in (14) below.
Then, by exploiting [6,30], it follows:

1
ϵT

∫ t

t−ϵT
ẋ(s) ds =

1
ϵT

[x(t) − x(t − ϵT )] =
d
dt

[
x(t) − G(t) −

1
ϵT

∫ t

t−ϵT
(Ad + ∆Ad(s))(s − t + ϵT )x(s − h(s)) ds

]
=

d
dt

[x(t) − G(t)] +
1
ϵT

∫ t

t−ϵT
(Ad + ∆Ad(s))x(s − h(s)) ds − (Ad + ∆Ad(t))x(t − h(t)).

(11)

ntegrating (4) on [t − ϵT , t] for t ≥ ϵT + hM and denoting z(t) = x(t) − G(t), we obtain:

ż(t) =
1
ϵT

∫ t

t−ϵT
A(

s
ϵ
)x(s) ds + (Ad + ∆Ad(t))x(t − h(t)) +

1
ϵT

∫ t

t−ϵT
B(

s
ϵ
)w(s) ds. (12)

y exploiting Assumption 1, the first integral term of (12) can be presented as

1
ϵT

∫ t

t−ϵT
A(

s
ϵ
) [x(s) + x(t) − x(t)] ds =

1
ϵT

∫ t

t−ϵT
A(

s
ϵ
)x(t) ds +

1
ϵT

∫ t

t−ϵT
A(

s
ϵ
)[x(s) − x(t)] ds

=
[
Aav + ∆A( t

ϵ
)
]
x(t) − Y (t),

(13)

ith

Y (t) =
1
ϵT

∫ t

t−ϵT
A(

s
ϵ
)
∫ t

s
ẋ(θ ) dθ ds, (14)

hile for the second integral term of (12) we exploit Assumption 3, i.e.,

1
ϵT

∫ t

t−ϵT
B(

s
ϵ
)w(s) ds =

∫ 1

0
B( t

ϵ
− Tθ )w(t − ϵTθ ) dθ =

N̄∑
l=1

Blwl(t), (15)

ith

wl(t) ≜
∫ 1

0
fl( tϵ − Tθ )w(t − ϵTθ ) dθ. (16)

ote that

|wl(t)| =

⏐⏐⏐⏐∫ 1

0
fl( tϵ − Tθ )w(t − ϵTθ ) dθ

⏐⏐⏐⏐ ≤

∫ 1

0
|fl( tϵ − Tθ )||w(t − ϵTθ )| dθ ≤ ∥w[0, t]∥∞, (17)

l = {1, . . . , N̄}, t ≥ ϵT due to 0 ≤ fl ≤ 1. Therefore, system (12) can be finally rewritten as:

ż(t) =
[
Aav + ∆A( t

ϵ
)
]
x(t) − Y (t) + (Ad + ∆Ad(t))x(t − h(t)) +

N̄∑
l=1

Blwl(t), t ≥ ϵT + hM . (18)

ystem (18) is a kind of neutral type system, where ẋ is given by (4). If w(t) = 0, (18) can be considered as a perturbation of
he averaged system (6) due to the presence of additional terms G(t) and Y (t), both of them of the order of O(ϵ) provided
(t) and ẋ(t) are of the order of O(1). Therefore, any solution x(t) of (4) satisfies (18). Thus, ISS of (18) guarantees ISS of
4).
4
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2.2. ISS analysis via direct Lyapunov method

In the sequel, we leverage Lyapunov-Krasovskii method for time-delay systems in order to find ISS conditions expressed
s LMIs. Upper bounds ϵ⋆ on ϵ and hM on the delay h(t) that ensure ISS of (18) can be found from these LMIs.

heorem 1. Let Assumptions 1–3 hold. Given matrices Aav, Ai(i = 1, . . . ,N), Ad, Bl(l = 1, . . . , N̄) and positive constants
, κd, α, ϵ⋆, T and hM , let there exist positive-definite matrices P, R, H, W , S and H̄ ∈ Rn×n, a matrix U ∈ Rn×n and

positive scalars b0, b1, . . . , bN̄ , λ, λd that satisfy the following LMIs:[
P −P
⋆ P + e−2αϵ⋆TR

]
≥ 0, (19)[

W U
⋆ W

]
≥ 0, (20)

1
T 2

∫ τ

τ−T
(ζ − τ + T )A⊤(ζ )HA(ζ ) dζ ≤ H̄ ∀τ ≥ T , (21)

and ⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ω

√
ϵ⋆TA⊤

i R
√

ϵ⋆TA⊤

i H̄
√
hMA⊤

i W
03n×n 03n×n 03n×n

0n×n
√

ϵ⋆TA⊤

d H̄
√
hMA⊤

d W
0n×n 0n×n

0(2n+N̄)×n

√
ϵ⋆T H̄

√
hMW

0N̄×n 0N̄×n
√

ϵ⋆TB⊤

l R
√

ϵ⋆TB⊤

l H̄
√
hMB⊤

l W

⋆

−R 0n×n 0n×n

⋆ −H̄ 0n×n
⋆ ⋆ −W

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
< 0 i = 1, . . . ,N, l = 1, . . . , N̄, (22)

here Ω∈ Rν×ν with ν = 7n + (N̄ + 1)nw is the symmetric block matrix whose elements are

Ω11 = PAav + A⊤

avP + 2αP + S + λκ2In −
1
hM

ρHW∈ Rn×n, Ω12 = −A⊤

avP − 2αP∈ Rn×n,

Ω13 = Ω24 = Ω27 = −P∈ Rn×n,

Ω14 = Ω17 = Ω23 = P∈ Rn×n, Ω15 = PAd +
1
hM

ρH (W − U)∈ Rn×n, Ω16 =
1
hM

ρHU∈ Rn×n,

Ω25 = −PAd∈ Rn×n, Ω44 = −λIn∈ Rn×n,

Ω18 = P
[
B1 B2 . . . BN̄ 0n×nw

]
∈ Rn×(N̄+1)nw , Ω22 = −

4
ϵ⋆T

ρϵR + 2αP∈ Rn×n, Ω28 = −Ω18,

Ω33 = −
2

ϵ⋆T
ρϵH∈ Rn×n,

Ω55 = −
1
hM

ρH (2W − U − U⊤) + λdκ
2
d In∈ Rn×n, Ω56 = −

1
hM

ρH (W − U)∈ Rn×n,

Ω66 = −ρH

(
S +

1
hM

W
)

∈ Rn×n,

Ω77 = −λdIn∈ Rn×n, ρϵ = e−2αϵ⋆T , Ω88 = −diag{b1Inw , . . . , bN̄ Inw , b0Inw }∈ R(N̄+1)nw×(N̄+1)nw , ρH = e−2αhM .

