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Abstract. We consider the singularly perturbed H° control problem under perfect
state measurements, for both finite and infinite horizons. We suggest a construction of
high-order approximations to a controller that guarantees a desired performance level on
the basis of the exact decomposition of the full-order Riccati equations to the reduced-order
slow and fast equations. This leads to effective asymptotic and numerical algorithms. We

show that the high-order accuracy controller improves the performance.

1. Introduction

Consider the linear time-varying singularly perturbed system
&1 = Az +Aprs + Biu+ Diw,  edy = Agx1+ Asaxo+ Bou+Dow, z(0) =0 (1.1)

and the quadratic functional
ty
J=a'(ty)Fa(ty) + [ [2'(6)Q)x(t) + ' (t)u(t)]dt, (1.2)
0
where z = col{z1,z2} is the state vector with x1(t) € ™ and z2(t) € "2, u(t) € ? is the
control input , w(t) € ? is the disturbance. The matrices A;; = A;;(t), B; = B;(t),D; =
D;(t) (i = 1,2 j = 1,2) are infinitely differentiable functions of ¢ > 0 , and ¢ is a small

positive parameter. The symbol (-)’ denotes the transpose of a matrix,

/ Q11 Qa2 / Fiy €F12)
=Q = >0, F=F = > 0.
e=0e (Q21 Q22) - <€F21 el ) —

Denote by | - | the Euclidean norm of a vector and by || - || the norm in L»[0, ¢f]. Let
Sij = BZB; — ’)/_2DiD"7-, 1= 1,2, j =1,2, B, = COl{Bl,&‘_le}, D, = COl{Dl,E_lDQ},

A — A1 A1 g — S11 e 181
€ 8_1A21 8_1A22 ’ € 6_1521 6_2522 )
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With (1.1), (1.2) we associate the Riccati differential equation (RDE)
Z+AZ+ZA —Z5.Z2+Q=0; Z(t;)=F (1.3)

for the matrix function

Z=7=2(te) = (8221211(&,?) zézg 2) (1.4).

For each €, a controller that guarantees the disturbance attenuation level v exists (and
solves the H* control problem) iff (1.3) has a bounded solution on [0,%f] [1], [9]. Such a

controller is determined by the formula
u(t) = —[By; e ' By|Zx(t) , te€[0sty]. (1.5)

In the infinite horizon case we take A., B., D, and Q = C'C to be time-invariant ,
F =0 and assume:

A1. The pair (A, B.) is controllable and (A., C) is observable for ¢ € (0,¢¢] (e9 > 0).

A controller that guarantees the performance level 7y exists iff the full-order algebraic
Riccati equation (ARE) of the form (1.3), where Z = 0 , has a solution Z > 0 such that
the matrix A, — S.Z is Hurwitz. Such a controller is determined by (1.5) [1], [2], [9].

Computation of the controller (1.5) for small € > 0 presents serious difficulties due to
high dimension and numerical stiffness. In [9] a composite controller has been designed on
the basis of the reduced-order slow and fast subproblems. This controller is O(e)-close to
those of (1.5) and achieves the performance -y for the full-order system for small enough e.
However, for values of € that are not too small, higher order approximations based on the
reduced-order equations are needed to guarantee the desired performance.

The main results of the note are :

(A) Construction of a high-order accuracy controller on the basis of the exact decom-
position of the singularly perturbed Riccati equations to the reduced-order pure-slow and
pure-fast equations. New algorithms (in comparison with [8,12]) for asymptotic solutions
of the Riccati equations.

(B) The fact that an O(e¥) accuracy controller achieves the performance v + O(gF).
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2. Exact decomposition of the full-order Riccati equations

We will develop the method of exact decomposition of the singularly perturbed Riccati
equations initiated with [3], [11], to H*° control problem. We begin with ¢; < co. Consider

the Hamiltonian system corresponding to (1.3) with the adjoint variables y1, eys:

.’i?l Z1
1 Ri1 Ry N Ajj —Si; )

; — , R;i= J J ; 2.1
ET2 (R21 Roo ) ) I ( —Qij _A;'i ( )
EY2 Y2

z1(ty) = 2%, yi(ty) = Fuual +eFiawy,  wa(ty) = 23, ya(ty) = Faal + Fooxh. (2.2)

Proposition [4]. For each ¢ > 0, (1.3) has a bounded on |0,tf] solution iff there exists
the matrix function of the form (1.4) such that for all mgo) €™, mgo) € ™ a solution of

(2.1), (2.2) can be represented as follows:
col{yi,ey2} = Zz, te|0,tf]. (2.3)
Let C,Cy = Q22. Consider the following ARE
Ay MO + MO Agy + Qo — MO S M@ =0, te0,ty], (2.4)

which corresponds, for each t € [0,%], to the fast infinite horizon subproblem. Assume

A2. The pair {A2, By} is controllable and {A22, C2} is observable for all t € [0,1¢].

