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a b s t r a c t

Motivated by the problem of stability in droop-controlled microgrids with delays, we consider a class
of port-Hamiltonian systems with delayed interconnection matrices. For this class of systems, delay-
dependent stability conditions are derived via the Lyapunov–Krasovskii method. The theoretical results
are applied to an exemplary microgrid with distributed rotational and electronic generation and illus-
trated via a simulation example. The stability analysis is complemented by providing an estimate of the
region of attraction of a microgrid with delays.

© 2016 Elsevier Ltd. All rights reserved.
1. Introduction

1.1. Motivation

Time delays are a highly relevant phenomenon in many en-
gineering applications. They appear, e.g., in networked control,
sampled-data and biological systems (Fridman, 2014a). In particu-
lar, time delays may substantially deteriorate the performance of
a system, e.g., with regard to stability properties of its equilibria.
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Therefore, it is of paramount importance in a large variety of appli-
cations to explicitly consider time delays in the system design and
analysis process.

In this paper, we derive conditions for stability of a class of
port-Hamiltonian (pH) systems with delays. PH systems theory
provides a systematic framework for modeling and analysis of
networkmodels of a large range of physical systems and processes
(van der Schaft, 2000; van der Schaft & Jeltsema, 2014). In
particular, the geometric structure of a pH model underscores the
importance of the energy function, the interconnection pattern and
the dissipation of a system. With regard to stability analysis, the
main advantage of a pH representation is that the Hamiltonian
usually is a natural candidate Lyapunov function (van der Schaft,
2000). Unfortunately, in the presence of delays this does not apply
in general. Yet, it seems natural to seek to construct alternative
Lyapunov function candidates by using the Hamiltonian as a point
of departure aiming to exploit the structural properties of pH
systems.

The present work is further motivated by the problem of the
effect of time delays on microgrid (µG) operation. The µG is
an emerging concept for an efficient integration of renewable
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distributed generation (DG) units (Guerrero, Loh, Chandorkar,
& Lee, 2013; Hatziargyriou, Asano, Iravani, & Marnay, 2007). A
µG is a locally controllable subset of a larger electrical network
and is composed of several DG units, storage devices and loads
(Guerrero et al., 2013). A particular characteristic of a µG is that
it can be operated either in grid-connected or in islanded mode,
i.e., disconnected from a larger power system.

Typically, a large share of the power units in aµG are renewable
and storage units connected to the network via DC/AC inverters.
On the contrary, most conventional generation units are interfaced
to the grid via synchronous generators (SGs). As inverters
possess significantly different physical properties from SGs, many
challenging problems arise in future power grids (Guerrero et al.,
2013; Hatziargyriou et al., 2007). Amongst these, system stability
is one of the most relevant and critical (Guerrero et al., 2013).

So far, most stability analysis of µGs has focused on purely
inverter-based µGs (Münz & Metzger, 2014; Schiffer, Ortega,
Astolfi, Raisch, & Sezi, 2014a; Simpson-Porco, Dörfler, & Bullo,
2013). Yet, from a practical point of view, most present and near-
future applications concern µGs with a mixed generation pool
consisting of SG- and inverter-interfaced units. Following Schiffer,
Goldin, Raisch, and Sezi (2013), we refer to such a system as a
µ G with distributed rotational and electronic generation (MDREG).
The predominant type of conventional units in MDREGs are diesel
gensets (Krishnamurthy, Jahns, & Lasseter, 2008) and, hence, we
focus on these in the present work.

The most commonly employed control scheme to operate
MDREGs is droop control. This is a decentralized proportional con-
trol scheme, the main objectives of which are stability and power
sharing. Droop control is the standard basic control scheme for
SG-based networks (Kundur, 1994) and has also been adapted to
inverter-interfaced units (Guerrero et al., 2013). As shown, e.g., in
Schiffer et al. (2013), droop control ensures a compatible joint op-
eration of SG- and inverter-interfaced DG units.

In MDREGs, time delays appear due to several reasons and
also in several network components. First, the power-stroke and
ignition delay of a diesel engine is represented by a time delay
in standard models (Guzzella & Amstutz, 1998; Kuang, Wang, &
Tan, 2000; Roy, Malik, & Hope, 1991). Second, in a practical setup,
the droop control scheme is applied to an inverter, respectively an
SG, via digital control. Digital control usually introduces additional
effects such as clock drifts (Schiffer, Ortega, Hans, & Raisch,
2015b) and time delays (Kukrer, 1996; Maksimovic & Zane, 2007;
Nussbaumer, Heldwein, Gong, Round, & Kolar, 2008), which may
have a deteriorating impact on the system performance. According
toNussbaumer et al. (2008), themain reasons for the appearance of
time delays are sampling of control variables and calculation time
of the digital controller. In the case of inverters, the generation of
the pulse-width-modulation (PWM) to determine the switching
signals for the inverter induces an additional delay. We refer the
reader to, e.g., Nussbaumer et al. (2008) for further details. Hence,
timedelays are a relevant phenomenon inMDREGs,whichmakes it
important to investigate their influence on stability. Thismotivates
the analysis below.

1.2. About the paper

The present paper focuses on the impact of time delays on
stability of MDREGs. To that end, and following Schiffer et al.
(2014a) and Schiffer, Fridman, and Ortega (2015a), we represent
the MDREG as a pH system with delays. Motivated by this, we
derive delay-dependent conditions for stability for a class of pH
systems with delays, containing the MDREG model as a special
case. The stability conditions are established by following Fridman
(2014b), Fridman, Dambrine, and Yeganefar (2008) and Kao and
Pasumarthy (2012) and constructing a nonlinear and non-quadratic
Lyapunov–Krasovskii functional (LKF) from the Hamiltonian and
its gradient. That the LKF can be nonlinear and non-quadratic
follows from the fact that both the Hamiltonian and its gradient
are, in general, nonlinear functions of the system states. Compared
to that, standard LMI-based approaches (Fridman, 2014a,b) rely on
LKFs, which are quadratic in the state variables. The latter is, in
general, very restrictive.