(23)

Then, for all ϵ ∈ (0, ϵ⋆
] there exists a positive constant ν such that the solutions of the delayed system (4) initialized by

φ ∈ W [−hM , 0] satisfy

|x(t)|2 ≤ νe−2α(t−ϵ⋆T−hM )
∥φ∥

2
W +

[
νe−2α(t−ϵ⋆T−hM )

+

∑N̄
l=0 bl
2α

]
∥w(t)∥2

∞
, ∀t ≥ 0 (24)

or all locally essentially bounded w(t) and φ ∈ W [−hM , 0], meaning that (4) is ISS for all ϵ ∈ (0, ϵ⋆] and h(t) ∈ [0, hM ].
Moreover, given ∆ > 0, the ball

X =

{
x ∈ Rn

: |x|2 ≤
b0 + · · · + bN̄

2α
∆2

}
(25)

s exponentially attractive with a decay rate α for (4).
5
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Proof. Consider the following Lyapunov-Krasovskii functional:

V (t) = VP (t) + VR(t) + VH (t) + VS(t) + VW (t), (26)

ith

VP (t) = z⊤(t)Pz(t), (27)

VR(t) =
1
ϵT

∫ t

t−ϵT
e−2α(t−s)(s − t + ϵT )2g⊤(s)Rg(s) ds, (28)

VH (t) =
1
ϵT

∫ t

t−ϵT

∫ t

s
e−2α(t−θ )(s − t + ϵT )ẋ⊤(θ )A⊤(

s
ϵ
)HA(

s
ϵ
)ẋ(θ ) dθ ds, (29)

VS(t) =

∫ t

t−hM

e−2α(t−s)x⊤(s)Sx(s) ds, (30)

VW (t) =

∫ t

t−hM

(s − t + hM )e−2α(t−s)ẋ⊤(s)Wẋ(s) ds. (31)

Note that VR(t) and VH (t) in (28)–(29) are to compensate G(t) and Y (t) in (18), while VS(t) and VW (t) in (30)–(31) are
standard terms for delay-dependent stability to compensate delay x(t − h(t)).

Differentiating VP (t) and VR(t) along the trajectories of (18) we have:

V̇P (t) + 2αVP (t) =2 [x(t) − G(t)]⊤ P[(Aav + ∆A( t
ϵ
))x(t) − Y (t) + (Ad + ∆Ad(t))x(t − h(t))

+

N̄∑
l=1

Blwl(t)] + 2α [x(t) − G(t)]⊤ P [x(t) − G(t)] , (32)

V̇R(t) + 2αVR(t) =(ϵT )g⊤(t)Rg(t) −
2
ϵT

∫ t

t−ϵT
e−2α(t−s)(s − t + ϵT )g⊤(s)Rg(s) ds. (33)

For the integral term in (33), Jensen’s inequality in (2) of Lemma 1 ensures that

2G⊤(t)RG(t) ≤

∫ t

t−ϵT
(s − t + ϵT )g⊤(s)Rg(s) ds. (34)

hen, inequality (33) can be re-written as

V̇R(t) + 2αVR(t) ≤ (ϵT )g⊤(t)Rg(t) −
4
ϵT

e−2αϵTG⊤(t)RG(t), (35)

with g(t) presented as

g(t) =

N∑
i=1

ρi( tϵ )Aix(t) +

N̄∑
l=1

fl( tϵ )Blw(t), (36)

here Assumptions 2 and 3 have been exploited. By differentiating VH (t) in (29) along (18), we find:

V̇H (t) + 2αVH (t) ≤ ẋ⊤(t)
( 1

ϵT

∫ t

t−ϵT
(s − t + ϵT )A⊤(

s
ϵ
)HA(

s
ϵ
) ds

)
ẋ(t) −

1
ϵT

e−2αϵT
∫ t

t−ϵT

∫ t

s
ẋ⊤(θ )A⊤(

s
ϵ
)HA(

s
ϵ
)ẋ(θ ) dθ ds.

(37)

or the first integral term in (37), as in [6], we apply the change of variable s = ϵζ and employ inequality (21), i.e.,

1
ϵ2T 2

∫ t

t−ϵT
(s − t + ϵT )A⊤(

s
ϵ
)HA(

s
ϵ
) ds =

1
T 2

∫ t
ϵ

t
ϵ −T

(ζ −
t
ϵ

+ T )A⊤(ζ )HA(ζ ) dζ ≤ H̄. (38)

or the second integral term of (37) we leverage the extended Jensen’s inequality in (3) of Lemma 1, i.e.,

2Y⊤(t)HY (t) ≤

∫ t

t−ϵT

∫ t

s
ẋ⊤(θ )A⊤(

s
ϵ
)HA(

s
ϵ
)ẋ(θ ) dθ ds, (39)

hus obtaining the following inequality

V̇H (t) + 2αVH (t) ≤ (ϵT )ẋ⊤(t)H̄ẋ(t) −
2

e−2αϵTY⊤(t)HY (t). (40)

ϵT

6
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Moreover, to compensate delayed terms, we differentiate VS(t) in (30) and VW (t) in (31), thus obtaining:

V̇S(t) + 2αVS(t) =x⊤(t)Sx(t) − e−2αhM x⊤(t − hM )Sx(t − hM ),

V̇W (t) + 2αVW (t) =hM ẋ⊤(t)Wẋ(t) −

∫ t

t−hM

e−2α(t−s)ẋ⊤(s)Wẋ(s) ds = hM ẋ⊤(t)Wẋ(t) −

∫ t

t−h(t)
e−2α(t−s)ẋ⊤(s)Wẋ(s) ds

−

∫ t−h(t)

t−hM

e−2α(t−s)ẋ⊤(s)Wẋ(s) ds.

(41)

By applying Jensen’s inequality to the last two integral terms of (41) together with Park inequality (see Lemma 3.4
in [29,31]) it yields:

V̇W (t) + 2αVW (t) ≤hM ẋ⊤(t)Wẋ(t) −
e−2αhM

hM

[
x(t)−x(t−h(t))

x(t−h(t))−x(t−hM )

]⊤
[
W U
⋆ W

] [
x(t)−x(t−h(t))

x(t−h(t))−x(t−hM )

]
, (42)

ith matrix U ∈ Rn×n such that inequality (20) holds. Summing-up (32)–(35)–(40)–(41)–(42) and by applying S-procedure
o compensate the terms ∆A( t

ϵ
)x(t) and ∆Ad(t)x(t − h(t)) in (32), along (18), for t ≥ ϵT + hM it yields:

V̇ (t) + 2αV (t) ≤ V̇ (t) + 2αV (t) + λ[κ2
|x(t)|2 − |∆A( t

ϵ
)x(t)|2] + λd[κ

2
d |x(t − h(t))|2 − |∆Ad(t)x(t − h(t))|2], (43)

ith some constant λ > 0 and λd > 0. Moreover, under Assumption 2 and Assumption 3, the derivative ẋ(t) in (40)–(41)
an be presented as