Let 7% = inf{y’ | ARE (2.4) has a solution M(®) > 0 such that Ag = Ags — Sp M (©)
is Hurwitz}. Under A2 vy = supyepo 175 < 00 [9]. We assume

A3. The performance level v > ;.

From [2, Lemma 4] and from the continuous dependence of Ryy on ¢ € [0,%y] it follows
that for all ¢t € [0,t] the matrix Ros has no stable eigenvalues A\,Re\ < —a < 0 and no
unstable ones, Re\ > «. This implies for small ¢ the existence of the matrix functions
H = —Ry'Ro1 4+ O(¢), P=RisR3 +0(e), M = M©® + O(e) and L = L + O(e) that

for all t € [0,t¢] satisfy the equations [10], [7, p.210-212]:
eH + eH(Ry1 + RioH) = Ry + Ry H, (2.5a)
€P + P(Ryy — eHRy5) = e(Ry1 + R12H)P + Rys. (2.5b)
eM + M[Agy + €Ky + (eKy — So2)M] = —Qag + eK3 + (—Aby + eK4)M, (2.5¢)
)

eL — L[Aby — Ky + M(eKy — Sy2)] = [Ags +eK1 + (€Ko — Sog) M]L + €Ky — Saa, (2.5d



where
Ki K\ _ (H, H, (P, Py
(ks 3) = = (o ) 7= (8 )
The matrix M) is a solution of (2.4) and L(9) satisfies the Lyapunov equation, that
results from (2.5d) by setting ¢ = 0. Note that we do not specify initial conditions in

(2.5), following [7], [10]. The functions H, P, M and L can be easily found in the form of

asymptotic expansions [10]. For all small enough € the nonsingular transformation [10]

T1 I 0 eGy, eGoy Uy

| 0 I eG3 eGy U1 (2.6)
zo | | Hi Hy Es Ey ug |’ )
Y2 H3 H4 E3 E4 V2

where

El E2 _ 1 L Gl G2 . 1 L
(E3 E4)_(I+€HP)<M I+ML>’ <03 G4>_P(M I+ML)’

decomposes (2.1) into the slow system for u; € ™ and v; € ™

’l‘l,l _ U1 _ Wl W2 _
<’[)1)_W(1}1>7 W—<W3 W4)—R11+R12H, (270,)

and the two fast decoupled equations for us € ™2 and vy € "2
€’L'I/2 = (A22 +€K1 —+ (—Szz +€K2)M)U2, 8’02 = (—Alzz +€K4 +M(S22 — €K2))’U2. (27b)

Substituting (2.6) into the terminal conditions (2.2) and further eliminating z% and

19, we obtain the following terminal conditions for uy, vy, ug, ve:

ur(ty) =ui, ws(ty) =u3, wi(ty) =Unul +eUipuy, valty) = Unuf + Upul. (2.8)

where
1 Yl @1 (I)g —EPl —E_Pg I 0
Uin €Uia _ Y, Y, Y, . O3 Oy —eP3 —ePy Fi1 el
<U21 Uss ) N (Y4> <Y3)‘t:tf’ Ys | | ¥y ¥ E Ho 0 1
Yy Vs Wy E3 By Fy1  Fao
(2.9)

1
3

[1] [1]
[1] [1]

o, b, =1 Ho I+ LM —L U, U,
=I+ePH, [ 2} 2?2 ) = , =
(o a2) =rern (2 2) = (750 ) (s 0) =

By straightforward computations we get

2>H.
4

(}2) - (I I-}-L(U)(]\(zr(o) —F22)> + O(e).

