Fridman, E.

Decoupling Transformation of Singularly Perturbed Systems with Small Delays and Its Applications

For linear singularly perturbed system of functional differential equations with small time delays we find a change of variables that decomposes this system into a purely-slow system of ordinary differential equations and a purelyfast functional equation. This decomposition is a generalization of Chang's decoupling transformation of singularly perturbed systems in the time-delay case. It is obtained by virtue of invariant manifolds and it can be found approximately in the form of asymptotic expansion. Using this transformation we get the reduced-order approximate models, stability and stabilizability criteria. This transformation can be further used in different control problems.

1. Decoupling transformation and its asymptotic approximation

Let \mathbb{R}^{m} be Euclidean space and $C[a, b]$ be the space of continuous functions $\phi:[a, b] \rightarrow \mathbb{R}^{m}$ with the supremum norm $|\cdot|$. Consider the system

$$
\begin{align*}
& \dot{x}(t)=A_{11} x(t)+A_{12} z_{t}+B_{1} u(t), \quad x(0)=x_{0} \tag{1a}\\
& \epsilon \dot{z}(t)=A_{21} x(t)+A_{22} z_{t}+B_{2} u(t), \quad z(\zeta)=z_{0} \quad(-\epsilon \leq \zeta \leq 0), \tag{1b}
\end{align*}
$$

where $x(t) \in \mathbb{R}^{n}, z(t) \in \mathbb{R}^{m}$ are the state vectors, $u(t) \in \mathbb{R}^{q}$ is the control input, $A_{i 1}, B_{i}(i=1,2)$ are the matrices of the appropriate dimensions, $z_{t}=z(t+\zeta)\left(\zeta \in\left[-\epsilon h_{k} ; 0\right]\right)$ and ϵ is a small positive parameter. Assume that $z_{0} \in C\left[-\epsilon h_{k}, 0\right], u \in L_{1}^{l o c}[0, \infty)$ and that the linear mappings $A_{i 2}, i=1,2$ are given by

$$
A_{i 2} z_{t}=\sum_{j=0}^{k} C_{j i} z\left(t-\epsilon h_{j}\right)+\int_{-h_{k}}^{0} D_{i}(\theta) z(t+\epsilon \theta) d \theta, \quad 0=h_{0}<h_{1}<\ldots<h_{k}
$$

where D_{i} is integrable on $\left[-h_{k}, 0\right]$. The important tool in studying different control problems for (1) (e.g. construction of approximate models, controllability, filtering etc. [6]) in the case of ordinary differential equations is Chang's transformation [2], decoupling (1) into slow and fast subsystems. In the present paper we construct the similar transformation in the case of retarded type equations. The singularly perturbed systems with small delays were considered e.g. in $[7 ; 8]$, where the existence of slow manifolds and of exponential dichotomy were established. In [3] the decoupling transformation has been constructed in the case of the homogeneous system with one discrete delay and advance.

For each $\epsilon>0$ denote by $S(t, \epsilon): C\left[-\epsilon h_{k}, 0\right] \rightarrow C\left[-\epsilon h_{k}, 0\right]$ the semigroup of the shift operators, corresponding to the fast linear equation

$$
\begin{equation*}
\epsilon \dot{z}(t)=A_{22} z_{t} \tag{2}
\end{equation*}
$$

and $X(t+\zeta, \epsilon)=S(t, \epsilon) X_{0}(\zeta \in[-\epsilon, 0])$ is the fundamental matrix of $(2), X_{0}(0)=0, X_{0}(\zeta)=0(\zeta<0)$. Applying the variation of constants formula [5] to (1b), we get the equivalent to (1) system of differential and integral equations

$$
\begin{gather*}
\dot{x}(t)=A_{11} x(t)+A_{12} z_{t}+B_{1} u(t) \tag{3a}\\
z_{t}=S(t, \epsilon) z_{0}+\frac{1}{\epsilon} \int_{0}^{t} S(t-s, \epsilon)\left[X_{0} A_{21} x(s)+B_{2} u(s)\right] d s \tag{3b}
\end{gather*}
$$

where integral in (3b) is understood as the integral in \mathbb{R}^{n}.
Our main assumption is:
A1. The roots of the characteristic equation

$$
\begin{equation*}
\operatorname{det}\left[\lambda I-\sum_{j=0}^{k} C_{j 2} e^{-\lambda h_{j}}-\int_{-h_{k}}^{0} D_{2}(\theta) e^{\lambda \theta} d \theta\right]=0 \tag{4}
\end{equation*}
$$

have negative real parts.

