
Exact slow± fast decomposition of a class of non-linear singularly perturbed optimal control problems
via invariant manifolds

E. FRIDMAN*

We study a Hamilton± Jacobi partial di� erential equation, arising in an optimal control problem for an a� ne non-linear
singularly perturbed system. This equation is solvable i� there exists a special invariant manifold of the corresponding
Hamiltonian system. We obtain exact slow± fast decomposition of the Hamiltonian system and of the special invariant
manifold into slow and fast components. We get su� cient conditions for the solvability of the Hamiltonian± Jacobi
equation in terms of the reduced-order slow submanifold, or, in the hyperbolic case, in terms of a reduced-order slow
Riccati equation. On the basis of this decomposition we construct asymptotic expansions of the optimal state-feedback,
optimal trajectory and optimal open-loop control in powers of a small parameter.

1. Introduction

The non-linear optimal control problem for singu-
larly perturbed systems leads to a high-dimensional
Hamilton± Jacobi (HJ) partial di� erential equation of
two time-scales for an optimal controller evaluation
(Chow and Kokotovic 1978, 1981). To alleviate the dif-
® culties caused by the high dimensionality and sti� ness
that result from the interaction of slow and fast dyna-
mical modes, a composite controller was designed
(Chow and Kokotovic 1978, 1981). This °-independent
controller was based on the reduced-order slow and fast
subproblems. Also, a series expansion method was
developed for approximate solution of the HJ equation.
It was shown that the truncated expansion satis® es this
equation to O…°k†-accuracy. Bensoussan (1987) showed
that the exact solution converges to the leading term of
this approximation as ° !0, Gaitsgory (1996) studied
the limit as ° !0 of the optimal value function for the
® nite horizon problem with an arbitrary non-linear
dynamics and functional. However, near-optimality of
the high-order approximation to the solution of the HJ
equation (in the sense of its closeness to the exact sol-
ution) has not been studied yet.

In the linear case, high-order numerical approxima-
tions were constructed by Su et al. (1992) on the basis of
the exact decomposition of the full-order Riccati equa-
tion into reduced-order Riccati and linear algebraic
equations. Exact decomposition of the singularly per-
turbed H1Riccati equation was obtained in Fridman
(1995); asymptotic approximation to its solution was
constructed in Fridman (1996). Moreover, it has been
proved that the full-order Riccati equation has a stabi-

lizing solution i� the reduced-order slow Riccati equa-
tion has such a solution.

In the present paper we obtain the non-linear
counterpart of Su et al. (1992) and Fridman (1995,
1996). We apply the geometric approach which relates
HJ equations to special invariant manifolds of
Hamiltonian systems (see e.g. Lukes 1969, Isidori and
Astol® 1992, Van der Schaf 1991). We obtain the exact
decomposition of the special slow± fast manifold into the
reduced-order slow submanifold of the Hamiltonian
system and the fast manifold of an auxiliary system.
This decomposition is based on the slow± fast decompo-
sition of the Hamiltonian system. Unlike the linear case,
the fast manifold depends also on the slow variables,
and there is no immediate order reduction. Still, the
fast manifold can be found in the form of asymptotic
expansions with terms evaluated by algebraic opera-
tions. The special manifold exists i� the Hamiltonian
system possesses the slow submanifold. Thus, we get
reduced-order su� cient conditions for the solvability
of the HJ equation in terms of the slow submanifold
or, in the hyperbolic case, in terms of a slow Riccati
equation. We construct a higher-order approximation
to the optimal closed-loop and open-loop controls and
optimal trajectory in the form of expansion in the
powers of °. In the hyperbolic case we show that the
high-order accuracy controller improves the performance.

The present paper is organized as follows. In the next
section we formulate the non-linear singularly perturbed
optimal control problem and the known su� cient con-
ditions for its solvability in terms of the special invariant
manifold of the Hamiltonian system. In } 3 we express
this manifold via slow and fast components. In } 4 we
study the hyperbolic case. In } 5 we construct asymptotic
expansions for the optimal controller, optimal trajectory
and open-loop control, and consider an illustrative ex-
ample. The paper ends with an Appendix containing
proofs of theorems.
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2. Problem formulation

Consider the optimal control problem for the system

_x1 ˆ a1…x1† ‡A1…x1†x2 ‡B1…x1†u …2:1a†

° _x2 ˆ a2…x1† ‡A2…x1†x2 ‡B2…x1†u …2:1b†

with respect to the functional

J ˆ …10 ‰r…x1† ‡s 0…x1†x2 ‡x 0
2Q…x1†x2 ‡u 0R…x1†uŠdt

…2:1c†

where x1…t† 2Rn1 and x2…t† 2Rn2 are the state vectors,
x ˆ colfx1; x2g, u…t† 2Rm is the control input. The
prime denotes the transposition of a matrix. The func-
tions ai, Ai, Bi, p, s and Q are di� erentiable with respect
to x a su� cient number of times. We assume also that
ai…0† ˆ 0, r…0† ˆ 0 and s…0† ˆ 0. Assume that Q ˆ
Q 0 0, R ˆ R 0 > 0 and r ‡s 0x2 ‡x 0

2Qx2 0.
The system (2.1) has a standard singularly perturbed

form in the sense that it is non-linear only on the slow
variable x1 (see e.g. Chow and Kokotovic 1978, 1981,
Kokotovic et al. 1986). However, A22 is allowed to be
singular.