To assure the existence of the inverse matrix in (2.9) we assume
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A4. The matrix T + LOO(M©) — Fy,) is invertible at ¢ = ;.
Consider the pure-slow RDE for the n; X nj-matrix function N = N(¢,¢)

N + N(Wy 4+ WyN) = Ws + WyN, N(t;) = Uy, (2.10)

and the pure-fast linear equations for the n; x nj-matrix functions N;; = N;;(t,¢):
eN12 = —Nia(A + (K1 + KoM + Wa)) + eWyNia, Nia(ty) = Usa, (2.11)
eNg; = —(N' — (K4 — MK3))Noy — eNgy (Wy + WoN), Ny (tf) = Usy, (2.12)
eNgy = —Nog(A + (K1 + KoM)) — (A — e(Ky — MK5))Nag, Nao(t) = Usa, (2.13)

where A = Ay — Sy9M, and matrices K; and U;; can be obtained by solving (2.5).
Similarly to Proposition, equations (2.10)-(2.13) have bounded solutions on [0, ] iff for
every uf € ™ ud € "2, a solution of (2.7) can be represented in the form v; = Nuj +
eNigu2, V3 = Najuq + Nagug, t € [0,%f]. Finally, substituting the latter relations and (2.6)

into (2.3) and equating separately terms with u; and us, we get

7 I + €G2N21 €G1 + €G2N22 _
H, + HoN + E3Noy  Eq+ EaNay +eHaNyo (2.14)
N + 8G4N21 8N12 + EG3 + 8G4N22 ‘
€(H3 + H4N + E4N21) €E3 + €E4N22 + €2H4N12 )

If for small ¢ RDE (2.10) has a uniformly bounded solution on [0, tf] then the linear
equations (2.11)-(2.13) have solutions, satisfying the inequality | N;;(t, )| < Ke*(t=t1)/¢ ¢ ¢
[0,t¢], K > 0, and algebraic equation (2.14) has a unique solution [4]. Thus, after solving
(2.5) and (2.10)-(2.13) we can obtain Z;; from (2.14).

Lemma 1 [4]. Under A2-A4 for a prechosen v and all small enough ¢ > 0
(i) the full-order RDE (1.3) has a bounded solution on [0, tf] iff the slow RDE (2.10) has
a bounded solution on [0,t¢];
(ii) if (1.3) has a bounded solution on [0,ty], then this solution can be uniquely defined
from the equations (2.5), the decoupled pure-slow and pure-fast differential equations

(2.10)-(2.13) and the linear algebraic equation (2.14).

In the infinite-horizon case we take A., B, D., (@ to be time-invariant and F' = 0. In

this case (2.5) are algebraic equations and H, P, M and L are time-invariant.
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Lemma 2 [4]. Under A1-A3 for a prechosen v and all small enough ¢ > 0
(i) the full-order ARE of (1.3) has a unique solution Z, such that the matrix A — S.Z
is Hurwitz, iff the slow ARE of (2.10) , where N = 0, has a unique solution such that
W1+ W5 N is Hurwitz;
(ii) the solution of the full-order ARE can be uniquely defined from the equations (2.5),
the slow ARE (2.10) and the linear algebraic equation (2.14), where N;; = 0.

3. High-order approximations in H°°-control

The exact decomposition can be used for the development of high-order accuracy
methods for singularly perturbed H*° control problems. Solutions to the pure-slow and
pure-fast equations (2.10)-(2.13) can be found without difficulty by standard asymptotic
and numerical methods. This would lead to effective reduced-order algorithms. In the case
of optimal control problem numerical reduced-order algorithms were developed in [5],[11].

In the present note we shall construct asymptotic solutions. We start with the finite

horizon case. It is easy to see that at € = 0 system (2.10) has the form:
NO 4+ NOW + WONO) =W + WONO, NO@) =Fy,  (3.1)

where W = W _O,WZ-(O) = W; e i =1,...,4. From Lemma 1 and (2.14) it follows
that, for small ¢, (;_10) has a bouned_ed on [0,] solution of the form N = N (¢) + O(e)
iff (1.3) has a bounded on [0,t] solution of the form Z = diag{ZS)(t),O} + O(e), and
Zﬁ) = NO©._ Let v, = inf{y’ > 0 | ¥y >+ (3.1) has a bounded solution on [0,#s]} and
7 = max{ys,vs}. To guarantee 7 < oo we assume, following [8] and [9]:

A5. The matrices Ag2 and Q22 are invertible for all ¢ € [0,1y].

A6. The matrix M (9 (t;) — Fy, is either positive definite or zero for v > 7.