Note that (4) corresponds to (2) written in the fast time $\tau=t / \epsilon$. Set $t=\epsilon \tau$ in (2) to obtain $S(t, \epsilon) z_{0}=$ $S(\tau, 1) \bar{z}_{0}, z_{0}(\epsilon \theta)=\bar{z}_{0}(\theta, \epsilon)\left(\theta \in\left[-h_{k}, 0\right]\right)$. Then under A1 the following inequality holds:

$$
\left|S(t, \epsilon) z_{0}\right|=\left|S(\tau, 1) \bar{z}_{0}\right| \leq K e^{-\frac{\alpha}{\epsilon} t}\left|z_{0}\right|, \quad \alpha>0, K>1 .
$$

By standard argument for existence of invariant manifolds (see e.g. [5;7]), for all small enough ϵ the homogeneous system (1) (with $B_{i}=0$) has a center manifold $z_{t}=-L x$, where $\left.L=L(\epsilon): \mathbb{R}^{n} \rightarrow C_{[}-\epsilon h_{k}, 0\right]$ is the linear bounded operator (see e.g.[3]).

For continuously differentiable function $\phi \in C\left[-\epsilon h_{k}, 0\right]$ denote

$$
\mathcal{A}(\epsilon) \phi= \begin{cases}\dot{\phi}, & \text { if } \zeta \in\left[-\epsilon h_{k}, 0\right) \\ \frac{1}{\epsilon} \sum_{j=0}^{k} C_{j 2} z\left(t-\epsilon h_{j}\right)+\frac{1}{\epsilon} \int_{-h_{k}}^{0} D_{2}(s) z(t+\epsilon s) d s, & \text { if } \zeta=0 .\end{cases}
$$

Similarly to [4] the following Lemma can be proved:
Lemma 1. Under A1 for all small enough $\epsilon>0$

1. the continuously differentiable $m \times n$-matrix function $L(\zeta)$ determines the center manifold $z_{t}=-L x(t)$ of (3) iff for every $\zeta \in\left[-\epsilon h_{k}, 0\right]$ it satisfies the equation

$$
\begin{equation*}
\epsilon L\left(A_{11}-A_{12} L\right)=\epsilon \mathcal{A}(\epsilon) L-X_{0} A_{21} \tag{5}
\end{equation*}
$$

2. the following approximation holds uniformly on $\left[-h_{k}, 0\right]$:

$$
\begin{equation*}
L(\epsilon \theta)=L_{0}(\theta)+\epsilon L_{1}(\theta)+\ldots+\epsilon^{p} L_{p}+O\left(\epsilon^{p+1}\right) \tag{6}
\end{equation*}
$$

Substitute (6) into (5) and equate the coefficients of equal powers of ϵ. Since $\mathcal{A}(\epsilon) L=\epsilon^{-1} A(1) \sum \epsilon^{i} L_{i}$, we get $\mathcal{A}(1) L_{0}-X_{0} A_{21}=0$ that implies the following solution:

$$
L_{0}=\left(A_{22} I\right)^{-1} A_{21}, \quad A_{22} I=\sum_{j=0}^{k} C_{j 2}+\int_{-h_{k}}^{0} D_{2}(\theta) d \theta,
$$

where under A1 the inverse matrix exists since $\lambda=0$ does not satisfy (4). The next term L_{1} satisfies the equation $\mathcal{A}(1) L_{1}=L_{0}\left(A_{11}-A_{12} L_{0}\right)$. Solving the latter equation we get

$$
L_{1}=(\theta I+M) L_{0}\left(A_{11}-A_{12} L_{0}\right), \quad M=\left(A_{22} I\right)^{-1}\left[I+\sum_{j=0}^{k} C_{j 2} h_{j}-\int_{-h_{k}}^{0} D_{2}(\theta) \theta d \theta\right] .
$$

