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a b s t r a c t

This paper analyzes the exponential stability and the induced L2-gain of Networked Control Systems
(NCS) that are subject to time-varying transmission intervals, time-varying transmission delays and
communication constraints. The system sensor nodes are supposed to be distributed over a network. The
scheduling of sensor information towards the controller is ruled by the classical Round-Robin protocol.
We develop a time-delay approach for this problem by presenting the closed-loop system as a switched
system with multiple and ordered time-varying delays. Linear Matrix Inequalities (LMIs) are derived via
appropriate Lyapunov–Krasovskii-based methods. Polytopic uncertainties in the system model can be
easily included in the analysis. The efficiency of the method is illustrated on the batch reactor and on the
cart-pendulum benchmark problems. Our results essentially improve the hybrid system-based ones and,
for the first time, allow treating the case of non-small network-induced delay, which can be greater than
the sampling interval.

© 2012 Elsevier B.V. All rights reserved.
1. Introduction

Networked Control Systems (NCS) are systems with spatially
distributed sensors, actuators and controller nodes which ex-
change data over a communication data channel. Only one node is
allowed to use the communication channel at once. The communi-
cation along the data channel is orchestrated by a scheduling rule
called protocol. Using such control structures offers several practi-
cal advantages: reduced costs, ease of installation andmaintenance
and increased flexibility. However, from the control theory point of
view, it leads to new challenges. Closing the loop over a network
introduces undesirable perturbations such as delay, variable sam-
pling intervals, quantization, packet dropouts, scheduling commu-
nication constraints, etc. whichmay affect the systemperformance
and even its stability. It is important in such a configuration to pro-
vide a stability certificate that takes into account the network im-
perfections. For general survey paperswe refer to [1–3]. Recent ad-
vancements can be found in [4–9] for systems with variable sam-
pling intervals, [10] for dealing with the quantization and [11–13]
for control with time delay. Concerning NCS, three main control
approaches have been used: discrete-time models (with integra-
tion step), input/output time-delay models and impulsive/hybrid
models.
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In the present paper, we focus on the stability and L2-gain
analysis of NCS with communication constraints. We consider a
linear (probably, uncertain) system with distributed sensors. The
scheduling of sensor information towards the controller is ruled
by the classical Round-Robin protocol. The Round-Robin protocol
has been considered in [14,15] (in the framework of hybrid
system approach) and in [16,17] (in the framework of discrete-
time systems). In [14], stabilization of the nonlinear system based
on the impulsive model is studied. However, delays are not
included in the analysis. In [15], the authors provide methods for
computing the Maximum Allowable Transmission Interval (MATI
— i.e. the maximum sampling jitter) and Maximum Allowable
Delay (MAD) for which the stability of a nonlinear system is
ensured.

In [16], network-based stabilization of Linear Time-Invariant
(LTI) with Round-Robin protocol and without delay have been
considered (see also [17] for delays less than the sampling
interval). The analysis is based on the discretization and the
equivalent polytopic model at the transmission instants. For LTI
systems, discretization-based results are usually less conservative
than the general hybrid system-based results. However, discrete-
time models do not take into account the system behavior
between two transmissions and are complicated in the case
of uncertain systems. Moreover, it is tedious to include large
delays in such models and the stability analysis methods may
fail when the interval between two transmissions takes small
values.
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In the present paper, for the first time, a time-delay approach is
developed for the stability and L2-gain analysis of NCSwith Round-
Robin scheduling. Discrete-time measurements are considered,
where the delay may be larger than the sampling interval. We
present the closed-loop system as a switched continuous-time
system with multiple and ordered time-varying delays. The case of
the ordered time-varying delays (where one delay is smaller than
another) has not been studied yet in the literature. By developing
the appropriate Lyapunov–Krasovskii techniques for this case, we
derive LMIs for the exponential stability and for L2-gain analysis.
The efficiency and advantages of the presented approach are
illustrated by two benchmark examples. Our numerical results
essentially improve the hybrid system-based ones [15] and, for the
stability analysis, are not far from those obtained via the discrete-
time approach [17]. Note that the latter approach is not applicable
to the performance analysis. Also, for the first time (under Round-
Robin scheduling), the network-induced delay is allowed to be
greater than the sampling interval.

Our preliminary results on stability of NCS with constant delay
under Round-Robin scheduling have been presented in [18].
Notation: Throughout the paper the superscript ‘T ’ stands for
matrix transposition, Rn denotes the n dimensional Euclidean
space with vector norm ∥ · ∥, Rn×m is the set of all n × m real
matrices, and the notation P > 0, for P ∈ Rn×n means that
P is symmetric and positive definite. The symmetric elements
of the symmetric matrix will be denoted by ∗. The space of
functions φ : [a, b] → Rn, which are absolutely continuous
on [a, b), have a finite limθ→b− φ(θ) and have square integrable
first order derivatives is denoted by W [a, b) with the norm

∥φ∥W = maxθ∈[a,b] |φ(θ)| +

 b
a |φ̇(s)|2ds

 1
2
.N denotes the set

{0, 1, 2, 3, . . .}.

2. Problem formulation and the switched systemmodel

Consider the following system controlled through a network
(see Fig. 1):

ẋ(t) = Ax(t) + Bu(t) + B1w(t),
z(t) = C0x(t) + D12u(t),

(1)

where x(t) ∈ Rn is the state vector, u(t) ∈ Rm is the control
input, w(t) ∈ Rnw is the disturbance, z(t) ∈ Rnz is controlled
output, A, B, B1, C0 and D12 are system matrices with appropriate
dimensions. These matrices can be uncertain with polytopic type
uncertainty. The system has several nodes (distributed sensors, a
controller node and an actuator node)which are connected via two
networks: a sensor network (relaying the sensors to the controller
node) and a control network (from the controller node to the
actuator). For the sake of simplicity, we consider two sensor nodes

yi(t) = C ix(t), i = 1, 2 and we denote C =


C1

C2


, y(t) =


y1(t)
y2(t)


∈

Rny . The results can be easily extended to any finite number of
sensors.We let sk denote the unboundedmonotonously increasing
sequence of sampling instants, i.e.

0 = s0 < s1 < · · · < sk < · · · , k ∈ N , lim
k→∞

sk = ∞. (2)

At each sampling instant sk, one of the outputs yi(t) is sampled
and transmitted via the network. The choice of the active output
node is ruled by a Round-Robin scheduling protocol: the outputs
are transmitted one after another, i.e. yi(t) is transmitted only at
the sampling instant t = s2p+i−1, p ∈ N . After each transmission
and reception, the values in yi(t) are updated with the newly
received values, while the other values in y(t) remain the same, as
Fig. 1. System architecture.

no additional information is received. This leads to the constrained
data exchange expressed as

yik =


yi(sk) = C ix(sk) + F iv(sk), k = 2p + i − 1,
yik−1, k ≠ 2p + i − 1,

p ∈ N , (3)

where v is a measurement noise signal and F i is the matrix with
appropriate dimension, i = 1, 2.