Denote by j j the Euclidean norm of a vector.
Consider the Hamiltonian function

H…x1; x2; p1; p2† ˆ r ‡s 0x2 ‡x 0
2Qx2 ‡p 0

1…a1 ‡A2x2†

‡p 0
2…a2 ‡A2x2† ¡ 1

4…p 0
1B1 ‡p 0

2B2†

R¡1…B 0
1p1 ‡B0

2p2† …2:2†

where p1 and °p2 play the role of the costate variables.
Denote Sij ˆ 1

2 BiR¡1B 0
j . The corresponding

Hamiltonian system has the form

_x1 ˆ f1…x1; p1; x2; p2† …2:3a†

_p1 ˆ f2…x1; p1; x2; p2† …2:3b†

° _x2 ˆ A2x2 ¡ S22p2 ‡ f3…x1; p1† …2:3c†

° _p2 ˆ ¡Qx2 ¡ A0
2p2 ‡f4…x1; p1† …2:3d†

where

f1 ˆ a1 ‡A2x2 ¡ S11p1 ¡ S12p2

f2 ˆ ¡rx1H
f3 ˆ a2 ¡ S21p1

f4 ˆ ¡A 0
1p1 ¡ s

9>>>>>>=>>>>>>;
…2:4†

For each ° > 0, if V …x† is a C2 solution of the HJ equa-
tion

‰r ‡s 0x1 ‡x 0
2Qx2Š‡V x1…a1 ‡A1x2†

‡
1
°

V x2…a2 ‡A2x2† ¡ 1
4 V x1B1 ‡1

° V x2B2¡ R¡1

B0
1V 0

x1 ‡
1
°

B0
2V 0

x2 ˆ 0; V …0† ˆ 0 …2:5†

where (V x1
; V x2 ) denotes the Jacobian matrix of V , such

that the system
_x1 ˆ a1 ‡A2x2 ¡ S11V 0

x1 ¡ S12V 0
x2

° _x2 ˆ a2 ‡A2x2 ¡ S21V 0
x1 ¡ S22V 0

x2

is asymptotically stable, then V 0 (which implies also
V x…0† ˆ 0) and the controller given by

u ˆ ¡1
2R

¡1‰B 0
1; °¡1B 0

2ŠV 0
x ˆ ¡1

2R
¡1B0

1Z1 ¡ 1
2R

¡1B0
2Z2

…2:6†
is the minimizing one. The latter is equivalent (see e.g.
Isidori and Astol® 1992) to the existence of the invariant
manifold of (2.3)

p1 ˆ Z1…x1; x2†; p2 ˆ Z2…x1; x2† …2:7†
where

V x1 ˆ Z 0
1; Vx2 ˆ °Z 0

2 …2:8†
and V …0† ˆ 0; with asymptotically stable ¯ ow

_x1 ˆ a1 ‡A2x2 ¡ S11Z1 ¡ S12Z2;

° _x2 ˆ a2 ‡A2x2 ¡ S21Z1 ¡ S22Z2

9=;…2:9†

Note that the manifold (2.7) is not necessarily the stable
manifold of the Hamiltonian system (2.3) because (2.9)
does not need to be exponentially stable (Isidori and
Astol® 1992).

We shall reduce the analysis of the (2n1 ‡2n2)-
dimensional Hamiltonian system (2.3) to the slow 2n1-
dimensional subsystem that corresponds to the restric-
tion of (2.3) to its slow (centre) manifold. Namely, we
shall show that the existence of (2.7) is equivalent to the
existence of the reduced-order invariant manifold of the
slow subsystem. Moreover, we shall ® nd the functions
Z1 and Z2 from algebraic equations by means of the
latter manifold and a fast manifold of an auxiliary
system.

3. Decomposition of the slow± fast manifold

For each x1 2Rn1 consider the fast linear subprob-
lem

_x2 ˆ A2…x1†x2 ‡B2…x1†u

J ˆ …10 ‰x 0
2Q…x1†x2 ‡u 0R…x1†uŠdt

9>=>;
…3:1†

and the corresponding algebraic Riccati equation
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A 0
2M ‡MA2 ‡Q ¡ MS22M ˆ 0 …3:2†

We assume further

Assumption 1: For each x1 2Rn1 the triple fA2…x1†;
B2…x1†; Q…x1†gis controllable-observable.

Under this assumption, for each x1 2Rn1 (3.2) has a
positive de® nite symmetry solution M…x1†, such that the
matrix ˆ A2 ¡ S22M is Hurwitz. This solution is
smooth on x1 since A2, Q and S22 are smooth on x1.

Consider the Hamiltonian matrix

P…x1† ˆ
A2 ¡S22

¡Q ¡A 0
2… †

ˆ
I 0

M I… † ¡S22

0 ¡ 0… † I 0

¡M I… † …3:3†

Under Assumption 1, for any m > 0 P possesses the
following property: it has n2 stable eigenvalues ¶,
Re¶ < ¡¬ < 0, and n2 unstable ones ¶, Re¶ > ¬ for
all jx1j m. Then for any m > 0 there exists °m > 0,
such that for all ° 2…0; °mŠ and jx1j‡jp1j< m the
system (2.3) has the slow manifold (Kokotovic et al.
1986, Sobolev 1984)

x2

p2… † ˆ
L 3…x1; p1; °†
L 4…x1; p1; °†… † ˆ L …x1; p1; °† …3:4†

The subscripts of L correspond to the third and fourth
variables in the system of (2.3). To avoid cumbersome
notation we shall omit the ° argument in the functions
below.