Themain contributions of the present paper are (i) to introduce
a model of a droop-controlled MDREG which explicitly considers
delays of the DG unit dynamics, (ii) to represent thisMDREGmodel
as a pH systemwith fast- and slowly-varying delays, (iii) to provide
stability conditions for a class of pH systems with fast- and slowly-
varying delays via the LKmethod, (iv) to provide an estimate of the
region of attraction of an MDREG with delays and (v) to illustrate
the usefulness of our conditions on an exemplary µG. Hence, the
present paper extends our previous work (Schiffer et al., 2015a)
in several regards: we take diesel engines into account, provide
stability conditions for slowly- and fast-varying delays and derive
an estimate of the region of attraction of an MDREG with delays.

1.3. Existing literature

Stability analysis of pH systems with delays has been the
subject of previous research (Aoues, Lombardi, Eberard, & Di-
Loreto, 2015; Aoues, Lombardi, Eberard, & Seuret, 2014; Kao
& Pasumarthy, 2012; Pasumarthy & Kao, 2009; Yang & Wang,
2010). The main motivation of that work is a scenario in which
several pH systems are interconnected via feedback paths which
exhibit a delay. This setup yields a closed-loop system with skew-
symmetric interconnections, which can be split into non-delayed
skew-symmetric and delayed skew-symmetric parts. However,
the model of an MDREG with delays derived in this work is not
comprised in the class of pH systems studied in Aoues et al.
(2014), Kao and Pasumarthy (2012), Pasumarthy and Kao (2009)
and Yang and Wang (2010), since the delays do not appear skew-
symmetrically. In that regard, the class of systems considered in
the present work generalizes the class studied in Aoues et al.
(2014), Kao and Pasumarthy (2012), Pasumarthy and Kao (2009)
and Yang and Wang (2010), see Section 3. Unlike (Aoues et al.,
2014; Kao & Pasumarthy, 2012; Pasumarthy & Kao, 2009), we
also provide conditions for stability in the presence of fast-
varying delays, which typically arise in the context of digital
control (Fridman, 2014b; Liu & Fridman, 2012). In addition, we
apply the derived approach to a practically relevant application,
namely an MDREG. Compared to this, in Aoues et al. (2014), Kao
and Pasumarthy (2012), Pasumarthy and Kao (2009) and Yang
and Wang (2010) only academic examples were considered. The
effect of time delays on µG stability has only been investigated
in Efimov, Ortega, and Schiffer (2015) and Efimov, Schiffer, and
Ortega (2016) for a two-inverter-scenario. In particular, none of the
aforementioned analyses on µG stability (Münz & Metzger, 2014;
Schiffer et al., 2013, 2014a; Simpson-Porco et al., 2013) take the
effect of time delays into account.

The remainder of the paper is structured as follows. A model
of an MDREG with delays is derived in Section 2. In Section 3, the
considered class of pH systemswith delays is introduced, forwhich
delay-dependent conditions for stability are provided in Section 4.
In Section 5, the results are applied to an exemplary MDREG for
which we also provide an estimate of the region of attraction.
Conclusions and topics of future work are given in Section 6.

Notation. We define the sets n̄ = {1, 2, . . . , n}, R≥0 = {x ∈

R|x ≥ 0}, R>0 = {x ∈ R|x > 0}, R<0 = {x ∈ R|x < 0},
Z≥0 = {0, 1, 2, . . .}. For a set V , let |V| denote its cardinality.
For a set of, possibly unordered, positive natural numbers V =

{l, k, . . . , n}, the short-hand i ∼ V denotes i = l, k, . . . , n. Let
x = col(xi) ∈ Rn denote a vector with entries xi for i ∼ n̄, 0n
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the zero vector, 1n the vector with all entries equal to one, In the
n × n identity matrix, 0n×n the n × n matrix with all entries equal
to zero and diag(ai), i ∼ n̄, an n × n diagonal matrix with diag-
onal entries ai ∈ R. Likewise, A = blkdiag(Ai) denotes a block-
diagonal matrix with matrix entries Ai. We employ the notation
In×mn =


In, . . . , In


∈ Rn×mn. For A ∈ Rn×n, A > 0 means

that A is symmetric positive definite. The elements below the di-
agonal of a symmetric matrix are denoted by ∗. We denote by
W [−h, 0]n, h ∈ R>0, the Banach space of absolutely continuous
functions φ : [−h, 0] → Rn, h ∈ R>0, with φ̇ ∈ L2(−h, 0)n and

with the norm ∥φ∥W = maxθ∈[a,b] |φ(θ)| +

 0
−h φ̇2dθ

0.5
. For x :

R≥0 → Rn, we denote xt(σ ) = x(t+σ), σ ∈ [−h, 0]. Also,∇f de-
notes the transpose of the gradient of a function f : Rn

→ R, ∇
2H

its Hessianmatrix andwe employ the notation∇ ḟ = d(∇f )/dt . If f
takes the form f = f (x(t − h)), x ∈ Rn, we use the short-hand ∇fh
= ∇f (x(t − h)).

2. Motivating application: microgrids with distributed rota-
tional and electronic generation

2.1. Network model

We consider a Kron-reduced (Kundur, 1994) generic MDREG
in which DG units are interfaced to the network either via SGs
or inverters and loads are modeled by constant impedances. The
network is composed of n1 ≥ 1 inverters and n2 ≥ 1 SGs and
the set of network nodes is denoted by n̄ = n̄1 ∪ n̄2 with n̄1 =

{1, . . . , n1}, n̄2 = {n1 + 1, . . . , n} and n = n1 + n2. Following
Schiffer et al. (2014a) and Simpson-Porco et al. (2013), we assume
that the line admittances are purely inductive. Then, two nodes
i and k in the network are connected by a nonzero susceptance
Bik ∈ R<0. We denote the set of neighbors of the ith node by
n̂i = {k ∈ n̄ | Bik ≠ 0}, associate a time-dependent phase
angle δi : R≥0 → R to each node i ∈ n̄ and use the short-hand
δik(t) = δi(t) − δk(t), i ∈ n̄, k ∈ n̄.

In addition, we conduct our analysis under the frequent as-
sumption of constant voltage amplitudes Vi ∈ R>0 at all nodes
i ∈ n̄, see, e.g., Simpson-Porco et al. (2013). The active power injec-
tion Pi : Rn

→ R of the ith inverter is then given byKundur (1994)2

Pi(δ1, . . . , δn) = GiiV 2
i +


i∼n̂i

aik sin(δik), (2.1)

where aik = |Bik|ViVk > 0 and Gii ∈ R≥0 denotes the shunt con-
ductance (representing the load) at the ith node.3

Finally, we assume that the µG is connected, i.e., for all pairs
(i, k) ∈ n̄ × n̄, i ≠ k, there exists an ordered sequence of nodes
from i to k such that any pair of consecutive nodes in the sequence
is connected by a power line.