We suppose that data loss is not possible and that the
transmission of the information over the two networks (between
the sensor and the actuator) is subject to a variable delay hk =

hsc
k + hca

k , where hsc
k and hca

k are the network-induced delays (from
the sensor to the controller and from the controller to the actuator
respectively). Then tk = sk + hk is the updating instant time of the
Zero-Order Hold (ZOH).

Differently from [15,17], we do not restrict the network delays
to be small with tk = sk + hk < sk+1, i.e. hk < sk+1 − sk. As in [19]
we allow the delay to be non-small provided that the old sample
cannot get to the destination (to the controller or to the actuator)
after the most recent one

sk + hsc
k < sk+1 + hsc

k+1, sk + hk < sk+1 + hk+1, (4)

i.e. hk < tk+1 − sk. Assumption (4) is a necessary condition for
making scheduling reasonable. A sufficient condition for (4) is that
the delays are bounded hsc

k ∈ [hsc
m,MADsc

], hk ∈ [hm,MAD],
where hm, hsc

m ,MAD,MADsc are known bounds withMADsc
− hsc

m ≤

MAD − hm, and the delay range is less than the sampling interval:
hk − hk+1 ≤ MAD − hm < sk+1 − sk.

Assume that the network-induced delay hk and the time span
between the updating and the most recent sampling instants are
bounded:

tk+1 − tk + hk ≤ τM , 0 ≤ hm ≤ hk, k ∈ N , (5)

where τM and hm are known bounds. Note that τM = MATI +MAD.
Then

tk+1 − tk ≤ τM − hm,

tk+1 − tk−1 + hk−1 ≤ 2τM − hm , τ̄M .
(6)

We suppose that the controller and the actuator act in an event-
driven manner. The general dynamic output feedback controller is
assumed to be given in the following form:

ẋc(t) = Acxc(t) + Bcyk,
u(t) = Ccxc(t) + Dcyk, t ∈ [tk, tk+1), k ∈ N ,

(7)
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where xc(t) ∈ Rnc is the state of the controller, yk =


y1k
y2k


∈

Rny(k = 1, 2, . . .) is themost recently received output of the plant,

which satisfies (3) and y0 =


y10
0


. Ac, Bc, Cc andDc are thematrices

with appropriate dimensions.

2.1. Static output feedback control

Consider first the particular case of (7) with Cc = 0,Dc = K ,
where we suppose that there exists a matrix K =


K1 K2


, K1 ∈

Rm×n1 , K2 ∈ Rm×(ny−n1) such that A + BKC is Hurwitz. Consider
the static output feedback of the form:

uk = K1y1k + K2y2k, k = 1, 2, . . .

and u0 = K1y10. Then the control law is piecewise constant with

u(t) = uk, ∀t ∈ [tk, tk+1) .

The closed-loop system can be presented in the form of the
switched system

ẋ(t) = Ax(t) + A1x(tk − hk) + A2x(tk−1 − hk−1)

+ B1w(t) + D21v(tk − hk) + D22v(tk−1 − hk−1),

z(t) = C0x(t) + D1x(tk − hk) + D2x(tk−1 − hk−1),

+ E21v(tk − hk) + E22v(tk−1 − hk−1), t ∈ [tk, tk+1),

ẋ(t) = Ax(t) + A1x(tk − hk) + A2x(tk+1 − hk+1)

+ B1w(t) + D21v(tk − hk) + D22v(tk+1 − hk+1),

z(t) = C0x(t) + D1x(tk − hk) + D2x(tk+1 − hk+1),

+E21v(tk − hk) + E22v(tk+1 − hk+1), t ∈ [tk+1, tk+2),

(8)

where

k = 2p, p ∈ N , Ai = BKiC i, D2i = BKiF i,

Di = D12KiC i, E2i = D12KiF i, i = 1, 2.
(9)

From (5), (6) we have

t ∈ [tk, tk+1) ⇒ t − tk + hk ∈ [hm, τM ],

t − tk−1 + hk−1 ∈ [hm, τ̄M ],

t ∈ [tk+1, tk+2) ⇒ t − tk + hk ∈ [hm, τ̄M ],

t − tk+1 + hk+1 ∈ [hm, τM ].

(10)

Moreover,

t − tk + hk < t − tk−1 + hk−1, t ∈ [tk, tk+1),

t − tk + hk > t − tk+1 + hk+1, t ∈ [tk+1, tk+2).

For t ∈ [tk, tk+1)we can represent tk−hk = t−τ1(t), tk−1−hk−1 =

t − τ2(t), where

τ1(t) = t − tk + hk < τ2(t) = t − tk−1 + hk−1,

τ1(t) ∈ [hm, τM ], τ2(t) ∈ [hm, τ̄M ], t ∈ [tk, tk+1).
(11)

Therefore, (8) for t ∈ [tk, tk+1) can be considered as a system with
two time-varying interval delays, where τ1(t) < τ2(t). Similarly,
for t ∈ [tk+1, tk+2) (8) is a system with two time-varying
delays, one of which is less than another. This case of ordered
time-varying interval delays has not been studied yet in the
literature.

Assume that v(t) = 0, t ≤ t0. Denote for k = 2p, p ∈ N

v1(t) = v(tk − hk), v2(t) = v(tk−1 − hk−1), t ∈ [tk, tk+1),

v1(t) = v(tk+1 − hk+1), v2(t) = v(tk − hk),

t ∈ [tk+1, tk+2).
The switched continuous-time system (8) has three disturbances
w ∈ L2[t0, ∞), vi ∈ L2[t0, ∞), i = 1, 2 with

∥v1∥
2
L2 =


∞

t0
|v1(t)|2dt =

∞
p=0

(t2p+1 − t2p)|v(t2p − h2p)|
2

+

∞
p=0

(t2p+2 − t2p+1)|v(t2p+1 − h2p+1)|
2

=

∞
k=0

(tk+1 − tk)|v(tk − hk)|
2,

∥v2∥
2
L2 =


∞

t0
|v2(t)|2dt =

∞
k=0

(tk+1 − tk)|v(tk−1 − hk−1)|
2.

For a given scalar γ > 0, we thus define the following performance
index:

J = ∥z∥2
L2 − γ 2

[∥w∥
2
L2 + ∥v1∥

2
L2 + ∥v2∥

2
L2 ]

=


∞

t0
[zT (t)z(t) − γ 2wT (t)w(t)]dt

− γ 2
∞
k=0

(tk+1 − tk)[vT (tk − hk)v(tk − hk)

+ vT (tk−1 − hk−1)v(tk−1 − hk−1)]. (12)

The above H∞-performance extends the indexes of [13,20] to the
case of Round-Robin scheduling. It takes into account the updating
rates of the measurement and is related to the energy of the
measurement noise. The system (8) is said to have an L2-gain less
than γ if J < 0 along (8) for the zero initial function and for all
non-zero w ∈ L2, v ∈ l2.

