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Exact slow—fast decomposition of a class of non-linear singularly perturbed optimal control problems

via invariant manifolds

E. FRIDMAN*

We study a Hamilton—-Jacobi partial differential equation, arising in an optimal control problem for an affine non-linear
singularly perturbed system. This equation is solvable iff there exists a special invariant manifold of the corresponding
Hamiltonian system. We obtain exact slow—fast decomposition of the Hamiltonian system and of the special invariant
manifold into slow and fast components. We get sufficient conditions for the solvability of the Hamiltonian-Jacobi
equation in terms of the reduced-order slow submanifold, or, in the hyperbolic case, in terms of a reduced-order slow
Riccati equation. On the basis of this decomposition we construct asymptotic expansions of the optimal state-feedback,
optimal trajectory and optimal open-loop control in powers of a small parameter.

1. Introduction

The non-linear optimal control problem for singu-
larly perturbed systems leads to a high-dimensional
Hamilton-Jacobi (HJ) partial differential equation of
two time-scales for an optimal controller evaluation
(Chow and Kokotovic 1978, 1981). To alleviate the dif-
ficulties caused by the high dimensionality and stiffness
that result from the interaction of slow and fast dyna-
mical modes, a composite controller was designed
(Chow and Kokotovic 1978, 1981). This €¢-independent
controller was based on the reduced-order slow and fast
subproblems. Also, a series expansion method was
developed for approximate solution of the HJ equation.
It was shown that the truncated expansion satisfies this
equation to O(Ek)-accuracy. Bensoussan (1987) showed
that the exact solution converges to the leading term of
this approximation as € 0, Gaitsgory (1996) studied
the limit as € _0 of the optimal value function for the
finite horizon problem with an arbitrary non-linear
dynamics and functional. However, near-optimality of
the high-order approximation to the solution of the HJ
equation (in the sense of its closeness to the exact sol-
ution) has not been studied yet.

In the linear case, high-order numerical approxima-
tions were constructed by Su et al. (1992) on the basis of
the exact decomposition of the full-order Riccati equa-
tion into reduced-order Riccati and linear algebraic
equations. Exact decomposition of the singularly per-
turbed H Riccati equation was obtained in Fridman
(1995); asymptotic approximation to its solution was
constructed in Fridman (1996). Moreover, it has been
proved that the full-order Riccati equation has a stabi-
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lizing solution iff the reduced-order slow Riccati equa-
tion has such a solution.

In the present paper we obtain the non-linear
counterpart of Su et al (1992) and Fridman (1995,
1996). We apply the geometric approach which relates
HJ equations to special invariant manifolds of
Hamiltonian systems (see e.g. Lukes 1969, Isidori and
Astolfi 1992, Van der Schaf 1991). We obtain the exact
decomposition of the special slow—fast manifold into the
reduced-order slow submanifold of the Hamiltonian
system and the fast manifold of an auxiliary system.
This decomposition is based on the slow—fast decompo-
sition of the Hamiltonian system. Unlike the linear case,
the fast manifold depends also on the slow variables,
and there is no immediate order reduction. Still, the
fast manifold can be found in the form of asymptotic
expansions with terms evaluated by algebraic opera-
tions. The special manifold exists iff the Hamiltonian
system possesses the slow submanifold. Thus, we get
reduced-order sufficient conditions for the solvability
of the HJ equation in terms of the slow submanifold
or, in the hyperbolic case, in terms of a slow Riccati
equation. We construct a higher-order approximation
to the optimal closed-loop and open-loop controls and
optimal trajectory in the form of expansion in the
powers of €. In the hyperbolic case we show that the
high-order accuracy controller improves the performance.

The present paper is organized as follows. In the next
section we formulate the non-linear singularly perturbed
optimal control problem and the known sufficient con-
ditions for its solvability in terms of the special invariant
manifold of the Hamiltonian system. In §3 we express
this manifold via slow and fast components. In §4 we
study the hyperbolic case. In § 5 we construct asymptotic
expansions for the optimal controller, optimal trajectory
and open-loop control, and consider an illustrative ex-
ample. The paper ends with an Appendix containing
proofs of theorems.
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2. Problem formulation

Consider the optimal control problem for the system

Xl = al(xl) _|_A1(X1)X2 _|_Bl(x1)u (21 a)

€Xy — a(x1) +Ax(X1)X2 + By(x1yu  (2:1b)

with respect to the functional

(0. @]

J = . (x1) _|_s’(x1)xz _|_xz’Q(x1)xz _|_u’R(x1)u]dt

(2.1 0)

where x§7) cR" and ngt ¢R™ are the state vectors,
x= col &0l w) cR" is the control input. The
prime ddhotes-the transposition of a matrix. The func-
tions ax M;, B;, p, s and Q are differentiable with respect
to x a sufficient number of times. We assume also that
ai(O) =0, r(O) - 0 and s(O) = 0. Assume that Q=
Q0'20,R= R'">0andr 45'x 4 x50x; 2 0.