Setting (3.4) into (2:3a; b) and substituting v1 and w1
for x1 and p1 respectively, we get the 2n1-dimensional
system for the ¯ ow on the slow manifold

_v1 ˆ f1‰v1; w1; L 3…v1; w1†; L 4…v1; w1†Š …3:5a†

_w1 ˆ f2…v1; w1; L 3…v1; w1†; L 4…v1; w1†Š …3:5b†

The function L can be found in the form of an
expansion

L …x1; p1; °† ˆ Xq

jˆ 0

° jlj …x1; p1† ‡O…°q‡1† …3:6†

The terms of (3.6) can be determined from the equation

°
@L
@x1

f1 ‡°
@L
@p1

f2 ˆ
A2L 3 ¡ S22L 4 ‡f3…x1; p1†

¡QL 3 ¡ A 0
2L 4 ‡f4…x1; p1†… †…3:7†

where fi ˆ fi…x1; p1; L 3; L 4†, i ˆ 1; 2, by algebraic opera-
tions. Thus, l0 ˆ ¡P¡1f0, where f0 ˆ colff3; f4g. Note
that (3.7) can be derived by di� erentiating on t of
(3.4), where x1 ˆ v1…t†, p1 ˆ w1…t†, x2 ˆ x2…t†, p2 ˆ

p2…t†, and by substituting for _v1 and _w1 the right-hand
sides of (3.5).

Consider the slow system (3.5). Denote by
mi ˆ fx1 2Rni : jxij< mig, i ˆ 1; 2. Our next assump-

tion is

Assumption 2: There exist m1 > 0 and °1 > 0 such that
for all ° 2…0; °1Š and v1 2 2m1 the system (3.5) pos-
sesses the invariant manifold

w1 ˆ N…v1† …3:8†

where the function N ˆ N…v1; °† is continuous on both
arguments and uniformly bounded together with its ® rst
derivative on v1, and N…0† ˆ 0:

The restriction of (3.5) to (3.8) is governed by the n1-
dimensional system

_v1 ˆ F1…v1† …3:9†

where

Fi…v1† ˆ fi‰v1; N…v1†; L 3…v1; N…v1††; L 4…v1; N…v1††Š
…3:10†

and i ˆ 1. Additionally, we assume

Assumption 3: For all ° 2…0; °1Š, equaiton …3:9† is
asymptoptically stable.

The theorem below states that Assumptions (A2 and
A3) are necessary conditions for the existence of the
invariant manifold (2.7) with asymptotically stable
¯ ow (2.9).

Theorem 1: L et A1 hold, and for all small enough °

there exist m1 and m2 such that the …2n1 ‡2n2†-dimen-
sional Hamiltonian system …2:3† has an invariant on

m1 m2 manifold …2:7† with …2:9† asymptotically
stable, where V has continuous and uniformly bounded
derivatives on …x1; x2† 2 m1 m2 up to the second or-
der, then A2 and A3 are valid.

Note that the stable solutions of (2.3) are exponen-
tially approaching the solutions of the slow manifold
(3.4) (Pliss 1977, Sobolev 1984). Under A1± A3 we
shall construct the invariant manifold (2.7) with the
stable ¯ ow by means of the slow submanifold (3.8)
and a fast manifold of an auxiliary system. To get the
latter system let us introduce the following change of
variables:

v2

p2… † ˆ
x2

p2… † ¡ L …x1; p1†

x1

p1… † ˆ
x1

p1… † ¡
v1

w1… †
9>>>>>>=>>>>>>;

…3:11†
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where v1 and w1 satisfy (3.5). For the new variables we
obtain the system

_x1 ˆ g1…v1; w1; x1; p1; v2; p2†

_p1 ˆ g2…v1; w1; x1; p1; v2; p2†

° _v2 ˆ A2…x1 ‡v1†v2 ¡ S22…x1 ‡v1†p2

‡g3…v1; w1; x1; p1; v2; p2†

° _p2 ˆ ¡Q…x1 ‡v1†v2 ¡ A 0
2…x1 ‡v1†p2

‡g4…v1; w1; x1; p1; v2; p2†

9>>>>>>>>>>>>>>>>=>>>>>>>>>>>>>>>>;

…3:12†

where for i ˆ 1; 2

gi ˆ fi‰x1 ‡v1; p1 ‡w1; v2 ‡L 3…x1 ‡v1; p1 ‡w1†

p2 ‡L 4…x1 ‡v1; p1 ‡w1†Š
¡ fi‰v1; w1; L 3…v1; w1†; L 4…v1; w1†Š

and for i ˆ 3; 4

gi ˆ ¡°
@L i …x1 ‡v1;p1 ‡w1†

@x1
f1

¡ °
@L i …x1 ‡v1; p1 ‡w1†

@p1
f2

fj ˆ fj‰x1 ‡v1; p1 ‡w1; v2 ‡L 3…x1 ‡v1; p1 ‡w1†

p2 ‡L 4…x1 ‡v1; p1 ‡w1†Š
¡ fj‰x1 ‡v1; p1 ‡w1; L 3…v1 ‡x1; w1 ‡p1†

L 4…v1 ‡x1; w1 ‡p1†Š; j ˆ 1; 2

Let m2 > 0 be any positive. We choose m 0 such that

jx2 ¡ L 3…x1; N…x1††j m 0=2; …x1; x2† 2 2m1 m2

Then under A1 there exists ° 0 such that for all ° 2…0; ° 0Š
the system of (3.5) and (3.12) has the fast (stable) mani-
fold for jv2j< m 0 (Sobolev 1984, Henry 1982)

x1

p1

0@1Aˆ
°L ‡

1 …v1; w1; v2†

°L ‡
2 …v1; w1; v2†

0@ 1A
p2 ˆ L ‡

4 …v1; w1; v2†

9>>>>=>>>>;
…3:13†

where L ‡
4 ˆ M…v1†v2 ‡O…°†. The functions L ‡

i
(i ˆ 1; 2; 4) satisfy the inequalities

jL ‡
i …v1; w1; v2Šj cjv2j

jL ‡
i …v1; w1; v2† ¡ L ‡

i …v1;w1; ~v2†j cjv2 ¡ ~v2j
jL ‡

i …v1; w1; v2† ¡ L ‡
i …~v1; ~w1; v2†j cjv2j…jv1 ¡ ~v1j

‡jw1 ¡ ~w1j†

9>>>>>>>=>>>>>>>;
…3:14†

The ¯ ow on this manifold is governed by the decoupled
system of the slow equations (3.5) and the fast equation

