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a b s t r a c t

In our recent paper a constructive method for finite-dimensional observer-based control of 1-D
linear heat equation was suggested. In the present paper we aim to extend this method to the case
of input/output general time-varying delays or sawtooth delays (that correspond to network-based
control). We assume known measurement delays and, for the first time under observer-based control
of PDEs, unknown input delays. We use a modal decomposition approach, and consider boundary or
non-local sensing together with non-local actuation, or Dirichlet actuation with non-local sensing. The
dimension of the controller is equal to the number of unstable modes, whereas the observer may
have a larger dimension N . Under the Dirichlet actuation we present two methods: a direct one that
manages with time-varying input and output delays, and a dynamic-extension-based one that treats
constant input and time-varying output delays. To compensate the fast-varying output delay (without
any constraints on the delay derivative) that appears in the infinite-dimensional part of the closed-loop
system, we combine Lyapunov functionals with Halanay’s inequality. For the slowly-varying output
delay (with the delay derivative smaller than d < 1), we suggest a direct Lyapunov method. We
provide LMIs for finding N and upper bounds on the delays that preserve the exponential stability.

© 2020 Elsevier Ltd. All rights reserved.
1. Introduction

Sampled-data and delayed control of PDEs is becoming an
ctive research area. For sampled-data control of parabolic sys-
ems, a modal decomposition approach was suggested in Ghan-
asala and El-Farra (2012), where a finite-dimensional controller
as designed on the basis of a slow system following the ap-
roach of Christofides (2001). Rigorous conditions via modal
ecomposition for 1-D heat equation were recently suggested
n Karafyllis and Krstic (2018) for the sampled-data state-feedback
oundary control, and in Karafyllis, Ahmed-Ali, and Giri (2019)
nd Selivanov and Fridman (2019a) for the sampled-data ob-
ervers under the boundary and non-local measurements re-
pectively. Large constant input delays can be compensated by
redictors (Krstic, 2009; Prieur & Trélat, 2018).
Sampled and delayed observers or distributed static output-

eedback controllers were suggested for heat equation in Fridman
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and Bar Am (2013), Fridman and Blighovsky (2012), Selivanov
and Fridman (2016) and Selivanov and Fridman (2019b) where,
in the case of controllers, the uncertain sampling and delays were
considered. Design of an observer-based controller in the pres-
ence of unknown input delays is essentially more challenging. See
e.g. for ODEs (Kruszewski, Jiang, Fridman, Richard, & Toguyeni,
2012), where unknown delays do not allow for decoupling of the
estimation error equation from the state equation. For known
input and output delays, boundary controller based on a bound-
ary PDE observer was proposed via modal decomposition in Katz
and Fridman (2020). Whereas the knowledge of measurement
delay may be justified e.g. by time-stamps in network-based
control (Fridman, 2014; Kruszewski et al., 2012), the assumption
on the known input delay may be restrictive in applications.

Finite-dimensional observer-based controllers that are attrac-
tive in applications do not allow separation of observer and
controller designs, and their construction is a challenging con-
trol problem (Balas, 1988; Christofides, 2001; Curtain, 1982).
Recently an LMI-based method for design of such controllers was
introduced (Katz & Fridman, 2020).

The objective of the present paper is finite-dimensional
observer-based control of 1-D heat equation in the presence of
unknown input and known output delays. We consider either
sawtooth delays (for the case of sampled-data or network-based
control) or general differentiable time-varying delays. We pro-
pose a method which is applicable to the boundary or non-local

https://doi.org/10.1016/j.automatica.2020.109364
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ensing with non-local actuation, or to the Dirichlet actuation
ith non-local sensing. We use a modal decomposition approach.
he dimension of the controller is equal to the number of unsta-
le modes, whereas the observer may have a larger dimension
. For the boundary actuation we present two methods: a direct
ne that manages with fast-varying (without any constraints on
he delay derivative) input delay and slowly-varying (with the
elay derivative smaller than d < 1) output delay, and a dynamic-

extension-based one that treats constant input and fast-varying
output delays.

In the stability analysis, the main challenge is due to output
delay that appears, for the first time, in the infinite-dimensional
tail of the closed-loop system. This is different from the studied
till now cases of delayed state-feedback or PDE observer-based
controller, where the delay appears in the finite-dimensional
states only, and may be treated by known methods for ODEs
with delays. For fast-varying output delay, we suggest to combine
Lyapunov functionals with Halanay’s inequality (as introduced
in Fridman & Blighovsky, 2012). For the slowly-varying output de-
lay, we present a direct Lyapunov–Krasovskii method. We provide
LMIs for finding as small as possible N , and as large as possible
elays as well as the resulting exponential decay rate. We prove
hat the LMIs are always feasible for large enough N and small
nough delays.
Let L2(0, 1) be the Hilbert space of square integrable functions

f : [0, 1] → R with the inner product ⟨f , g⟩ :=
∫ 1
0 f (x)g(x)dx

nd induced norm ∥f ∥2
:= ⟨f , f ⟩. H1(0, 1) and H2(0, 1) denote

he corresponding Sobolev spaces. The norm on Rn is denoted
y |·|. whereas for A ∈ Rn×n the induced norm is denoted by
·|2. For P ∈ Rn×n, the notation P > 0 (P < 0) means that P
s symmetric and positive definite (negative definite). The sub-
iagonal elements of a symmetric matrix are denoted by ∗. For
∈ Rn×n, U > 0 and x ∈ Rn we denote |x|2U := xTUx.

. Mathematical preliminaries

emma 2.1 (Halanay’s Inequality, p.138 of Fridman, 2014). Let 0 <

1 < δ0 and let V : [−τM , ∞) −→ [0, ∞) be an absolutely
ontinuous function that satisfies

τ := V̇ (t) + 2δ0V (t) − 2δ1 sup
−τM≤θ≤0

V (t + θ ) ≤ 0, t ≥ 0. (2.1)

hen

(t) ≤ e−2δτ t sup
−τM≤θ≤0

V (θ ), t ≥ 0, (2.2)

here δτ > 0 is a unique positive solution of

τ = δ0 − δ1 exp(2δτ τM ). (2.3)

Recall that the regular Sturm–Liouville eigenvalue problem

φ′′
+ λφ = 0, x ∈ [0, 1], φ′(0) = φ(1) = 0, (2.4)

nduces a sequence of eigenvalues λn = (n −
1
2 )

2π2, n ≥ 1 with
orresponding eigenfunctions φn(x) =

√
2 cos

(√
λnx

)
, n ≥ 1.

Moreover, the {φn}
∞

n=1 are a complete orthonormal system in
L2(0, 1).

Lemma 2.2 (Katz & Fridman, 2020). Let h ∈ L2(0, 1) be a function

such that h L2
=

∑
∞

n=1 hnφn. Then, h ∈ H1(0, 1), h(1) = 0 iff∑
∞

n=1 λnh2
n < ∞. Moreover,

h′
2

=
∑

∞

n=1 λnh2
n.

Given N ∈ N and h ∈ L2(0, 1) with h L2
=

∑
∞

n=1 hnφn we will use
the following notation:

∥h∥2
N := ∥h∥2

−

N∑
n=1

h2
n =

∞∑
n=N+1

h2
n. (2.5)
2

Fig. 1. Network-based control.

