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Decoupling Transformation of Singularly Perturbed Systems with Small De-
lays and Its Applications

For linear singularly perturbed system of functional differential equations with small time delays we find a change
of variables that decomposes this system into a purely-slow system of ordinary differential equations and a purely-
fast functional equation. This decomposition is a generalization of Chang’s decoupling transformation of singularly
perturbed systems in the time-delay case. It is obtained by virtue of invariant manifolds and it can be found ap-
proximately in the form of asymptotic expansion. Using this transformation we get the reduced-order approximate
models, stability and stabilizability criteria. This transformation can be further used in different control problems.

1. Decoupling transformation and its asymptotic approximation

Let IRm be Euclidean space and C[a, b] be the space of continuous functions φ : [a, b] → IRm with the supremum
norm | · |. Consider the system

ẋ(t) = A11x(t) + A12zt + B1u(t), x(0) = x0, (1a)

εż(t) = A21x(t) + A22zt + B2u(t), z(ζ) = z0 (−ε ≤ ζ ≤ 0), (1b)

where x(t) ∈ IRn, z(t) ∈ IRm are the state vectors, u(t) ∈ IRq is the control input, Ai1, Bi (i = 1, 2) are the matrices
of the appropriate dimensions, zt = z(t + ζ) (ζ ∈ [−εhk; 0]) and ε is a small positive parameter. Assume that
z0 ∈ C[−εhk, 0], u ∈ Lloc

1 [0,∞) and that the linear mappings Ai2, i = 1, 2 are given by

Ai2zt =
k∑

j=0

Cjiz(t− εhj) +
∫ 0

−hk

Di(θ)z(t + εθ)dθ, 0 = h0 < h1 < ... < hk,

where Di is integrable on [−hk, 0]. The important tool in studying different control problems for (1) (e.g. construction
of approximate models, controllability, filtering etc. [6]) in the case of ordinary differential equations is Chang’s
transformation [2], decoupling (1) into slow and fast subsystems. In the present paper we construct the similar
transformation in the case of retarded type equations. The singularly perturbed systems with small delays were
considered e.g. in [7;8], where the existence of slow manifolds and of exponential dichotomy were established. In [3]
the decoupling transformation has been constructed in the case of the homogeneous system with one discrete delay
and advance.

For each ε > 0 denote by S(t, ε) : C[−εhk, 0] → C[−εhk, 0] the semigroup of the shift operators, corresponding
to the fast linear equation

εż(t) = A22zt, (2)

and X(t+ζ, ε) = S(t, ε)X0(ζ ∈ [−ε, 0]) is the fundamental matrix of (2), X0(0) = 0, X0(ζ) = 0(ζ < 0). Applying the
variation of constants formula [5] to (1b) , we get the equivalent to (1) system of differential and integral equations

ẋ(t) = A11x(t) + A12zt + B1u(t), (3a),

zt = S(t, ε)z0 +
1
ε

∫ t

0

S(t− s, ε)[X0A21x(s) + B2u(s)]ds, (3b)

where integral in (3b) is understood as the integral in IRn.
Our main assumption is:
A1. The roots of the characteristic equation

det[λI −
k∑

j=0

Cj2e
−λhj −

∫ 0

−hk

D2(θ)eλθdθ] = 0 (4)

have negative real parts.



Note that (4) corresponds to (2) written in the fast time τ = t/ε. Set t = ετ in (2) to obtain S(t, ε)z0 =
S(τ, 1)z̄0, z0(εθ) = z̄0(θ, ε)(θ ∈ [−hk, 0]). Then under A1 the following inequality holds:

|S(t, ε)z0| = |S(τ, 1)z̄0| ≤ Ke−
α
ε t|z0|, α > 0, K > 1.

By standard argument for existence of invariant manifolds (see e.g. [5;7]), for all small enough ε the homogeneous
system (1) (with Bi = 0) has a center manifold zt = −Lx , where L = L(ε) : IRn → C[− εhk, 0] is the linear bounded
operator (see e.g.[3]).

For continuously differentiable function φ ∈ C[−εhk, 0] denote

A(ε)φ =

{
φ̇, if ζ ∈ [−εhk, 0)
1
ε

∑k
j=0 Cj2z(t− εhj) + 1

ε

∫ 0

−hk
D2(s)z(t + εs)ds, if ζ = 0.