ẋ(t) =

N∑
i=1

ρi( tϵ )Aix(t) + (Ad + ∆Ad(t))x(t − h(t)) +

N̄∑
l=1

fl( tϵ )Blw(t). (44)

hen, by introducing the following vectors

ζ1(t) = col{x(t), G(t), Y (t), ∆A( t
ϵ
)x(t), x(t − h(t)), x(t − hM ), ∆Ad(t)x(t − h(t))} ∈ R7n,

w̄(t) = col{w1(t), w2(t), . . . , wN̄ (t), w(t)} ∈ R(N̄+1)nw , ξ (t) = col{ζ1(t), w̄(t)} ∈ Rν,
(45)

ith ν = 7n + (N̄ + 1)nw , inequality (43) can be recast as

V̇ (t)+ 2αV (t)− b0|w(t)|2 −

N̄∑
l=1

bl|wl(t)|2 ≤ ξ⊤(t)Ωξ (t)+ ẋ⊤(t)
[
(ϵ⋆T )H̄ + hMW

]
ẋ(t)+ (ϵ⋆T )g⊤(t)Rg(t), ∀t ≥ ϵT ,

(46)

here Ω ∈ Rν×ν is the symmetric block matrix whose elements are detailed in (23).
Furthermore, by Schur complement, if[

Ω Ξ12
⋆ Ξ22

]
< 0, (47)

ith Ξ12 ∈ Rν×3n and Ξ22 ∈ R3n×3n given as

Ξ12 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

√
ϵ⋆T

N∑
i=1

ρi( tϵ )A
⊤

i R
√

ϵ⋆T

N∑
i=1

ρi( tϵ )A
⊤

i H̄
√
hM

N∑
i=1

ρi( tϵ )A
⊤

i W

03n×n 03n×n 03n×n

0n×n
√

ϵ⋆TA⊤
d H̄

√
hMA⊤

d W

0n×n 0n×n

0(2n+N̄)×n
√

ϵ⋆T H̄
√
hMW

0N̄×n 0N̄×n

√
ϵ⋆T

N̄∑
l=1

fl( tϵ )B
⊤

l R
√

ϵ⋆T

N̄∑
l=1

fl( tϵ )B
⊤

l H̄
√
hM

N̄∑
l=1

fl( tϵ )B
⊤

l W

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, Ξ22 = −diag{R, H̄,W }, (48)

or t ≥ ϵT + hM we have:

V̇ (t) + 2αV (t) − b0|w(t)|2 −

N̄∑
l=1

bl|wl(t)|2 ≤ 0. (49)

ote that, (22) implies 1 (and thus (49)) since 1 is affine in
∑N

ρ ( t )A and
∑N̄ f ( t )B .
i=1 i ϵ i l=1 l ϵ l

7
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With the aim of proving ISS, it is worth noting that for all ϵ ∈ (0, ϵ⋆
], V (t) is positive-definite since, by Jensen’s

inequality, we have (19). The comparison principle applied to (49) leads to

|x(t)|2 ≤ V (t) ≤ e−2α(t−ϵT−hM )V (ϵT ) +

∑N̄
l=0 bl
2α

∥w[0, t]∥2
∞

t ≥ ϵT , ϵ ∈ (0, ϵ⋆
]. (50)

In addition, by definition of (26), for some positive ϵ-independent ν1, the following holds:

V (ϵT ) ≤ ν1

[
∥xϵT∥

2
W +

∫ ϵT

−hM

|ẋ(s)|2 ds
]

. (51)

y denoting xt (θ ) = x(t + θ ) with θ ∈ [−hM , 0], from (4), it follows:

xt (θ ) =

{
φ(t + θ ), t + θ < 0
φ(0) +

∫ t+θ

0 [A( s
ϵ
)x(s) + (Ad + ∆Ad(t))x(s − h(s)) + B( s

ϵ
)w(s)] ds, t + θ ≥ 0

(52)

ue to Assumption 3, there exists b > 0 such that ∥B(τ )∥ ≥ b. Then, from (52), the following holds:

∥xt∥W ≤ ∥φ∥W +

∫ 0

−θ

ν2∥φ(s)∥W ds + b(ϵT + hM )∥w[0, t]∥∞, t ≥ 0, (53)

or some ϵ-independent ν2 > 0. By Gronwall’s inequality, (53) implies

∥xt∥W ≤ eν2hM ∥φ∥W + b(ϵT + hM )∥w[0, t]∥∞ t ∈ [0, ϵT + hM ]. (54)

rom this latter, it follows that

∥xt∥2
W ≤ e2ν2hM ∥φ∥W + b2(ϵT + hM )2∥w[0, t]∥2

∞
t ∈ [0, ϵT + hM ]. (55)

imilarly, from (4), we have:

|ẋ(t)|2 ≤ ν3∥φ∥
2
W + b2∥w[0, t]∥2

∞
t ∈ [0, ϵT + hM ], (56)

or some ϵ-independent ν3 > 0. Substitution of (55)–(56) into (51) leads to

V (ϵT ) ≤ ν1

[
e2ν2hM ∥φ∥

2
W + b2(ϵT + hM )2∥w[0, t]∥2

∞

]
. (57)

ence, taking into account (50) and (57), it is easy to verify that inequality (24) holds (and, thus, (25)) for some
-independent ν > 0. □

To minimize ellipsoid radius in Eq. (25), while guaranteeing the fulfillment of Theorem 1, the following constrained
ptimization problem can be solved:
Let Assumptions 1–3 hold. Given the set of tuning parameters {κ, κd, α, ϵ⋆, T , hM} and matrices {Aav, Ai, Ad, Bl} of

heorem 1, find positive definite n×n matrices P, R, H, S, W , H̄ , matrix U , scalars λ > 0, λd > 0 and bl, ∀l = 0, . . . , N̄
uch that

min
b1,b2,...,bN̄

N̄∑
l=0

bl
(
{κ, κd, α, ϵ⋆, T , hM}, {Aav, Ai, Ad, Bl}

)
subject to (19)–(22) (58)

o solve (58), several optimization software tools are available, e.g. MOSEK [32], which has a MATLAB API accessible via
he YALMIP parser [33].

emark 2. Note that in [4] Ad was supposed to be time-varying with the average Adav and with Hurwitz Aav + Adav ,
whereas G(t) was defined by (10) with g(t) changed by ẋ. The latter led to conditions that were feasible for hM ∼ O(ϵ).
xtension of averaging to non-small delays is important due to non-small delays that appear in feedback controllers
r internal dynamics latencies, that require proper compensation in the stability analysis (see [5]). Compared to [4], the
hange of g(t) (and, thus, of G(t)) leads to a novel neutral type transformation in (18), where z(t) = x(t)−G(t). Moreover, a
ovel Lyapunov-Krasovskii candidate in (26) with additional terms (30)–(31) has been exploited to compensate non-small
elays.
8
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Remark 3. Assume Aav + Ad to be Hurwitz. Given hM > 0, let there exist positive constants α, κ and κd such that the
ollowing standard delay-dependent condition⎡⎢⎢⎢⎢⎢⎢⎣