3. Delayed non-local measurement and actuation

Consider the reaction–diffusion system

zt (x, t) = zxx(x, t) + qz(x, t) + b(x)u(t − τu(t)), t ≥ 0,
zx(0, t) = 0, z(1, t) = 0,

(3.1)

with b ∈ L2(0, 1). z(x, t) ∈ R is the state, u(t) ∈ R is the control
input, q ∈ R is the reaction coefficient and τu(t) is an unknown
input delay. We assume delayed non-local measurement

y(t) =
∫ 1
0 c(x)z(x, t − τy(t))dx, t − τy(t) ≥ 0,

y(t) = 0, t − τy(t) < 0,
(3.2)

where z0(x) is the initial condition, τy(t) is a known measurement
delay and c ∈ L2(0, 1). We treat two classes of input and output
delays: continuously differentiable delays and sawtooth delays,
which correspond to network-based control. We assume that τy
is known, while τu is not known and both delays are upper-
bounded: τu(t) ≤ τM , τy(t) ≤ τM with a common τM > 0 (for
implicity only). As in Katz and Fridman (2020), our results can
e easily extended to a more general Sturm–Liouville operator
d
dx (p(x)zx(x, t)) + q(x) on the right-hand side of (3.1).

For the case of continuously differentiable delays, we assume
hat τu and τy are lower bounded by τm > 0. This assumption
s employed for well-posedness only. Following Liu and Fridman
2014), we assume there exists a unique t∗ ∈ [τm, τM ] such
hat t − τ (t) < 0 if t < t∗ and t − τ (t) ≥ 0 if t ≥ t∗ for
τ (t) ∈

{
τu(t), τy(t)

}
. For the case of sawtooth delays, τy and

u are induced by two networks: from sensor to controller and
rom controller to actuator, respectively (see Fig. 1). For the first
etwork, denote the sampling instances on the sensor side by
k, where 0 = s0 < s1 < . . . , limk→∞ sk = ∞. Let ρk, k ≥ 0
e the transmission delays between the sensor and controller.
or simplicity of notation, we assume ρ0 = 0. By using the
ime-delay approach to networked-control systems (see Section
.5 of Fridman, 2014; Katz, Fridman, & Selivanov, 2020), the
easurement delay is presented as

y(t) = t − sk, t ∈ [sk + ρk, sk+1 + ρk+1) .

urthermore, we assume that sk+1 − sk ≤ MATI, k = 0, 1, . . . ,
here MATI is the maximum allowable transmission interval.
imilarly, ρk ≤ MAD, k = 0, 1, . . . , where MAD is the max-
mum allowable delay. We assume that the sampling instances
nd sampling delays {ρk}

∞

k=1 are known. This assumption is valid
.g. when the measurement is sent together with a time-stamp.
or the second network, denote the sampling instances on the
ontroller side by tk, k = 0, 1, . . . , where 0 = t0 < t1 < . . . ,
imk→∞ tk = ∞. Let µk, k = 0, 1, . . . be the transmission delays
between controller and actuator. We assume that µ0 = 0. The
input delay is modeled as

τ (t) = t − t , t ∈ [t + µ , t + µ .
u k k k k+1 k+1)
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e assume tk+1 − tk ≤ MATI, k = 0, 1, . . . and µk ≤

AD, k = 1, 2, . . . . Therefore, τu(t) and τy(t) are upper-bounded
y τM = MATI + MAD. The input delays µk, k = 1, 2, . . . are
ssumed to be unknown, differently from Katz et al. (2020). We
llow the transmission delays to be larger than the corresponding
ampling intervals provided that the updating sequences remain
ncreasing.

We present the solution to (3.1) as

(x, t) =

∞∑
n=1

zn(t)φn(x), zn(t) = ⟨z(·, t), φn⟩ . (3.3)

y differentiating under the integral sign, integrating by parts and
sing (2.4) we have

żn(t) = (−λn + q)zn(t) + bnu(t − τu(t)), t ≥ 0
zn(0) = ⟨z0, φn⟩ =: z0,n, bn = ⟨b, φn⟩ .

(3.4)

et 0 < δ1 < δ0, and let 0 < δτ < δ, where δ := δ0 − δ1, be a
esired decay rate satisfying (2.3). Since limn→∞ λn = ∞, there
xists some N0 ∈ N such that

− λn + q < −δ, n > N0. (3.5)

0 will define the dimension of the controller, whereas N ≥ N0
ill be the dimension of the observer. We construct a finite-
imensional observer of the form

ˆ(x, t) :=

N∑
n=1

ẑn(t)φn(x), (3.6)

here ẑn(t) satisfy the ODEs
˙̂
n(t) = (−λn + q)ẑn(t) + bnu(t)

−ln
[∫ 1

0 c(x)ẑ(x, t − τy(t))dx − y(t)
]
, t ≥ 0,

ˆn(t) = 0, t ≤ 0, 1 ≤ n ≤ N.

(3.7)

ote that (3.7) includes u(t) instead of u(t − τu(t)) since τu is
ssumed to be unknown. Denote

A0 = diag
{
−λ1 + q, . . . ,−λN0 + q

}
, L0 =

[
l1, . . . , lN0

]T
,

C0 =
[
c1, . . . , cN0

]
, cn = ⟨c, φn⟩ , n ≥ 1.

(3.8)

e assume that

n ̸= 0, 1 ≤ n ≤ N0. (3.9)

hen, the pair (A0, C0) is observable by the Hautus lemma. We
hoose l1, . . . , lN0 such that L0 satisfies the following Lyapunov
nequality:

o(A0 − L0C0) + (A0 − L0C0)TPo < −2δPo, (3.10)

here 0 < Po ∈ RN0×N0 and ln = 0, n > N0. Similarly, we assume

n ̸= 0, 1 ≤ n ≤ N, (3.11)

here bn = ⟨b, φn⟩, and denote

0 :=
[
b1 . . . bN0

]T
. (3.12)

he pair (A0, B0) is controllable. Let K0 ∈ R1×N0 satisfy

Pc(A0 + B0K0) + (A0 + B0K0)TPc < −2δPc, (3.13)

here 0 < Pc ∈ RN0×N0 . We propose the control law

u(t) = K0ẑN0 (t), t ∈ R,

ẑN0 (t) = col
{
ẑ1(t), . . . , ẑN0 (t)

} (3.14)

hich is based on the N-dimensional observer (3.7). Let

A1 = diag
{
−λN0+1 + q, . . . ,−λN + q

}
,[ ] [ ]T (3.15)
C1 = cN0+1, . . . , cN , B1 = bN0+1, . . . , bN . e

3

For well-posedness of the closed-loop system (3.1) and (3.7), with
control input (3.14), we define an operator

A1 : D(A1) ⊆ L2(0, 1) → L2(0, 1), A1w = −w′′,

D(A1) =
{
w ∈ H2(0, 1) : w′(0) = w(1) = 0

}
.

(3.16)

et H := L2(0, 1) × RN be a Hilbert space with the norm
·∥

2
H := ∥·∥

2
+ |·|

2. Let z0 ∈ D (A1). We begin with continuously
ifferentiable delays, and use the step method, i.e. prove the
ell-posedness iteratively on the intervals [0, t∗], [t∗, (s + 1)τm],
(s+1)τm, (s+2)τm], . . ., where s ∈ N satisfies sτm ≤ t∗ < (s+1)τm
see Section 1.2 of Fridman, 2014). For t ∈ [0, t∗], defining the
tate ξ (t) as

(t) =
[
z(·, t) ẑN,T (t)

]T
, ẑN (t) =

[
ẑ1(t), . . . , ẑN (t)

]T
,

he closed-loop system can be presented as

d
dt ξ (t) + Ãξ (t) =

[
f (1)1

f (1)2

]
, Ã =

[
A1 0
0 A2

]
,

A2 : RN
→ RN , A2y =

[
−(A0 + B0K0) 0

−B1K0 −A1

]
y,

(1)
1 = qz(·, t), f (1)2 = col {L0 ⟨c, z0⟩ , 0} .