Similarly to [4] the following Lemma can be proved:

Lemma 1. Under A1 for all small enough ε > 0

1. the continuously differentiable m× n-matrix function L(ζ) determines the center manifold zt = −Lx(t) of (3)
iff for every ζ ∈ [−εhk, 0] it satisfies the equation

εL(A11 −A12L) = εA(ε)L−X0A21; (5)

2. the following approximation holds uniformly on [−hk, 0]:

L(εθ) = L0(θ) + εL1(θ) + ... + εpLp + O(εp+1). (6)

Substitute (6) into (5) and equate the coefficients of equal powers of ε. Since A(ε)L = ε−1A(1)
∑

εiLi, we get
A(1)L0 −X0A21 = 0 that implies the following solution:

L0 = (A22I)−1A21, A22I =
k∑

j=0

Cj2 +
∫ 0

−hk

D2(θ)dθ,

where under A1 the inverse matrix exists since λ = 0 does not satisfy (4). The next term L1 satisfies the equation
A(1)L1 = L0(A11 −A12L0). Solving the latter equation we get

L1 = (θI + M)L0(A11 −A12L0), M = (A22I)−1[I +
k∑

j=0

Cj2hj −
∫ 0

−hk

D2(θ)θdθ].

Similarly the higher order terms Li(i ≥ 1) can be found.
Changing variables in (3) ξt = zt + Lx(t) and using the formula [4]:

S(t, ε)Lx0 − Lx(t) =
∫ t

0

S(t− s, ε)A(ε)Lx(s)ds−
∫ t

0

S(t− s, ε)Lẋ(s)ds,

we get the following system
ẋ(t) = (A11 −A12L)x + A12ξt + B1u(t), (7a),

ξt = S(t, ε)ξ0 +
1
ε

∫ t

0

S(t− s, ε)[εLA12ξs + (X0B2 + εLB1)u(s)]ds. (7b)

For small enough ε homogeneous system (7) has the stable manifold x = εHξ, where H : C[−εhk, 0] → IRn. Similarly
to [3,4] the following Lemma can be proved:

Lemma 2. Under A1 for all small enough ε > 0

1. the linear bounded operator H : C[−εhk, 0] → IRn determines the stable manifold x(t) = Hzt of (3) iff for
every continuously differentiable ξ ∈ C[−εhk, 0] it satisfies the following equation:

εH[A(ε)ξ + LA12ξ] = [(A11 −A12L)εH + A12]ξ; (8)



2. the following approximation holds :

Hξ = H0ξ̄ + εH1ξ̄ + ... + εpHpξ̄ + O(εp+1|ξ|),
where ξ ∈ C[−εhk, 0], ξ̄(θ, ε) = ξ(εθ) (θ ∈ [−hk, 0]), ξ̄ ∈ C[−hk, 0].

Substitution of
∑

εiHi and ε−1A(1)ξ̄ for H and A(ε)ξ into (8) and equating the like coefficients of ε leads to the
equations for Hi determination. Thus, for H0 we get the equation H0A(1)ξ̄ = A12ξ̄. The latter equation by Lemma
2 has a solution, determining the stable manifold x = H0ξ̄ of the system

ẋ(τ) = A12ξ̄τ , ˙̄ξ(τ) = A22ξ̄τ , Ai2ξ̄τ =
k∑

j=0

Cjiξ̄(τ − hj) +
∫ 0

−hk

Di(θ)ξ̄(τ + θ)dθ (i = 1, 2).

This solution is given by

H0ξ̄ = A12I · (A22I)−1[ξ̄(0) +
k∑

i=0

Ci2

∫ 0

−hi

ξ̄(s)ds +
∫ 0

−hk

∫ s

−hk

D2(r)drξ̄(s)ds]

−
k∑

i=0

Ci1

∫ 0

−hi

ξ̄(s)ds−
∫ 0

−hk

∫ s

−hk

D1(r)drξ̄(s)ds],

where A12I =
∑k

i=0 Ci1 +
∫ 0

−hk
D1(s)ds. Really substituting the latter expression for H0 into the equation for H0

and further integrating by parts, we get an identity. Similarly the higher order terms Hi (i ≥ 1) can be found.
After the next change of variables η(t) = x(t)− εHξt we obtain the decoupled system