The system (2.1) has a standard singularly perturbed
form in the sense that it is non-linear only on the slow
variable x; (see e.g. Chow and Kokotovic 1978, 1981,
Kokotovic et al. 1986). However, A, is allowed to be
singular.

Denote by the Euclidean norm of a vector.
Consider the Hamiltonian function

Hx1 X2, piopa) = 1 48"X2 4-X30%> 4-pi(@1 4 A2X2)
1-P3(@ - Arx2) —3(PI Bl -piBy)
X R\ (Bip1 + Bipa) (2:2)

where p; and €p; play the role of the costate variables.

Denote  Sj; = BR'B]. The  corresponding
Hamiltonian system has the form
X1 = fi(X1p1 X2 p2) (23a)
P1 = fa(X1:P1s X2 2) (2:3b)
exy = Arxy — Sopr +f3(X1:p1) (23¢)
pr= —Qxa — Apy fa(x1> 1) (2:3d)
where
fi=ar 4 Ayxo — Supt — S
fr= -V H 24
fi=a— Supr
fa= —Aip1—s
For each € > 0, if V(x) is a C* solution of thefflJ equa-

tion

+5'x1 _|_xz’sz] +Vx (a1 _|_A1xz)

1
V(@ 4 Aoxa) — 5 Vi B 41V B) R

X (B{V,{.l _|_%B§V, =0, V@©0)=0 (25

where (Vy,s Vy,) denotes the Jacobian matrix of V, such
that the system

X1 = ay +Aoxo — SuVi — SV,
€xXy = ay 4 Axxy — SuVi, — SnVi,

is asymptotically stable, then ¥ = 0 (which implies also
Vx(0) = 0) and the controller given by

u= 3R F{,rlBé]V;: _IR'B{Z, _3R'Bs 7,
(26)

is the minimizing one. The latter is equivalent (see e.g.
Isidori and Astolfi 1992) to the existence of the invariant
manifold of (2.3)

p=Zi(x1X%2) pr= Z(X1X2) (27)
where
Ve =2, Vi, = €Z5 (2.8)
and V(0y = 0, with asymptotically stable flow

Xt = a4 Axxy — SuZy — Sius,
} (29)
€2 = ay 4 Aoxo — Sn2Zy — Sn2,

Note that the manifold (2.7) is not necessarily ti stable
manifold of the Hamiltonian system (2.3) becagidg (2.9)
does not need to be exponentially stable (Isighbri and
Astolfi 1992).

We shall reduce the analysis of the (2184 2n)-
dimensional Hamiltonian system (2.3) to the slow 2#n;-
dimensional subsystem that corresponds to the restric-
tion of (2.3) to its slow (centre) manifold. Namely, we
shall show that the existence of (2.7) is equivalent to the
existence of the reduced-order invariant manifold of the
slow subsystem. Moreover, we shall find the functions
Z, and Z, from algebraic equations by means of the
latter manifold and a fast manifold of an auxiliary
system.

3. Decomposition of the slow—fast manifold

For each x; ER’” consider the fast linear subprob-
lem

Xz = Az(xl))Q _|_Bz(x1)u
x (31
J = . Z’Q(xl)xz _|_u’R(x1)u]dt

and the correspofding algebraic Riccati equati
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ASM f MA, £ Q- MSpyM -0 (32

‘We assume further

Assumption 1:  For each x1 cR™ the triple {Az()q),
Ba(x1), Q(x1) } is controllable-observable.

Under this assumption, for each x; cR™ (3.2) has a
positive definite symmetry solution M(xy), such that the
matrix A- A4, _ S»»M is Hurwitz. This solution is
smooth on x; since 4>, Q and Sy are smooth on Xx;.