(3.17)

ince −Ã is an infinitesimal generator of an analytic semigroup
n H and f (1)1 , f (1)2 are continuously differentiable, by Theorems
.1.2 and 6.1.5 in Pazy (1983) there exists a unique classical
olution

ξ ∈ C ([0, t∗];H) , ξ ∈ C1 ((0, t∗];H) (3.18)

uch that

(t) ∈ D
(
Ã

)
= D (A1) × RN

∀t ∈ [0, t∗]. (3.19)

he latter follows from the definition of a classical solution
n Pazy (1983) (see Section 4.1 therein). Next, let t ∈ [t∗, (s +

)τm]. We present the closed loop system as (3.17), with f (1)1 and
(1)
2 replaced by
(2)
1 = qz(·, t) + b(·)K0ẑN0 (t − τu(t)),

(2)
2 =

[
L0
0

] [⟨
c, z(·, t − τy(t))

⟩
− [C0 C1] ẑN (t − τy(t))

]
.

(3.20)

or t ∈ [t∗, (s + 1)τm] we have t − τy(t) ≤ t∗ and t − τu(t) ≤ t∗.
hus, the delayed terms in (3.1), (3.7) may be treated as non-
omogeneous terms in (3.17). Continuous differentiability of τu
nd τy together with (3.18) imply that f (2)1 , f (2)2 satisfy the condi-
ions of Theorems 6.1.2 and 6.1.5 in Pazy (1983). Since ξ (t∗) ∈

(Ã), there exists a unique classical solution ξ satisfying (3.18)
nd (3.19) on [t∗, (s + 1)τm]. Using these arguments step by step
n [(s+ k)τm, (s+ k+ 1)τm] (k = 1, 2, . . . ) with initial conditions
(k)((s + k)τm) ∈ D(Ã), we obtain, for z0 ∈ D (A1), existence of
unique solution ξ ∈ C([0, ∞),H) ∩ C1((0, ∞) \ J,H), where
= {0, t∗, (s + j)τm}

∞

j=1, such that ξ (t) ∈ D (A1)×RN for all t ≥ 0.
For sawtooth delays, let z0 ∈ H1(0, 1), z0(1) = 0 (3.1) can be

resented as:

dz
dt

(t) + A1z(t) = qz(t) + b(·)u(tk), t ∈ [tk + µk, tk+1 + µk+1),

here z(t) = z(·, t). Since b(·)u(tk) is piecewise constant, the step
method and Theorems 6.3.1, 6.3.3 (with α =

1
2 ) in Pazy (1983)

imply the existence of a unique solution z ∈ C([0, ∞),H) ∩
1((0, ∞) \ J,H), where J =

{
0, tj + µj

}∞

j=1. Moreover, z(t) ∈

(A1) for all t ≥ 0.
Let

(t) = z (t) − ẑ (t), 1 ≤ n ≤ N (3.21)
n n n
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e the estimation error. By using (3.3) and (3.6), the last term on
he right-hand side of (3.7) can be written as
1
0 c(x)

[∑N
n=1 ẑn(t − τy(t))φn(x)

−
∑

∞

n=1 zn(t − τy(t))φn(x)
]
dx

= −
∑N

n=1 cnen(t − τy(t)) − ζ (t − τy(t)),
ζ (t) =

∑
∞

n=N+1 cnzn(t).

(3.22)

Then the error equations have the form

ėn(t) = (−λn + q)en(t) + bnK0
(
ẑN0 (t − τu(t)) − ẑN0 (t)

)
−ln

(∑N
n=1 cnen(t − τy(t)) + ζ (t − τy(t))

)
, t ≥ 0

(3.23)

where n ≤ N .
We define en(t) = ⟨z0, φn⟩ for t < 0. Denote

eN0 (t) =
[
e1(t), . . . , eN0 (t)

]T
,

eN−N0 (t) =
[
eN0+1(t), . . . , eN (t)

]T
,

ẑN−N0 (t) =
[
ẑN0+1(t), . . . , ẑN (t)

]T
,

X(t) = col
{
ẑN0 (t), eN0 (t), ẑN−N0 (t), eN−N0 (t)

}
,

L = col
{
L0, −L0, 02(N−N0)×1

}
, K̃ =

[
K0, 01×(2N−N0)

]
.

(3.24)

From (3.4), (3.7), (3.8), (3.12), (3.14), (3.23) and (3.24) we obtain
the delayed closed-loop system

Ẋ(t) = FX(t) + F1X(t − τy(t))
+ F2K̃X(t − τu(t)) + Lζ (t − τy(t)), t ≥ 0,

żn(t) = (−λn + q)zn(t) + bnK̃X(t − τu(t)), n > N,

(3.25)

where
F1 = col {L0, −L0, 0, 0} ·

[
0 C0 0 C1

]
,

F =

⎡⎢⎢⎣
A0 + B0K0 0 0 0

−B0K0 A0 0 0
B1K0 0 A1 0

−B1K0 0 0 A1

⎤⎥⎥⎦ , F2 =

⎡⎢⎣ 0
B0
0
B1

⎤⎥⎦ .
(3.26)

Note that the Cauchy–Schwarz inequality implies

ζ 2(t) ≤ ∥c∥2
N

∑
∞

n=N+1 z
2
n (t), (3.27)

where ∥c∥2
N is defined by (2.5). Define the Lyapunov functional

V (t) = Vnom(t) +

2∑
i=1

VSi (t) +

2∑
i=1

VRi (t), (3.28)

where

Vnom(t) = |X(t)|2P +
∑

∞

n=N+1 z
2
n (t), (3.29)

and

VS1 (t) =
∫ t
t−τM

e−2δ0(t−τ ) |X(τ )|2S1 dτ ,

VS2 (t) =
∫ t
t−τM

e−2δ0(t−τ )
⏐⏐⏐K̃X(τ )⏐⏐⏐2

S2
dτ ,

VR1 (t) = τM
∫ 0

−τM

∫ t
t+θ

e−2δ0(t−τ )
⏐⏐Ẋ(τ )⏐⏐2R1 dτdθ,

VR2 (t) = τM
∫ 0

−τM

∫ t
t+θ

e−2δ0(t−τ )
⏐⏐⏐K̃ Ẋ(τ )⏐⏐⏐2

R2
dτdθ.

(3.30)

Here 0 < P, S1, R1 ∈ R2N×2N and 0 < S2, R2 are scalars. VR1 (t)
and VS1 (t) compensate for τy(t) in X(t−τy(t)), whereas VR2 (t) and
VS2 (t) compensate for τu(t) in K̃X(t − τu(t)). Let

ντ (t) = X(t) − X(t − τ (t)), τ ∈
{
τy, τu

}
,

θτ (t) = X(t − τ (t)) − X(t − τM ), τ ∈
{
τy, τu

}
,

∗ ˜ −2δ0τM

(3.31)
F = F + F1 + F2K , εM = e .

4

Differentiation of Vnom(t) along (3.25) gives

V̇nom + 2δ0Vnom = XT (t)
[
PF∗

+ (F∗)TP + 2δ0P
]
X(t)

− 2XT (t)PF1ντy (t) + 2XT (t)PLζ (t − τy(t))

− 2XT (t)PF2K̃ντu (t) + 2
∑

∞

n=N+1 (−λn + q + δ0) z2n (t)

+ 2
∑

∞

n=N+1 zn(t)bnK̃
[
X(t) − ντu (t)

]
.

(3.32)

Let α > 0. The last term in (3.32) is bounded using∑
∞

n=N+1 2zn(t)bnK̃
[
X(t) − ντu (t)

]
≤

2
α

∑
∞

n=N+1 z
2
n (t)

+ α ∥b∥2
N

⏐⏐⏐K̃X(t)⏐⏐⏐2 + α ∥b∥2
N

⏐⏐⏐K̃ντu (t)
⏐⏐⏐2 .