Similarly the higher order terms $L_{i}(i \geq 1)$ can be found.
Changing variables in (3) $\xi_{t}=z_{t}+L x(t)$ and using the formula [4]:

$$
S(t, \epsilon) L x_{0}-L x(t)=\int_{0}^{t} S(t-s, \epsilon) A(\epsilon) L x(s) d s-\int_{0}^{t} S(t-s, \epsilon) L \dot{x}(s) d s
$$

we get the following system

$$
\begin{gather*}
\dot{x}(t)=\left(A_{11}-A_{12} L\right) x+A_{12} \xi_{t}+B_{1} u(t) \tag{7a}\\
\xi_{t}=S(t, \epsilon) \xi_{0}+\frac{1}{\epsilon} \int_{0}^{t} S(t-s, \epsilon)\left[\epsilon L A_{12} \xi_{s}+\left(X_{0} B_{2}+\epsilon L B_{1}\right) u(s)\right] d s \tag{7b}
\end{gather*}
$$

For small enough ϵ homogeneous system (7) has the stable manifold $x=\epsilon H \xi$, where $H: C\left[-\epsilon h_{k}, 0\right] \rightarrow \mathbb{R}^{n}$. Similarly to $[3,4]$ the following Lemma can be proved:

Lemma 2. Under A1 for all small enough $\epsilon>0$

1. the linear bounded operator $H: C\left[-\epsilon h_{k}, 0\right] \rightarrow \mathbb{R}^{n}$ determines the stable manifold $x(t)=H z_{t}$ of (3) iff for every continuously differentiable $\xi \in C\left[-\epsilon h_{k}, 0\right]$ it satisfies the following equation:

$$
\begin{equation*}
\epsilon H\left[\mathcal{A}(\epsilon) \xi+L A_{12} \xi\right]=\left[\left(A_{11}-A_{12} L\right) \epsilon H+A_{12}\right] \xi ; \tag{8}
\end{equation*}
$$

2. the following approximation holds:

$$
H \xi=H_{0} \bar{\xi}+\epsilon H_{1} \bar{\xi}+\ldots+\epsilon^{p} H_{p} \bar{\xi}+O\left(\epsilon^{p+1}|\xi|\right)
$$

where $\xi \in C\left[-\epsilon h_{k}, 0\right], \bar{\xi}(\theta, \epsilon)=\xi(\epsilon \theta)\left(\theta \in\left[-h_{k}, 0\right]\right), \bar{\xi} \in C\left[-h_{k}, 0\right]$.

Substitution of $\sum \epsilon^{i} H_{i}$ and $\epsilon^{-1} \mathcal{A}(1) \bar{\xi}$ for H and $\mathcal{A}(\epsilon) \xi$ into (8) and equating the like coefficients of ϵ leads to the equations for H_{i} determination. Thus, for H_{0} we get the equation $H_{0} \mathcal{A}(1) \bar{\xi}=A_{12} \bar{\xi}$. The latter equation by Lemma 2 has a solution, determining the stable manifold $x=H_{0} \bar{\xi}$ of the system

$$
\dot{x}(\tau)=A_{12} \bar{\xi}_{\tau}, \quad \dot{\bar{\xi}}(\tau)=A_{22} \bar{\xi}_{\tau}, \quad A_{i 2} \bar{\xi}_{\tau}=\sum_{j=0}^{k} C_{j i} \bar{\xi}\left(\tau-h_{j}\right)+\int_{-h_{k}}^{0} D_{i}(\theta) \bar{\xi}(\tau+\theta) d \theta(i=1,2)
$$

This solution is given by

$$
\begin{aligned}
H_{0} \bar{\xi}=A_{12} I \cdot & \left(A_{22} I\right)^{-1}\left[\bar{\xi}(0)+\sum_{i=0}^{k} C_{i 2} \int_{-h_{i}}^{0} \bar{\xi}(s) d s+\int_{-h_{k}}^{0} \int_{-h_{k}}^{s} D_{2}(r) d r \bar{\xi}(s) d s\right] \\
& \left.-\sum_{i=0}^{k} C_{i 1} \int_{-h_{i}}^{0} \bar{\xi}(s) d s-\int_{-h_{k}}^{0} \int_{-h_{k}}^{s} D_{1}(r) d r \bar{\xi}(s) d s\right]
\end{aligned}
$$

where $A_{12} I=\sum_{i=0}^{k} C_{i 1}+\int_{-h_{k}}^{0} D_{1}(s) d s$. Really substituting the latter expression for H_{0} into the equation for H_{0} and further integrating by parts, we get an identity. Similarly the higher order terms $H_{i}(i \geq 1)$ can be found.