Consider the Hamiltonian matrix

A —S»
P(xl): 0 y
-0 4
I 0 _S» I 0 -
Mmoo A M od =)

Under Assuinption [, \for any 0 P posgesses the
following property: it has m, stable eigenvalues A,
ReA < _a <0, and n, unstable ones A, ReX > a for
all |x;| < m. Then for any m > 0 there exists €, > 0,
such that for all ¢ £(0:¢,| and xlll 1| <m the
system (2.3) has the slow nifold’ (Kokotovic et al.
1986, Sobolev 1984)

X L* X1 p1s €
2\ i( o) = L™ (x1:p1-€) (3-4)
D2 La(x15p1€)
The stybscripts &f L* correspond to the third and fourth
variables in the system of (2.3). To avoid cumbersome
notation we shall omit the € argument in the functions
below.
Setting (3.4) into (2-3a, b) and substituting v; and w;
for x; and p; respectively, we get the 2n;-dimensional
system for the flow on the slow manifold

V1 = f1 |?11;W1;L§(V1;W1);LZ(Vle)] (3~5a)
(3-5b)

The function L* can be found in the form of an
expansion

wi = fz(Vla Wi L;(Vl; Wl); LZ(Vl; Wl)]

L'aoprey = hnm +0@)  (36)

determined from the equation
2,15

*

*

SuLi +-f3(x1pr)

ALy 1 fa(x1 pr)

.7)
where f; = f,(xl,ppLg,L4), i = 1,2, by algebraic opera-
tions. Thus, I = _P~ fo, where fo = col If3,f4 L Note

that (3.7) can be derived by differentiating t of
(3.4), where x; = Vi(t), pr= wi(l), X2= Xa(f), p2=

P2(%), and by substituting for v; and w; the right-hand
sides of (3.5).

Consider the slow system (3.5). Denote by
{x1 cR": |x,| < m,} i = 1,2. Our next assump-
thIl is

Assumption 2:  There exist m; > 0 and €1 > 0 such that
for all € G(O,Eiand vi &, the system (3.5) pos-
sesses the invarient manifold

Wy = N(vl) (3.8)

where the function N = N(vy 2 is continuous on both
arguments and uniformly bounded together with its first
derivative on v, and N (O) - 0.

The restriction of (3.5) to (3.8) is governed by the n;-
dimensional system

VI = Fl(vl) (3.9)

where

Fi(v) = fi[vl,N(vl),L§(v1,N(v1)),LZ(vl,N(vl))J
(310)

and i = 1. Additionally, we assume

Assumption 3:  For all € 6(0,61} equaiton (3-9) is
asymptoptically stable.

The theorem below states that Assumptions (A2 and
A3) are necessary conditions for the existence of the
invariant manifold (2.7) with asymptotically stable
flow (2.9).

Theorem 1:  Let Al hold, and for all small enough €
there exist my and my such that the (2ni 4-2n)-dimen-
sional Hamiltonian system (2.3) has an invariant on
Qi X, manifold (27) with (2:9) asymptotically
stable, where V has continuous and uniformly bounded
derivatives on (x1, x2) 8%, % g, up to the second or-
der, then A2 and A3 are valid.

Note that the stable solutions of (2.3) are exponen-
tially approaching the solutions of the slow manifold
(3.4) (Pliss 1977, Sobolev 1984). Under A1-A3 we
shall construct the invariant manifold (2.7) with the
stable flow by means of the slow submanifold (3.8)
and a fast manifold of an auxiliary system. To get the
latter system let us introduce the following change of
variables:

V2 X2 .

_ = _L (Xl;pl)

D2 V23

_ (3-11y
X1 X1 V1

D1 ) D w1
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where v; and wy satisfy (3.5). For the new variables we
obtain the system

5_61 = gl(VlaWp?_Cl’ﬁlavz’ﬁz)
Pr = (Vi Wi X1s Pis vas o)
vy = Axy(X1 4 V)2 — Sn(X1 +-V1)P2
L B (3-12)
+83(V1 Wi X1> P15 V25 P2)
Py = —O(X1 £ v)va — AY(X1 V)b
+84(V1y W15 X15 P15 Vas P2)
where for i = 1,2
8i= fiFl V0 D1 Wi vy LK1 v g
P La(x1 v p -|-W1)]
*fi[VI’Wl’L;(VI’ Wl)’LZ(Vl’Wl)]

and fori = 3,4

OLi(X| v p1 W)
L A
€ 8x1 fl

i= —

B EaLi(xl 1V P1 W) Af,
Ip)