Ω0+S P PAd+
1

hM
ρH (W−U) 1

hM
ρHU P

√
hMA⊤

avW

⋆ −λIn 0n×n 0n×n 0n×n 0n×n

⋆ ⋆ −
1

hM
ρH (2W−U−U⊤)+λdκ

2
d In −

1
hM

ρH (W−U) 0n×n
√
hMA⊤

d W

⋆ ⋆ 0n×n −ρH (S+ 1
hM

W ) 0n×n 0n×n

⋆ ⋆ ⋆ ⋆ −λdIn
√
hMW

⋆ ⋆ ⋆ ⋆ ⋆ −W

⎤⎥⎥⎥⎥⎥⎥⎦ < 0 (59)

nd (20) hold with Ω0 = PAav +A⊤
avP+2αP+λκ2In. Then, the averaged system (6) is exponentially stable with a decay rate

> 0 for all h(t) ≤ hM and for small enough κ > 0 and κd > 0 [29]. Therefore, given non-small ϵ-independent hM > 0
atisfying (20) and (59), LMIs of Theorem 1 are always feasible for small enough ϵ⋆ > 0 with the same α > 0, κ > 0 and
d > 0 as in (59) since, by Schur complements, (22) is O(ϵ)-perturbation of (59).

.3. Example: [5] Stabilization of the inverted pendulum in the presence of feedback delays and disturbances

Consider the system consisting of a cart and a planar pendulum apparatus in a reference frame subjected to a
eriodic amplitude and frequency disturbances along the horizontal axis. To stabilize the inverted pendulum, a delayed
roportional controller for pendulum position has been introduced. Following the approach of [5] in coordinate changing
nd by linearizing the model at the upper equilibrium position, i.e. x1 = π and x2 = 0, we consider:

ẋ(t) =

[
0 1

cos2 t
ϵ

−1 −(c+∆c)

]
x(t) +

[ 0 0
Kp 0

]
x(t − h(t)) +

[
cos2 t

ϵ

sin t
ϵ

]
w(t) (60)

ith parameter c > 0 and periodic B( t
ϵ
) due to attempting control on an unsteady platform. Furthermore, it is reasonable

to add uncertainties ∆c on this latter arising from the presence of the damping coefficient of the planar joint and such
hat |∆c| ≤ c1, with c1 > 0. From A( t

ϵ
) in (60), Assumptions 1–3 hold with T = 2π and

Aav =

[
0 1

−0.5 −c

]
, ∆A =

[
0 0
0 −∆c

]
. (61)

ote that, to compute matrices in (61) it has been used that cos t
ϵ

∈ [−1, 1] and its average is zero, while cos2 t
ϵ

∈ [0, 1]
and its average is 0.5. Moreover, c > 0 guarantees that Aav+Ad is Hurwitz. We choose c = 0.05. Under above assumptions,
A( t

ϵ
) and B( t

ϵ
) can be expressed as the following convex combination of N = 4 and N̄ = 2 constant matrices, respectively:

Ai =

[
0 1

−0.5 ± 0.5 −0.05 + c1

]
, i = 1, 2, Ai =

[
0 1

−0.5 ± 0.5 −0.05 − c1

]
, i = 3, 4, B1 =

[
1
0

]
, B2 =

[
0
0

]
.

(62)

In order to prove the feasibility of (58), firstly we have to verify that condition in (21) holds. Following the approach
of [6], we assume that H = hI2, with h > 0. Then, from (21) we have:

1
T 2

∫ t
ϵ

t
ϵ −T

(ζ −
t
ϵ

+ T )A⊤(ζ )HA(ζ ) dζ ≤
h
T 2

∫ t
ϵ

t
ϵ

− T
(ζ −

t
ϵ

+ T )A⊤(ζ )A(ζ ) dζ ≤
h
2

[
0 0
0 1

]

+
h
T

∫ t
ϵ

t
ϵ

− T

[
(cos2 ζ − 1)2 (0.05 + c1)(1 − cos2 ζ )

⋆ (1 + c1)2

]
dζ = hΛ = H̄,

(63)

here Λ has the following form:

Λ =

[
0.3750 0.5(0.05 + c1)

⋆ (0.05 + c1)2 + 0.5

]
. (64)

e consider two cases: i nominal case, where c1 = 0, meaning that no uncertainties on damping coefficient are imposed,
nd ii uncertain case, where c1 ̸= 0, with c1 = 0.01. Clearly, in the nominal case, κ = 0 and the number of vertices in
62) are N = 2 and N̄ = 2, respectively, while H̄ = hΛ with c1 = 0. In the uncertain case, c1 = 0.01 leads to κ = c1 and
a number of vertices N = 4 and N̄ = 2, while H̄ = hΛ. Both for nominal and uncertain scenarios two different values for
the decay rate are considered in order to disclose the impact of the convergence rate on ϵ⋆ and h .
M

9
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Fig. 1. Time history of state trajectories of system (60) with ϵ⋆
= 0.054, hM = 0.8 and w(t) = sin(t) if t ≤ 10, w(t) = 0 otherwise.

Table 1
Example 2.3. Upper bound hM for each set of tuning
parameters {σi, αj, ϵ

⋆, T }, with i, j = 1, 2 and ϵ⋆
= 0.038.

α hM

ϵ⋆
= 0.038, c1 = 0

1
10π

0.946

0.005 0.970

ϵ⋆
= 0.038, c1 = 0.01

1
10π

0.913

0.005 0.948

Maximum delay bound hM : Firstly, our aim is to find the upper bound hM for the time-varying delay h(t) that preserves the
SS by satisfying (58) for each set of tuning parameters {κi, αj, ϵ

⋆, T }, i, j = 1, 2. This means that the following four sets of
uning parameters are considered: S1,j = {κ1, αj, ϵ

⋆, T } and S2,j = {κ2, αj, ϵ
⋆, T }, j = 1, 2, with κ1 = 0, κ2 = 0.01, α1 =

1
10π and α2 = 0.005. Given Si,j, we solve (58) by verifying the feasibility of the LMIs of Theorem 1. Specifically, we fix
⋆
= 0.038 and for each set of tuning parameters we iteratively increase the value of hM in order to find its maximum value

ill LMIs of Theorem 1 still holds. Results are shown in Table 1, where it is possible to observe that for all ϵ ∈ (0, 0.038]
and for α =

1
10π the fulfillment of Theorem 1 is guaranteed for hM = 0.946, while in uncertain scenario a lower value is

ound, i.e. hM = 0.913. A smaller convergence rate (i.e. α = 0.005) leads to larger upper bounds for time-varying delays,
oth in nominal and uncertain scenarios, i.e. hM = 0.970 and hM = 0.948, respectively. The above results confirm that
SS is preserved in the presence of larger delays, whose values are essentially larger than ϵ.