° _v2 ˆ A2v2 ¡ S22L ‡
4 ‡g3…v1; w1; °L ‡

1 ; °L ‡
2 ; v2; L ‡

4 † …3:15†
where L ‡

i ˆ L ‡
i …v1;w1; v2† …i ˆ 1; 2; 4†, A2 ˆ A2…v1 ‡°L ‡

1 †
and S22 ˆ S22…v1 ‡°L ‡

1 †. The solution of (3.15) with the
initial value v2…0† ˆ v0

2 satis® es the inequality

jv2…t†j Kexp ¡
¬

°
t jv2…0†j; K > 0; t > 0 …3:16†

Hence, due to the ® rst inequality of (3.14), the solutions
of (3.12) lying on the fast manifold of (3.13) are rapidly
exponentially decaying as t increases. Substituting (3.8)
and (3.13) into (3.11), we get the algebraic equations for
determining Z1 and Z2:

x1 ˆ v1 ‡°L ‡
1 ‰v1; N…v1†; v2Š …3:17a†

x2 ˆ v2 ‡L 3‰x1; N…v1† ‡°L ‡
2 …v1; N…v1†; v2†Š …3:17b†

and

p1 ˆ N…v1† ‡°L ‡
2 ‰v1; N…v1†; v2Š …3:18a†

p2 ˆ L 4‰x1; N…v1† ‡°L ‡
2 …v1; N…v1†; v2†Š

‡L ‡
4 …v1; N…v1†; v2† …3:18b†

Consider (3.17) as the system with respect to v1 and
v2. Using the contraction principle argument, one can
prove that there exists °2 such that, for ° 2…0; °2Š, the
system (3.17) has a unique solution on m1 m2

v1 ˆ U1…x1; x2† ˆ x1 ‡°U1…x1; x2† …3:19a†

v2 ˆ U2…x1; x2†

ˆ x2 ¡ L 3…x1; N…x1†† ‡°U2…x1; x2† …3:19b†

where the functions U1 and U2 are Lipschitzian on x1
and x2, they vanish at …x1; x2† ˆ 0, and satisfy the
inequalities °2jU1j m1, °2jU2j m 0=2. Further, apply-
ing the implicit function theorem, one can show that U1
and U2 are continuously di� erentiable on x1 and x2.
Substituting (3.19) into (3:18a) and (3:18b) we get
(2.7), where

Z1 ˆ N…U1† ‡°L ‡
2 ‰U1; N…U1†; U2Š …3:20a†

Z2 ˆ L 4‰x1; N…U1† ‡°L ‡
2 …U1; N…U1†; U2†Š

‡L ‡
4 …U1; N…U1†; U2† …3:20b†
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Theorem 2: Under A1-A3 for any m2 > 0 there exists
°2 > 0 such that, for all ° 2…0; °2Š,

(i) the …2n1 ‡2n2†-dimensional Hamiltonian system
(2.3) has the invariant on the m1 m2 manifold
(2.7) with (2.9) asymptotically stable, where con-
tinuously di� erentiable on x1 and x2 functions Z1
and Z2 are de® ned by formula …3:20† from the
algebraic systems of …3:17† and …3:18†;

(ii) there exists a C2 function V : m1 m2 !R;

satisfying the HJ equation …2:5† and relations
…2:8† …therefore the optimal control problem is
solvable by the controller of …2:6††.

4. Hyperbolic case

Assumption A2 is not easily veri® able. In this section
we will consider a particular case when A2 holds. For
simplicity we assume that @r…0†=@x1 ˆ 0. Consider the
linearization of (2.1) at 0

_x1 ˆ A11x1 ‡A12x2 ‡B10u

° _x2 ˆ A21x1 ‡A22x2 ‡B20u
9=; …4:1a†

J ˆ …10 X2

iˆ 1X2jˆ 1
x 0

i Qijxj ‡u 0R…0†u" # dt …4:1b†

where Ai1 ˆ …@ai=@x1†…0†, Ai2 ˆ Ai2…0†, Di0 ˆ Di…0†,
Q11 ˆ @2r…0†=@x2

1, Q12 ˆ 1
2 …@s 0…0†=@x1† and Q22 ˆ Q…0†.

The Hamiltonian matrix corresponding to (4.1) is similar
to the matrix Ham® that corresponds to the linearization
at 0 of the Hamiltonian system (2.3). It is easy to see that

Ham® ˆ
P11 P12

°¡1P21 °¡1P22… † …4:2†

where for i ˆ 1; 2, j ˆ 1; 2

Pij ˆ
Aij ¡Sij

¡Qij ¡A 0
ji… †; Sij ˆ 1

2Bi0R¡1…0†B0
j0

Under A1 the matrix P22 has no purely imaginary eigen-
values since P22 ˆ P…0†. The matrix (4.2) has one group
of 2n1 small eigenvalues O…°† close to those of P0 ˆ
P11 ¡ P12P¡1

22 P21 and another group of 2n2 large eigen-
values O…1† close to those of °¡1P22 (Kokotovic et al.
1986). To guarantee that, for all small enough °, the
matrix (4.2) has no purely imaginary eigenvalues, i.e.
the vector ® eld de® ned by (2.3) is hyperbolic, we
suppose

Assumption 0: The matrix P0 ˆ P11 ¡ P12P¡1
22 P21 has

no purely imaginary eigenvalues.