Af; - f/Fl VD1 W V2 L3y v prown)
P +Lax v -|-W1)]
ff/F1 Vi1 4w Ly 4 X1wi 1)
La(v 4-X1:wy -|—1_71)]’ Jj=12
Let m, > 0 be any positive. We choose m’ such that
|x2 _ L§(x1,N(x1))| <m'/2, (x15x2) €8y X L,
Then under A1 there exists €’ such that for all € < (0, 6’]
the system of (3.5) and (3.12) has the fast (stable) mani
fold for |vz| <m' (Sobolev 1984, Henry 1982)

X1 ELi'_(Vle; 1%

)
€L (V1> W5 V2) (3.13)
L. 1;W1;V2)
‘ (6. The f s Li
fc¥in lities

|L,*(v1, Wi vz]| < c|vz|

|L,*(v1, Wi va) — LiF (v wr, ﬁ2)| < c|v2 _ §2| -
|L1+(V1a Wi VZ) — L1+(1~71a \/If'la V2)| < C|V2|(|v1 N {}1| )

+w =)

The flow on this manifold is governed by the decq#fpled
system of the slow equations (3.5) and the fast eqfation

5{72 = A2V2 — SzzLZ;F _I_g3(V1; 4B ELi'_; ELE'_; V25 Li) (315)

where L — L,*(vl,wl,vz) (i=1,2:4), 4= A 4eLf
and S» = Sn(n _|_6L+). The solution of (3.15) with the
initial value vz(O) = 1, satisfies the inequality

|vz(t)| < Kexp(f%t) - |vz(0)|, K>0.1>0 (316
Hence, due to the first inequality of (3.14), the solutions
of (3.12) lying on the fast manifold of (3.13) are rapidly
exponentially decaying as ¢ increases. Substituting (3.8)
and (3.13) into (3.11), we get the algebraic equations for
determining Z; and Z5:

X1 = Vi €LT [vl,N(vl), vz] (317a

Xy = vy 4 L3 [xl,N(vl)_|_eL§f(v1,N(v1),vz)] (3-17b)

and

p1= N _|_6L§r[vl,N(v1), vz] (3-18a)
pr= La Eq,N(vl) +eLF (vi» N(v)» vz)]
_|_L2f(v1,N(v1), ) (3:18b)

Consider (3.17) as the system with respect to v; and
v. Using the contraction principle argument, one can
prove that there exists €, such that, for € E(O’ 62], the
system (3.17) has a unique solution on £, % €2,

(_3~19a)

Vv = Ul(Xla)Cz) = X1 _|_5l71(X1;X2)
V) = Uz(Xsz)
= xp — Lyt N(xn)) ela(xpxa) (3195)

where the functions U; and U, are Lipschitzian on x;
and xp, they vanish at (x,xp)= 0, and satisfy the
inequalities 62|U1| <my, &|Us| < m'/2. Further, apply-
ing the implicit function theorem, one can show that U,
and U, are continuously differentiable on x; and x;.
Substituting (3.19) into (3-18a) and (3-185) we get
(2.7), where

&:NWWgHYhMMy%] (3-20a)
Z - L; Eq,N(Ul) L eLF (Ui N(Uh, Uz)]

+Li (U N(Up), Uy) (3-20b)
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Theorem 2:  Under A1-A3 for any my > 0 there exists
€ > 0 such that, for all € ¢ (0, ¢

(i) the (2m 4-2m)-dimensional Hamiltonian system
(2.3) has the invariant on the $,, % §,,, manifold
(2.7) with (2.9) asymptotically stable, where con-
tinuously differentiable on x| and x, functions Z;
and Z, are defined by formula (3-20y from the
algebraic systems of (3-17) and (3-18);

(ii) there exists a C* function V : ,, x, _ R,
satisfying the HJ equation (2.5) and relations
(2-8) (therefore the optimal control problem is
solvable by the controller of (2.6)).

4. Hyperbolic case

Assumption A2 is not easily verifiable. In this section
we will consider a particular case when A2 holds. For
simplicity we assume that 9r(0)/9x; = 0. Consider the
linearization of (2.1) at 0

X1 = Anxi 4 Aixy 4 Biou

. (41a)
€xz = Axx1 4 Anxy + Byu
0o 2 2

J = X{ QX +u'R(Oyu dt (4-1D)
where Aj Ap = An(0), “Bo = Di(0),
On = &r(0 $(@s'(0y/0x1) and 8y = Q(0).
The Hamilt corresponding to (4.1) is similar
to the matri gfponds to the linearization

at 0 of the (2.3). It i8 easy to see that

Py P
e'Py Py
where fori= 1,2,j= 1,2 I

A;  —S;