2.2. Inverter model with input delay

Usually, inverter-based DG units are controlled via digital
control (Nussbaumer et al., 2008). As discussed in Section 1,
this leads to an input delay. In MDREGs, these delays are
heterogeneous, as not all inverters are identical with respect to
their hardware and the implementation of the digital controls.

Typically, the delay induced by digital control is composed
of two main parts: a constant delay η ∈ R>0 originating from
the calculation time of the control signal4 and the PWM and an

2 To simplify notation the time argument of all signals is omitted, whenever clear
from the context.
3 For constant voltage amplitudes, any constant power load can equivalently be

represented by a constant impedance load.
4 The delay η may also represent the dynamics of the internal control system of

the inverter, which is not considered explicitly in the model (2.7). See Schiffer et al.
(in press) for a detailed model derivation of the non-delayed version of (2.7).
additional delay causedby the sample-and-hold function of control
variables (Nussbaumer et al., 2008). Following Fridman (2014a)
and Liu and Fridman (2012),we assume that the sampling intervals
are bounded, i.e., tκ+1 − tκ ≤ hs, κ ∈ Z≥0. Then,

tκ+1 − tκ + η ≤ hs + η = h̄, (2.2)

where h̄ denotes the maximum time interval between the time
tκ−η, where themeasurement is sampled and the time tκ+1, where
the next control input update arrives.

By following Fridman (2014a), Liu and Fridman (2012) and
Schiffer et al. (2015b), the inverter at the ith node, i ∈ n̄1, with input
delay and zero-order-hold update characteristic with sampling
instants ti,κ , κ ∈ Z≥0 can be represented for ti,κ ≤ t < ti,κ+1, κ ∈

Z≥0 by5

δ̇i(t) = uδ
i (ti,κ − ηi),

τPi Ṗ
m
i (t) = −Pm

i (t) + Pi(t),
(2.3)

where uδ
i : R≥0 → R is the control input, ηi ∈ R>0 is a constant

delay, Pi is given by (2.1), Pm
i : R≥0 → R is the measured active

power and τPi ∈ R>0 is the time constant of the measurement
filter. We assume that the inverters are controlled via the usual
frequency droop control (Guerrero et al., 2013)

uδ
i (t) = ωd

− kPi(P
m
i (t) − Pd

i ), (2.4)

where ωd
∈ R>0 is the desired (nominal) network frequency,

kPi ∈ R>0 is the feedback (or droop) gain and Pd
i ∈ R>0 is the

desired active power setpoint.

2.3. Diesel genset with fuel actuator and engine delay

The most common type of SG-interfaced DG units in µGs are
diesel gensets (Krishnamurthy et al., 2008). A typical diesel genset
consists of a diesel enginewith fuel actuator, an SG, aswell as speed
and excitation controls. Based on Guzzella and Amstutz (1998),
Kuang et al. (2000) and Roy et al. (1991), the dynamics of the SG
with fuel actuator at the ith node, i ∈ n̄2, are given for ti,κ ≤ t <
ti,κ+1, κ ∈ Z≥0 by

δ̇i(t) = ωi(t),
Miω̇i(t) = −Diωi(t) − Pi(t) + PMi(t),
τMiΦ̇i(t) = −Φi(t) + kMiu

M
i (ti,κ − ηi),

PMi(t) = kciΦi(t − gi(t)),

(2.5)

where ωi : R≥0 → R is the frequency of the SG, Mi ∈ R>0 its
inertia constant, Di ∈ R>0 its damping coefficient, Pi the active
power given by (2.1) and PMi : R≥0 → R the mechanical power
input. The fuel actuator is represented by a first-order filter with
input uM

i : R≥0 → R, output Φi : R≥0 → R (the fuel flow), gain
kMi ∈ R>0 and time constant τMi ∈ R>0. As in (2.3), we assume that
the implementation of the digital control leads to an input delay
and zero-order-hold update characteristic with sampling instants
ti,κ , κ ∈ Z≥0 and constant delay ηi ∈ R>0, see Guzzella and Am-
stutz (1998). The fuel conversion gain is denoted by kci ∈ R>0. The
conversion process is additionally affected by the power-stroke
and ignition delay, caused by the discrete firing of the cylinders,
as well as the period of time between the start of injection and the
start of combustion (Kuang et al., 2000; Roy et al., 1991). This de-
lay is, in general, considered as an uncertain constant (Guzzella &
Amstutz, 1998) or time-varying bounded parameter (Kuang et al.,

5 An underlying assumption to this model is that whenever the inverter connects
a fluctuating renewable generation source to the grid, it is equipped with some sort
of storage, see Schiffer et al. (in press).
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2000; Roy et al., 1991). Hence, for the sake of generality, it is rep-
resented by a slowly-varying bounded time delay gi : R≥0 →

[0, ḡi], ḡi ∈ R>0, ġi ≤ di < 1, di ∈ R>0 in the present paper.
As usual, we assume that the engine speed is controlled via the

well-known droop control for SGs given by Schiffer et al. (2013)

uM
i (t) = Pd

i − R−1
i (ωi(t) − ωd), (2.6)

where Pd
i ∈ R>0 is the nominal power setpoint, Ri ∈ R>0 the

droop gain and, as in (2.4),ωd
∈ R>0 the reference frequency. Since

we assume constant voltage amplitudes, the excitation control is
neglected in the model.

