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Abstract

Stability of linear systems with uncertain bounded time-varying delays is studied under the assumption that the nominal delay values are not
equal to zero. An input-output approach to stability of such systems is known to be based on the bound of the L2-norm of a certain integral
operator. There exists a bound on this operator norm in two cases: in the case where the delay derivative is not greater than 1 and in the case without
any constraints on the delay derivative. In the present note we fill the gap between the two cases by deriving a tight operator bound which is an
increasing and continuous function of the delay derivative upper bound d �1. For d → ∞ the new bound corresponds to the second case and
improves the existing bound. As a result, for the first time, delay-derivative-dependent frequency domain and time domain stability criteria are
derived for systems with the delay derivative greater than 1.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

The uncertain time-varying delay has been divided into two
types in the existing literature on the stability of time-delay sys-
tems: the slowly-varying delay (with the delay derivative less
than d < 1) and the fast-varying delay (without any constraints
on the delay derivative)(see e.g. Gu, Kharitonov, & Chen, 2003;
Kolmanovskii & Myshkis, 1999; Niculescu, 2001 and the ref-
erences therein). Recently a third type of moderately varying
delay has been revealed in Fridman and Shaked (2006), where
the delay derivative is not greater than 1 (almost for all t). This
has been obtained by applying the input–output approach to
stability. It is known (Gu et al., 2003; Kao & Lincoln, 2004;
Quet et al., 2002) that the latter approach to systems with time-
varying bounded delays is based on the bound of the L2-norm
of a certain integral operator.

In the present paper we fill the gap between the case of the
delay derivative not greater than 1 and the fast-varying delay
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by deriving a new integral operator bound. This bound is an
increasing and continuous function of the delay derivative
bound d �1. In the limit case (where d → ∞) which corre-
sponds to the fast-varying delay, the new bound improves the
existing one. As a result, improved frequency domain and time
domain stability criteria are derived for systems with the delay
derivative bound greater than 1.

Notation: Throughout the paper the superscript ‘T’ stands for
matrix transposition, Rn denotes the n dimensional Euclidean
space with vector norm ‖ · ‖, Rn×m is the set of all n × m real
matrices, and the notation P > 0, for P ∈ Rn×n means that P
is symmetric and positive definite. L2 is the space of square
integrable functions v : [0, ∞) → Cn with the norm ‖v‖L2 =
[∫ ∞

0 ‖v(t)‖2 dt]1/2, ‖A‖ denotes the Euclidean norm of a n×n

(real or complex) matrix A, which is equal to the maximum
singular value of A. For a transfer function matrix of a stable
system G(s), s ∈ C, ‖G‖∞=sup−∞<w<∞ ‖G(iw)‖, i=√−1.

2. Problem formulation

We consider the following linear system with uncertain time-
varying delay �(t):

ẋ(t) = A0x(t) + A1x(t − �(t)), (1)
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where x(t) ∈ Rn is the system state, Ai, i = 0, 1 are constant
matrices. The uncertain delay �(t) has a form

�(t) = h + �(t), |�(t)|���h, (2)

where h is a known nominal delay value and � is a known
upper bound on the delay uncertainty. In the existing literature
(Gu et al., 2003; Kolmanovskii & Myshkis, 1999; Niculescu,
2001) the following types of uncertain time-varying delays are
usually considered:

Case A (Slowly varying delay): �(t) is a differentiable almost
everywhere function, satisfying

�̇(t) = �̇(t)�d = 1 + p, (3)

where −1�p < 0.

Case B (Fast-varying delay): �(t) is a measurable (e.g.
piecewise-continuous) function.

Recently a moderately varying delay with �̇(t)�d = 1 was
introduced in Fridman and Shaked (2006). In the present note
we enlarge the latter class of delays as follows:

Case C (Moderately varying delay): �(t) is a differentiable
almost everywhere function, satisfying (3) with p�0.

Simple examples of fast and of moderately varying delays are
�(t)=2−sin t2 (with unbounded �̇) and �(t)=2−sin 10t (with
�̇(t)�d=10) correspondingly. Time-varying delays appear e.g.
in flow control of data communication networks (Quet et al.,
2002). The delay of cases C and B corresponds to the network,
where a packet sent out from the source node at a particular time
may reach the bottleneck node before another packet, which
was sent at an earlier time.