It is known that in the hyperbolic case, for each °,
the optimal control problem is solvable on a small
enough neighbourhood of Rn1 Rn2 containing 0 if the

linearized problem is solvable. The latter is equivalent to
the existence of a non-negative de® nite stabilizing sol-
ution to a corresponding …n1 ‡n2† …n1 ‡n2†-algebraic
Riccati equation (ARE). We will get the reduced-order
(in terms of n1 n1-ARE) su� cient conditions for the
solvability of the optimal control problems on the
domains containing large values of x2 for all su� ciently
small °:

Under A0 the matrix P0 has n1 eigenvalues with
negative real parts and n1 with positive ones. This fact
follows from the symmetry of the eigenvalues of Ham®

and of P22. Note that P0 coincides with the linearization
of the slow subsystem (3.5) on v1, w1 at …v1; w1; °† ˆ 0.
Hence under A0 the invariant manifold (3.8) of stable
solutions of (3.5) (if it exists) is a stable manifold of
(3.5). To guarantee its existence we consider system
(3.5), linearized on v1 and w1 at …v1; w1; °† ˆ 0:

_v1 ˆ T1v1 ‡T2w1

_w1 ˆ T3v1 ‡T4w1

T1 T2

T3 T4… † ˆ P0

9>>>>>>=>>>>>>;
…4:3†

Suppose that the stable manifold (i.e. the stable
eigenspace) of (4.3) can be parametrized by v1-coordi-
nates in the form w1 ˆ N…0†v1. Then N…0† satis® es the
following n1 n1-ARE:

N…0†…T1 ‡T2N…0†† ˆ T3 ‡T4N…0† …4:4†
and the matrix T1 ‡T2N…0† is Hurwitz. We suppose
further

Assumption 4: ARE …4:4† has a solution N…0† such that
the matrix T1 ‡T2N…0† is Hurwitz.

Note that A4 implies that A0 since the stable eigen-
values of P0 coincide with the eigenvalues of
T1 ‡T2N…0†. From the theory of non-linear di� erential
equation it is known that under A4 the hypotheses A2
and A3 are valid.

Thus we obtain

Corollary 1: Under A1 and A4 for any m2 > 0 there
exist m1 > 0 and °3 > 0 such that for all ° 2…0; °3Šitems
(i) and (ii) of Theorem 2 are valid.

5. Asymptotic expansion of the optimal control and

optimal trajectory

5.1. Asymptotic approximation of the invariant manifolds
We assume further

Assumption 5: For small enough ° and jv1j 2m1 the
function N can be represented in the form

Slow± fast decomposition of non-linear control problems 1613



N…v1; °† ˆ Xqjˆ 0

° jNj…v1† ‡O…°q‡1† …5:1†

where Nj are smooth functions.

Note that A4 implies A5. The terms of (5.1) can be
found from the partial di� erential equation

@N
@v1

F1…v1† ˆ F2…v1† …5:2†

where Fi are de® ned by (3.10).
Analogously to (3.6), we construct the expansion of

the function L ‡ ˆ colfL ‡
1 ; L ‡

2 ; L ‡
4 g

L ‡ ˆ Xqjˆ 0

° jl‡j ‡O…°q‡1† …5:3†

from the equation (Sobolev 1984)

°
@L ‡

@v1
f1 ‡°

@L ‡

@w1
f2 ‡

@L ‡

@v2 ‰A2v2 ¡ S22L ‡
4 ‡g3Š

ˆ colfg1; g2; ¡Qv2 ¡ A 0
2L ‡

4 ‡g4g …5:4†
where A2, S22 and Q depend on v1 ‡°L ‡

1 , and fi ˆ
fi…v1; w1; L 3; L 4†, i ˆ 1;2, gk ˆ gk…v1;w1; °L ‡

1 ; °L ‡
2 ; v2; L ‡

4 †,
k ˆ 1; . . . ;4, L ‡ ˆ L ‡…v1; w1; v2†.

For the terms of (5.3) we get successively equations
of the form

@l‡4j

@v2 ‰A2…v1† ¡ S22…v1†M…v1†Šv2 ˆ ¡A 0
2l‡4j ‡G4j…v1; w1; v2†

…5:5†
where l‡j ˆ colfl‡1j; l‡2j ; l‡4jg, and G4j is a known function
such that G4j‰v1; w1; 0Šˆ 0. Equation (5.5) depends on v1
and w1, as on the parameters and its solution is given by

l‡4j ˆ …10 eA 0
2t G4j‰v1; w1; e‰A2…v1†¡S22…v1†M…v1†Št v2Šdt

Then the equations for l‡41 and l‡42 have the form

@l‡ij
@v2 ‰A2…v ¡ 1† ¡ S22…v1†M…v1†Šv2 ˆ Gij…v1; w1; v2†

i ˆ 1; 2 …5:6†
where Gij are known functions such that Gij‰v1; w1; 0Šˆ 0.
Solutions to the latter equations are given by

l‡ij ˆ …10 Gij‰v1; w1; e‰A2…v1†¡S22…v1†M…v1†Št v2Šdt

In the case of the system of (2.1), l‡j is a ( j ‡1)-order
polynomial with respect to v2. The coe� cients of this
polynomial can be found from (5.5) and (5.6) by alge-
braic operations.