2.4. Closed-loop MDREG model

It has been shown in Fridman (2014a) and Liu and Fridman
(2012) that the type of delay appearing in the open-loop systems
(2.3) and (2.5) results in a fast-varying delay, once the loop is
closed. Following Fridman (2014a) and Liu and Fridman (2012), we
define hi(t) = t − ti,κ + ηi, ti,κ ≤ t < ti,κ+1. Combining (2.3) with
(2.4), yields the closed-loop system

δ̇i(t) = ωd
− kPi(P

m
i (t − hi(t)) − Pd

i ),

τPi Ṗ
m
i (t) = −Pm

i (t) + Pi(t).
(2.7)

Note that (2.2) implies that ηi ≤ hi(t) ≤ ti,κ+1 − ti,κ + ηi ≤ h̄i and
ḣi(t) = 1. As standard in sampled-data networked control systems
(Fridman, 2014b; Fridman, Seuret, & Richard, 2004), the delay hi
is piecewise-continuous. Via the affine state transformation (see
Schiffer et al., 2013 and Schiffer et al., 2014a)
δi
ωi


=


1 0
0 −kPi

 
δi
Pm
i


+


0 0
0 1

 
0

ωd
+ kPiP

d
i


,

we write the system (2.7), (2.4) as

δ̇i(t) = ωi(t − hi(t)),
τPi ω̇i(t) = −ωi(t) + ωd

− kPi

Pi(t) − Pd

i


.

(2.8)

By combining (2.5) and (2.6), the closed-loop system of the
diesel genset with fast-varying delay hi and slowly-varying delay
gi at the ith node, i ∈ n̄2, is given by

δ̇i(t) = ωi(t),
Miω̇i(t) = −Diωi(t) − Pi(t) + kciΦi(t − gi(t)),
τMiΦ̇i(t) = −Φi(t) + kMi


Pd
i − R−1

i (ωi(t − hi(t)) − ωd)

,

(2.9)

with ηi ≤ hi(t) ≤ ti,κ+1 − ti,κ + ηi ≤ h̄i and ḣi(t) = 1.

2.5. Synchronized motion and error states

It is convenient to introduce the notion of a desired synchro-
nized motion.

Definition 2.1. A solution col(δs, ωs1n, Φs) ∈ R(2n+n2) of the
system (2.1), (2.8), (2.9), i ∼ n̄, is a desired synchronized motion if
ωs and Φs are constant and δs

∈ Θ , where

Θ =


δ(t) ∈ Rn

 |δik| <
π

2
, i ∼ n̄, k ∼ n̂i


,

such that δs
ik = δs

i − δs
k are constant, i ∼ n̄, k ∼ n̂i, ∀t ≥ 0.

Remark 2.2. It can be shown that the system (2.1), (2.8), (2.9)
possesses at most one synchronized motion (modulo a uniform
shift in δs), seeAraposthatis, Sastry, andVaraiya (1981, Corollary 1).

For our subsequent analysis, we make the following natural
power-balance feasibility assumption, see also Schiffer et al.
(2014a).
Assumption 2.3. The system (2.1), (2.8), (2.9), i ∼ n̄, possesses a
desired synchronized motion.

We denote the vector of phase angles by δ = col(δi) ∈ Rn, the
vector of frequencies ωi = δ̇i by ω = col(ωi) ∈ Rn and the vector
of fuel flows by Φ ∈ Rn2 . Note that the power flows (2.1) only
depend upon angle differences. Hence, under Assumption 2.3, we
introduce the error states

ω̃(t) = ω(t) − ωs
1n ∈ Rn, Φ̃(t) = Φ(t) − Φs

∈ Rn2 ,

θ(t) = C

δ(0) − δs(0) +

 t

0
ω̃(τ )dτ


∈ R(n−1),

C =

I(n−1) −1(n−1)


∈ R(n−1)×n,

where we have expressed all angles relative to an arbitrary refer-
ence node, here node n. For ease of notation, we define the con-
stant θn = 0, which is not part of θ . In the reduced coordinates, the
power flows (2.1) between nodes are given by

Pi(δ(θ)) =


k∼n̂i

aik sin(θik + δs
ik). (2.10)

Furthermore, by introducing τPk = MkD−1
k , kPk = D−1

k , cl =

ωd
− ωs

+ kPl(P
d
l − GllV 2

l ), ck = −ωs
− kPkGkkV 2

k + kckkPkΦ
s
k, c =

col(ci) ∈ Rn with i ∼ n̄, l ∼ n̄1, k ∼ n̄2, as well as the matrices

KP = diag(kPi) ∈ Rn×n, TP = diag(τPi) ∈ Rn×n,

E =


0n1×n2
In2


∈ Rn×n2 , KC = diag(kck) ∈ Rn2×n2 ,

TM = diag(τMi) ∈ Rn2×n2 , KM = diag(kMi/Ri) ∈ Rn2×n2 ,

the error dynamics of (2.1), (2.8), (2.9) are given in reduced coor-
dinates x = col(θ, ω̃, Φ̃) ∈ R(2n−1+n2) by

θ̇ (t) = C1ω̃h + C2ω̃,

TP ˙̃ω(t) = −ω̃(t) − KPP(δ(θ)) + KPEKC Φ̃g + c,
TM ˙̃

Φ = −Φ̃ − KME⊤ω̃h.

(2.11)

Here, we have defined, with Pi(δ(θ)) given in (2.10),

P(δ(θ)) = col(Pi(δ(θ))) ∈ Rn,

ω̃h = col(ω̃k(t − hk)) ∈ Rn, Φ̃g = col(Φ̃l(t − gl)) ∈ Rn2 ,

C1 = C


In1 0n1×n2

0n2×n1 0n2×n2


, C2 = C − C1.

Clearly, with Assumption 2.3, the system (2.10), (2.11) possesses
an equilibrium point xs = 0(2n−1+n2), the asymptotic stability of
which implies asymptotic convergence of all trajectories of the sys-
tem (2.1), (2.8), (2.9), i ∼ n̄, to the synchronized motion (up to a
uniform shift of all angles).

We are interested in the following problem.

Problem 2.4. Consider the system (2.1), (2.8), (2.9), i ∼ n̄, with
Assumption 2.3. Given h̄i, i ∼ n̄, ḡi and di, i ∼ n̄2, derive
conditions, such that the corresponding equilibriumpoint of (2.10),
(2.11) is (locally) asymptotically stable.