(3.33)

Differentiation of VS1 (t), VR1 (t) along (3.25) leads to

V̇S1 + 2δ0VS1 ≤ |X(t)|2S1 − εM
⏐⏐X(t) − ντy (t) − θτy (t)

⏐⏐2
S1

,

V̇R1 + 2δ0VR1 ≤ τ 2
M

⏐⏐Ẋ(t)⏐⏐2R1 − τMεM
∫ t
t−τM

⏐⏐Ẋ(τ )⏐⏐2R1 dτ . (3.34)

Similarly, differentiation of VS2 (t), VR2 (t) along (3.25) gives (3.34)
with X(t), ντy (t) and θτy (t) replaced by K̃X(t), K̃ντu (t) and K̃θτu (t),
espectively. Let G1 ∈ R2N and G2 ∈ R satisfy[
R1 G1
∗ R1

]
≥ 0,

[
R2 G2
∗ R2

]
≥ 0. (3.35)

Applying Jensen’s and Park’s inequalities (see, e.g, Section 3.6.3
of Fridman, 2014), we obtain for ξ = col

{
ντy (t), θτy (t)

}
− τM

∫ t

t−τM

⏐⏐Ẋ(τ )⏐⏐2R1 dτ ≤ −ξ T
[
R1 G1
∗ R1

]
ξ . (3.36)

Similar arguments are applied to VR2 (t). To compensate for τy(t)
in ζ (t−τy(t)), we use Halanay’s inequality. Using (3.27) we obtain

−2δ1 sup−τM≤θ≤0 V (t + θ ) ≤ −2δ1Vnom(t − τy(t))
≤ −2δ1

⏐⏐X(t) − ντy (t)
⏐⏐2
P − 2δ1 ∥c∥−2

N ζ 2(t − τy(t)),
(3.37)

where 0 < δ1 < δ0. By (3.32), (3.33), (3.34) and (3.36)

HτM ≤ η(t)TΦ1η(t) +
∑

∞

n=N+1 2W
(1)
n z2n (t) ≤ 0, t ≥ 0, (3.38)

where HτM is defined in (2.1) and η(t) = col
{
X(t), ζ (t − τy),

ντy (t), θτy (t), K̃ντu (t), K̃θτu (t)
}
, if W (1)

n = −λn + q + δ0 +
1
α

< 0
or n > N and Φ1 < 0. Here,

1
=

[
Ω1 Θ1 Θ2
∗ diag(Ω2, Ω3)

]
+ τ 2

M

[
ΛT

yR1Λy + ΛT
u K̃

TR2K̃Λu

]
(3.39)

nd

1 = Ω0 + (1 − εM ) diag(S1 + S̃2K̃ , 0),
˜2 = K̃ T S2, δ = δ0 − δ1,

1 =

[
P(2δ1I − F1) + εMS1 εMS1

0 0

]
, Λu = [F∗,L, −F1, 0, 0, 0],

Θ2 =

[
−PF2 + εM S̃2 εM S̃2

0 0

]
, Λy = [F∗,L, −F1, 0, −F2, 0].

Ω0 =

[
PF∗

+ (F∗)TP + 2δP + α ∥b∥2
N K̃ T K̃ PL

∗ −2δ1 ∥c∥−2
N

]
,

Ω2 =

[
−2δ1P − εM (R1 + S1) −εM (S1 + G1)

∗ −εM (R1 + S1)

]
,

Ω3 =

[
α ∥b∥2

N − εM [S2 + R2] −εM [S2 + G2]
∗ −εM [R2 + S2]

]
.

(3.40)
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urthermore, monotonicity of {λn}
∞

n=1 and Schur complement
imply that W (1)

n < 0, n > N iff[
−λN+1 + q + δ0 1

∗ −α

]
< 0. (3.41)

From (3.38), the LMIs Φ1 < 0, (3.35) and (3.41) imply HτM ≤ 0
for t ≥ 0. Thus, Halanay’s inequality (2.2) holds.

We have for some M > 0

sup−τM≤θ≤0V (θ ) ≤ M ∥z0∥2 (3.42)

Note that z2n + e2n = (zn − en)2 + e2n ≥ 0.5z2n . Then by Parseval’s
equality, for t ≥ 0 we have for some D > 0

V (t) ≥ D · max(∥z(·, t)∥2 ,
z(·, t) − ẑ(·, t)

2). (3.43)

Finally, (2.2), (3.42) and (3.43) imply

max
(
∥z(·, t)∥2 ,

z(·, t) − ẑ(·, t)
2

)
≤ Me−2δτ t ∥z0∥2 (3.44)

or some M > 0, where δτ > 0 satisfies (2.3).
For asymptotic feasibility of LMIs with large N , δ1 = δ0 − δ

and small τM , let Si = 0, Gi = 0 for i = 1, 2. Taking τM → 0+, it
s sufficient to show (3.41) and

Ω0 M
∗ D

]
< 0, M =

[
P(2δ1I − F1) 0 −PF2 0

0 0 0 0

]
,

= diag
(
−R1 − 2δ1P , −R1 , −R2 + α ∥b∥2

N , −R2
) (3.45)

et α = N−1 and δ1 = N . Then, Theorem 3.1 in Katz and Fridman
2020) implies that (3.41) and Ω0 < 0 hold for large enough
. Applying Schur complement and taking R1 = R2 = N2.5I ,
e obtain that (3.41) and (3.45) hold for large enough N . By

continuity, (3.39) and (3.41) hold for τM = N−2 and large enough
N . Summarizing, we arrive at:

Theorem 3.1. Consider (3.1) with b ∈ L2(0, 1) satisfying (3.11),
measurement (3.2) with c ∈ L2(0, 1) satisfying (3.9), control law
3.14) and z(·, 0) = z0 ∈ D(A1) (continuously differentiable delays)
or z(·, 0) = z0 ∈ H1(0, 1), z0(1) = 0 (sawtooth delays). Given

> 0 and N0 ∈ N subject to (3.5), let L0 and K0 satisfy (3.10)
nd (3.13). Given τM > 0, N ≥ N0 and δ0 > 0, let there exist
< P, S1, R1 ∈ R2N×2N , scalars 0 < R2, S2, α and G1 ∈ R2N×2N ,

G2 ∈ R such that the following LMIs hold with δ1 = δ0 − δ: LMI
1 < 0 with Φ1 given in (3.39)–(3.40), LMI (3.35) and LMI (3.41).
hen the solution z(x, t) to (3.1) with z(·, 0) = z0 under control
aw (3.14), (3.7) and the corresponding observer ẑ(x, t) defined by
3.6) satisfy (3.44) for some M > 0, where δτ > 0 satisfies (2.3).
oreover, the above LMIs always hold for large enough δ0 and N
nd small enough τM > 0.

4. Delayed boundary measurement and non-local actuation

Consider the system (3.1) with b ∈ H1(0, 1), b(1) = 0
satisfying (3.11), z0 ∈ D(A1) (continuously differentiable delays)
or z0 ∈ H1(0, 1), z0(1) = 0 (sawtooth delays),

y(t) = z(0, t − τy(t)), t − τy(t) ≥ 0,
y(t) = 0, t − τy(t) < 0. (4.1)

By Lemma 2.2, we have
∑

∞

n=1 λnb2n < ∞. Recall that the unknown
τu(t) and known τy(t) are upper-bounded by τM .

We present the solution to (3.1) as (3.3) with zn(t) satisfying
(3.4). Let N0 ∈ N satisfy (3.5) and N ≥ N0. We construct a
N-dimensional observer of the form (3.6), where ẑn(t) satisfy
˙̂zn(t) = (−λn + q)ẑn(t) + bnu(t)
− ln

[∑N
n=1 cnẑn(t − τy(t)) − y(t)

]
, t ≥ 0,
√

(4.2)
ẑn(t) = 0, t ≤ 0, cn = φn(0) = 2, 1 ≤ n ≤ N.