2.2. Dynamic output feedback

Consider now (1) under the dynamic output feedback controller
(7), where we assume that the controller is directly connected to
the actuator, i.e. hk = hsc

k . The closed-loop system (1), (7) can
be presented in the form of (8), where the system state and the
matrices are changed by the ones with the bars as follows:

x̄ = [xT xTc ]
T , Ā =


A BCc
0 Ac


, Ā1 =

BDc


C1

0


0

Bc


C1

0


0

 ,

Ā2 =

BDc


0
C2


0

Bc


0
C2


0

 , B̄1 =


B1
0



D̄21 =

BDc


F 1

0


Bc


F 1

0


 , D̄22 =

BDc


0
F 2


Bc


0
F 2


 ,

C̄0 = [C0 D12Cc], D̄1 =


D12Dc


C1

0


0


,

D̄2 =


D12Dc


0
C2


0


, Ē21 = D12Dc


F 1

0


,

Ē22 = D12Dc


0
F 2


.

In the present paper, we will derive LMI conditions for the
exponential stability of the disturbance-free switched model
(8) and for the L2-gain-analysis of (8) via direct Lyapunov
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method. The results under variable network-induced delay is
studied in Section 3.2. Note that in some NCS (such as Control
Area Networks, where transmission over the network is almost
instantaneous compared to the plant dynamic) the network-
induced transmission delay may be usually neglected (see
e.g. [14]). However, a constant delay may appear due to
measurement or due to control computation. Therefore, Section 3.3
considers Round-Robin scheduling under variable sampling with
constant delay. Finally, the efficiency of the new criteria is
illustrated via benchmark examples of batch reactor and cart-
pendulum.

Remark 1. In the above reasoning, we assumed that packet loss
does not occur. However, for small delays hk < sk+1 − sk we
could accommodate for packet dropouts by modeling them as
prolongations of the transmission interval similar to [15,17].

3. Stability and L2-gain analysis

3.1. Useful lemmas

We will apply the following lemmas:

Lemma 1. Let there exist positive numbers β, δ and a functional
V : R × W × L2[−τ̄M , 0] → [t0, ∞) such that

β|φ(0)|2 ≤ V (t, φ, φ̇) ≤ δ∥φ∥
2
W . (13)

Let the function V̄ (t) = V (t, xt , ẋt) be continuous from the right for
x(t) satisfying (8), absolutely continuous for t ≠ tk and satisfies

lim
t→t−k

V̄ (t) ≥ V̄ (tk). (14)

(i) If along (8) with w = 0 and v = 0
˙̄V (t) ≤ −β̃|x(t)|2 for t ≠ tk and for some scalar β̃ > 0,
then (8) with w = 0 and v = 0 is asymptotically stable.

(ii) If along (8) with w = 0 and v = 0 for some α > 0
˙̄V (t) + 2αV̄ (t) ≤ 0 for t ≠ tk,
then (8) with w = 0 and v = 0 is exponentially stable with the
decay rate α.

(iii) For a given γ > 0, if along (8)
˙̄V (t) + zT (t)z(t) − γ 2wT (t)w(t) − γ 2

[vT (tk − hk)v(tk − hk)

+ vT (tk−1 − hk−1)v(tk−1 − hk−1)] < 0,

t ∈ [tk, tk+1), k ∈ N , (15)
then the performance index (12) achieves J < 0 for all non-zero
w ∈ L2, v ∈ l2 and for the zero initial function.

Proof. (i) and (ii) follow from the standard arguments for the
switched and the time-delay systems (see e.g. [21,7]).

(iii) Given N ≫ 1, we integrate inequality (15) from t0 till tN .
We have for w ≠ 0, v ≠ 0

V̄ (tN) − V̄ (tN−1) + V̄ (t−N−1) − V̄ (tN−2) · · · + V̄ (t−1 ) − V̄ (t0)

+

 tN

t0
[zT (s)z(s) − γ 2wT (s)w(s)]ds

− γ 2
N−1
k=0

(tk+1 − tk)[vT (tk − hk)v(tk − hk)

+ vT (tk−1 − hk−1)v(tk−1 − hk−1)] < 0.

Taking into account that V̄ (tN) ≥ 0, V̄ (t−k ) − V̄ (tk) ≥ 0 for k =

1, . . . ,N − 1 and V̄ (t0) = 0, we arrive for N → ∞ to J < 0. �

Lemma 2 ([22]). Let f1, f2, . . . , fN : Rn
→ R have positive values

in an open subset D of Rn. Then, the reciprocally convex combination
of fi over D satisfies
min
αi|αi>0,


i

αi=1

 
i

1
αi

fi(t) =


i

fi(t) + max
gi,j(t)


i≠j

gi,j(t)

subject to
gi,j : Rn

→ R, gj,i(t) , gi,j(t),

fi(t) gi,j(t)
gi,j(t) fj(t)


≥ 0


.

3.2. Stability and L2-gain analysis of NCS: variable hk

Consider the switched system (8) as a system with two
ordered time-varying delays τ1(t) and τ2(t) either from [hm, τM ]

or from [hm, τ̄M ]. Our stability and L2-gain analysis will be based
on the common (for both subsystems of the switched system)
time-independent Lyapunov–Krasovskii Functional (LKF) for the
exponential stability of systems with time-varying delay from the
maximum delay interval [hm, τ̄M ] [23,24]:

V (xt , ẋt) = V̄ (t) = V0(xt , ẋt) + V1(xt , ẋt), (16)
where

V0(xt , ẋt) = xT (t)Px(t) +

 t

t−hm
e2α(s−t)xT (s)S0x(s)ds

+ hm

 0

−hm

 t

t+θ

e2α(s−t)ẋT (s)R0ẋ(s)dsdθ,

V1(xt , ẋt) =

 t−hm

t−τ̄M

e2α(s−t)xT (s)S1x(s)ds

+ (τ̄M − hm)


−hm

−τ̄M

 t

t+θ

e2α(s−t)ẋT (s)R1ẋ(s)dsdθ,

P > 0, S0 > 0, R0 > 0, S1 > 0, R1 > 0, α > 0.