3. A class of port-Hamiltonian systems with delays

To address Problem 2.4 and by following Schiffer et al. (2014a),
we note thatwith x = col(θ, ω̃, Φ̃) ∈ R(2n−1+n2) the system (2.10),
(2.11) can be written as a perturbed pH system with delays

ẋ = (J − R)∇H +


i∼n̄

Ti(∇Hhi − ∇H)

+


k∼n̄2

Fk(∇Hgk − ∇H), (3.1)
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with Hamiltonian H : R(2n−1+n2) → R

H =


i∼n̄

τPi ω̃
2
i

2kPi
−


i∼n̄\{n}

ciθi
kPi

+


i∼n̄2

kciτMiRiΦ̃
2
i

2kMi

− U(θ), (3.2)

U(θ) =
1
2


i∼n̄


k∼n̂i
aik cos(θik + δs

ik), interconnection matrix

J =

 0(n−1)×(n−1) CKPT−1
P 0(n−1)×n2

−

CKPT−1

P

⊤
0n×n J1

0n2×(n−1) −J⊤

1 0n2×n2

 ,

with J1 = KPT−1
P ET−1

M KM , damping matrix

R = diag

0(n−1), KP(T−2

P )1n, (KMK−1
C T−2

M )1n2


and Ti = JNi, i ∼ n̄1, Ti = NiJ, i ∼ n̄2, Fk = JNk, k ∼ n̄2,
with Ni ∈ R(2n−1+n2)×(2n−1+n2), the (n− 1+ i, n− 1+ i)th entry of
Ni is one and all its other entries are zero, i ∼ n̄1, respectively the
(2n − 1 − n1 + i, 2n − 1 − n1 + i)th entry of Ni is one and all its
other entries are zero, i ∼ n̄2.

In light of this fact, it is natural to analyze (2.10), (2.11) by
exploiting its pH structure (3.1). Consequently, we consider a
generic nonlinear time-delay system in perturbed Hamiltonian
form

ẋ = (J(x) − R(x)) ∇H +

m
i=1


Ti(∇Hhi − ∇H)


, (3.3)

with state vector x : R≥0 → Rn, m > 0 delays hi : R≥0 →

[0, h̄i], h̄i ∈ R≥0, ḣi(t) ≤ di ≤ 1, Hamiltonian H : Rn
→ R,

matrices J(x) = −J(x)⊤ ∈ Rn×n, R(x) ≥ 0 ∈ Rn×n and
Ti ∈ Rn×n, i = 1, . . . ,m. For the following analysis, we consider
initial conditions x0 ∈ W [−h, 0]n, where h = maxi∼n̄ h̄i, and make
the assumption below.

Assumption 3.1. The system (3.3) possesses an equilibrium point
xs = 0n ∈ Rn.

Stability conditions for delayed pH systems of the form

ẋ = (J(x) − R(x))∇H +

m
i=1

Ti∇Hhi , (3.4)

where Ti are arbitrary interconnection matrices and hi are time-
varying delays have been derived in Aoues et al. (2014), Kao and
Pasumarthy (2012), Pasumarthy and Kao (2009) and Yang and
Wang (2010). It is straight-forward to verify that the system (2.10),
(2.11) cannot be written in the form (3.4). In addition, the class of
systems (3.4) is a special case of the class (3.3). More precisely, the
non-delayed part of (3.4) is restricted to the form (J(x) − R(x)),
while the non-delayed part of (3.3) given by (J(x) − R(x) −

Ti) allows to consider more general structures. To illustrate this,
consider two pH systems and feedback interconnections

ẋ1 = (J1(x1) − R1(x1))∇H1 + ζ1u1,
ẋ2 = (J2(x2) − R2(x2))∇H2 + ζ2u2,

y1 = ζ⊤

1 ∇H1, u1 = −y2(t − h(t)),
y2 = ζ⊤

2 ∇H2, u2 = y1(t − h(t)),

(3.5)

where h(t) is a transmission delay (uniform, for ease of presenta-
tion). Then, the resulting closed-loop system is of the form (3.3)
with H = H1 + H2, R(x) = diag(R1(x1), R2(x2)),

J(x) =


J1(x1) −ζ1ζ

⊤

2
ζ2ζ

⊤

1 J2(x2)


, T1 =


0n×n −ζ1ζ

⊤

2
ζ2ζ

⊤

1 0n×n


.

Now, assume the delay h(t) appears only in one of the feedback
interconnections of (3.5). Then the closed-loop system also takes
the form (3.3), but not that in (3.4).
4. Delay-dependent stability conditions for time-varying de-
lays

This section is dedicated to the stability analysis of pH systems
with bounded time-varying delays represented by (3.3). The
approach is based on a strict LKF. To streamline our main result,
we note that

∇Ḣ = ∇
2H


J − R −

m
i=1

Ti


∇H +

m
i=1

Ti∇Hhi


(4.1)

and make the assumption below.

Assumption 4.1. Consider the system (3.3) with Assumption 3.1.
Set hi = 0, i = 1, . . . ,m. Then, the equilibrium point xs = 0n of
the system (3.3) is (locally) asymptotically stable with Lyapunov
function V1 = H .

Our main result is as follows.

Proposition 4.2. Consider the system (3.3)with Assumptions3.1 and
4.1. Given h̄i ≥ 0 and di ∈ [0, 1), i = 1, . . . ,m, assume that
there exist n × n matrices Y > 0, Ri > 0, Qi > 0, Si > 0 and
S12,i, i = 1, . . . ,m, such that

Ψ =

Ψ11 Ψ12 Ψ13

∗ −S − R R − S⊤

12
∗ ∗ Ψ33

 < 0, (4.2)

where

R = blkdiag(Ri), S = blkdiag(Si), S12 = blkdiag(S12,i),

W = ∇
2H(J − R −

m
i=1

Ti), M = ∇
2HIn×nm,

B =

T ⊤

1 (R1 − S12,1) · · · T ⊤

m (Rm − S12,m)

,

(4.3)

Ψ11 = −R − 0.5


m
i=1

Ti +

m
i=1

T ⊤

i


+ W⊤Y + YW

+

m
i=1


h̄2
i (TiW)⊤ Ri (TiW) + T ⊤

i (Si + Qi − Ri)Ti

,

Ψ12 =

T ⊤

1 S12,1 · · · T ⊤

m S12,m

,

Ψ13 = 0.5In×nm +


Y +

m
i=1

h̄2
i


(TiW)⊤RiTi


M + B,

Ψ33 = blkdiag

−(1 − di)Qi − 2Ri + S12,i + S⊤

12,i


+

m
i=1

h̄2
i (TiM)⊤ Ri (TiM) ,

(4.4)

and
R S12
∗ R


≥ 0 (4.5)

are feasible in some neighborhood of xs. Then the equilibrium xs = 0n
is (locally) uniformly asymptotically stable for all delays hi(t) ∈

[0, h̄i], where ḣi(t) ≤ di. In addition, assume that (4.2) and (4.5) are
feasible for di = 1, respectively Qi = 0n×n, ∀i = 1, . . . ,m. Then
xs = 0n is (locally) uniformly asymptotically stable for all fast-varying
delays hi(t) ∈ [0, h̄i].