Py = X T\ Si=1BoR(0)Bh

-0y -4
Under A1 the matrix P» hlas no purely imaginary eigen-
values since Py = P(0). The matrix (4.2) has one group
of 2n; small eigenvalues O(€) close to those of Py =
P — P12P§21P21 and another group of 2n, large eigen-
values 0(1) close to those of 6*1P22 (Kokotovic et al.
1986). To guarantee that, for all small enough ¢, the
matrix (4.2) has no purely imaginary eigenvalues, i.e.
the vector field defined by (2.3) is hyperbolic, we
suppose

amy, =

42

Assumption 0:  The matrix Po = P11 — Pi2Py Pa has
no purely imaginary eigenvalues.

It is known that in the hyperbolic case, for each ¢,
the optimal control problem is solvable on a small
enough neighbourhood of R™ x R"™ containing 0 if the

linearized problem is solvable. The latter is equivalent to
the existence of a non-negative definite stabilizing sol-
ution to a corresponding (m 4-m) > (m _|_n2)-algebraic
Riccati equation (ARE). We will get the reduced-order
(in terms of n; * n;-ARE) sufficient conditions for the
solvability of the optimal control problems on the
domains containing large values of x, for all sufficiently
small €.

Under AO the matrix Py has n; eigenvalues with
negative real parts and n; with positive ones. This fact
follows from the symmetry of the eigenvalues of Ham,
and of Py. Note that P, coincides with the linearization
of the slow subsystem (3.5) on vy, wy at (v, wy, €) = 0.
Hence under A0 the invariant manifold (3.8) of stable
solutions of (3.5) (if it exists) is a stable manifold of
(3.5). To guarantee its existence we consider system
(3.5), linearized on vy and wy at (vy;wy€) = O:

V1 = T1V1 _|_T2W1
Wl = T3V1 _|_T4W1

4.3
T (+)
- P
T3 Ty
Suppose that the stable manifold (i.c.Jghe stable

eigenspace) of (4.3) can be parametrized by v;-coordi-
nates in the form w; = N®v,. Then N Atisfies the
following n; < n;-ARE:

NO(Ty £ ToN®)y = T3 L T4N© (44

and the matrix T; 4 T,N© is Hurwitz. We suppose
further

Assumption 4 ARE (4-4) has a solution NO) such that
the matrix Ty 4 ToN' O) is Hurwitz.

Note that A4 implies that A0 since the stable eigen-
values of Py coincide with the eigenvalues of
T1 4 ToN' @), From the theory of non-linear differential
equation it is known that under A4 the hypotheses A2
and A3 are valid.

Thus we obtain

Corollary 1:  Under A1 and A4 for any my > 0 there
exist my > 0 and €3 > 0 such that for all € ¢ (0, 63] items
(1) and (1) of Theorem 2 are valid.

5. Asymptotic expansion of the optimal control and
optimal trajectory

5.1. Asymptotic approximation of the invariant manifolds
We assume further

Assumption 5:  For small enough € and |v1| < 2my the
function N can be represented in the form
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N 40" (5])

Note thd‘[ A4 1mphes
found from the partial
oN

8 Vl

where F; are defined by (3.10).
Analogously to (3.6), we construct the expansion of
the function LT = col {L+, LY, LI}

Fl(Vl) =

q .
Lr= el 0t (53)

from the equation (Sob

€8L+ X €8L+ . OJLT
8111 fl + 8W1f2-|—av

= col {glagza ,sz — AéLZ;’_ _|_g4} (54)

where Az, 822 and Q depend on v, _|_6L+ , and f; =
f,(V1,W1,L3,L4), i- 1, 2 8k = gk(V1,W1,€L €L2 ) Vz,L4)
k= la"'a4 Lt - L+(V1,W1,V2)

For the terms of (5.3) we get successively equations
of the form

ol

a_:; E‘lz(w) — Szz(V1)M(V1)]V2 = 7Aélf!’; _|_G47(V1, %E Vz)
(>3)

where /it = col fIi}, 13, If; |, and Gy; is a known function

such thdt Gy, [vl, b 1 . Equation (5.5) depends on v,
and wj, as on‘the parameters and its solution is given by

oo
l[;’]' = CAzt G4j |?11, Wi CPz( )=S2(m)Mn ] Vz]dl
. 0 .
Then the eqfations for /jj and [ have the form

oL
a_vg 2( — 1) — Szz(V1)M(V1)]V2 = Gy‘(lq, Wi Vz)

i- 1,2 (5.6)

where Gj; are known functions such that Gj; p, wi O] = 0.
Solutions to the latter equations are given by

oo
l{}': G,‘,‘ |?11,W1,CE42( )=S2(mMn ] Vz]dl
! ore .