(17)

By taking into account the order of the delays τ1, τ2 and
applying convexity arguments of [22] we prove the following:

Theorem 1. (i) Given 0 ≤ hm < τM , α > 0 if there exist n × n
matrices P > 0, Si > 0, Ri > 0(i = 0, 1), Gi

1,G
i
2,G

i
3(i = 1, 2) such

that the following four LMIs are feasible:

Ωi =

R1 Gi
1 Gi

2

∗ R1 Gi
3

∗ ∗ R1

 ≥ 0, (18)

Ξi =



Φ11 R0e−2αhm PAi PA3−i 0 ATH
∗ Φ22 Φ23 Φ24 Gi

2e
−2ατ̄M 0

∗ ∗ Φ33 Φ34 (Gi
3 − Gi

2)e
−2ατ̄M AT

i H
∗ ∗ ∗ Φ44 (R1 − Gi

3)e
−2ατ̄M AT

3−iH
∗ ∗ ∗ ∗ −(S1 + R1)e−2ατ̄M 0
∗ ∗ ∗ ∗ ∗ −H


< 0, (19)

where

Φ11 = PA + ATP + S0 − R0e−2αhm + 2αP,

Φ22 = (−S0 + S1 − R0)e−2αhm − R1e−2ατ̄M ,

Φ23 = (R1 − Gi
1)e

−2ατ̄M ,

Φ24 = (Gi
1 − Gi

2)e
−2ατ̄M ,

Φ33 = (−2R1 + Gi
1 + GiT

1 )e−2ατ̄M ,

Φ34 = (R1 − Gi
1 + Gi

2 − Gi
3)e

−2ατ̄M ,

Φ44 = (−2R1 + Gi
3 + GiT

3 )e−2ατ̄M ,

H = h2
mR0 + (τ̄M − hm)2R1, i = 1, 2.

(20)

Then system (8) with w = 0 and v = 0 is exponentially stable with
the decay rate α.
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(ii) Given γ > 0, if (18) and the following LMIs

| PB1 PD21 PD22 CT
0

| 0 0 0 0
Ξi|α=0 | 0 0 0 DT

i
| 0 0 0 DT

3−i
| 0 0 0 0
| HB1 HD21 HD22 0

− − − − − −

∗ | −γ 2I 0 0 0
∗ | ∗ −γ 2I 0 ET

21
∗ | ∗ ∗ −γ 2I ET

22
∗ | ∗ ∗ ∗ −I


< 0, (21)

i = 1, 2with notations given in (20) are feasible. Then (8) is internally
exponentially stable and has L2-gain less than γ .

Proof. (i) Differentiating V̄ (t) along (8) withw = 0 and v = 0, we
have

˙̄V (t) + 2αV̄ (t) ≤ 2xT (t)Pẋ(t) + xT (t)[S0 + 2αP]x(t)
− xT (t − hm)[S0 − S1]e−2αhmx(t − hm)

+ ẋT (t)[h2
mR0 + (τ̄M − hm)2R1]ẋ(t)

− xT (t − τ̄M)S1e−2ατ̄M x(t − τ̄M)

− hme−2αhm

 t

t−hm
ẋT (s)R0ẋ(s)ds

− (τ̄M − hm)e−2ατ̄M

 t−hm

t−τ̄M

ẋT (s)R1ẋ(s)ds.

Consider t ∈ [tk, tk+1). By Jensen’s inequality [25], we have

hm

 t

t−hm
ẋT (s)R0ẋ(s)ds ≥

 t

t−hm
ẋT (s)dsR0

 t

t−hm
ẋ(s)ds

= [x(t) − x(t − hm)]TR0[x(t) − x(t − hm)].

Taking into account that tk−1 − hk−1 < tk − hk (i.e. that the delays
satisfy the relation (11)) and applying further Jensen’s inequality
we obtain

− (τ̄M − hm)

 t−hm

t−τ̄M

ẋT (s)R1ẋ(s)ds

= −(τ̄M − hm)

 t−hm

tk−hk
ẋT (s)R1ẋ(s)ds

+

 tk−hk

tk−1−hk−1

ẋT (s)R1ẋ(s)ds +

 tk−1−hk−1

t−τ̄M

ẋT (s)R1ẋ(s)ds



≤ −
1
α1

f1(t) −
1
α2

f2(t) −
1
α3

f3(t), (22)

where

α1 =
t − hm − tk + hk

τ̄M − hm
, α2 =

tk − hk − tk−1 + hk−1

τ̄M − hm
,

α3 =
τ̄M − t + tk−1 − hk−1

τ̄M − hm
,

f1(t) = [x(t − hm) − x(tk − hk)]
TR1[x(t − hm) − x(tk − hk)],

f2(t) = [x(tk − hk) − x(tk−1 − hk−1)]
T

× R1[x(tk − hk) − x(tk−1 − hk−1)],

f3(t) = [x(tk−1 − hk−1) − x(t − τ̄M)]T

× R1[x(tk−1 − hk−1) − x(t − τ̄M)].
Denote

g1,2(t) = [x(t − hm) − x(tk − hk)]
T

×G1
1[x(tk − hk) − x(tk−1 − hk−1)],

g1,3(t) = [x(t − hm) − x(tk − hk)]
T

×G1
2[x(tk−1 − hk−1) − x(t − τ̄M)],

g2,3(t) = [x(tk − hk) − x(tk−1 − hk−1)]
T

×G1
3[x(tk−1 − hk−1) − x(t − τ̄M)].

Note that (18) with i = 1 guarantees

R1 G1

j
∗ R1


≥ 0 ( j = 1, 2, 3),

and, thus,
fi(t) gi,j(t)
gi,j(t) fj(t)


≥ 0, i ≠ j, i = 1, 2, j = 2, 3.

Then by Lemma 2, we arrive to

−(τ̄M − hm)

 t−hm

t−τ̄M

ẋT (s)R1ẋ(s)ds

≤ −
1
α1

f1(t) −
1
α2

f2(t) −
1
α3

f3(t)

≤ −f1(t) − f2(t) − f2(t) − 2g1,2(t) − 2g1,3(t) − 2g2,3(t)

= −λT (t)Ω1λ(t),

where λ(t) = col{x(t − hm) − x(tk − hk), x(tk − hk) − x(tk−1 −

hk−1), x(tk−1 − hk−1) − x(t − τ̄M)} and Ω1 is given by (18) with
i = 1.

Hence, setting ξ(t) = col{x(t), x(t − hm), x(tk − hk), x(tk−1 −

hk−1), x(t − τ̄M)}, we find that
˙̄V (t) + 2αV̄ (t)

≤ ξ T (t)


Φ11 R0e−2αhm PA1 PA2 0
∗ Φ22 Φ23 Φ24 G1

2e
−2ατ̄M

∗ ∗ Φ33 Φ34 (−G1
2 + G1

3)e
−2ατ̄M

∗ ∗ ∗ Φ44 (R1 − G1
3)e

−2ατ̄M

∗ ∗ ∗ ∗ (−S1 − R1)e−2ατ̄M

 ξ(t)

+ [Ax(t) + A1x(tk − hk) + A2x(tk−1 − hk−1)]
TH

× [Ax(t) + A1x(tk − hk) + A2x(tk−1 − hk−1)],

where notations are given by (20) with i = 1. Hence, by Schur
complements, (19) with i = 1 guarantees that ˙̄V (t) + 2αV̄ (t) ≤ 0
for t ∈ [tk, tk+1).