For each v > % and small enough € we find asymptotic expansions of H, P, M and
L as described in [10]. Substituting these expansions into (2.9) we easily obtain U;; =
U +eUD + ... . Thus, UYY) = Fu1, Uy = [Fas — MO + LO(M© — Fyp)]~? L,

From the regularly perturbed RDE (2.10) and from the stable (as ¢ — —oc) linear
equations (2.12), (2.13) written in the fast time 7 = e~ 1(¢t —t), 7 < 0 we further find

N = NO@®)+eND (@) +...+0E™Y), Ny = NS (1) +eND (1) +...+0(™ ), (3.2)
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where i = 2,j = 1,2. For N©) we get (3.1), while for the other terms of these expansions
we get linear terminal value problems by successively equating coefficients of equal powers

of €. Thus, Nég) = e_A’fTUz(g)e_AfT, where Ap = Agy — Soa MO ot By the standard
asymptotic methods argument (see e.g. [6, Chapter 7]), the approximations in (3.2) are
uniform in ¢ € [0,¢¢], 7 < 0.

Setting Z(t) = Z(t) + II(7) in (2.14), where |II(7)| < Ke®", and equating separately

the slow and the fast (exponentially decaying) terms, we get the outer solution Z

7 - N eCy 1 G\ g (Zn el (3.3)
€(H3 + H4N) €E3 Hl + HgN El ’ €Z21 €Z22 ’ )
and the algebraic equation for the boundary layer correction 1I :
I < I+ €G2N21 €G1 + €G2N22 ) + Z(€G2N21 €G2N22 ) _

Hy + HaN + E3Ngy  Eq + E9Nag + eHyNpg E3Ny1 E9Nay +eHaNypo

eG4Nay eN1g + eG4 Nay m— ITy;  ellye
eE4Ny; eE4Nyy +e?HyNyy elly; ellyy ) -

(3.4)
For small enough ¢ the inverse matrix in (3.3) exists, since Ey = I 4+ O(e). Substituting

for the functions in the right sides of (3.3) their expansions we get the outer expansion
ngzw O™, (3.5)

where the approximation is uniform in ¢ € [0,¢¢]. Thus, Zg) = NO), Zég) =
MO@), 289 =2 = V@) - NOH)G (1), where GV =G| .
e=0

To get the boundary layer corrections IIyq, 119 = IT5;, IIs2 in the form

Z eFIL) (1) + O(e™HY), (3.6)

and the asymptotic expansion of Ni5 in the form of (3.2), we put ¢t = ty+e7 in (3.4), expand
all the functions of (3.4) into the powers of ¢ and equate the coefficients of equal powers
of . The resulting linear algebraic equations for the terms of the latter approximations

have unique solution, since under A6 the matrix F; + F3Nag =I1+L10O (tf)NQ(g) (1) is



nonsingular for all 7 < 0 (see [8], invertibility of (2.19)). Thus, Hg(i) =0 and
Mg = (B2 (t) = 235 ) LO(n)INog (I + LO ) Ngg (1)), B =14+ MOLO,
Y = 105" = (B () — 1155 () + 253 (t)) L) (t)} N3 () -

L) (r) [ (1) + Hy” (1) Fua].

It can be shown (by applying the contraction principle argument to the equations for
the remainders in the expansions (3.6) and (3.2)), that for small € the weakly nonlinear
algebraic system of (3.4), where II;» = II};, has a unique solution II;q, I3, 129, Nig,
represented in the form (3.6), (3.2). The approximations in (3.6) and (3.2) are uniform
in 7 <0, and |H§;~C) ()| < Ke*'™ (a1 > 0). From (3.5) and (3.6) the following uniform on

€ [0,t¢] approximation of the solution to the full-order RDE (1.3) follows:

Zii(t) = Zij(t) + i (1) = Zs (ZP () + L ()] + O(e™Y), T=eYt—t5). (3.7)

For analogous result, in the case of optimal-control problem, obtained by boundary
layer method see [12], [8]. In the case of m = 0, (3.7) has been obtained in [9]. As compared
with the boundary layer method, applied to the full-order RDE (1.3), our method allows
the evaluation of the outer expansion (i.e. the asymptotic solution of (1.3) away from
t = ty) independently of the boundary layer correction. Moreover, we invert matrices,
whereas by the boundary layer algorithm one has to integrate on the infinite interval (see
(8], [12], the computation of H(k)( ), Z{’fﬂ)(tf), k> 0).