5.2. Asymptotic approximation of optimal feedback
Next we obtain from (3.17)

vi ˆ Ui…x1; x2; °† ˆ Xqjˆ 0

° jUij…x1; x2† ‡O…°q‡1†; i ˆ 1; 2

…5:7†

where Uij are su� ciently smooth with respect to x since
L , N and L ‡ are smooth with respect to v1, w1 and v2.
Thus, U10 ˆ x1, U20 ˆ x2 ¡ L 30‰v1; N0…v1†Š. We substi-
tute the expansions (5.7), (5.1), (5.3) and (3.6) into
(3:20a) and (3:20b):

Z1 ˆ Xqiˆ 0

°iNi Xqjˆ 0

° jU1j… † ‡Xqiˆ 0

°i‡1

l‡2i Xq

jˆ 0

° jU1j;Xqiˆ 0

°iNi Xqjˆ 0

° jU1j… †; ° jU2j" # ‡O…°q‡1†

Z2 ˆ Xqiˆ 0

°il4i‰x1; Z1Š‡Xqiˆ 0

°i

l‡4i Xq

jˆ 0

° jU1j;Xqiˆ 0

°iNi Xqjˆ 0

° jU1j… †; ° jU2j" # ‡O…°q‡1†

Expanding the right-hand sides of the latter equations in
the powers of ° we get asymptotic approximations to Z1
and Z2

Zi…x1; x2; °† ˆ Xq

jˆ 0

° jZij…x1; x2† ‡O…°q‡1†; i ˆ 1; 2

…5:8†

where Zij are su� ciently smooth. Note that

Z10 ˆ N0…x1†

Z20 ˆ l40‰x1; N0…x1†Š‡M…x1†‰x2 ¡ l30…x1; N0…x1††Š
9=;…5:9†

Substituting (5.8) into (2.6) we get the following
O…°q‡1†-approximation to the optimal controller

u ˆ uq ‡O…°q‡1†

uq ˆ ¡X2kˆ 1Xq

jˆ 0

° jB 0
kZkj…x1; x2†

9>>>=>>>;
…5:10†

5.3. Asymptotic expansion of optimal trajectory and
open-loop control

These operations on the ® nite segment ‰0; T Š (for
every T > 0) can be found from (3.17), (3.18), (3.9),
(3.15) and the relation

u…t† ˆ ¡1
2R

¡1B 0
1p1…t† ¡ 1

2R
¡1B 0

2p2…t† …5:11†
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Applying standard asymptotic methods (see e.g.
O’Malley 1974) to the decoupled equations (3.9) and
(3.15), where w1 ˆ N…v1†, we obtain correspondingly

v1…t† ˆ Xqiˆ 0

°iv…i†
1 …t† ‡°q‡1r1q…t; °† …5:12a†

v2…t† ˆ Xqiˆ 0

°iv…i†
2 …½† ‡°q‡1r2q…½; °† …5:12b†

where ½ ˆ t=° and r1 and r2 are uniformly bounded for
t 2‰0; TŠand ½ 0. Substituting (5:12a) into (3.9) and
equating coe� cients of equal powers of °, we ® nd di� er-
ential equations for v…i†

1 with initial values de® ned by
(3:19a), where t ˆ 0. Similarly, from (3.15), (3.8),
(5:12b) and (3:19b), we obtain initial value problems
for v…i†

2 .
Finally, substituting expansions of v1, v2, L ‡ and L

into (3.17), (3.18) and (5.11) and expanding right-hand
sides of the resulting equations in the powers of °, we
® nd the following approximations

x…t† ˆ Xq

iˆ 0

°ix…i†…t† ‡Xq

iˆ 0

°i …i†
1 …½† ‡°q‡1R1q…t; °† …5:13a†

u…t† ˆ Xq

iˆ 0

°iu…i†…t† ‡Xqiˆ 0

°i …i†
2 …½† ‡°q‡1R2q…t; °† …5:13b†

where 1 and 2 are boundary layer terms exponen-
tially decaying when ½ !1, remainders R1q and R2q
are uniformly bounded for t 2‰0; TŠ. Note that (5:13b)
can be found also by substitution of (5:13a) into the
expansion of the optimal feedback (5.10).

The higher-order terms in the approximation (5.10)
lead to improved performance:

Theorem 3: (i) Under A1± A3 and A5 …or A1 and A4)
for small enough ° and jx1j m1; jx2j m2, the invar-
iant manifold …2:7† exists and can be represented in the
form …5:8†; the optimal controller exists and can be ap-
proximated by …5:10†; the optimal trajectory and opti-
mal open-loop control can be approximated by …5:13†,
where approximation is uniform on every ® nite segment

‰0; T Š.
…ii† Under A1 and A4 for any m2 > 0 there exist m 0

1 and
° 0
1 such that, for all ° 2…0; ° 0

1Šand initial conditions from
m1 m2

; the controller uq achieves the performance
O…°q‡1†-close to the optimal one.

Remark 1: Chow and Kokotovic (1978) showed that
the generating function V can be found from HJ equa-
tion (2.5) in the form of nested expansion. They
proved that the truncated series of this expansion satis-
® es the HJ equation with a high order of accuracy.
From Theorem 3 above the stronger result follows: un-
der assumptions of (ii) the truncated series (5.10) lead

to near-optimal controller and, in the hyperbolic case,
to near-optimal performance.

Remark 2: All the results of the present paper are
also valid for the systems containing non-linear on x2
terms of the order of O…°†. In this case V cannot be
found in the form of the expansion of Chow and Ko-
kotovic (1978), having a more complicated structure.