Similarly, when t ∈ [tk+1, tk+2), we prove that (18) and (19)
with i = 2 can guarantee ˙̄V (t) + 2αV̄ (t) < 0. Thus by (ii) of
Lemma 1, (8) with w = 0 and v = 0 is exponentially stable with
the decay rate α.

(ii) By using arguments of (i), we find that (15) holds along (8)
if LMIs (18) and (21) are feasible, which completes the proof. �

Remark 2. The switched system (8) can be alternatively analyzed
by the standard arguments for systems with two (independent)
time-varying delays. However, this leads to the overlapping delay
intervals τ1(t) ∈ [hm, τM ] and τ2(t) ∈ [hm, τ̄M ], which may be
conservative since the relation τ1(t) < τ2(t) is ignored. We give
now the standard LKF for two independent delays: V (xt , ẋt) =2

i=0 Vi(xt , ẋt), where Vi(xt , ẋt)(i = 0, 1) are given by (17) with
τ̄M changed by τM and

V2(xt , ẋt)

=

 t−hm

t−τ̄M

e2α(s−t)xT (s)S2x(s)ds

+ (τ̄M − hm)


−hm

−τ̄M

 t

t+θ

e2α(s−t)ẋT (s)R2ẋ(s)dsdθ,

S2 > 0, R2 > 0, α > 0.
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Extending arguments of [22] to the exponential stability of systems
with two delays, we obtain the following LMIs:
Ri G1

i 0 0
∗ Ri 0 0
∗ ∗ Ri G2

i

∗ ∗ ∗ Ri

 ≥ 0, (23)

Ξ̃i =



Φ11 R0e−2αhm PAi PA3−i 0 0 AT H̃
∗ Σ22 Σ23 Σ24 Gi

1e
−2ατM Gi

2e
−2ατ̄M 0

∗ ∗ Σ33 0 Σ23 0 AT
i H̃

∗ ∗ ∗ Σ44 0 Σ24 AT
3−iH̃

∗ ∗ ∗ ∗ Σ55 0 0
∗ ∗ ∗ ∗ ∗ Σ66 0
∗ ∗ ∗ ∗ ∗ ∗ −H̃


< 0, (24)

where Φ11 is given in (20) and

Σ22 = (−S0 + S1 + S2 − R0)e−2αhm − R1e−2ατM − R2e−2ατ̄M ,

Σ23 = (R1 − Gi
1)e

−2ατM ,

Σ24 = (R2 − Gi
2)e

−2ατ̄M ,

Σ33 = (−2R1 + Gi
1 + GiT

1 )e−2ατM ,

Σ44 = (−2R2 + Gi
2 + GiT

2 )e−2ατ̄M ,

Σ55 = −(S1 + R1)e−2ατM ,

Σ66 = −(S2 + R2)e−2ατ̄M ,

H̃ = h2
mR0 + (τM − hm)2R1 + (τ̄M − hm)2R2, i = 1, 2.

(25)

The LMIs for L2-gain analysis are given by (21) with Ξ and H
changed by Ξ̃ and H̃ respectively. Note that LMIs (23), (24) for
independent delays possess the same number of decision variables
as LMIs (18), (19) of Theorem 1 (up to the symmetry of R2, S2), but
have a higher-order:

2 LMIs of 7n × 7n and 2 LMIs of 4n × 4n in (23), (24),
2 LMIs of 6n × 6n and 2 LMIs of 3n × 3n in (18), (19).

The examples below illustrate the improvement (in the
maximum value of τM which preserves the stability and in the
computational time) by taking into account the order of the delays.

Remark 3. Our method can be extended to the dynamic output
feedback with two networks, where

u(t) = Ccxc(tk − hca
k ) + Dcyk, t ∈ [tk, tk+1).

In this case the closed-loop system can be considered as the system
with three delays: two ordered τ1(t) = t − tk + hk < τ2(t) =

t − tk−1 + hk−1 and the independent one τ3(t) = t − tk + hca
k . Such

a system can be analyzed by combining the standard Lyapunov-
based method (for τ3(t)) with the Theorem 1 (for the ordered
delays τ1(t) and τ2(t)).

3.3. Stability and L2-gain analysis of NCS: constant h

In this subsection we consider the case of negligible network-
induced delay, where h ≥ 0 is the constant measurement de-
lay. We note that, till recently, the conventional time-independent
LKF of (16) (for systems with interval time-varying delays) were
applied to NCS (see e.g. [4,11]). These functionals did not take ad-
vantage of the sawtooth evolution of the delays inducedby sample-
and-hold. The latter drawback was removed in [5,7], where time-
dependent Lyapunov functionals for sampled-data systems were
introduced. We will adapt to the Round-Robin scheduling a time-
dependent Lyapunov functional construction of [26], which is
based on the extension of Wirtinger’s inequality [27] to the vec-
tor case:

Lemma 3 ([28]). Let z(t) ∈ W [a, b) and z(a) = 0. Then for any
n × n-matrix R > 0 the following inequality holds: b

a
zT (ξ)Rz(ξ)dξ ≤

4(b − a)2

π2

 b

a
żT (ξ)Rż(ξ)dξ . (26)

We introduce the following discontinuous in time Lyapunov
functional:

V (t, xt , ẋt) = V̄1(t)
= V0(xt , ẋt) + V1(t, xt , ẋt) + V2(t, xt , ẋt), (27)

where V0(xt , ẋt) is given by (17) with hm = h, α = 0 and

V1(t, xt , ẋt) = 4(τM − h)2
 t

tk−h
ẋT (s)W1ẋ(s)ds

−
π2

4

 t−h

tk−h
[x(s) − x(tk − h)]TW1[x(s) − x(tk − h)]ds,

t ∈ [tk, tk+2),

V2(t, xt , ẋt)

=



4(τM − h)2
 t

tk−1−h
ẋT (s)W2ẋ(s)ds

−
π2

4

 t−h

tk−1−h
[x(s) − x(tk−1 − h)]TW2

× [x(s) − x(tk−1 − h)]ds, t ∈ [tk, tk+1),

4(τM − h)2
 t

tk+1−h
ẋT (s)W2ẋ(s)ds

−
π2

4

 t−h

tk+1−h
[x(s) − x(tk+1 − h)]TW2

× [x(s) − x(tk+1 − h)]ds, t ∈ [tk+1, tk+2),

W1 > 0, W2 > 0, k = 2p.
Note that V0 is a ‘‘nominal’’ Lyapunov functional for the

‘‘nominal’’ system with a constant delay

ẋ(t) = Ax(t) + (A1 + A2)x(t − h). (28)

The terms V1, V2 are extensions of the discontinuous constructions
of [26]. We note that V1 can be represented as a sum of the
continuous in time term 4(τM − h)2

 t
t−h ẋ

T (s)W1ẋ(s)ds ≥ 0, t ∈

[tk, tk+2), with the discontinuous (for t = tk) one

VW1 , 4(τM − h)2
 t−h

tk−h
ẋT (s)W1ẋ(s)ds

−
π2

4

 t−h

tk−h
[x(s) − x(tk − h)]TW1[x(s) − x(tk − h)]ds,

t ∈ [tk, tk+2).