In the case of fthe system of (2.1), /i is a (j 4 1)-order
polynomial wih respect to v,. The coefficients of this
polynomial caf be found from (5.5) and (5.6) by alge-
braic operatiofs.

5.2. Asymptotic approximation of optimal feedback
Next we obtain from (3.17)

vi= Ugxpxp €)= U x0) O, = 1,2

57

espect to v, w; and v,.
ThLIS Up = x1, U= ())I:V1,N0(V1)J. We substi-
tute the expansions (5.7), (5.1% (5.3) add (3.6) into
(3-:204) and (3-20b):

X b j, +0()
£
22 = El
0
x 14*[} | +0()
Expané uations in
the power tions to Z;
and 7,
Zj(.xla X l = 1, 2
(58)
where Z;; are sufficiegfly smooth. Note that
Zyp = No(x1)
Zy = Iy Eﬂ’ No(x1)]-|—M(X1) Eéz — Bo(x1s No(x1))]
(59

Substituting (5.8) into (2.6) we get the followin
O(e"+1)-appr0ximation to the optimal controller

U= uy O+

2 g9 (5 10)
G'IBAij(Xp X2)

of optimal trajefory and

These operations on the finite segment [0, T l (for
every T > 0) can be found from (3.17), (3.18), {3.9),
(3.15) and the relation

u(ty = —3R"'Bipi(t) — 3R Bipa(1) (511
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Applying standard asymptotic methods (see e.g.
OMalley 1974) to the decoupled equations (3.9) and
(3.15), where wy = N(v1), we obtain correspondingly

q

vi(l) = eiv(l’)(t) _|_6"+1r1q(t, & (512q
i=0
n - WM+ (512h)
where 7 = t/€ and 1, uniformly bounded for

ulo J T]and ™ > 0. Stituting (5-12a) into (3.9) and
ting coefficients of/ qual powers of €, we find differ-
entlal equations fordgl) nitial Values defined by
(3-194a), where ¢= 0. Similarly, from (3.15), (3.8),
(5-12b) and (3-19h), we obtain initial value problems
for ).

Finally, substituting expansions of v, v, L* and L"
mto (3.17), (3.18) and (5.11) and expanding right-hand
sides of the resulting equations in the powers of €, we
find the following approximations

’H (M) _|_e‘1+ Riy(t:€) (5:13aq)

A\
(0 (T) €T Rog(t.€) (5:13b)

layer terms exponen-
remainders Ry, and Ry,
) TLNote that (5-135)
' f (5-13a) 1nto the
expansion of the optimal feedback (5.10).
The higher-order terms in the approx1mat10n (5.10)
lead to improved performance:

Theorem 3: (i) Under A1-A3 and AS (or Al and A4)
for small enough € and |x1| < mi, Jyxz < my, the invar-
iant manifold (2.7 exists and can be represented in the
form (5-8); the optimal controller exists and can be ap-
proximated by (5-10); the optimal trajectory and opti-
mal open-loop control can be approximated by (5-13),
where approximation is uniform on every finite segment

") ;nder Al and A4 for any my > 0 there exist m{ and
€{ such that, for all € ¢ (0 €{ | and initial conditions from
Q,, X, the controller u, achieves the performance
O™t 1) close to the optimal one.

Remark 1: Chow and Kokotovic (1978) showed that
the generating function ' can be found from HJ equa-
tion (2.5) in the form of nested expansion. They
proved that the truncated series of this expansion satis-
fies the HJ equation with a high order of accuracy.
From Theorem 3 above the stronger result follows: un-
der assumptions of (ii) the truncated series (5.10) lead

to near-optimal controller and, in the hyperbolic case,
to near-optimal performance.

Remark 2: All the results of the present paper are
also valid for the systems containing non-linear on x»
terms of the order of O€). In this case V' cannot be
found in the form of the expansion of Chow and Ko-
kotovic (1978), having a more complicated structure.