aximum ϵ bound ϵ⋆: Starting from results in Table 1, now we fix the value of hM and iteratively increase the value of ϵ
n order to find its upper bound ϵ⋆ that preserves the ISS of system (60), for all ϵ ∈ (0, ϵ⋆

] and h(t) ∈ [0, hM ]. For the four
ets of tuning parameters Sh

i,j = {κi, αj, hM , T }, i, j = 1, 2, we choose hM = 0.8, while κi and αj are selected as previously.
Table 2 shows the results of this latter analysis. In particular, it has been found that for the couple (hM = 0.8, α =

1
10π )

ISS is preserved for all ϵ ∈ (0, 0.057] in nominal scenario, while this range is restricted in the uncertain scenario, where
ϵ⋆

= 0.051 due to polytopic uncertainties. Similar results have been obtained for the couple (hM = 0.8, α = 0.005), even
though with larger values for ϵ⋆ due to an improved convergence rate (α = 0.005), i.e. ϵ⋆

= 0.061 in nominal scenario
and ϵ⋆

= 0.054 in uncertain scenario, respectively.
Compared with [5], where both the values of ϵ = 0.1 and hM = 0.5 have been fixed by numerical simulations,

firstly our approach leads to larger maximum admissible delays, and also it provides for the first time stability conditions
expressed as LMIs whose solution allows quantifying theoretical upper bounds ϵ⋆ and hM , even if these latter could result
smaller w.r.t. the ones found by simulations. Moreover, differently from [4] (see Example 5.1 in [4]), Tables 1 and 2 confirm
the feasibility of LMIs in (19)–(22) for non-small delays whose upper bound hM is essentially larger than ϵ.

Finally, state trajectories of system (60) can be seen in Fig. 1, where the external disturbance w(t) has been selected
as w(t) = sin(t) for t ∈ [0, 10] [s] and w(t) = 0 otherwise, thus confirming theoretical derivation.

3 Robust stabilization of affine systems by time-dependent switching

In this section we will apply the averaging via the time-delay approach to switched affine systems with non-small
delays

ẋ(t) = Ã x(t) + A + ∆A (t) x(t − h(t)) + B̃ , (65)
σ (t) ( d d ) σ (t)

10
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Table 2
Example 2.3. Upper bound ϵ⋆ for each set of tuning
parameters {σi, αj, ϵ

⋆, T }, with i, j = 1, 2 and hM = 0.8.

α ϵ⋆

hM = 0.8, c1 = 0
1

10π
0.057

0.005 0.061

hM = 0.8, c1 = 0.01
1

10π
0.051

0.005 0.054

where x(t) ∈ Rn, Ãσ (t) = Aσ (t) + ∆Aσ (t)(t), B̃σ (t) = Bσ (t) + ∆Bσ (t)(t), σ : R → I = {1, 2, . . . ,N} is a switching law, ϵ > 0
is a small enough positive constant, Ad ∈ Rn×n, Ai ∈ Rn×n, Bi ∈ Rn (i ∈ I) are the nominal matrices, while ∆Ad(t) ∈ Rn×n,
∆Ai(t) ∈ Rn×n, ∆Bi(t) ∈ Rn (i ∈ I) are the perturbations with respect to the nominal values satisfying

∥∆Ad∥ ≤ κd, ∥∆Ai∥ ≤ κ, |∆Bi| ≤ κb, i ∈ I.

Here κd, κ and κb are some small enough positive constants. For this class of systems, given the simplex Λ =

{
λ =

[λ1, λ2, . . . , λN ]T ∈ RN , λi ≥ 0,
∑N

i=1λi = 1
}
, generating the convex combinations

Ã(λ) =

N∑
i=1

λiAi + Ad ≜ A(λ) + Ad, B(λ) =

N∑
i=1

λiBi, λ ∈ Λ,

we assume that there exists the subset ΛH ⊆ Λ such that ΛH = {λ ∈ Λ : Ã(λ) is Hurwitz}. In the absence of uncertainties
and time-delay, the set of equilibrium points for (65) is given by Se =

{
xe : xe = −Ã−1(λ)B(λ), λ ∈ ΛH

}
. Moreover,

any xe = −Ã−1(λ)B(λ) is also an admissible equilibrium point for delayed system (65) without uncertainties, since x(t)
approaches it for t → ∞ together with x(t − h(t)) (see e.g. [23]).

Given an equilibrium point xe ̸= 0 ∈ Se and denote the error e(t) = x(t) − xe, where x(t) is solution of (65). It follows
that system (65) can be presented as

ė(t) = Ãσ (t)e(t) + (Ad + ∆Ad)e(t − h(t)) + B̄σ (t) + ∆B̄σ (t), (66)

with B̄σ (t) = Bσ (t) + (Aσ (t) + Ad)xe and ∆B̄σ (t) = ∆Bσ + (∆Aσ (t) + ∆Ad)xe. As xe = −Ã−1(λ)B(λ), λ ∈ ΛH , then
N∑
i=1

λiB̄σ (t) = B(λ) + Ã(λ)xe = 0.

Thus, without loss of generality, we can assume that xe = 0 is the equilibrium point of affine system (65). Hence, we
leverage the following assumption.

Assumption 4. There exists λ ∈ ΛH such that Ã(λ) is Hurwitz and B(λ) = 0.

Hence, we can design the time-dependent periodic switching law σ (t) as

σ (t) = i, t ∈

⎡⎣⎛⎝k +

i−1∑
j=0

λj

⎞⎠ ϵ,

⎛⎝k +

i∑
j=0

λj

⎞⎠ ϵ

⎞⎠ , i ∈ I (67)

with λ ∈ ΛH , λ0 = 0 and k = 0, 1, 2, . . .. For each time interval in (67), we introduce the indicator function
χi(τ ) = χ

[(k+
∑i−1

j=1 λj)ϵ,(k+
∑i

j=1 λj)ϵ)
, with τ =

t
ϵ

∈ [k, k + 1] and
∑N

i=1 χi(τ ) = 1. Hence, system (65) can be presented
s

ẋ(t) =

N∑
i=1

χi(τ )(Ai + ∆Ai(τ ))x(t) + (Ad + ∆Ad)x(t − h(t)) +

N∑
i=1

χi(τ )(Bi + ∆Bi(τ )), ∀i ∈ I, (68)

ith λ ∈ ΛH , k = 0, 1, 2..., τ =
t
ϵ

∈ [k, k + 1].
Using notations (9)–(10) and (14) and integrating (68) [t − ϵ, t] for t ≥ ϵ + hM , we finally obtain

ż(t) = [Aav + ∆Aσ (t)]x(t) − Y (t) + (Ad + ∆Ad) x(t − h(t)) + ∆Bσ (t), t ≥ ϵ + hM . (69)

ere z(t) = x(t) − G(t), Aav = A(λ), x(t) satisfies (65), g(s) = Aσ (s)x(s) + Bσ (s) and Y (t) as in (14) with A( s
ϵ
) replaced by