Proof. Inspired by Fridman (2014b), Fridman et al. (2008) and Kao
and Pasumarthy (2012), let h = maxi=1,...,m h̄i and consider the LKF
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V : R≥0 × W [−h, 0]n × L2(−h, 0)n → R,

V = V1 + V2 +

m
i=1


V3i + V4i + V5i


, V1 = H,

V2 = ∇H⊤Y∇H, V3i = h̄i

 t

t−h̄i
(h̄i + s − t)σi(s)ds,

V4i =

 t

t−h̄i
(Ti∇H(s))⊤ Si (Ti∇H(s)) ds,

V5i =

 t

t−hi(t)
(Ti∇H(s))⊤ Qi (Ti∇H(s)) ds,

(4.6)

where σi(·) = (Ti∇Ḣ(·))⊤Ri(Ti∇Ḣ(·)), i = 1, . . . ,m.
Under the made assumptions H is (locally) positive definite

around xs = 0n and ∇H|xs = 0n, which implies that V is an
admissible LKF for the system (3.3) with equilibrium xs = 0n. Let
ζ ∈ R(2m+1)n,

ζ = col(∇H, T1∇Hh̄1 , . . . , Tm∇Hh̄m , T1∇Hh1 , . . . , Tm∇Hhm).

The time-derivative of V1 is given by

V̇1 = ζ⊤

−R − 0.5(T ⊤
+ T ) 0n×mn 0.5In×mn

∗ 0mn×mn 0mn×mn
∗ ∗ 0mn×mn

 ζ ,

where T =
m

i=1 Ti. With ∇Ḣ given by (4.1), W given in (4.3) and
M given in (4.3), we have that

V̇2 = ζ⊤

W⊤Y + YW 0n×mn YM
∗ 0mn×mn 0mn×mn
∗ ∗ 0mn×mn

 ζ .

Next, V̇3i = h̄2
i σi(t) − h̄i

 t
t−h̄i

σi(s)ds, where

σi(t) = ζ⊤

(TiW)⊤ Ri (TiW) 0n×nm (TiW)⊤ RiTiM
∗ 0nm×nm 0nm×nm

∗ ∗ (TiM)⊤ RiTiM

 ζ ,

with M given in (4.3). By following Fridman (2014b),

− h̄i

 t

t−h̄i
σi(s)ds = −h̄i

 t−hi(t)

t−h̄i
σi(s)ds − h̄i

 t

t−hi(t)
σi(s)ds. (4.7)

The LMI (4.5) is feasible by assumption. Hence, applying Jensen’s
inequality together with Lemma 1 in Fridman (2014b), see also
Park, Ko, and Jeong (2011), to both right-hand side terms in (4.7)
yields

−h̄i

 t

t−h̄i
σi(s)ds ≤ −


ei1
ei2

⊤ 
Ri S12,i
∗ Ri

 
ei1
ei2


, i = 1, . . . ,m,

with ei1 = Ti(∇H − ∇Hhi), ei2 = Ti(∇Hhi − ∇Hh̄i). Thus,

m
i=1


−h̄i

 t

t−h̄
σi(s)ds



≤ ζ⊤

−

m
i=1

(T ⊤

i RiTi) Ψ12 B

∗ −R R − S⊤

12
∗ ∗ −2R + S12 + S⊤

12

 ζ ,

with R, S, S12, B and Ψ12 defined in (4.3), (4.4). Also,

V̇4i = (Ti∇H)⊤ Si (Ti∇H) −

Ti∇Hh̄i

⊤ Si

Ti∇Hh̄i


,

Fig. 1. Benchmark model adapted from Rudion et al. (2006) with 6 main buses, an
SG-interfaced combined heat and power (CHP) plant, as well as inverter-interfaced
photovoltaic (PV), fuel cell (FC) and battery (Bat) units. PCC denotes the point of
common coupling to the main grid. The sign ↓ denotes loads.

V̇5i = (Ti∇H)⊤ Qi (Ti∇H)

− (1 − ḣi)

Ti∇Hhi

⊤ Qi

Ti∇Hhi


≤ (Ti∇H)⊤ Qi (Ti∇H)

− (1 − di)

Ti∇Hhi

⊤ Qi

Ti∇Hhi


.

Consequently, V̇ ≤ ζ⊤Ψ ζ , where Ψ is defined in (4.2). As Ψ < 0
by assumption, we have that V̇ ≤ −ε∥x(t)∥2 for some ε > 0.
Uniform asymptotic stability follows by invoking the LK theorem
(Fridman, 2014b) and arguments from Fridman et al. (2004) for
systems with piecewise-continuous delays.

For the case of purely fast-varying delays, i.e., di = 1 for all
i = 1, . . . ,m, we see that thenegative definite term in V̇5i vanishes.
Hence, by the same arguments as above, if (4.2) is feasible for
di = 1, or equivalently, Qi = 0n×n, for all i = 1, . . . ,m, then
xs = 0n is (locally) uniformly asymptotically stable for all fast-
varying delays hi(t) ∈ [0, h̄i], completing the proof. �

Remark 4.3. The conditions given in Proposition 4.2 are, in
general, state-dependent. In many cases, the conditions can be
conveniently implemented numerically via a polytopic approach
(Aoues et al., 2014; Fridman, 2014a; He, Wu, She, & Liu, 2004), see
Section 5 of the present paper.