Note that VW1|t=tk = 0 and, by the extendedWirtinger’s inequality
(26), VW1 ≥ 0 for all t ≥ t0. Therefore, V1 does not grow in the
jumps.

In a similar way, V2 can be represented as a sum of the
continuous in time term 4(τM − h)2

 t
t−h ẋ

T (s)W2ẋ(s)ds ≥ 0, with
the discontinuous for t = tk+1 term

VW2 ,



−
π2

4

 t−h

tk−1−h
[x(s) − x(tk−1 − h)]TW2[x(s) − x(tk−1 − h)]ds

+ 4(τM − h)2
 t−h

tk−1−h
ẋT (s)W2ẋ(s)ds, t ∈ [tk, tk+1),

−
π2

4

 t−h

tk+1−h
[x(s) − x(tk+1 − h)]TW2[x(s) − x(tk+1 − h)]ds

+ 4(τM − h)2
 t−h

tk+1−h
ẋT (s)W2ẋ(s)ds, t ∈ [tk+1, tk+2).
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We have VW2|t=tk+1 = 0 and, by the extended Wirtinger’s inequal-
ity (26), VW2 ≥ 0 for all t ≥ t0, i.e. V2 does not grow in the jumps.
Therefore, V̄1 does not grow in the jumps: limt→t−k

V̄1(t) ≥ V̄1(tk)

and limt→t−k+1
V̄1(t) ≥ V̄1(tk+1) hold.

Theorem 2. (i) Given τM > h ≥ 0, the system (8) with hk ≡ h,
w = 0 and v = 0 is asymptotically stable, if there exist n×nmatrices
P > 0, R0 > 0, S0 > 0,Wi > 0(i = 1, 2), such that the following
LMI is feasible:

Ξ =



Ψ1 R0 PA1 PA2 ATW

∗ Ψ2
π2

4
W1

π2

4
W2 0

∗ ∗ −
π2

4
W1 0 AT

1W

∗ ∗ ∗ −
π2

4
W2 AT

2W
∗ ∗ ∗ ∗ −W


< 0, (29)

where

Ψ1 = PA + ATP + S0 − R0,

Ψ2 = −
π2

4
W1 −

π2

4
W2 − S0 − R0,

W = h2R0 + 4(τM − h)2(W1 + W2).

(30)

(2) Given γ > 0, if the following LMI

| PB1 PD21 PD22 CT
0

| 0 0 0 0
Ξ | 0 0 0 DT

1

| 0 0 0 DT
2

| WB1 WD21 WD22 0
− − − − − −

∗ | −γ 2I 0 0 0
∗ | ∗ −γ 2I 0 ET

21

∗ | ∗ 0 −γ 2I ET
22

∗ | ∗ ∗ ∗ −I


< 0 (31)

with notations given by (30) is feasible. Then (8) with hk ≡ h is
internally stable and has L2-gain less than γ .

Proof. (i) Differentiating V0(xt , ẋt) and applying Jensen’s inequal-
ity [25], we have

d
dt

V0(xt , ẋt) ≤ 2xT (t)Pẋ(t) + xT (t)S0x(t)

− xT (t − h)S0x(t − h) + h2ẋT (t)R0ẋ(t)
− [x(t) − x(t − h)]TR0[x(t) − x(t − h)].

Consider t ∈ [tk, tk+1). Along (8) with hk ≡ h, w = 0 and v = 0
we have

d
dt

2
i=1

Vi(t, xt , ẋt)

= ẋT (t)[4(τM − h)2(W1 + W2)]ẋ(t)

−
π2

4
[x(t − h) − x(tk − h)]TW1[x(t − h) − x(tk − h)]

−
π2

4
[x(t − h) − x(tk−1 − h)]TW2[x(t − h) − x(tk−1 − h)].

Then substitution of Ax(t) + A1x(tk − h) + A2x(tk−1 − h) for ẋ(t)
leads to
˙̄V 1(t) ≤ ζ T (t)



Ψ1 R0 PA1 PA2

∗ Ψ2
π2

4
W1

π2

4
W2

∗ ∗ −
π2

4
W1 0

∗ ∗ ∗ −
π2

4
W2

 ζ (t)

+ [Ax(t) + A1x(tk − h) + A2x(tk−1 − h)]TW
× [Ax(t) + A1x(tk − h) + A2x(tk−1 − h)],

where ζ (t) = col{x(t), x(t − h), x(tk − h), x(tk−1 − h)} and W is
given in (30). Hence, by Schur complements, (29) guarantees that
˙̄V 1(t) ≤ −β̃|x(t)|2 for some β̃ > 0.

Similarly, when t ∈ [tk+1, tk+2), k = 2p, we prove that (29)
guarantees ˙̄V 1(t) ≤ −β̃|x(t)|2 for some β̃ > 0, which proves the
asymptotic stability (see Lemma 1(i)).

(ii) By using arguments of (i), we find that (15) with ˙̄V (t) =

˙̄V 1(t) holds along (8) with hk ≡ h if LMI (31) is feasible, which
completes the proof. �

Remark 4. Compared to the stability LMI conditions of Theorem 1,
of Remark 2 and of [18], the LMI of Theorem 2 is essentially simpler
(single LMI of 5n × 5n with fewer decision variables) and is less
conservative (see Examples below).

Remark 5. Similar to [26], the decay rate of the exponential
stability for (8) can be found by changing the variable x̄(t) =

x(t)eαt and by applying LMI (29) to the resulting system with
polytopic type uncertainty.

For the case of constant delay h, we can combine the methods
of Theorems 1 and 2. Thus the following Corollary is obtained:

Corollary 1. Given τM > h ≥ 0, the system (8) with hk ≡ h, w = 0
and v = 0 is asymptotically stable, if there exist n × n matrices
P > 0, Si > 0, Ri > 0(i = 0, 1), Gi

1,G
i
2,G

i
3,Wi > 0(i = 1, 2),

such that (18) and Ξi|α=0(i = 1, 2) hold, where Ξi(i = 1, 2) are
defined in (19)with hm changed by h andΦ22, Φ23, Φ24, Φ33, Φ44,H
changed by

Φ22 = −S0 + S1 − R0 − R1 −
π2

4
W1 −

π2

4
W2,

Φ23 = R1 − Gi
1 +

π2

4
Wi,

Φ24 = Gi
1 − Gi

2 +
π2

4
W3−i,

Φ33 = −2R1 + Gi
1 + GiT

1 −
π2

4
Wi,

Φ44 = −2R1 + Gi
3 + GiT

3 −
π2

4
W3−i,

H = h2R0 + 4(τM − h)2(R1 + W1 + W2), i = 1, 2.