Example. We consider an example from Chow and
Kokotovic (1978):

Xl = X1X2, €X2= —X + U J = (Xl _|_2X% uz) dr

This is a non-hyperbolic case since P, = 0. We obtain
the following Hamiltonian function

H- X1 + 1/2:3 +pix1X2 — Xy — 1/2p3
and Hamiltonian system

Xl = X1X2

: 3
pi = —4x1 — pix
1 1 —P1X2 514)

€Xa= —X2— D2
Pr= —X3— PIX1 -2

Further, we neglect terms of the orde] 0(62). Then
from (3.7), (3.9) and (5.4) we find

L - [,1/2p1x1, 1/2p1x1 — 2ex‘1‘]’, _ 2y

v1 vy, € W1 Vz; — v2
Equations ( 31 and (3.18) have the form

X = v — 6\Z2v1v2 (5~15a)
X2 = V) — xl(vl _|_5\Z/2V1V2) (5~15b)
D1 = 2V1 + \5R%) (5~16a)
D2 = Xl(Vl + /€V1V2) 25)61 + \Z 1 (516[7)
From (5.15) we obtain
2
Vi = X1 € Y2x) (X2 X7
\Z ( ) (5:17)
= X2 -|-X% +€ %(Xz -|-X%)
Substituting (5.17) into (5. i;), we find
D1 = Zl(xl,xz) = 2X1 _|_2 Xl(X2 +
P = Zz(xl,xz) = %_|_( _ l)xz 26x%xz

By (2.6), u= —Z;(x1:x2) and thus we obtain the same
near-optimal feedback as in Chow and Kokotovic
(1978)
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up = ,\2% - (\Z 1)x2 — 2exixs (518)
Our results show that this feedback is 0(62)-close to the
optimal one if (3.9) is asymptotically stable.

Equation (3.9) has the form

= nL3vL N = -t +0@1)  ((519)

since L3, OL3/0x; and OL3/p; vanish in the origin as
well as the right-hand sides of (5.14) together with their
partial derivatives on p; and x;. Therefore (5.19), for
small enough ¢, is asymptotically stable (to check this,
one can take V| = v as a Lyapunov function). Hence
optimal control exists and is 0(62 -close to (5.18).

Neglectig terms of the order 0(62), we obtain (3.9)
and (3.15)

1}1 = 7V%

5{12 = — %1-12

Then v; and v, are given by

wt) = _senn(0)
2t_|_v1(0)*2

(5-20)

v (1) = eTM 2(0)
Substituting (5.20) with the initial values gg®n by (5.17),
where 7 = 0, into (5.15) and (5.16), we asymptotic
approximation to optimal trajectory and4fpen-loop con-

trol u= _p;.

6. Conclusions

We have developed a geometric approach to a sin-
gularly perturbed optimal control problem, non-linear
on the slow state variables. We have obtained the exact
decomposition of the slow-fast invariant manifold of
the Hamiltonian system into the reduced-order slow
manifold and a fast manifold. As a result, sufficient con-
ditions for the solvability of the optimal control problem
in terms of the slow manifold have been obtained. Also,
an asymptotic expansion of the optimal controller has
been constructed by solving partial differential equa-
tions, depending only on the slow variables. At the
same time we have obtained decomposition of the
Hamiltonian system to the slow and fast subsystems.
This leads to asymptotic approximation to optimal tra-
jectory and open-loop control. We have shown that a
higher-order accuracy controller improves performance.
The results are valid on the domains containing large
values of the fast variables.

Appendix

Proof of Theorem 1: Under A1 the system (2.3) has a
centre-stable manifold (for analogous derivations see
Fridman 1992, Kelley 1967 and Pliss 1977)

D= L*+(x1,p1, Xz) (Al)

such that all the stable solutions of (2.3) belong to it. Let
Z) and Z, be defined by (2.8). Then (2.7) determines an
invariant on £, x €%; manifold of stable solutions to
(2.3), i.e. (2.7) is the submanifold of (A.1). Therefore p;
and p,, defined by (2.7), satisfy also (A.1), which implies
the following relation

ZZ(X1;X2) = L*+ [Xl; Zl(X1;X2);X2]a
(X1 X2) €%, X Qg (A2)

Let |Zl(x1,xz) \hS my for (X1 X2) GQ% X Q,;qz, and
m = my ms. Further, let (3.4) determine a centre mani-
fold of (2.3) for x|+ |p| < m. We shall prove that for
any W EQZmIa where m; will be chosen below (from the
solvability of (A.4a) for wy), there exists w\ cR" such
that the solution of (2.3), lying on its centre manifold