After the next change of variables $\eta(t)=x(t)-\epsilon H \xi_{t}$ we obtain the decoupled system

$$
\begin{gather*}
\dot{\eta}(t)=\left(A_{11}-A_{12} L\right) \eta(t)+\left[B_{1}-\epsilon H L B_{1}-H X_{0} B_{2}\right] u(t) \tag{9a}\\
\xi_{t}=S(t, \epsilon) \xi_{0}+\frac{1}{\epsilon} \int_{0}^{t} S(t-s, \epsilon)\left[\epsilon L A_{12} \xi_{s}+\left(X_{0} B_{2}+\epsilon L B_{1}\right) u(s)\right] d s \tag{9b}
\end{gather*}
$$

Expressing x and z in terms of η and ξ from the formulas for the variables changes we get
Theorem 1. Under A1 for all small enough ϵ there exists a nonsingular transformation $T: R^{n} \times$ $C\left[-\epsilon h_{k}, 0\right] \rightarrow R^{n} \times C\left[-\epsilon h_{k}, 0\right]$ given by

$$
\binom{x}{z}=\left(\begin{array}{cc}
I & \epsilon H \tag{10}\\
-L & I-\epsilon L H
\end{array}\right)\binom{\eta}{\xi}=T\binom{\eta}{\xi}, \quad T^{-1}=\left(\begin{array}{cc}
I-\epsilon H L & -\epsilon H \\
L & I
\end{array}\right)
$$

that transforms (3) to the purely-slow system (9a) and the purely-fast system (9b). The following approximation is valid:

$$
\begin{equation*}
T=T_{0}+\epsilon T_{1}+\ldots+\epsilon^{p} T_{p}+O\left(\epsilon^{p+1}\right) \tag{11}
\end{equation*}
$$

The expansion (11) can be easily obtained from (10) by using expansions of L and H.

2. Some applications

Consider linear state-feedback design for (1). To alleviate difficulties caused by high-dimensionality and ill-conditioning resulting from interaction of slow and fast dynamic modes, we approximately decompose (1) into the slow and the fast subsystems. The n-th order slow system is

$$
\begin{equation*}
\dot{x}^{s}(t)=A_{0} x^{s}(t)+B_{0} u^{s}(t), \quad A_{21} x^{s}(t)+A_{22} I \cdot z^{s}(t)+B_{2} u^{s}(t)=0, \quad x^{s}(0)=x^{0} \tag{12}
\end{equation*}
$$

where

$$
A_{0}=A_{11}-A_{12} I \cdot\left(A_{22} I\right)^{-1} A_{21}, \quad B_{0}=B_{1}-A_{12} I \cdot\left(A_{22} I\right)^{-1} B_{2}
$$

and x^{s}, z^{s}, u^{s} are the slow parts of x, z, u in (1). Note that (12) results from (1) by setting $\epsilon=0$. The m-the order fast system in the $\tau=t / \epsilon$ is

$$
\begin{equation*}
\dot{z}^{f}(\tau)=\sum_{j=0}^{k} C_{j 2} z^{f}\left(\tau-h_{j}\right)+\int_{-h_{k}}^{0} D_{2}(\theta) z^{f}(\tau+\theta) d \theta+B_{2} u^{f}(\tau), \quad z_{0}^{f}=\left(A_{22} I\right)^{-1} A_{21} x_{0}+z_{0} \tag{13}
\end{equation*}
$$

where $z^{f}=z-z^{s}$ and $u^{f}=u-u^{s}$ denote fast parts of u and z. It is appropriate to consider feedback controls

$$
u^{s}(t)=G_{0} x^{s}(t), \quad u^{f}(\tau)=G_{2} z_{\tau}^{f}=g_{0} z^{f}(\tau)+\int_{-h_{k}}^{0} g_{1}(\theta) z^{f}(\tau+\theta) d \theta
$$

separately designed for the slow and the fast systems (12) and (13). Note that the above form of u^{f} arises e.g. in stabilization and optimal control problems (see e.g. [1]). We take a composite control for the full system (1) as

$$
\begin{equation*}
u(t)=u^{s}(t)+u^{f}(\tau)=G_{0} x^{s}(t)+G_{2} z_{\tau}^{f}=G_{0} x(t)+G_{2}\left[z_{\tau}+\left(A_{22} I\right)^{-1}\left(A_{21}+B_{2} G_{0}\right) x(t)\right] \tag{14}
\end{equation*}
$$