σ (s).
Therefore, system (65) is practically stable if the time-delay system (69) is practically stable . By using arguments of

heorem 1, the following result is obtained for delayed switched affine systems:
11
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Theorem 2. Consider the switched affine system with time-varying delays (65) and let Assumption 4 hold. Given matrices
Aav, Ai(i = 1, . . . ,N), Ad, ∆Ad, Bi(i = 1, . . . ,N) and positive constants κ, κd, κb, α, ϵ⋆, T = 1 and hM , let there exist
positive-definite matrices P, R, H, W , S and H̄ ∈ Rn×n, a matrix U ∈ Rn×n and scalars λ > 0, λd, b0 and b > 0 that satisfy
(19), (20), (21) and the following LMIs⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Υ

⎡⎢⎢⎢⎢⎢⎢⎢⎣

√
2A⊤

i R
√
2A⊤

i (ϵ⋆H̄+hMW )

02n×n 02n×n

0n×n
√
2(ϵ⋆H̄+hMW )

0n×n
√
2A⊤

d (ϵ⋆H̄+hMW )

0n×n 0n×n

0n×n
√
2(ϵ⋆H̄+hMW )

0n×n
√
2(ϵ⋆H̄+hMW )

⎤⎥⎥⎥⎥⎥⎥⎥⎦
⋆

[
−

1
ϵ⋆

R 0n×n

⋆ −(ϵ⋆H̄+hMW )

]

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
< 0, i = 1, . . . ,N, (70)

[
b0(ϵ⋆

+hM ) B⊤
i [2ϵ⋆(R+H̄)+2hMW ]

⋆ 2ϵ⋆(R+H̄)+2hMW

]
> 0, (71)

with

Υ =

[
Ῡ

[ P
−P

05n×5n

]
⋆ −b

]
, (72)

Ξ22 defined in (48) as Ξ22 = −diag{R, H̄,W } and Ῡ obtained from Ω in (23) by removing the last block-column and block-
row. Then, the delayed switched affine system (65) is practically exponentially stable with a decay rate α > 0 for all ϵ ∈ (0, ϵ⋆

]

and h(t) ∈ [0, hM ], meaning that there exists a positive constant ν̃ such that the solutions of the delayed system (65) initialized
by φ ∈ W [−hM , 0] satisfy

|x(t)|2 ≤ ν̃e−2α(t−ϵ⋆
−hM )

∥φ∥
2
W +

[
ν̃e−2α(t−ϵ⋆

−hM )
+

b0(ϵ⋆
+ hM ) + bκ2

b

2α

]
, ∀t ≥ 0. (73)

oreover, the ball

Xϵ⋆ =

{
x ∈ Rn

: |x|2 ≤
b0(ϵ⋆

+ hM ) + bκ2
b

2α

}
, (74)

s exponentially attractive with decay rate α > 0 for (65) for all φ ∈ W [−hM , 0].

roof. Choose the Lyapunov–Krasovskii functional V (t) as in (26), with A( s
ϵ
) = Aσ (s). Then, following arguments of

Theorem 1, for t ≥ ϵ + hM , we have:

V̇ (t) + 2αV (t) − b|∆Bσ (t)|
2
− b0(ϵ⋆

+ hM ) ≤ξ1(t)Υ ξ1(t) + ϵ⋆(Aσ (t)x(t) + Bσ (t))⊤R(Aσ (t)x(t) + Bσ (t))

+ ẋ⊤(t)(ϵ⋆H̄ + hMW )ẋ(t) − b0(ϵ⋆
+ hM ),

(75)

with matrix H̄ as in (21), ξ⊤

1 (t) = [ζ⊤

1 (t), ∆B⊤

σ (t)] and Υ as in (72). Substituting (65) into (75) and applying Young’s
inequality, we obtain:

V̇ (t)+2αV (t) − b|∆Bσ (t)|
2
− b0(ϵ⋆

+ hM ) ≤ ξ⊤

1 (t)Υ ξ1(t) + 2ϵ⋆x⊤(t)A⊤

σ (t)RAσ (t)x(t) + 2ϵ⋆B⊤

σ (t)RBσ (t)

− b0(ϵ⋆
+ hM ) + 2B⊤

σ (t)(ϵ
⋆H̄ + hMW )Bσ (t) + 2

[
(Aσ (t) + ∆Aσ (t))x(t) + (Ad + ∆Ad)x(t − h(t)) + ∆Bσ (t)

]⊤

× (ϵ⋆H̄ + hMW )
[
(Aσ (t) + ∆Aσ (t))x(t) + (Ad + ∆Ad)x(t − h(t)) + ∆Bσ (t)

]
= ξ⊤

1 (t)[Υ + Σ]ξ1(t) + 2ϵ⋆B⊤

σ (t)RBσ (t) − b0(ϵ⋆
+ hM ) + 2B⊤

σ (t)(ϵ
⋆H̄ + hMW )Bσ (t),

(76)

here Σ is the symmetric block matrix whose elements are

Σ11 = 2
N∑
i=1

χi(τ )A⊤

i (ϵ
⋆H̄ + hMW )

N∑
i=1

χi(τ )Ai + 2ϵ⋆

N∑
i=1

χi(τ )A⊤

i R
N∑
i=1

χi(τ )Ai,

Σ14 = Σ17 = Σ18 = 2
N∑
i=1

χi(τ )A⊤

i (ϵ
⋆H̄ + hMW ), Σ15 = 2

N∑
i=1

χi(τ )A⊤

i (ϵ
⋆H̄ + hMW )Ad,

Σ44 = Σ47 = Σ48 = Σ77 = Σ78 = Σ88 = 2(ϵ⋆H̄ + hMW ), Σ45 = 2(ϵ⋆H̄ + hMW )Ad,

⊤ ⋆ ¯ ⊤ ⋆ ¯

(77)
Σ55 = 2Ad (ϵ H + hMW )Ad, Σ57 = Σ58 = 2Ad (ϵ H + hMW ),
12
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and other blocks are zero matrices. By applying Schur complement to (76) and taking into account that Σ is affine in
N
i=1 χi(τ )Ai, if (70)–(71) hold, then we have

V̇ (t) + 2αV (t) − b|∆Bσ (t)|
2
− b0(ϵ⋆

+ hM ) ≤ 0, t ≥ ϵ. (78)

he rest of the proof is similar to that in Theorem 1. □

emark 4. Note that system (65) can be presented as (4) with A(τ ) =
∑N

i=1χi(τ )(Ai + ∆Ai(τ )), B(τ ) =
∑N

i=1χi(τ )(Bi +

Bi(τ )), τ =
t
ϵ
. For ∆Ai = ∆Bi = 0, both A(τ ) and B(τ ) are T = 1-periodic. Then, we have:

∆A(τ ) =

N∑
i=1

∫ λi

λi−1

∆Ai(τ − θ )dθ, ∆B(τ ) =

N∑
i=1

∫ λi

λi−1

∆Bi(τ − θ )dθ,

ith λ0 = 0 and

∥∆A(τ )∥ ≤ sumN
i=1

∫ λi

λi−1

∥∆Ai(τ − θ )∥ dθ ≤ κ, ∥∆B(τ )∥ ≤

N∑
i=1

∫ λi

λi−1

∥∆Bi(τ − θ )∥ dθ ≤ κb.

owever, different from previous section, the term g(s, ϵ) includes only the nominal part that leads to simpler LMIs.

emark 5. From (73) and (74), it is clear that for t → ∞, the trajectories of switched affine system (65) exponentially
pproach the attractive ball |x|2 ≤

b0(ϵ⋆
+hM )+bκ2

b
2α . To obtain a smaller ball, firstly it is possible to minimize b0 and

. However, this minimization leads to weak performances in terms of convergence rate, which can be improved by
ncreasing the value of decision variables b0 and b. Moreover, due to (75), b0 is of the order of O(hM + ϵ⋆). Hence, larger
alues of hM and ϵ increase the ball radius. Therefore, a good trade-off between non-small delays, frequency switching,
onvergence rate and attractive ball size has to be also reached.

emark 6. It is worth noting that many recent results on the stabilization of switched affine systems suggest state/output-
ependent switching laws (see, e.g. [20,34–36]). Although state/output-dependent switching laws may have advantages
n robustness to disturbances with respect to time-dependent switching, time-dependent switching law is simpler for
mplementation due to no need of measurements and on-line calculation of the switching law. Moreover, it can be useful
o switch from a state-dependent to a time-dependent switching law in some practical applications [37], e.g., when
ensor-faults occur.

.1 Examples: Stabilization of switched affine systems.

.1.1 Example 1 [21]
Consider the delayed version of the switched affine system in [21]:

ẋ(t) =

⎧⎨⎩
A1x(t) + Adx(t − h(t)) + B1, t ∈ [kϵ, (k + λ1)ϵ],
A2x(t) + Adx(t − h(t)) + B2, t ∈ [(k + λ1)ϵ, (k + λ1 + λ2)ϵ],
A3x(t) + Adx(t − h(t)) + B3, t ∈ [(k + λ1 + λ2)ϵ, (k + 1)ϵ],

(79)

ith ϵ > 0, k = 0, 1, . . . and λ ∈ (0, 1). Matrices in (79) are given as follows:

A1 =

[
0 0.5
0 −1

]
, A2 =

[
0.1 0
−1 −1

]
, A3 =

[
0 1

−1 0

]
, B1 =

[
1
0.5

]
,

B2 =

[
−1

−0.5

]
, B3 =

[
0
2

]
, Ad =

[
0.045 0.13
−0.5 −0.8

]
.

Then (79) can be presented as (4) with ∆A = ∆Ad = ∆B = 0 and

A(τ ) =

N∑
i=1

χi(τ )Ai, B(τ ) =

N∑
i=1

χi(τ )Bi,

with χi(τ ) the indicator function. As in [21], we choose λ = [0.4, 0.47, 0.13] ∈ ΛH leading to the desired operating
point xe = [0.1 0.2]⊤ and to matrix

Aav = A(λ) + Ad =

3∑
λiAi + Ad,
i=1

13
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a

Table 3
Example 3.1.1. Solution of (58) for different values of hM and the corresponding ultimate bound.

hM b⋆
0 UB =

√
b⋆κ2

b + b⋆
0(ϵ

⋆
+ hM )

2α

ϵ⋆
= 0.2, α1 = 0.005

0.1 0.38258 3.3878
0.3 0.39848 4.4637
0.5 0.64144 6.7008
0.7 0.80207 8.4962
0.9 0.86383 9.7479

ϵ⋆
= 0.2, α2 = 0.5

0.1 0.3915 0.3427
0.3 0.41319 0.4545
0.5 0.68916 0.6946
0.7 1.0503 0.9723

Table 4
Example 3.1.1. Solution of (58) for different values of ϵ ∈ (0, ϵ⋆

] and corresponding ultimate
bound.

ϵ b⋆
0 UB =

√
b⋆κ2

b + b⋆
0(ϵ + hM )
2α

hM = 0.5, α1 = 0.005

0.2 0.64144 6.7008
0.3 0.7935 7.9674
0.4 0.79296 8.4479
0.53 1.2663 11.4207

hM = 0.5, α2 = 0.5

0.2 0.68916 0.6946
0.3 0.85376 0.8264
0.4 0.85747 0.8785
0.5 1.2455 1.1160
0.55 1.3293 1.1814

Moreover, both A(τ ) and B(τ ) are 1-periodic. Hence, for τ ≥ T = 1, inequality (21) can be easily computed as∫ τ

τ−1
(ζ − τ + 1)A⊤(ζ )HA(ζ ) dζ ≤

∫ τ

τ−λ1

(ζ − τ + 1) dζA⊤

1 HA1

+

∫ τ

τ−(λ1+λ2)
(ζ − τ + 1) dζA⊤

2 HA2 +

∫ τ

τ−(1−λ1−λ2)
(ζ − τ + 1) dζA⊤

3 HA3

=
1 − (1 − λ1)2

2
A⊤

1 HA1 +
1 − λ2

3

2
A⊤

2 HA2 +
1 − (λ1 + λ2)2

2
A⊤

3 HA3 = H̄.

Firstly, we analyze two different sets {αi, ϵ⋆, T }, i = 1, 2 of tuning parameters, which involve different values of
decay rate, i.e., α1 = 0.005 and α2 = 0.5 in order to show the impact of this latter on the feasibility of the LMIs of
Theorem 2 and the corresponding UB. It is clear that for both sets of tuning parameters, κ = κd = κb = 0 since no system
uncertainties occur, i.e. ∆A(τ ) = ∆Ad = ∆B(τ ) = 0.

Maximum delay bound hM : For each set, here we fix ϵ⋆
= 0.2 and iteratively increase the value of hM in order to find its

upper bound that guarantees the existence of a solution for (58) for all ϵ ∈ (0, ϵ⋆
], h(t) ∈ [0, hM ]. Results are reported

in Table 3, which shows that for all ϵ ∈ (0, 0.2] and α1 = 0.005, (58) is feasible until hM = 0.9, whereas UB = 9.7476.
For α2 = 0.5, it is found that for all ϵ ∈ (0, 0.2], problem (58) holds for hM = 0.7, which leads to an ultimate bound
UB = 0.9723. As expected, comparing the above results of Table 3, for a fixed values of ϵ⋆ and hM , smaller values of the
decay rate lead to a larger attractive ball, thus deteriorating the performances. Hence, a good trade-off between UB size
and convergence rate has to be found to satisfy specific control requirements.