5

Let L0 defined in (3.8) satisfy (3.10) and ln = 0, n > N0. Define
(t) in (3.14) with K0 ∈ R1×N0 satisfying (3.13).
For well-posedness of (3.1) under (3.13) in the case of continu-

ously differentiable delays, let A1, defined in (3.16). Since A1 > 0
s self-adjoint, it has a unique square root

1
2
1 : D

(
A

1
2
1

)
→ L2(0, 1),

D
(
A

1
2
1

)
=

{
w ∈ H1(0, 1)|w(1) = 0

}
⊇ D (A1) .

Let G := D
(
A

1
2
1

)
× RN

⊆ H be a Hilbert space with norm

·∥
2
G = ∥·∥

2
H1 + |·|

2. Define the state as

ξ (t) =
[
z(·, t) ẑN,T (t)

]T
, ẑN (t) =

[
ẑ1(t), . . . , ẑN (t)

]T
.

We apply the step method: for t ∈ [0, t∗], the closed-loop system
(3.1) and (4.2), with control input (3.14) can be presented as

(3.17) with f (1)2 = col
{
LT0z0(0), 0

}
. Since z0 ∈ D (A1) ⊆ D

(
A

1
2
1

)
,

ipschitz continuity of f (1)1 , f (1)2 and Theorems 6.3.1 and 6.3.3
in Pazy (1983) with α =

1
2 imply the existence of a unique

classical solution ξ , satisfying (3.18) and (3.19). Furthermore, ξ
is Lipschitz continuous on [0, t∗]. Next, consider the interval t ∈

[t∗, (s + 1)τm], where s ∈ N satisfies sτm ≤ t∗ < (s + 1)τm. We
resent the closed-loop system as (3.17) and (3.20) with

f (2)2 (t) =

[
L0
0

] [
z(0, t − τy(t)) − [C0 C1] ẑN (t − τy(t))

]
.

ince t − τy(t) ≤ t∗ for t ∈ [t∗, (s + 1)τm], Lipschitz continuity of
on [0, t∗], the identity

(0, t − τy(t)) =

∫ 1

0
zx(x, t − τy(t))dx

nd continuous differentiability of τu and τy imply

f (2)2 (t1) − f (2)2 (t2)
⏐⏐⏐ ≤ M (1) |t1 − t2| ,

or t1, t2 ∈ [t∗, (s + 1)τm] and some M (1) > 0. By Theorems 6.3.1
nd 6.3.3 in Pazy (1983) with α =

1
2 , the system (3.17) and (3.20)

on [t∗, (s+1)τm], with initial condition ξ (t∗) ∈ D(Ã) has a unique
classical solution ξ (t) satisfying (3.18) and (3.19) on [t∗, (s +

)τm]. Furthermore, ξ is Lipschitz continuous on [t∗, (s + 1)τm].
ontinuing as in Section 3, we obtain for z0 ∈ D(A1) the existence
f a unique solution ξ ∈ C([0, ∞),H) ∩ C1((0, ∞) \ J,H), where
= {0, t∗, (s + j)τm}

∞

j=1. Moreover ξ (t) ∈ D(Ã) = D (A1) × RN

or all t > 0. For sawtooth delays, the proof of well-posedness is
dentical to Section 3.

By using (3.4) and the estimation error (3.21), the last term on
he right-hand side of (4.2) can be presented as

N
n=1 φn(0)ẑn(t − τy(t)) − y(t)

−
∑N

n=1 cnen(t − τy(t)) − ζ (t),

(t) = z(0, t) −
∑N

n=1 cnzn(t).

(4.3)

urthermore,

2(t) ≤

zx(·, t) −
∑N

n=1 φ′
n(·)zn(t)

2
=

∑
∞

n=N+1 λnz2n (t). (4.4)

y (4.3), (4.4) and X(t) defined in (3.24), we obtain the closed-
oop system (3.25)–(3.26). Taking into account (4.4), for exponen-
ial H1-stability we consider the Lyapunov functional (3.28) with
nom(t) given by

nom(t) := |X(t)|2P +

∞∑
λnz2n (t) (4.5)
n=N+1
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nd VSi , VRi , i = 1, 2 given in (3.29), (3.30). Differentiating (3.28)
long (3.25) and using (3.32), (3.34), (4.4) and arguments similar
o (3.37) with ∥c∥2

N replaced by 1 we obtain

HτM ≤ η(t)TΦ2η(t) +
∑

∞

n=N+1 2W
(1)
n z2n (t) ≤ 0, t ≥ 0. (4.6)

Here η(t) = col
{
X(t), ζ (t − τy), ντy (t), θτy (t), K̃ντu (t), K̃θτu (t)

}
,

(1)
n is given in (3.38) and Φ2 is a symmetric block matrix, which
iffers from Φ1, given in (3.39) and (3.40) by replacing ∥c∥N with

1 in Ω0 and ∥b∥2
N by

b′
2
N in Ω0 and Ω3. Furthermore, W (1)

n < 0
iff (3.41) holds. By arguments similar to Theorem 3.1 we arrive
at:

Theorem 4.1. Consider (3.1) with b ∈ H1(0, 1), b(1) = 0 sat-
isfying (3.11), measurement (4.1), control law (3.14) and z(·, 0) =

z0 ∈ D(A1) (continuously differentiable delays) or z(·, 0) = z0 ∈

H1(0, 1), z0(1) = 0 (sawtooth delays). Given δ > 0 and N0 ∈ N
subject to (3.5), let L0 and K0 satisfy (3.10) and (3.13). Given τM > 0,
N ≥ N0 and δ0 > 0, let there exist 0 < P, S1, R1 ∈ R2N×2N , scalars
0 < R2, S2, α and G1 ∈ R2N×2N , G2 ∈ R such that the following LMIs
hold with δ1 = δ0−δ: LMI Φ2 < 0with Φ2 given in (4.6), LMI (3.35)
and LMI (3.41). Then the solution z(x, t) to (3.1) with z(·, 0) = z0
under control law (3.14), (4.2) and observer ẑ(x, t) defined by (3.6)
satisfy (3.44) with the L2-norm replaced by the H1-norm. Moreover,
the above LMIs always hold for large enough N and δ0 and small
enough τM > 0.

5. Dirichlet actuation/non-local measurement

We consider Dirichlet actuation and non-local measurement.
We present two cases. The first case corresponds to time-varying
τy(t) ≤ τM and τu(t) ≤ τM , where the former satisfies τ̇y ≤

d < 1 for some constant d. The second case corresponds to a
constant τu(t) ≡ r and time-varying τy(t) ≤ τM . For the first case
e present a direct approach, whereas for the second we use a
ethod that employs dynamic extension.

.1. Time-varying input and output delays

Consider the system

zt (x, t) = zxx(x, t) + qz(x, t), t ≥ 0,
zx(0, t) = 0, z(1, t) = u(t − τu(t)),

(5.1)

and measurement (3.2) with continuously differentiable and
slowly-varying τy(t) ≥ τm > 0 such that τ̇y ≤ d < 1 for some
d. Here τy(t) ≤ τM is known, τu(t) ≤ τM is an unknown delay and
c ∈ H1(0, 1), c(1) = 0 satisfies (3.9).

By presenting the solution to (5.1) as (3.3), we find that
zn(t), n ≥ 1 satisfy

żn(t) = (−λn + q)zn(t) + bnu(t − τu(t)), t ≥ 0,

bn =
√
2(−1)n+1

(
n −

1
2

)
π = (−1)n+1

√
2λn.