X1 = Vbhpl= Wi X2 = L;(Vlawl);pz = LZ(vl,wl)
tcR (A3a

xi(0) =, pi(0) = wi (A-3b)

lies also on the invariant manifold (2.7), i.e. satisfies on
some #; < 0 < 1, the equations

wy = Z1 [111,L§(v1,w1)] (A~4a)

=2 [vl,L§(v1,w1) (A-4b)

Note that (A.4b) follows from (A.2)~(A.4a). Really,
substituting the first and the third of the relations (A.3a)
into (A.2) and applying further (A.4a), we have

Zy(vi, Ly(vi, wr)) = L*+[v1,Zl(v1,L§(v1,wl)),L§(v1,w1)]
- L*+[v1,wl,L§(v1,w1)] (A-5)

The expression in the right-hand side of (A.5) coincides
with La(vi» wy) since the centre manifold is an invariant
submanifold of the centre-stable manifold. This,
together with the last of (A.3a), implies (A.4b).
Consider (A.4a) as a system for evaluating w;. First,
we shall show that Z; can be represented as follows

Zl(xl,xz) = Cl(xl) _|_6C2(x1,x2,6) (A.6)

where C; and ( are Lipschitzian on (Xxi;Xx»

Qs x Q5 . Really, differentiating the first of the rela-
tions (2.8) on x,, and the second on Xx;, we get
Zix, = €2y, = Vi, which yields the representation
(A.6). Substituting (A.6) into (A.4a) and applying to the
latter equation the contraction principle, one can show
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that there exists m; > 0 such that (A.4a) has a solution
(4.1) for |v|<2m;, where N is Lipschitzian and
N(0y = 0. Further, applying the implicit function the-
orem, one can prove that N is continuously differenti-
able for |vi| < 2m;.

Let |vi|<2my for t £(1),12). Then from (A.4a) it
follows that (3.8) is valid on (71: 1), i.e. (3.8) defines
an invariant manifold of (3.5). The solutions of the latter
invariant manifold are asymptotically stable, being at
the same time the solutions of (2.7) with asymptotically
stable (2.9). O

Proof of Theorem 2: (i) The relations (2.7) define the
invariant on £, < £, manifold of (2.3) if, for any
(X x3) €8y X s, there exists 71 < 0 < 12 such that
a solution of (2.3) with the initial values

xl(O) - x?, X2(0) = xg,

(A7)

210y = Zi(x.x3), pa(0) = Zp(x), x9)

satisfies (2.7) for L ().
Let (x] Q, xQ, b h, t
(xl,xz) i m, be any prechosen Vi
and v, be solutions of (3.9) and (3.15), whegf w; is
defined by (3.8) and with the following irfftl con-
ditions

vi(0) = Ur(xlsx3),  wm(0) = Uhad,xd) (A-8)

Denote by x1,x2: p1: p2 a solution of (2.3), (A.7). Note
that the relations (A.7) and (A.8) imply (3.17) and (3.18)
at = 0. Let #; <0< £, be such an interval that, for
1 €(thh), we have (x15x2) €9, X €, and |v|<
2m;. Then, due to the uniqueness of the solution of
(2.3), (A.7), the relations (3.17) and (3.18) are satisfied
for all L et b). This yields (2.7) for all L et ).
Hence, the relations (2.7) define an invariant on
Q,, %, manifold of (2.3). The asymptotic stability
of (2.7) follows from the same property of v v, and
from the relations (3.17); this completes the proof
of (i).

The invariant manifold (2.7) with asymptotically
stable (2.9) is Lagrangian (it can be proved as Lemma
1 of Van der Schaft 1991) and is projectable on the
simply connected manifold €2, x €2, which implies
the existence of the generating function V', satisfying
(2.8) and (2.3) (Van der Schaft 1991).

Asymptotic stability of (2.1), (2.6) follows from
(3.17), (3.18) and asymptotic stability of (3.9) and
(3.15). O

Proof of Theorem 3: 'We have to prove only (iii). Sub-
stitute « given by (5.10) and u, into (2.1) and denote
by x and x the solutions to the resulting equations.
Under A4 the latter equations are exponentially stable.
Then, similarly to (5.13), the following approximations
can be obtained for small enough x1(0)

1) (ry e Ryt ey (A9a)
)1y 4 Ryt ey (A9

L Ry(n] < Ce™
= 0,a>0) (A-10)

Note that the terms x) and H in the expansions (A.9)
are the same since the right- hand sides of the corre-
sponding differential equations are O(e/*+!)-close.
Substitution of (A.9) and (5.10) into J leads to (iii). [J
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