(32)

We note that the LMIs of Corollary 1 withWi = 0(i = 1, 2) or with
R1 = S1 = Gi

j = 0(i = 1, 2, j = 1, 2, 3) are reduced to the ones of
Theorem 1 or of Theorem 2, respectively.

Remark 6. When there is no measurement delay, i.e. hk ≡ 0, the
problem for NCS is reduced to the one for sampled-data systems
with scheduling (see e.g. [14]), where the closed-loop system
has a form of (8) with hk ≡ 0, k ∈ N . As we will see in
the example below, for h → 0 the conditions of Theorem 2
become conservative. Less conservative conditions can be derived
in this case via different from (27) continuous in time Lyapunov
functionals.
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For the constant sampling,where tk+1−tk = τM , k ∈ N , choose
Lyapunov functional of the form

V (t, xt , ẋt) = V̄2(t) = xT (t)Px(t) +

2
i=1

Vi(t, ẋt)

+

2
i=1

VXi(t, xt), P > 0, t ∈ [tk, tk+2), k = 2p, p ∈ N ,(33)

where

V1(t, ẋt) = (tk+2 − t)
 t

tk
e2α(s−t)ẋT (s)U1ẋ(s)ds,

V2(t, ẋt) =



(tk+1 − t)
 t

tk−1

e2α(s−t)ẋT (s)U2ẋ(s)ds,

t ∈ [tk, tk+1),

(tk+3 − t)
 t

tk+1

e2α(s−t)ẋT (s)U2ẋ(s)ds,

t ∈ [tk+1, tk+2),

VX1(t, xt) = (tk+2 − t)ξ T
0 (t)

X + XT

2
−X + X1

∗ −X̄1

 ξ0(t),

VX2(t, xt)

=



(tk+1 − t)ξ T
−1(t)

X2 + XT
2

2
−X2 + X3

∗ −X̄3

 ξ−1(t),

t ∈ [tk, tk+1),

(tk+3 − t)ξ T
1 (t)

X2 + XT
2

2
−X2 + X3

∗ −X̄3

 ξ1(t),

t ∈ [tk+1, tk+2),

with ξi(t) = col{x(t), x(tk+i)}(i = 0, ±1), X̄1 = X1 + XT
1 −

X+XT

2 , X̄3 = X3 + XT
3 −

X2+XT
2

2 ,U1 > 0, U2 > 0, k = 2p.
The terms Vi and VXi(i = 1, 2) extend the constructions of [7] to

the case ofmultiple sampling intervals. These terms are continuous
in time along (8) with hk = 0 since

V1|t=t−k
= V1|t=tk = 0, V1|t=t−k+1

= V1|t=tk+1 ≥ 0,

V2|t=t−k
= V2|t=tk ≥ 0, V2|t=t−k+1

= V2|t=tk+1 = 0,

VX1|t=t−k
= VX1|t=tk = 0, VX1|t=t−k+1

= VX1|t=tk+1 ≥ 0,

VX2|t=t−k
= VX2|t=tk ≥ 0, VX2|t=t−k+1

= VX2|t=tk+1 = 0.

The condition V (t, xt , ẋt) ≥ β̄|x(t)|2 holds for t ∈

[tk, tk+1), k = 2p, ifP + τM (X + XT ) + τM
X2 + XT

2

2
2τM (−X + X1) τM (−X2 + X3)

∗ −2τM X̄1 0
∗ ∗ −τM X̄3

 > 0, (34)

P + τM
X + XT

2
τM (−X + X1)

∗ −τM X̄1

 > 0, (35)

and for t ∈ [tk+1, tk+2), k = 2p, ifP + τM (X2 + XT
2 ) + τM

X + XT

2
τM (−X + X1) 2τM (−X2 + X3)

∗ −τM X̄1 0
∗ ∗ −2τM X̄3

 > 0, (36)

P + τM
X2 + XT

2

2
τM (−X2 + X3)

∗ −τM X̄3

 > 0. (37)
Table 1
Example 1: max. value of τM for hk ≡ 0.

Method τM = MATI

[29] 0.0082
[15] 0.0088
[17] 0.0645
Remark 6: tk+1 − tk ≡ τM 0.0655
Remark 6: tk+1 − tk ≤ τM 0.0622
Theorem 2 with h = 0: tk+1 − tk ≤ τM 0.049

Lyapunov functional V of (33) with X = Xi = 0 (i = 1, 2, 3) is
applicable to systems with variable sampling tk+1 − tk ≤ τM . The
resulting LMI conditions can be found in [18].

Remark 7. LMIs of Theorems 1 and 2, of Corollary 1 and of [18] are
affine in A. Therefore, if A resides in the uncertain polytope

A =

M
j=1

µj(t)A( j), 0 ≤ µj(t) ≤ 1,
M
j=1

µj(t) = 1,

one have to solve these LMIs simultaneously for all the M vertices
A( j), applying the same decision matrices.

4. Examples

4.1. Example 1: batch reactor

We illustrate the efficiency of the given conditions on the
benchmark example of a batch reactor under the dynamic output
feedback with hk = hsc

k [29,15,17], where

A =

 1.380 −0.208 6.715 −5.676
−0.581 −4.2902 0 0.675
1.067 4.273 −6.654 5.893
0.048 4.273 1.343 −2.104

 ,

B =

 0 0
5.679 0
1.136 −3.146
1.136 0

 , B1 =

10 0
0 5
10 0
0 5

 ,

C0 =


1 0 1 −1
0 1 0 0


, D12 =


0 0
0 0


,


Ac Bc
Cc Dc


=

 0 0
0 0

0 1
1 0

−2 0
0 8

0 −2
5 0

 .

As in [15], the controlled output z is chosen to be equal to the

measured output y =


y1

y2


. Thus,

C =


C1

C2


=


1 0 1 −1
0 1 0 0


, F 1

= F 2
= 0. (38)

We start with the stability analysis in the disturbance-free case,
where w = 0. When there is no communication delay, i.e. hk ≡

0, by applying the method of Remark 6 with α = 0 we find
the maximum values of τM = MATI + MAD that preserve the
asymptotic stability (see Table 1). Our results are close to the
discretization-based results of [17], whereas the latter results are
not applicable to the performance analysis. Further, for the values
of hm given in Table 2, by applying Theorem 1 and Remark 2 with
α = 0, Theorem 2 and Corollary 1 with constant delay h = hm, we
obtain the maximum values of τM that preserve the stability (see
Table 2). From Table 2, it is seen that the results of Theorems 1
and 2 essentially improve the hybrid system-based results [15].
Moreover, our results are applicable when the delay is larger than
the sampling interval. For hm = 0.04 and the corresponding



674 K. Liu et al. / Systems & Control Letters 61 (2012) 666–675
Fig. 2. Estimation of stability domain for Round-Robin scheduling with constant sampling and constant delay based on discretization.
Table 2
Example 1: max. value of τM = MATI + MAD for different hm .