5. Application example: microgrids with distributed rotational
and electronic generation

The analysis is illustrated via an example based on the CIGRE
benchmark MV distribution network (Rudion, Orths, Styczynski, &
Strunz, 2006). The network consists of sixmain buses and is shown
in Fig. 1. A combined heat and power (CHP) diesel genset is con-
nected at bus 9c (i = 4). The remaining DG units are inverter-
interfaced. We assume that the DG units at buses 9b (i = 1), 9c,
10b (i = 2) and 10c (i = 3) are operated with droop control, while
all other sources are operated in PQ-mode, i.e., their power injec-
tions are regulated to prespecified values (Schiffer et al., in press).
To each droop-controlled unit a power rating is associated, i.e.,
SN = [0.517, 0.333, 0.023, 0.353] pu. The parameters for the
diesel engine are taken from Roy et al. (1991). We refer the reader
to Rudion et al. (2006) or Schiffer et al. (2014a) for a detailed dis-
cussion of the employed benchmark model.

5.1. Stability of the non-delayed system

We prove Assumption 4.1 for the system (2.10), (2.11), i.e., that
a given equilibrium point of the non-delayed dynamics (2.10),
(2.11) is locally asymptotically stable with Lyapunov function V =

H , with H given by (3.2).
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Lemma 5.1. Consider the system (2.10), (2.11)with Assumption 2.3.
Suppose that h̄i = 0, i ∼ n̄, gk = 0, k ∼ n̄2. The equilibrium point
xs = 0(2n−1+n2) of the system (2.10), (2.11) is locally asymptotically
stable.

Proof. The stability claim is established via van der Schaft (2000,
Lemma 3.2.4). Recall that the system (2.10), (2.11) is equivalent to
(3.1). From (3.1) it follows that Ḣ = −∇H⊤R∇H ≤ 0. It is easily
verified that ∇H |xs = 0(2n−1+n2), i.e., x

s is a critical point of H , see
also Schiffer et al. (2014a, Proposition 5.9). TheHessian ofH is given
by

∇
2H(x) = blkdiag


L(θ), diag

 τPi

kPi


, diag

kciτMiRi

kMi


,

where L : R(n−1)
→ R(n−1)×(n−1), lii =


k∼n̄ aik cos(θik +

δs
ik), lip = −aip cos(θip + δs

ip), i ∼ n̄ \ {n}, p ∼ n̄ \ {n}. Under the
standing assumptions, Schiffer et al. (2014a, Lemma 5.8) implies
that ∇

2H(xs) > 0. Hence, H is locally positive definite and xs is
stable. To prove asymptotic stability, we proceed as in Schiffer et al.
(2014a) and recall that Ḣ ≤ 0, as well as that R(x) ≥ 0. Hence, xs is
asymptotically stable if – along the trajectories of the system (3.1)
– the implication below holds

R(x(t))∇H(x(t)) ≡ 0(2n−1+n2) ⇒ lim
t→∞

x(t) = xs. (5.1)

From (5.1) it follows that ∂H
∂ω̃

= 0n,
∂H
∂Φ̃

= 0n2 , which implies
ω̃ = 0n and Φ̃ = 0n2 . Hence, θ is constant. Therefore, the invariant
set where Ḣ(x(t)) ≡ 0 is an equilibrium. To prove that this is
the desired equilibrium xs = 0(2n−1+n2) we recall that xs is an
isolated minimum of H(x), see also Remark 2.2. Thus, there is a
neighborhood of xs where no other equilibrium exists, completing
the proof. �

5.2. Stability of the delayed system

We provide a solution to Problem 2.4 by means of Proposi-
tion 4.2. In the present case, the state-dependency of the condi-
tions in Proposition 4.2 is only on the variables θi. Note that Ψ

defined in (4.2) is continuous in the argument x. Hence, if the sta-
bility conditions are verified at an equilibrium xs, then the local
positive definiteness of V given in (4.6) together with the conti-
nuity of Ψ in x implies that there exists a small neighborhood X ⊂

W [−h, 0](2n−1+n2) (h = maxi=1,...,m h̄i) of xst(σ ) = xs ∈ X, σ ∈

[−h, 0], such that V > 0 and V̇ < 0, for all xt ∈ X, xt ≠ xs. Thus,
all trajectories of the system (2.10), (2.11) starting in X asymptot-
ically converge to xs.

The Kron-reduced model of the considered µG possesses 4
nodes. We assume that the fast-varying delays (see Section 2.2)
are uniformly upper bounded by h̄i = 0.001 s, i ∼ n̄. The power-
stroke and ignition delay of the diesel engine at node 9c is assumed
constant6 and initially set to g4 = 0.125 s—the average value in
Roy et al. (1991), Table 1. The verification of conditions (4.2), (4.5)
is done in Yalmip (Löfberg, 2004).

For this setup, the conditions of Proposition 4.2 are satisfied.
Further numerical evaluations show that the equilibrium of the
system (2.10), (2.11) is locally asymptotically stable for g4 ≤

0.225 s. Stability for larger values of g4 can be guaranteed via
Proposition 4.2 by reducing the magnitude of the gain 1/R4 of the
control (2.6) of the SG.

6 We note that although it is frequently stated in the literature that this delay
is time-varying and somewhat dependent on the engine speed, to the best of our
knowledge there are no widely-accepted analytic models to represent the time-
dependence of this delay.
5.3. Region of attraction of the delayed system

It is important to stress that the analysis in Section 5.2 only
guarantees stability of an equilibrium for initial conditions within
a small neighborhood of that equilibrium. Yet inmany applications,
includingµGs, it is often desirable to guarantee stability for a larger
set of initial conditions (Galaz, Ortega, Bazanella, & Stankovic,
2003). This can be achieved by providing an estimate of the
region of attraction of an equilibrium and, subsequently, verifying
conditions (4.2), (4.5) in that whole region rather than just at the
equilibrium itself. By following Galaz et al. (2003), we address this
aspect for the MDREG (2.10), (2.11) by exploiting the convexity
properties of theHamiltonianH in (3.2). The lemmabelow is useful
to formulate our result.

Lemma 5.2. Consider the function H(x(t)) in (3.2). Fix a small
positive number ϑ , such that |θik + δs

ik| < π
2 − ϑ, i ∼ n̄, k ∼ n̂i

and an arbitrarily large positive number β ≫ ϑ . The sublevel sets
ΩD = {x ∈ R(2n−1+n2) | H(x) ≤ c} contained in

D =


x ∈ R(2n−1+n2)|∥x∥ ≤ β, |θik + δs

ik| ≤
π

2
− ϑ, i ∼ n̄, k ∼ n̄


(5.2)

are compact.