(5.2)

n particular, bn → ∞ as n → ∞ and assumption (3.11) is
satisfied for all N ∈ N. Moreover, we have

∞∑
n=N+1

b2n
λ2
n

≤
8
π2

∞∑
n=N+1

1
(2n − 1)2

≤
4

π2 (2N − 1)
. (5.3)

et N0 ∈ N satisfy (3.5) with δ = δ0 > 0. Let N ∈ N satisfy
0 ≤ N . We construct a N-dimensional observer of the form (3.6),
here ẑn(t) satisfy (3.7). Let L0 defined in (3.8) satisfy (3.10) and

n = 0, n > N0. Define the controller (3.14) with K0 ∈ R1×N0

ubject to (3.13).
Let z0 ∈ L2(0, 1). For well-posedness of (5.1) with saw-

ooth τ , by arguments similar to Theorem 2.1 and Corollary 2.2
u

6

in Karafyllis and Krstic (2018), (5.1) has a unique solution z ∈

C([0, ∞); L2(0, 1)). Moreover, z ∈ C1(I × [0, 1]), z(·, t) ∈ C2(0, 1)
for all t > 0 and z(·, 0) = z0. Here, I := [0, ∞) \ {tk + µk}

∞

k=1.
For continuously differentiable τu, arguments of well-posedness
in Section 3, together with Theorem 6.1.2 in Pazy (1983) imply
the existence of a unique mild solution ξ ∈ C([0, ∞],H), with
H = L2(0, 1) × RN .

By using the estimation error (3.21) and

ρn(t) = λ
−

1
2

n ẑn(t), υn(t) = λ
−

1
2

n en(t), N0 + 1 ≤ n ≤ N,

ρN−N0 (t) =
[
ρN0+1(t), . . . , ρN (t)

]T
,

υN−N0 (t) =
[
υN0+1(t), . . . , υN (t)

]T
,

X(t) = col
{
ẑN0 (t), eN0 (t), ρN−N0 (t), υN−N0 (t)

}
.

(5.4)

we obtain the closed-loop system (3.24)–(3.26), with L0C1 and
B1K0 in (3.26) replaced by L0C̃1 and B̃1K0, respectively, where

C̃1 =

[
λ

1
2
N0+1cN0+1, . . . , λ

1
2
N cN

]
,

B̃1 =

[
λ

−
1
2

N0+1bN0+1, . . . , λ
−

1
2

N bN

]T

.

(5.5)

Note that by the Cauchy–Schwarz inequality

ζ 2(t) ≤
c ′

2
N

∑
∞

n=N+1
1
λn
z2n (t). (5.6)

For convergence analysis of the closed-loop system, we introduce
the Lyapunov functional V1(t) = V (t)+VQ (t), where V (t) is given
by (3.28) with VS1 (t), VS2 (t), VR1 (t), VR2 (t) appearing in (3.30),

Vnom(t) = |X(t)|2P +
∑

∞

n=N+1
1
λn
z2n (t)

+q1
∫ t
t−τy(t)

e−2δ0(t−τ )ζ 2(τ )dτ ,
(5.7)

nd

Q (t) =

∫ t

t−τy(t)
e−2δ0(t−τ )

|X(τ )|2Q dτ (5.8)

ith Q > 0. Here P, S1, R1,Q > 0 are matrices and q1, S2, R2 > 0
re scalars. Using (3.31), differentiation of Vnom(t) along (3.25), the
auchy–Schwarz inequality, (5.3) and (5.6) give

˙nom + 2δVnom ≤ XT (t)
[
PF∗

+ (F∗)TP + 2δ0P
]
X(t)

2XT (t)PF1ντy (t) − 2XT (t)PF2K̃ντu (t)

2XT (t)PLζ (t − τy(t)) − q1(1 − d)εMζ 2(t − τy(t))
4α

π2(2N−1)
XT (t)K̃ T K̃X(t) +

4α
π2(2N−1)

νT
τu
(t)K̃ T K̃ντu (t)

2
∑

∞

n=N+1

(
−1 +

q+δ0
λn

+
1
α

+
q1∥c′∥

2
N

2λn

)
z2n (t)

(5.9)

here α > 0. Differentiation of VQ in (5.8) gives

˙Q + 2δ0VQ ≤ |X(t)|2Q + (1 − d)εM
⏐⏐X(t − τy(t))

⏐⏐2
Q .

et G1 ∈ R2N and G2 ∈ R satisfy (3.35). By differentiating
Si , VRi , 1 ≤ i ≤ 2 along the closed-loop system and applying
ensen’s and Park’s inequalities, we obtain for t ≥ 0

˙1 + 2δ0V1 ≤ η(t)TΦ3η(t) + 2
∑

∞

n=N+1 W
(3)
n z2n (t) ≤ 0 (5.10)

f W (3)
n = −1 +

q+δ0
λn

+
1
α

+
q1∥c′∥

2
N

2λn
< 0, n > N and Φ3 < 0.

Here, η(t) = col
{
X(t), ζ (t − τy), ντy (t), θτy (t), K̃ντu (t), K̃θτu (t)

}
and Φ3

=
{
Φ3

ij

}
is a symmetric block matrix obtained from Φ1 in

(3.39)–(3.40) by substituting δ = 0, δ = δ , G = 0, and replacing
1 0 1



R. Katz and E. Fridman Automatica 123 (2021) 109364

Ω

Θ

r

N

[
w

L

e

b
t∫
−

−

w
t

c
v

w

t
w

a
f

X

w

w

K

B

F

F

A
B

0, Θ1, Ω2 and Ω3 by

Ω̄0 =

[
PF∗

+ (F∗)TP + 2δ0P +
4pα

π2(2N−1)
K̃ T K̃ PL

∗ −q1(1 − d)εM

]
+(1 − (1 − d)εM ) diag (Q , 0) ,

¯ 1 = Θ1 + (1 − d)εM diag (Q , 0) ,

Ω̄2 = Ω2 − (1 − d)εM diag (Q , 0) ,

Ω̄3 =

[ 4pα
π2(2N−1)

− εM [S2 + R2] −εM [S2 + G2]
∗ −εM [R2 + S2]

]
,

(5.11)

espectively. By Schur complement, W (3)
n < 0 for t ≥ 0 iff[

−1 +
q+δ0
λn

+
q1∥c′∥

2
N

2λn
1

∗ −α

]
< 0. (5.12)

By using further arguments of Theorem 3.1 we arrive at:

Theorem 5.1. Consider (5.1), measurement (3.2) with c ∈ H1(0, 1),
c(1) = 0 satisfying (3.9), control law (3.14) and z(·, 0) = z0 ∈

L2(0, 1). Let δ0 > 0 be a desired decay rate and let N0 ∈ N
satisfy (3.5) with δ = δ0. Assume that L0 and K0 are obtained using
(3.10) and (3.13), respectively. Given τM > 0 and N ≥ N0, let
there exist positive definite matrices P, S1, R1 ∈ R2N×2N , scalars
R2, S2, q1, α, p > 0, G1 ∈ R2N×2N and G2 ∈ R such that the
following LMIs hold: LMI Φ3 < 0 with Φ3 given in (5.11), LMI (3.35)
and LMI (5.12). Then V (t) ≤ e−2δ0tV (0), t ≥ 0, with V given by
(3.29), (5.7). Moreover, the above LMIs always hold for large enough
N and small enough τM > 0.

5.2. Time-varying output delay and constant input delay

Consider the system

zt (x, t) = zxx(x, t) + qz(x, t), t ≥ 0,
zx(0, t) = 0, z(1, t) = u(t − r)

(5.13)

with unknown constant input delay r > 0, measurement (3.2)
with known time-varying delay and c ∈ L2(0, 1) satisfying (3.9).
Following Prieur and Trélat (2018), we introduce

w(x, t) = z(x, t) − u(t − r), (5.14)

to obtain the following ODE–PDE system

u̇(t) = v(t), u(0) = 0, t ≥ 0,
wt (x, t) = wxx(x, t) + qw(x, t) + qu(t − r) − v(t − r),
wx(0, t) = 0, w(1, t) = 0,

(5.15)

where we treat u(t) as an additional state variable and v(t) as the
control input with non-local actuation with b ≡ 1 ∈ L2(0, 1). Note
that once the control input v(t) is specified, the value of u(t) can
be computed online. Using (5.14), the measurement (3.2) can be
presented as

y(t) =

∫ 1

0
c(x)w(x, t − τy(t))dx

+ gu(t − τy(t) − r), t − τy(t) > 0

where g := ⟨c, 1⟩. By presenting the solution to (5.15) as in (3.3)
and using arguments similar to (3.4) for b ≡ 1, we find that
wn(t), n ≥ 1 satisfy

ẇn(t) = (−λn + q)wn(t) + bn [qu(t − r) − v(t − r)] , t ≥ 0,
bn =

√
2(−1)n+1

[(
n −

1
2

)
π

]−1
.