Put Z§2 D4 H( Y = 0. It follows from (3.7) that

u = [V + O( m—i—l) ZBI Ze Z(k) H.g’;)’ Z;’2‘3+j_2) + H§’;+j_2)]. (38)
j=1

For t; = oo we take v, = inf{y’ > 0| Vy > v ARE (3.1), where N© =0, has a
solution such that A; = W+ W Y N(© is Hurwitz}. The matrix Ham of the Hamiltonian
system of (2.1) has 2ns eigenvalues tending to infinity as ¢ — 0 and 2n; eigenvalues tending
to those of Ry; — R12R2_21R21 = W© [7, §2.3]. From the symmetry of the eigenvalues of
Ham it follows that if A is an eigenvalue of W(®) | then so is —\. For 4 > 7 the matrix

W can be represented in the form

I o\[/Aa, w9 I 0
W(O):(N(O) [)(01 A22 _NO) 1] A2=W4(0)—N(O)W2(O)-



Then the matrix W () has n, stable eigenvalues A, corresponding to A;, and n; unstable
ones —\, corresponding to As. The solution of ARE of (2.10) determines the stable
manifold v; = Nu; of (2.7a), and N can be found in the form (3.2) by standard argument
for asymptotic expansions of invariant manifolds (see e.g. [7], [10]). The terms N@ (i > 1)
satisfy the linear algebraic equation of the form N®A; — A;N® = C@) | where C® is
known, having a unique solution, since the matrices A; and —A4, are Hurwitz. Then from
(2.14) and (1.5), Z and u can be approximated by (3.7) and (3.8), where HZ(;?) = 0.

To assure the internal stability of (1.1), (1.5), i.e. the matrix A, = A, — B:B.Z to be
Hurwitz ( and thus Z > 0 [2]), consider the matrix A, = A, + B.Vj, where

T f_111 /_112 e gn(&) 1112(8) )
A, = 1T 4= , Ae = pe < . 3.9
(6 "An e 1A22> (6_1A21(€) g1 Ags(e) (3:9)

Due to (3.8) and (1.5) A;;(e) = Aij + O(e),i = 1,2,j = 1,2. The matrix Ayy = Ay —
ByByM© is Hurwitz [1]. Then for small ¢ > 0 the matrix A, is Hurwitz under the
following assumption ( see e.g. [6, Theorem 8.3]):

A7. The matrix AO = All — A12A_.2_21A21 is Hurwitz.

Theorem. Under A2-A6 in the finite horizon case and under A1-A3, A7 in the infinite
horizon case, for a prechosen vy > % and all small enough € > 0 the following holds:
(i) A controller guaranteeing the performance level -y exists and can be approximated by
(3.8), where in the infinite horizon case Hg.c) =0;

(ii) The approximate controller u,, = V,,x guarantees the performance level v+ O(e™™1).

For proof of Theorem see Appendix.

Example . Consider the following system and functional:
o0
T1=u+w, ¢eIs=1Ty— U, J:/ (22 + 22 + u?)dt.
0

Here 75 = 0 and 7 = 1.4142. The values of the H*-optimum performance *(¢) are shown

in Table 1. Approximations ug and u; to the controller (1.5) have the form

T

2/2+1
i +(1+\/§)$2, Uy =uUg+¢ f/ + x9
V2 -4/

RRVIETEE Vi-2/7

[ I




Choosing v = 2 > v*(e) we get up = 1.4142x7 + 2.4142x9. Applying this controller on
the system we determine the corresponding performance bounds v for different values
of ¢. Further we find u; = Mz, + Msx2 and the corresponding performance bounds
v1. The values My, My, vy and 7y; are given in Table 1. We see that the controller u;
improves the performance for ¢ > 0.3. For values of v closer to v*(¢), u; improves the
performance for the smaller values of €. Thus, for v = 1.5 and ¢ = 0.2 we have: uy =

3.0000x1 + 2.4142z9, vo = 1.7876; w1 = 5.1728z1 + 3.4385x2, v1 = 1.5488.

Table 1.
€ 0.2 0.3 0.4 0.5 0.6
v*(e) 1.454 1.500 1.559 1.628 1.7048
M, 1.8977 2.1385 2.3799 2.6213 2.8627
M, 2.8971 3.1385 3.3799 3.6213 3.8627
Yo 1.7321 1.7321 1.9664 2.5312 3.4506
Y1 1.7321 1.7321 1.7433 2.0363 2.6459
Conclusions

We have developed in the case of H* control problem the method of exact decompo-
sition of the full-order Riccati equation into decoupled equations of smaller order. We have
found asymptotic controllers from these reduced-order equations and have shown that a

higher-order accuracy controller improves the performance.