Similarly to Theorem 2.1 [6, p.95] (by using the decoupling transformation to the closed-loop system (1), (14)), the following Corollary can be proved:

Corollary 1. Assume that the matrix $A_{22} I$ is nonsingular. Let G_{2} be designed such that the roots of the characteristic equation

$$
\operatorname{det}\left\{\lambda I-B_{2} g_{0}-\sum_{j=0}^{k} C_{j 2} e^{-\lambda h_{j}}-\int_{-h_{k}}^{0}\left[D_{2}(\theta)+B_{2} g_{1}(\theta)\right] e^{\lambda \theta} d \theta\right\}=0
$$

that corresponds to the operator $A_{22}+B_{2} G_{2}$, have negative real parts. Then for all small enough $\epsilon>0$ if the composite control

$$
\begin{equation*}
u(t)=\left[\left(I+G_{2} I \cdot\left(A_{22} I\right)^{-1} B_{2}\right) G_{0}+G_{2} I \cdot\left(A_{22} I\right)^{-1} A_{21}\right] x(t)+G_{2} z_{\tau}, \tag{15}
\end{equation*}
$$

is applied to (1), the state and control of the resulting closed-loop system are approximated according to

$$
\begin{equation*}
x(t)=x^{s}(t)+O(\epsilon), \quad z(t)=-\left(A_{22} I\right)^{-1} A_{21} x^{s}(t)+z^{f}(\tau)+O(\epsilon), \quad u(t)=u^{s}(t)+u^{f}(\tau)+O(\epsilon) \tag{16}
\end{equation*}
$$

for all finite $t \geq 0$. If in addition G_{0} is designed such that $A_{0}+B_{0} G_{0}$ is Hurwitz, then for all small enough ϵ the resulting closed-loop system is asymptotically stable and approximations (16) hold for all $t \geq 0$.

From Corollary 1 it follows
Corollary 2. Under A1 for small enough ϵ

1. The homogeneous system (1) is asymptotically stable if the matrix A_{0} is Hurwitz;
2. If the controller $u=G_{0} x$ is designed such that $A_{0}+B_{0} G_{0}$ is Hurwitz, then the closed loop system (1) is asymptotically stable.

Similarly the higher order approximations of solutions to (1) under linear state-feedback control can be achieved through the use of separate corrected slow and fast designs. Further the decoupling transformation can be applied to controllability, optimal control, filtering and other problems for (1).

Acknowledgements

The author is grateful to the Ministry of Absorption of Israel for financial support.

3. References

1 Andreeva, E., Kolmanovskif, V., Shaikhet, L.: Control of hereditary systems; Moscow, Nauka, 1992 (in Russian).
2 Chang, K.: Singular perturbations of a general boundary value problem; SIAM J. Math. Anal. 3 (1972), 520-526.
3 Fridman, E.: Decomposition of linear optimal singularly perturbed systems with time delay; transl. in Automation and remote control. 51 (1990) 1518-1527.
4 Fridman, E.: Asymptotic of integral manifolds and decomposition of singularly perturbed systems of neutral type; transl. in Differential equations. 26 (1990), 457-467.
5 Hale, J., Lunel, S.: Introduction to functional differential equations; Springer-Verlag, 1993.
6 Kokotovic, P., Khalil, H. , O'Reilly, J.: Singular Perturbation Methods in Control : Analysis and Design; Academic Press, New York, 1986.
7 MitropolskiI, Yu., Lykova, O.: Integral Manifolds in the Non-linear Mechanics. Moscow, Nauka, 1973 (in Russian).
8 Pena, M.: Exponential dichotomy for singularly perturbed linear functional differential equations with small delays; Applicable Analysis. 47 (1992), 213-225.

Addresses: Dr. Emilia Fridman, Tel Aviv University, Department of Electrical Engineering/Systems, Ramat Aviv, Tel Aviv, 69978, ISRAEL.