(5.16)
7

ote that (3.11) is satisfied for all N ∈ N. Furthermore,
∞∑

n=N+1

b2n ≤ 4π−2 (2N − 1)−1 . (5.17)

Well-posedness of (5.15) follows from arguments similar to proof
of well-posedness in Section 3.

Let N0 satisfy (3.5) with δ > 0. Let N ∈ N satisfy N0 ≤ N .
To approximate w(x, t), we construct a N-dimensional observer
of the form

ŵ(x, t) :=

N∑
n=1

ŵn(t)φn(x), (5.18)

where ŵn(t) satisfy
˙̂wn(t) = (−λn + q)ẑn(t) + bn [qu(t) − v(t)] − ln×∫ 1

0 c(x)ŵ(x, t − τy(t))dx + gu(t − τy(t)) − y(t)
]
, t ≥ 0

ˆ n(t) = 0, t ≤ 0, 1 ≤ n ≤ N.

(5.19)

et

n(t) = wn(t) − ŵn(t), 1 ≤ n ≤ N (5.20)

e the estimation error. By arguments similar to (3.22), the last
erm on the right-hand side of (5.19) can be written as
1
0 c(x)ŵ(x, t − τy(t))dx + gu(t − τy(t)) − y(t) =

C0eN0 (t − τy(t)) − C1eN−N0 (t − τy(t))
ζ (t − τy(t)) − gu(t − τy(t) − r) + gu(t − τy(t)),

(5.21)

ith eN0 (t), eN−N0 (t), C0 and C1 introduced in (3.8), (3.24), respec-
ively and ζ (t) =

∑
∞

n=N+1 cnwn(t).
Let L0 defined in (3.8) satisfy (3.10) and ln = 0, n > N0. We

onsider the control law
(t) = K0ŵ

N0 (t), t ∈ R,

ˆ
N0 (t) =

[
u(t), ŵ1(t), . . . , ŵN0 (t)

]T
.

(5.22)

hat is based on the N-dimensional observer (5.18) and u(t),
hich is computed online. Defining the state as

X(t) = col
{
ŵN0 (t), eN0 (t), ŵN−N0 (t), eN−N0 (t)

}
,

ŵN−N0 (t) =
[
wN0+1(t), . . . , wN (t)

]T
,

nd using (5.20) and arguments similar to (3.23), we obtain the
ollowing closed-loop system
˙ (t) = FX(t) + F1X(t − τy(t)) + Lζ (t − τy(t))

+ F2K̃qX(t − r) + LF3X(t − τy(t) − r), t ≥ 0,
˙ n(t) = (−λn + q)wn(t) − bnK̃qX(t − r), n > N,

(5.23)

here

q = K0 − [q, 01×N0 ], F3 = [g, 01×2N ],

˜0 =

[
1

−B0

]
, L̃0 =

[
0
L0

]
, K̃q = [Kq, 01×(2N−N0)],

=

⎡⎢⎣Ã0 + B̃0K0 0 0 0
B0Kq A0 0 0

−B1Kq 0 A1 0
B1Kq 0 0 A1

⎤⎥⎦ , L =

⎡⎢⎣ L̃0
−L0
0
0

⎤⎥⎦ , F2 =

⎡⎢⎣ 0
−B0
0

−B1

⎤⎥⎦ ,

1 =

⎡⎢⎣−L̃0 · [g, 01×N0 ] L̃0C0 0 L̃0C1
L0 · [g, 01×N0 ] −L0C0 0 −L0C1

0 0 0 0
0 0 0 0

⎤⎥⎦ , Ã0 =

[
0 0
qB0 A0

]
,

(5.24)

0, L0 and A1, B1, C1 are given by (3.8) and (3.15), respectively.
y the Hautus lemma the pair (Ã , B̃ ) is controllable. Let K ∈
0 0 0
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1×(N0+1) satisfy

Pc(Ã0 + B̃0K0) + (Ã0 + B̃0K0)TPc < −2δPc, (5.25)

where 0 < Pc ∈ R(N0+1)×(N0+1). Furthermore, (3.27) holds with
zn(t) replaced by wn(t).

For stability analysis, introduce the Lyapunov functional

V (t) := Vnom(t) +

2∑
i=0

VSi (t) +

2∑
i=0

VRi (t), (5.26)

where Vnom(t) given by (3.29) with zn(t) replaced by wn(t), VS2 ,
VR2 are given by (3.30) with τM and K̃X replaced by r and X ,
respectively,

VS0 (t) :=
∫ t−r
t−r−τM

e−2δ0(t−τ ) |F3X(τ )|2S0 dτ ,

VR0 (t) := τM
∫

−r
−r−τM

∫ t
t+θ

e−2δ0(t−τ )
⏐⏐F3Ẋ(τ )⏐⏐2R0 dτdθ,

(5.27)

and VS1 (t), VR1 (t) appear in (3.29). Here P, S2, R2 > 0 are matrices
and S0, R0 > 0 are scalars. Let

ντ (t) = X(t) − X(t − τ (t)), τ ∈
{
τy, r

}
,

νr,τy (t) = X(t − r) − X(t − τy(t) − r),
θτy (t) = X(t − τy(t)) − X(t − τM ),
θr,τy (t) = X(t − r − τy(t)) − X(t − r − τM ),

εM = e−2δ0τM , εr = e−2δ0r ,

F∗
= F + F1 + F4, F4 = F2K̃q + LF3.

(5.28)

Differentiation of Vnom(t) along (5.23), the Cauchy–Schwarz in-
equality and (5.17) give

V̇nom + 2δ0Vnom ≤ XT (t)
[
PF∗

+ (F∗)TP + 2δ0P
]
X(t)

− 2XT (t)PF1ντy (t) − 2XT (t)PF4νr (t)

− 2XT (t)PLF3νr,τy (t) + 2XT (t)PLζ (t − τy(t))

+
4α

π2(2N−1)

(
XT (t)K̃ T

q K̃qX(t) + νT
r (t)K̃

T
q K̃qνr (t)

)
+ 2

∑
∞

n=N+1

(
−λn + q + δ0 +

1
α

)
w2

n(t).

(5.29)

Let (3.35) be satisfied with R2 and G2 replaced by R0 and G0,
espectively. By differentiating VSi , VRi , 0 ≤ i ≤ 2 along
the closed-loop system, applying Jensen’s and Park’s inequalities,
(3.27) with zn(t) replaced by wn(t) and (3.37) we obtain

HτM ≤ η(t)TΦ4η(t) +
∑

∞

n=N+1 2W
(1)
n w2

n(t) ≤ 0, t ≥ 0, (5.30)

where HτM is defined in (2.1) and η(t) = col
{
X(t), ζ (t − τy),

ντy (t), θτy (t), νr (t), F3νr,τy (t), F3θr,τy (t)
}
, provided W (1)

n = −λn +

q + δ0 +
1
α

< 0 for n > N and

Φ4
:=

[
Ω1 Θ1 Θ3
∗ diag(Ω2, Ω3)

]
+ r2ΛT

yR2Λy

+ΛT
y

[
τ 2
M

(
R1 + F T

3 R0F3
)]

Λy < 0.
(5.31)

Here
Ω1 = Ω0 + (1 − εM ) diag(S1, 0) + (1 − εr ) diag(S2, 0)

+(εr − εMεr ) diag(S̃0, 0), δ = δ0 − δ1, S̃0 = F T
3 S0F3,

3 =

[
θ −PL + εMεrF T

3 S0 εMεrF T
3 S0

0 0 0

]
,

= −PF4 + εrS2 − (εr − εMεr )S̃0

3 =

⎡⎣ω −εMεrF T
3 S0 −εMεrF T

3 S0
∗ −εMεr [R0 + S0] −εMεr (S0 + G0)
∗ ∗ −εMεr (S0 + R0)

⎤⎦ ,

=
4α

π2(2N−1)
K̃ T
q K̃q − εr (S2 + R2) + (εr − εMεr )S̃0,

∗

(5.32)
y = [F ,L, −F1, 0, −F4, −L, 0],
8

able 1
Chosen gains L0 and K0 .