Appendix

Proof of Theorem . The proof of (i) precedes the Theorem. We give the proof of
(ii) for ty = oco. For t; < oo the proof is similar. We use u = —B.Zz to (1.1) and (1.2):

it=Azx+eBx+Dow, x(0)=0, J= /OO o' (t)Qz(t)dt, (A.1)
0

where A, = A, + B.Vj is given by (3.9), Q = Q + ZB.B.Z, B = col{p1,B2/c}, eB; =
B;[-B.Z — Vy], i =1,2. From (3.8) and (1.5) it follows that the functions g; = §;(¢) are
uniformly bounded for all small enough e.

Since Ay is Hurwitz there is a transformation y = T~ 'z that block diagonalizes A,

7,p210 : T_IA_.ET = dzag AS, Ar/e y As = All - AlgL, Ar = /122 + 8LA12, where
! !

- I—-eHL —-eH 1 eH
T1:< I 7 ) T:(_L I_gLH), L=L(e), H=H(e),
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L and H are defined by (3.2) and (3.3) from [5,p.210] with A;; = A;;. For y we get
gl = Asyl + Eﬁsy + Dsw7 8@2 = Afy2 + E,ny + waa y(O) = 07 (A2)

where col{Ds, Ds/e} =T D, B; = [(I—eHL)B1—Hp:]T, By = (eLB1+P2)T. Note that
Dy, Dy, 35 and B¢ are uniformly bounded for small € and A; = Ag+O0(e), Ay = Aza+0(e).

Similarly substituting u,, for u in (1.1) and (1.2) we get (A.l) with z,,,e8, =
B:(Vin — Vo), Q@ = Q + V!V, and J,,, substituted for z,¢8,Q and J. Applying the
same transformation z = Tz, to the differential equation for x,,, we obtain (A.2) with
21, 22, Bsm,, B¢m substituted for y1,y2, Bs, B¢, where Bey, = (I —eHL)B1m—H Bom T, Bim =
(eLBim + Bom)T, Bim =€ 1Bi(Vin — V), i =1, 2.

From (3.8) and (1.5) we deduce: B; —Bim = ¢ ' B;|—B.Z —V,,] = O(¢™). This relation
together with formulas for s, B¢, Bsm and Bgm, imply that Bs,, and B, are O(e™) close
to Bs and By. Similarly Qm — Q = V., Vi — ZB:.B.Z = O(¢™*!). Then substitution of
x =Ty and z,, = Tz into J and J,,, and application of the Schwartz inequality yield:

[T = Jm| < /OOO Kq[|Ay(t)[ly ()] + |Ay(0)]]2(2)] + ™ 2(t)[*]dt
< K [[|ayl[(lyll + [l2])) +e™H[2]]*],  K1>0,

(A.3)

where Ay =y — z = col{Ayy, Ays} vanishes at ¢ = 0 and satisfies the system:
Ayy = A;Ayq + eBsmAy + O(e™th)y, eAy, = AfAys + eBrmAy + O™ )y, (A4)

Applying to the second equation of (A.2) the variation of constants formula and esti-

mating from above |exp{Ast/e}|,|B¢| and |Dy|, we obtain

el < [ [ [ St u)] + )| + ely( lardpar,  (45)

where K > 0, o > 0. Estimating further the product of the square brackets by |w(p)|? +

lw(r)|? + 62[|y( )|? + |y(7)|?] and reversing the order of integration we deduce
2K
i< 25 [7 [T [t araowe + )Pl < 2ol -+ )

Analogously we get ||y1||2 < 2K /a?[||w||?+¢&2||y||?]. Then for small € we have ||y||?> <
c||lw||?, ¢ > 0. Similarly one can derive ||z]||? < c||w||?, and ||Ay|]? < ce?™T2||y||? <
c2e?™*2||y||2. The latter inequalities together with (A.3) imply J,,, = J + O(e™1)||w]|2.
By the condition J < v2||w||®. Hence, J,, < [v2 4+ O(e™™H)]||w||? = [y + O(e™t1)]?||w]||2.
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