Maximum ϵ bound ϵ⋆: Here we fix hM , while ϵ has been increased in order to find its upper bound ϵ⋆, whose value
preserves the feasibility of (58) (and, thus, Theorem 2). Note that, the value of hM has been fixed as hM = 0.5 according
to the results of Table 3. The results of the optimization procedure for αi, i = 1, 2 can be seen in Table 4, where it is
possible to observe the values of the UB for different values of ϵ. In particular, for α1 = 0.005, practical stability can be
guaranteed for all ϵ ∈ (0, ϵ⋆

] with ϵ⋆
= 0.53, which leads to UB = 11.4207. On the other hand, for α2 = 0.5, the LMIs

of Theorem 2 are still feasible for all ϵ ∈ (0, 0.55], with UB = 1.1814. Also in this case, given the value hM , decay rate
α1 leads to a larger attractive ball w.r.t. the one obtained with α2, thus deteriorating performances in terms of ellipsoid
radius.

Note that, in [21] state-dependent periodic-time and event-triggered control laws for switched affine systems are
proposed, which may be restrictive when state measurements are not available. Moreover, compared with [21], where no
state delays have been considered, by verifying the feasibility of Theorem 2 for h(t) = 0, α = 0.005, we obtain ϵ⋆

= 1.12,
s well as the result of our optimization procedure leads to UB = 0.4065. Finally, numerical simulations shown in Fig. 2

highlight the stabilization of system (79) for all ϵ ∈ (0, ϵ⋆
] and h(t) ∈ [0, 0.5], thus confirming theoretical derivation.
14
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Fig. 2. Practical stabilization of switched affine systems (79) with ϵ⋆
= 0.2 and hM = 0.8.

3.1.2 Example 2 [24]
Consider the delayed dynamics of flyback power converter from [24],[38], where the model has the form of

ẋ(t) = Aσ (t)x(t) + (Ad + ∆Ad)x(t − h(t)) + Bσ (t)u(t) + Dσ (t)w(t) + bσ (t), (80)

with u(t) = Kx(t) and matrices ∆A1 = ∆A2 = 0,

A1 =

[
−r/Lm 0

0 −1/RLC

]
, A2 =

[
−r/Lm −n/Lm
n/C −1/RLC

]
, Ad =

[
−0.1 0.1
0 0.1

]
, b1 =

[ Ein/Lm
0

]
, ∆Ad =

[
−0.1 0
0.2 −0.2

]
, b2 =

[
0
0

]
,

B1 =
[

0 0.1
0.1 0.1

]
, B2 =

[
0 0.1
0.1 0.3

]
, D1 =

[
0.1
0.1

]
, D2 =

[
0.3
0.3

]
, K1 =

[
19.7287 −18.9826

−21.1811 −1.6378

]
, K2 =

[
58.9652 −14.0308

−20.4310 −1.9181

]
.

(81)

Note that, controller u(t) has been used as in [24] in order to provide a fair comparison in terms of maximum delay
bound hM and parameter ϵ. However, u(t) can be required in flyback converter due to its non-minimum-phase nature
and the presence of a right-half-plane-zero in voltage transfer function in order to guarantee the indirect regulation of the
output voltage [39]. Moreover, both non-minimum-phase nature and the presence of a right-half-plane-zero in voltage
transfer function may lead to state delay h(t) [38]. The parameters are given as Ein = 6 V, Lm = 10 mH, r = 3 �, C =

2 mF, RL = 1.5 � and the transformer turns ratio n = 1. As in [24], we choose λ = 0.5 ∈ ΛH , leading to the desired
equilibrium point xe = [0.7547 0.7925] and to Hurwitz matrix Aav = 0.5(A1 + B1K1) + 0.5(A2 + B2K2) + Ad. Moreover, in
this example ∆A = 0 and ∆Ad ̸= 0 brings to κ = 0 and ∥∆Ad∥ ≤ κd = 0.2921 respectively, while we set Dσ (t) = ∆Bσ (t),
which leads to |∆B̄| = |∆Bσ(t) | + |∆Adxe| ≤ κb = 0.5001. For all τ ≥ T = 1, inequality (21) becomes∫ τ

τ−1
(ζ − τ + 1)(A(ζ ) + K (ζ )B(ζ ))⊤H(A(ζ ) + K (ζ )B(ζ )) dζ

≤

∫ τ

τ−λ

(ζ − τ + 1) dζ (A1 + B1K1)⊤H(A1 + B1K1) +

∫ τ

τ−(1−λ)
(ζ − τ + 1) dζ (A2 + B2K2)⊤H(A2 + B2K2)

=
1 − (1 − λ)2

2
(A1 + B1K1)⊤H(A1 + B1K1) +

1 − λ2

2
(A2 + B2K2)⊤H(A2 + B2K2) = H̄.

y verifying the feasibility of (19), (20), (21) and (70) with α = 0.005, hM = 0.4, we find the maximum value of ϵ⋆
= 0.32

hat guarantees the practical stability of (80)–(81) for all ϵ ∈ (0, ϵ⋆
], h(t) ∈ [0, hM ] and decay rate α = 0.005. Moreover,

y solving (58), we obtain b⋆
0 = 0.85, b⋆

= 5.3404 and, hence, the resulting ball radius UB = 10.4529. On the other hand,
y solving LMIs (19), (20), (21) and (70) with α = 0.005, ϵ⋆

= 0.2, the resulting maximum delay bound can be obtained
s hM = 2.2, which leads to UB = 23.6443 provided by b⋆

= 9.3171 and b⋆
0 = 1.98.

Therefore, compared with [24], where a state dependent switching rule along with event-triggered control protocol
ave been implemented with a fixed sampling period Tmax = 0.01 and a delay bound hM ≈ 0.2, our strategy allows
uantifying the bounds ϵ⋆ and hM on the small parameter and non-small delay, respectively, without the need of reliable
tate measurements. Finally, Fig. 3 shows the practical stabilization of switched affine flyback converter with ϵ⋆

= 0.32
nd hM = 0.4, thus confirming that the switched system (80) (81) exponentially converges to the set Xϵ⋆ in (74).

Conclusion

In this paper the recent time-delay approach to averaging is extended to the class of linear systems with fast-varying
oefficients and perturbations in the presence of non-small delays. An appropriate Lyapunov–Krasovskii functional is
15
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Fig. 3. Practical stabilization of switched affine system (80)–(81) with ϵ⋆
= 0.32 and hM = 0.4.

onstructed to prove the ISS of such class of time-delayed systems, thus providing ISS conditions in terms of LMIs, whose
olution allow finding upper bounds on both small parameter and non-small delays. The proposed approach is extended
o stabilization of uncertain delayed affine systems by periodic time-dependent switching. Numerical examples from the
iterature illustrate the efficiency of the method.
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