τM \ hm 0 0.004 0.02 0.03 0.04

[15] (MAD = 0.004) 0.0088 0.0088 – – –
[17] (MAD = 0.03) 0.068 0.068 0.068 0.068 –
Remark 2 (var hk) 0.036 0.038 0.047 0.053 0.059
Theorem 1 (var hk) 0.042 0.044 0.053 0.058 0.063
Theorem 2 (con hm) 0.049 0.051 0.057 0.061 0.065
Corollary 1 (con hm) 0.051 0.054 0.060 0.063 0.067

Table 3
Example 1: the computational time for maximum τM .

hm = 0.04 Remark 2 Theorem 1 Theorem 2 Corollary 1

τM 0.059 0.063 0.065 0.067
Time 8.77 6.55 0.97 13.48

Table 4
Example 1: min. γ for different τM = MATI + MAD and hm .

hm 0 0 0.02 0.03 0.04
τM 0.0056 0.0149 0.03 0.04 0.05

[15]

MAD =

τM
2


2.50 200 – – –

Remark 2 (var delay) 2.07 2.32 2.51 2.90 3.97
Theorem 1 (var delay) 2.06 2.25 2.43 2.74 3.48
Theorem 2 (con delay) 2.02 2.13 2.30 2.52 2.97

maximum τM we give also the computational time (in seconds) for
different methods (see Table 3). It is seen that the improvement
(till 15% increase of the maximum τM and till 25% decrease of
computational time) is achieved by taking into account order of the
delays in Theorem 1 (for variable delay hk). Theorem 2 essentially
decreases the computational time (for constant delay hk ≡ hm).

Consider next the perturbedmodel of the batch reactor, i.e.w ≠

0. As in [15], we assume that yi(sk) = C ix(sk), i = 1, 2, where C i

is given in (38) and consider J =


∞

t0
[zT (t)z(t) − γ 2wT (t)w(t)]dt .

For the values of hm given in Table 4, by applying Theorem1we find
the minimum values of γ for different values of hm (see Table 4).
From Table 4 it is seen that our results are favorably compared
with [15]. As previously, Theorem 1 is applicable when the delay is
larger than the sampling interval.

4.2. Example 2: cart-pendulum

Consider the following linearized model of the inverted
pendulum on a cart:

ẋ
ẍ
θ̇

θ̈

 =


0 1 0 0

0 0
−mg
M

0
0 0 0 1

0 0
(M + m)g

Ml
0


x
ẋ
θ

θ̇



+


0
a
M
0

−a
Ml

 u +

1
1
1
1

 w,

z =

1 1 1 1

 
x ẋ θ θ̇

T
+ 0.1u

with M = 3.9249 kg,m = 0.2047 kg, l = 0.2302 m, g =

9.81 N/kg, a = 25.3 N/V. In the model, x and θ represent cart po-
sition coordinate and pendulum angle from vertical, respectively.

We start with the disturbance-free case, where w = 0. The
pendulum can be stabilized by a state feedback

u(t) = [5.825 5.883 24.941 5.140]

x(t) ẋ(t) θ(t) θ̇(t)

T
,

which leads to the closed-loop system eigenvalues {−100, −2 +

2i, − 2 − 2i, − 2}. In practice the variables θ, θ̇ and x, ẋ are not
accessible simultaneously. We consider

C1
=


1 0 0 0
0 1 0 0


, C2

=


0 0 1 0
0 0 0 1


.

The applied control is obtained from the following blocks of K

K1 =

5.825 5.883


, K2 =


24.941 5.140


.

Using the classical discretization-based model for the case of
constant sampling and for the values of constant delay h, Fig. 2
shows the stability domain for the inverted pendulum example
with Round-Robin scheduling protocol (in constant sampling
interval / delay plane). By applying further Theorem 1 with α = 0
for the values of hm given in Table 5 and Theorem 2 with h ≡ hm,
we find the maximum values of τM that preserve the asymptotic
stability (see Table 5).

When there is no communication delay, i.e. hk ≡ 0, by applying
Remark 6 with α = 0, we find themaximum values of τM that pre-
serve the asymptotic stability (see Table 6). It is seen from Table 6
that our results for the constant sampling are close to the analytical
one and are less conservative than for the variable sampling.

Choose further τM = 4.0×10−3, hm = 2.0×10−3, by applying
Theorem 1, we find that the system is exponentially stable with
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Table 5
Example 2: max. value of τM for different hm .

hm \ τM Theorem 1 [18] Theorem 2 Analytical

1.0 × 10−3 4.7 × 10−3

h ≡ hm

3.7 × 10−3 4.9 × 10−3 8.5 × 10−3

2.0 × 10−3 5.4 × 10−3 4.5 × 10−3 5.5 × 10−3 1.05×10−2

3.0 × 10−3 6.1 × 10−3 5.2 × 10−3 6.1 × 10−3 1.25×10−2

4.0 × 10−3 6.8 × 10−3 6.0 × 10−3 6.8 × 10−3 1.45×10−2
Table 6
Example 2: max. value of τM for hk ≡ 0.

Method τM

Analytical: tk+1 − tk ≡ τM 6.8×10−3

Remark 6: tk+1 − tk ≡ τM 6.4×10−3

Remark 6: tk+1 − tk ≤ τM 5.3×10−3

Theorem 2 with h = 0: tk+1 − tk ≤ τM 4.3×10−3

the decay rate α = 1.94. Consider next the perturbed model of
pendulum and the noisy measurements, i.e. w ≠ 0 and v ≠ 0.
We assume that yi(sk) = C ix(sk) + 0.1v(sk), i = 1, 2. By applying
Theorem 1, we find that for τM = 4.0 × 10−3, hm = 2.0 × 10−3

the system has an L2-gain less than γ = 1.24, whereas for τM → 0
the resulting γ = 1.19.

5. Conclusions

In this paper, a time-delay approach has been introduced for
the exponential stability and L2-gain analysis of NCS with Round-
Robin scheduling, variable communication delay and variable
sampling intervals. The closed-loop system is modeled as a
switched system with multiple and ordered time-varying delays.
By developing appropriate Lyapunov–Krasovskii-based methods,
sufficient conditions are derived in terms of LMIs. The batch
reactor example illustrates the advantages of the new method
over the existing ones: essential improvement of the results
comparatively to the hybrid system approach, performance
analysis comparatively to the discrete-time approach, non-small
network-induced delay (which is not smaller than the sampling
interval) comparatively to both existing approaches.

Future work will involve analysis and design for NCS under
other scheduling protocols and under quantization effects.
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