S3 S4 S5.1 S5.2

b φ1 φ2 – –
c φ1 φ1 φ2 φ1
L0 11.65 5.67 37.33 8.75
K0 −23.01 −23.01 −5.86 col (−54.15, −47.82)

Ω0 is given in (3.40) with ∥b∥2
N K̃ T K̃ replaced by 4

π2(2N−1)
K̃ T
q K̃q and

Ω2, Θ1 are given in (3.40). Furthermore, W (1)
n < 0, n > N for all

≥ 0 iff (3.41) holds. Feasibility of Φ4 < 0, (3.35) with R2 and
2 replaced by R0 and G0, respectively, and (3.41) implies (3.44)
or some M0 > 0 with z(x, t) and ẑ(x, t) replaced by w(x, t) and
ˆ (x, t), respectively. Moreover, |u(t)|2 ≤ M1e−2δτ ∥z0∥2 for some
M1 > 0. By arguments of Theorem 3.1 we arrive at:

Theorem 5.2. Consider (5.13) with measurement (3.2) and c ∈

L2(0, 1) satisfying (3.9), control law (5.22) and z(·, 0) = z0 ∈ D(A1)
continuously differentiable delays) or z(·, 0) = z0 ∈ H1(0, 1), z0(1)
= 0 (sawtooth delays). Given δ > 0 and N0 ∈ N subject to (3.5),
let L0 and K0 satisfy (3.10) and (5.25). Given r, τM > 0, N ≥ N0
and δ0 > 0, let there exist 0 < P, S1, S2, R1, R2 ∈ R(2N+1)×(2N+1),
scalars 0 < R0, S0, α and G1 ∈ R(2N+1)×(2N+1), G0 ∈ R such that
the following three LMIs hold with δ1 = δ0 − δ: LMI Φ4 < 0 with
Φ4 given by (5.31) and (5.32), LMI (3.35) with R2 and G2 replaced
by R0 and G0, respectively, and LMI (3.41). Then the solution z(x, t)
to (5.13) under the control law (5.22), (5.19) and the corresponding
observer ŵ(x, t) defined by (5.18) with z(·, 0) = z0 satisfy (3.44) for
some M > 0, where δτ > 0 satisfies (2.3). Moreover, the above LMIs
are always feasible for large enough N and δ0 and small enough r
and τM > 0.

6. Numerical examples

In all examples, we choose q = 5 which results in an unsta-
ble open-loop system. We consider four cases corresponding to
Sections 3, 4, 5.1 and 5.2: S3- non-local actuation and measure-
ment, S4- non-local actuation and boundary measurement, S5.1-
boundary actuation with fast-varying τu and slow-varying τy with
either d = 0 or d = 0.3 and S5.2- boundary actuation via dynamic
extension with constant τu = r and fast-varying τy. In each case
the kernels b and c are chosen according to Table 1, where

φ1(x) =
√
2χ[0.25,0.75](x),

φ2(x) =
√
2
[
(4x − 1) χ[0.25,0.5] + (−4x + 3) χ(0.5,0.75]

]
.

We choose N0 = 1 and δ = 0.5. The gains L0 and K0 (see Table 1)
were found from (3.10), (3.13) and (5.25). For N ∈ {4, 5, 6, 7, 8}
and various values of δ0, the maximum value of τM (as shown in
Table 2) was obtained by verifying the LMIs of Theorems 3.1, 4.1,
5.1 and 5.2. The presented values of N start from the smallest that
guarantee the feasibility of LMIs. All LMIs are verified by using the
standard Matlab LMI toolbox. It is seen from Table 2 that larger
values of N lead to larger delays. We believe that the latter can
be proved theoretically, but this is not in the scope of the present
paper.

For simulations of solutions to the closed-loop systems, we
choose the initial condition z0(x) = 0.5x2 − 1. In S3 and S4
we consider network-based control. Given τM , we used sk+1 −

sk ≡ 0.5τM and ρk = 0.5τM for the network between sensor
and controller (see Fig. 1). For the network between controller
and actuator, we used tk+1 − tk ≡ 0.5τM , whereas {µk}

∞

k=1
were randomly chosen in [0.49τM , 0.5τM ]. In S5.1, we consider
one network between controller and actuator with the same tk
and µk as in S3 and constant τy ≡ τM , which corresponds to
d = 0. In S5.2 we consider one network between sensor and
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Table 2
Maximum values of τM .
N S3 S4 S5.1, d = 0 S5.1, d = 0.3 S5.2

δ0 τM δ0 τM δ0 τM δ0 τM δ0 τM

4 6 0.023 – – 0.5 0.014 0.5 0.008 4 0.0042
5 6 0.027 – – 0.5 0.026 0.5 0.021 4 0.005
6 6 0.029 8 0.018 0.5 0.031 0.5 0.028 4 0.0053
7 6 0.031 9 0.021 0.5 0.034 0.5 0.03 4 0.0059
8 6 0.032 9 0.026 0.5 0.035 0.5 0.033 4 0.006
K

K

K

K

K

L

P

P

S

S

S

Table 3
Theoretical δτ vs. linear fits from simulations of solutions.

N δ0 δ1 τM δτ az ae
S3 4 6 5.5 0.023 0.3983 0.4418 0.4363
S4 6 8 7.5 0.018 0.3931 0.4401 0.4482
S5.1a 4 0.5 – 0.014 0.5 0.611 0.607
S5.2 4 4 3.5 0.0042 0.4856 0.5224 0.5301

controller with the same sk and ρk as in S3 and constant input
elay r = τM . The norms ∥zx(·, t)∥L2 and

zx(·, t) − ẑx(·, t)

L2 for

> 0 were estimated using
h′

2
=

∑
∞

n=1 λnh2
n with ∥zx∥2

L2 ≈
40
n=1 λnz2n , whereas zn were found from simulation of state ODEs.

imilar truncation (with 40 coefficients) was done for the L2-
orm. In S5.1 we use the truncation

∑40
n=1

1
λn
z2n (t) to approximate

∞

n=1
1
λn
z2n (t). The closed-loop systems were simulated for final

ime tf = 10. In each case, for both the state and the estimation
rror norms we compute linear fits versus time on a log-linear
cale. The fits are denoted by pl(t) = al · t + bl, l ∈ {z, e},
espectively. The parameters for each case, as well as az and ae
re given in Table 3. Note that the decay rates obtained from
imulations are close to the theoretical values of δτ . Furthermore,
imulations of the solutions to the closed-loop system show that
he maximum value of τM which preserves stability is 2–3 times
arger than the delay bound found from the LMIs, meaning that
ur approach (employing simple Lyapunov functionals) is rather
fficient.

. Conclusion

We presented a design method for finite-dimensional obse-
ver-based control of a 1-D linear heat equation with fast-varying
nknown input and known output delays. Based on modal de-
omposition, our approach was applied to the cases where at least
ne of the control or observation operators was bounded.
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