Proof. The proof follows in an analogousmanner to that of Schiffer
et al. (2015a, Lemma5.1) and is omitted here for space reasons. �

Our main result of this section is as follows.

Proposition 5.3. Consider the system (2.10), (2.11) with Assump-
tion 2.3. Recall the set D defined in (5.2). Suppose that the equi-
librium point xs = 0(2n−1+n2) of the system (2.10), (2.11) is lo-
cally asymptotically stable with the LKF V (xt , ẋt) defined in (4.6). Let
h = maxi=1,...,m h̄i and

c̄ = max
x∈D

(H(x)), (5.3)

such that the sublevel sets ΩD = {x ∈ R(2n−1+n2)|H(x) ≤ c̄} are
completely contained in D . Denote

Ωc = {xh = x(h + ·) ∈ W [−h, 0](2n−1+n2) | V (xh, ẋh) ≤ c̄}.

Suppose that V̇ ≤ −ϵ∥x(t)∥ ∀xt ∈ Ωc and t ≥ h. Then, an estimate
of the region of attraction of xs is the set Ωc .

Proof. To establish the claim, recall that the sublevel sets ΩD =

{x ∈ R(2n−1+n2) | H(x) ≤ c̄} are completely contained in D
by assumption. Hence, Lemma 5.2 implies that ΩD is a bounded
set on which H(x(t)) is strongly convex. Furthermore, the strong
convexity of H on ΩD together with the fact that V̇ ≤ 0 for all xt ∈

Ωc by assumption implies that 0 ≤ V (xt , ẋt) ≤ V (xh, ẋh) ≤ c̄, for
all (xh, ẋh) such that V (xh, ẋh) ≤ c̄ and c̄ given in (5.3). By following
Liu and Fridman (2014), we have that 0 ≤ H(x(t)) ≤ V (xt , ẋt) ≤

V (xh, ẋh) ≤ c̄. Hence, Ωc is an estimate of the region of attraction
of the equilibrium xs of the system (2.10), (2.11), completing the
proof. �

We provide a solution to Problem 2.4 by means of Proposi-
tions 4.2 and 5.3. Recall the Hamiltonian H(x) in (3.2) and that
the variables θi only appear as arguments of the cosine-function
in condition (4.2). Thus, it is straight-forward to adopt a poly-
topic approach, i.e., to represent the set {∇

2H(x) | x ∈ D} as
∇H2

=
q

i=1 αi∇
2H i, 0 ≤ αi ≤ 1,

q
i=1 αi = 1, where ∇

2H i de-
note the vertices of the polytope containing all values that∇2H can
take on the set D . To ensure asymptotic stability, it then suffices
to verify the conditions of Proposition 4.2 for all vertices ∇

2H i, see
Remark 4.3. The Kron-reduced model of the considered µG pos-
sesses 4 nodes. Thus, there are n(n − 1)/2 = 6 angle differences
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Fig. 2. Simulation example of a droop-controlled MDREG with fast-varying delays
with h̄i = 0.001 s, i ∼ n̄ and constant power-stroke and ignition delay g4 = 0.14 s.
Trajectories of the power outputs relative to source rating Pi/SNi , and the relative
inverter frequencies ∆fi in Hz of the controllable sources. The lines correspond to
the following sources: FC CHP 9b, i = 1 ‘ ’, battery 10b, i = 2 ‘ ’ and FC 10c,
i = 3 ‘ ’, diesel CHP 9c, i = 4 ‘ ’.

and the set {∇
2H(x) | x ∈ D} can be fully described with q = 26

vertices. We set ϑ = 10−8. As before, the implementation of (4.2),
(4.5) is carried out with Yalmip (Löfberg, 2004).

The delays are set to the same values as in Section 5.2. For
the nominal configuration with g4 = 0.125 s, the conditions of
Proposition 4.2 are satisfied within the whole region D . Thus, by
Proposition 4.2 the considered equilibrium of the system (2.10),
(2.11) is locally asymptotically stable and an estimate of its region
of attraction is given by Proposition 5.3. Via further numerical
evaluations, we verify asymptotic stability of the equilibrium for
g4 ≤ 0.14 s. As to be expected, this value is considerably lower
as that of g4 ≤ 0.225 s obtained in Section 5.2 and illustrates
the natural (as in the considered model delays deteriorate the
performance) trade-off between the magnitudes of admissible
delays and the size of the region of attraction.

5.4. Simulation example

The analysis of Section 5.3 is illustrated via a simulation
example. The largest R/X ratio in the Kron-reduced network
corresponding to the MDREG in Fig. 1 is 0.30. For high voltage
transmission lines it typically is 0.31, see Schiffer et al. (2014a).
Hence, the assumption of dominantly inductive admittances is
satisfied.

The simulation results in Fig. 2 show that the trajectories of
the system (2.10), (2.11) with h̄i = 0.001 s, i ∼ n̄, and constant
g4 = 0.14 s converge to an equilibrium if conditions (4.2), (4.5)
are satisfied. Here, we assumed constant sampling intervals hi,s =

2·10−4 s, see (2.2). Themaximumadmissible delay in simulation is
g4 = 0.155 s and, hence, only 1.1 times larger as that of g4 = 0.14 s
derived in Section 5.3. This indicates that our sufficient conditions
are very effective for the system under investigation.

6. Conclusions and future work

We have shown that the dynamics of both SG- and inverter-
interfaced DG units in µGs exhibit time delays. Motivated by this,
we have given sufficient delay-dependent conditions for stability
of a class of pH systems with delays, which – as a particular case
– contains a model of an MDREG. The conditions are derived via
a LKF and are valid in the presence of slowly- and fast-varying
delays. Furthermore, we have provided an estimate of the region
of attraction of anMDREG and the stability conditions have proven
to be effective in a practical example. The latter also demonstrates
that actuation and power generation delays can, in fact, impair
MDREG stability.

In future work, we plan to extend the conducted analysis to
further classes of nonlinear systems. With respect to MDREGs,
we seek to consider more detailed models of SGs, inverters and
network interconnections, e.g., by considering time-varying power
lines and variable voltage amplitudes. Furthermore, building upon
the presented approaches, we plan to investigate the impact of
time delays on communication-based control schemes for µGs.
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