Example. We consider an example from Chow and
Kokotovic (1978):

_x1 ˆ x1x2; ° _x2 ˆ ¡x2 ‡u; J ˆ …10 …x4
1 ‡1

2x
2
2 ‡1

2u
2† dt

This is a non-hyperbolic case since P0 ˆ 0. We obtain
the following Hamiltonian function

Ĥ x4
1 ‡1=2x2

2 ‡p1x1x2 ¡ x2p2 ¡ 1=2p2
2

and Hamiltonian system

_x1 ˆ x1x2

_p1 ˆ ¡4x3
1 ¡ p1x2

° _x2 ˆ ¡x2 ¡ p2

° _p2 ˆ ¡x2 ¡ p1x1 ‡p2

9>>>>>>>=>>>>>>>;
…5:14†

Further, we neglect terms of the order O…°2†. Then
from (3.7), (3.9) and (5.4) we ® nd

L ˆ ‰¡1=2p1x1; 1=2p1x1 ¡ 2°x4
1Š0; N ˆ 2x1

L ‡ ˆ ‰¡° ���2p=2v1v2; ° ���2p=2w1v2; …¡1 ‡ ���2p†v2Š0

Equations (3.16) and (3.18) have the form

x1 ˆ v1 ¡ ° ���2p=2v1v2 …5:15a†

x2 ˆ v2 ¡ x1…v1 ‡° ���2p=2v1v2† …5:15b†

p1 ˆ 2v1 ‡ ���2p°v1v2 …5:16a†

p2 ˆ x1…v1 ‡ ���2p=°v1v2† ¡ 2°x4
1 ‡… ���2p¡ 1†v2 …5:16b†

From (5.15) we obtain

v1 ˆ x1 ‡° ���2p=2x1…x2 ‡x2
1†

v2 ˆ x2 ‡x2
1 ‡° ���2px2

1…x2 ‡x2
1†
9=; …5:17†

Substituting (5.17) into (5.16), we ® nd

p1 ˆ Z1…x1; x2† ˆ 2x1 ‡2 ���2p°x1…x2 ‡x2
1†

p2 ˆ Z2…x1; x2† ˆ ���2px2
1 ‡… ���2p¡ 1†x2 ‡2°x2

1x2

By (2.6), u ˆ ¡Z2…x1; x2† and thus we obtain the same
near-optimal feedback as in Chow and Kokotovic
(1978)
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u1 ˆ ¡ ���2px2
1 ¡ … ���2p¡ 1†x2 ¡ 2°x2

1x2 …5:18†

Our results show that this feedback is O…°2†-close to the
optimal one if (3.9) is asymptotically stable.

Equation (3.9) has the form

_v1 ˆ v1L 3…v1; N…v1†† ˆ ¡v1…v2
1 ‡O…°v2

1†† ……5:19†

since L 3, @L 3=@x1 and @L 3=@p1 vanish in the origin as
well as the right-hand sides of (5.14) together with their
partial derivatives on p1 and x1. Therefore (5.19), for
small enough °, is asymptotically stable (to check this,
one can take V 1 ˆ v2

1 as a Lyapunov function). Hence
optimal control exists and is O…°2†-close to (5.18).

Neglectig terms of the order O…°2†, we obtain (3.9)
and (3.15)

_v1 ˆ ¡v3
1

° _v2 ˆ ¡ ���2pv2

Then v1 and v2 are given by

v1…t† ˆ
sgnv1…0†�������������������������2t ‡v1…0†¡2q

v2…t† ˆ e
¡ ��2pt

° v2…0†

9>>>=>>>;
…5:20†

Substituting (5.20) with the initial values given by (5.17),
where t ˆ 0, into (5.15) and (5.16), we ® nd asymptotic
approximation to optimal trajectory and open-loop con-
trol u ˆ ¡p2.

6. Conclusions

We have developed a geometric approach to a sin-
gularly perturbed optimal control problem, non-linear
on the slow state variables. We have obtained the exact
decomposition of the slow± fast invariant manifold of
the Hamiltonian system into the reduced-order slow
manifold and a fast manifold. As a result, su� cient con-
ditions for the solvability of the optimal control problem
in terms of the slow manifold have been obtained. Also,
an asymptotic expansion of the optimal controller has
been constructed by solving partial di� erential equa-
tions, depending only on the slow variables. At the
same time we have obtained decomposition of the
Hamiltonian system to the slow and fast subsystems.
This leads to asymptotic approximation to optimal tra-
jectory and open-loop control. We have shown that a
higher-order accuracy controller improves performance.
The results are valid on the domains containing large
values of the fast variables.

Appendix

Proof of Theorem 1: Under A1 the system (2.3) has a
centre-stable manifold (for analogous derivations see
Fridman 1992, Kelley 1967 and Pliss 1977)

p2 ˆ L ‡…x1; p1; x2† …A:1†
such that all the stable solutions of (2.3) belong to it. Let
Z1 and Z2 be de® ned by (2.8). Then (2.7) determines an
invariant on m1 m2 manifold of stable solutions to
(2.3), i.e. (2.7) is the submanifold of (A.1). Therefore p1
and p2, de® ned by (2.7), satisfy also (A.1), which implies
the following relation

Z2…x1; x2† ˆ L ‡‰x1; Z1…x1; x2†; x2Š;
…x1; x2† 2 m1 m2 …A:2†

Let jZ1…x1; x2†j m2 for …x1; x2† 2 m1 m2 , and
m ˆ m1 ‡m3. Further, let (3.4) determine a centre mani-
fold of (2.3) for jx1j‡jpj m. We shall prove that for
any v0

1 2 2m1 , where m1 will be chosen below (from the
solvability of (A.4a) for w1), there exists w0