η̇(t) = (A11 −A12L)η(t) + [B1 − εHLB1 −HX0B2]u(t), (9a),

ξt = S(t, ε)ξ0 +
1
ε

∫ t

0

S(t− s, ε)[εLA12ξs + (X0B2 + εLB1)u(s)]ds. (9b)

Expressing x and z in terms of η and ξ from the formulas for the variables changes we get

T h e o r e m 1. Under A1 for all small enough ε there exists a nonsingular transformation T : Rn ×
C[−εhk, 0] → Rn × C[−εhk, 0] given by

(
x
z

)
=

(
I εH
−L I − εLH

)(
η
ξ

)
= T

(
η
ξ

)
, T−1 =

(
I − εHL −εH

L I

)
, (10)

that transforms (3) to the purely-slow system (9a) and the purely-fast system (9b). The following approximation is
valid:

T = T0 + εT1 + ... + εpTp + O(εp+1). (11)

The expansion (11) can be easily obtained from (10) by using expansions of L and H.

2. Some applications

Consider linear state-feedback design for (1). To alleviate difficulties caused by high-dimensionality and ill-conditioning
resulting from interaction of slow and fast dynamic modes, we approximately decompose (1) into the slow and the
fast subsystems. The n-th order slow system is

ẋs(t) = A0x
s(t) + B0u

s(t), A21x
s(t) + A22I · zs(t) + B2u

s(t) = 0, xs(0) = x0, (12)

where
A0 = A11 −A12I · (A22I)−1A21, B0 = B1 −A12I · (A22I)−1B2,

and xs, zs, us are the slow parts of x, z, u in (1). Note that (12) results from (1) by setting ε = 0. The m-the order
fast system in the τ = t/ε is

żf (τ) =
k∑

j=0

Cj2z
f (τ − hj) +

∫ 0

−hk

D2(θ)zf (τ + θ)dθ + B2u
f (τ), zf

0 = (A22I)−1A21x0 + z0, (13)



where zf = z − zs and uf = u− us denote fast parts of u and z. It is appropriate to consider feedback controls

us(t) = G0x
s(t), uf (τ) = G2z

f
τ = g0z

f (τ) +
∫ 0

−hk

g1(θ)zf (τ + θ)dθ,

separately designed for the slow and the fast systems (12) and (13). Note that the above form of uf arises e.g. in
stabilization and optimal control problems (see e.g. [1]). We take a composite control for the full system (1) as

u(t) = us(t) + uf (τ) = G0x
s(t) + G2z

f
τ = G0x(t) + G2[zτ + (A22I)−1(A21 + B2G0)x(t)]. (14)

Similarly to Theorem 2.1 [6, p.95] (by using the decoupling transformation to the closed-loop system (1), (14)), the
following Corollary can be proved:

Corollary 1. Assume that the matrix A22I is nonsingular. Let G2 be designed such that the roots of the characteristic
equation

det



λI −B2g0 −

k∑

j=0

Cj2e
−λhj −

∫ 0

−hk

[D2(θ) + B2g1(θ)]eλθdθ



 = 0,

that corresponds to the operator A22 + B2G2, have negative real parts. Then for all small enough ε > 0 if the
composite control

u(t) = [(I + G2I · (A22I)−1B2)G0 + G2I · (A22I)−1A21]x(t) + G2zτ , (15)

is applied to (1), the state and control of the resulting closed-loop system are approximated according to

x(t) = xs(t) + O(ε), z(t) = −(A22I)−1A21x
s(t) + zf (τ) + O(ε), u(t) = us(t) + uf (τ) + O(ε) (16)

for all finite t ≥ 0. If in addition G0 is designed such that A0 + B0G0 is Hurwitz , then for all small enough ε the
resulting closed-loop system is asymptotically stable and approximations (16) hold for all t ≥ 0.

From Corollary 1 it follows

Corollary 2. Under A1 for small enough ε

1. The homogeneous system (1) is asymptotically stable if the matrix A0 is Hurwitz;

2. If the controller u = G0x is designed such that A0 + B0G0 is Hurwitz, then the closed loop system (1) is
asymptotically stable.

Similarly the higher order approximations of solutions to (1) under linear state-feedback control can be achieved
through the use of separate corrected slow and fast designs. Further the decoupling transformation can be applied
to controllability, optimal control, filtering and other problems for (1).
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