1 2Rn1 such
that the solution of (2.3), lying on its centre manifold

x1 ˆ v1; p1 ˆ w1; x2 ˆ L 3…v1; w1†; p2 ˆ L 4…v1; w1†

t 2R …A:3a†

x1…0† ˆ v0
1; p1…0† ˆ w0

1 …A:3b†
lies also on the invariant manifold (2.7), i.e. satis® es on
some t1 < 0 < t2 the equations

w1 ˆ Z1‰v1; L 3…v1; w1†Š …A:4a†

p2 ˆ Z2‰v1; L 3…v1; w1†Š …A:4b†

Note that (A.4b) follows from (A.2)± (A.4a). Really,
substituting the ® rst and the third of the relations (A.3a)
into (A.2) and applying further (A.4a), we have

Z2…v1; L 3…v1; w1†† ˆ L ‡‰v1; Z1…v1; L 3…v1; w1††; L 3…v1; w1†Š
ˆ L ‡‰v1; w1; L 3…v1; w1†Š …A:5†

The expression in the right-hand side of (A.5) coincides
with L 4…v1; w1† since the centre manifold is an invariant
submanifold of the centre-stable manifold. This,
together with the last of (A.3a), implies (A.4b).

Consider (A.4a) as a system for evaluating w1. First,
we shall show that Z1 can be represented as follows

Z1…x1; x2† ˆ C1…x1† ‡°C2…x1; x2; °† …A:6†
where C1 and C2 are Lipschitzian on …x1; x2† 2

m1 m2 . Really, di� erentiating the ® rst of the rela-
tions (2.8) on x2, and the second on x1, we get
Z1x2 ˆ °Z2x1 ˆ V 0

x1x2 , which yields the representation
(A.6). Substituting (A.6) into (A.4a) and applying to the
latter equation the contraction principle, one can show
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that there exists m1 > 0 such that (A.4a) has a solution
(4.1) for jv1j 2m1, where N is Lipschitzian and
N…0† ˆ 0. Further, applying the implicit function the-
orem, one can prove that N is continuously di� erenti-
able for jv1j< 2m1.

Let jv1j< 2m1 for t 2…t1; t2†. Then from (A.4a) it
follows that (3.8) is valid on …t1; t2†, i.e. (3.8) de® nes
an invariantmanifold of (3.5). The solutions of the latter
invariant manifold are asymptotically stable, being at
the same time the solutions of (2.7) with asymptotically
stable (2.9). &

Proof of Theorem 2: (i) The relations (2.7) de® ne the
invariant on m1 m2 manifold of (2.3) if, for any
…x0

1; x0
2† 2 m1 m2 , there exists t1 < 0 < t2 such that

a solution of (2.3) with the initial values

x1…0† ˆ x0
1; x2…0† ˆ x0

2;

p1…0† ˆ Z1…x0
1; x0

2†; p2…0† ˆ Z2…x0
1; x

0
2†
9=;…A:7†

satis® es (2.7) for t 2…t1; t2†.
Let …x0

1; x0
2† 2 m1 m2 be any prechosen. Let v1

and v2 be solutions of (3.9) and (3.15), where w1 is
de® ned by (3.8) and with the following initial con-
ditions

v1…0† ˆ U1…x0
1; x0

2†; v2…0† ˆ U2…x0
1; x

0
2† …A:8†

Denote by x1; x2; p1; p2 a solution of (2.3), (A.7). Note
that the relations (A.7) and (A.8) imply (3.17) and (3.18)
at t ˆ 0. Let t1 < 0 < t2 be such an interval that, for
t 2…t1; t2†, we have …x1; x2† 2 m1 m2 and jv1j
2m1. Then, due to the uniqueness of the solution of
(2.3), (A.7), the relations (3.17) and (3.18) are satis® ed
for all t 2…t1; t2†. This yields (2.7) for all t 2…t1; t2†.
Hence, the relations (2.7) de® ne an invariant on

m1 m2 manifold of (2.3). The asymptotic stability
of (2.7) follows from the same property of v1; v2 and
from the relations (3.17); this completes the proof
of (i).

The invariant manifold (2.7) with asymptotically
stable (2.9) is Lagrangian (it can be proved as Lemma
1 of Van der Schaft 1991) and is projectable on the
simply connected manifold m1 m2 , which implies
the existence of the generating function V , satisfying
(2.8) and (2.3) (Van der Schaft 1991).

Asymptotic stability of (2.1), (2.6) follows from
(3.17), (3.18) and asymptotic stability of (3.9) and
(3.15). &

Proof of Theorem 3: We have to prove only (iii). Sub-
stitute u given by (5.10) and uq into (2.1) and denote
by x and x the solutions to the resulting equations.
Under A4 the latter equations are exponentially stable.
Then, similarly to (5.13), the following approximations
can be obtained for small enough x1…0†

x…t† ˆ Xqiˆ 0

°ix…i†…t† ‡Xqiˆ 0

°i …i†
1 …½† ‡°q‡1Rq…t; °† …A:9a†

x…t† ˆ Xqiˆ 0

°ix…i†…t† ‡Xqiˆ 0

°i …i†
1 …½† ‡°q‡1Rq…t; °† …A:9b†

where, due to A4

jx…i†…t†j Ce¡¬t; jRq…t†j4 Ce¡¬t

jRq…t†j Ce¡¬t …t 0; ¬ > 0† …A:10†
Note that the terms x…i† and …i†

1 in the expansions (A.9)
are the same since the right-hand sides of the corre-
sponding di� erential equations are O…°q‡1†-close.
Substitution of (A.9) and (5.10) into J leads to (iii). &
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