By stability in the present paper we understand the uniform
(with respect to initial time) asymptotic stability of the system
(see Kolmanovskii & Myshkis, 1999, p. 200). Our objective is
to improve the stability results in cases B and C by applying
input–output approach and by deriving new inequalities. The
results are easily generalized to the case of any finite number
of the delays.

We represent (1) in the form:

ẋ(t) = A0x(t) + A1x(t − h) − A1

∫ −h

−h−�
ẋ(t + s) ds. (4)

Following Fridman and Shaked (2006) we introduce an auxil-
iary system:

ẋ(t) = A0x(t) + A1x(t − h) + √
�A1X

−1u(t),

y(t) = √
�F(p)Xẋ(t),

(5)

with the feedback

u(t) = − 1

� · √
F(p)

∫ −h

−h−�
y(t + s) ds, (6)

where F : [−1, ∞] → R+ is a scalar function which will be
shortly defined, p is given by (3) and X is a scaling nonsingular
matrix. The results for the delay of case B correspond to p=∞,
i.e. to F(∞) in the input–output model (5) and (6). Substitution
of (6) in (5) leads to (4).

We are looking for F(p) which satisfies the following in-
equality:

‖u‖2
L2

�‖y‖2
L2

, ∀y ∈ L2[0, ∞), y|[−∞,0] ≡ 0, (7)

where u is given by (6). This is equivalent to the fact that
�
√
F(p) is an upper bound on the L2-norm of the integral

operator � : L2[0, ∞) → L2[0, ∞)

z(t) = �y(t) =
∫ −h

−h−�
y(t + s) ds, y|[−∞,0] ≡ 0, (8)

i.e. that

‖z‖2
L2

��2F(p)‖y‖2
L2

, ∀y ∈ L2[0, ∞), y|[−∞,0] ≡ 0. (9)

Our objective is to find F(p) (as small as possible) such that
(7) (or equivalently (9)) holds.

For −1�p < 0 (case A) it was established in Gu et al. (2003)
that F(p) can be chosen to be 1. For p�0 the following was
found in Fridman and Shaked (2006): F(0)=1 and F(p) ≡ 2
for p ∈ (0, ∞].

Remark 1. The value 1 of F(p) for −1�p�0 cannot be
improved (i.e. chosen to be less than 1). Indeed, taking constant
delay �(t) ≡ �, which satisfies the condition of case A for any
−1�p�0, we consider the functions y�(t) = 1 as 0� t ��,
and y�(t) = 0 as t > �, where � > �. Using formula (6) with
F(p) = 1 we immediately obtain ‖y�‖2

L2
= �,

−�u(t) =
∫ t−h

t−h−�
y�(r) dr

=

⎧⎪⎨⎪⎩
t − h, if h� t �h + �,

�, if h + � < t < � + h,

� + h + � − t, if � + h� t �� + h + �,

0, otherwise.

Hence ‖u‖2
L2

= � − 1
3�, and lim�→∞‖u‖L2/‖y�‖L2 = 1.

In the present paper we will improve the values of F(p) for
p > 0 by showing that F(p) can be chosen as a continuous
increasing function of p�0 satisfying F(0)=1 (as in Fridman
& Shaked, 2006), but F(p) <F(∞) = 1.75 for p > 0. The
improved values of F(p) will readily lead to improved stability
criteria.

3. Main results

3.1. New bounds

Proofs of the lemmas of this section are given in Appendix A.

Lemma 1. Consider case C. For all y(t) ∈ L2[0, ∞) and such
that y(t) = 0 ∀t �0 and for u(t) given by (6) inequality (7)
holds with F given by

F(p) =

⎧⎪⎨⎪⎩
2p + 1

p + 1
if 0�p < 1,

7p − 1

4p
if p�1.

(10)
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As it was mentioned above, F is increasing continuous
function satisfying for p > 0 the following inequality: 1 =
F(0) <F(p) < limp→∞ F(p) = 7

4 .

Lemma 2. Consider case B. For all y(t) ∈ L2[0, ∞) and such
that y(t) = 0 ∀t �0 and for u(t) given by (6) inequality (7)
holds with F(∞) := 7/4.

Remark 2. The value 7
4 = 1.75 for F(∞) in Lemma 2 is not

far from an optimal one. The following example shows that it
cannot be less than 1.5. Namely, define

y(t) =
{

t if 0� t ��,

2� − t if �� t �2�,

0 if t (2� − t) < 0,

�(t) =
{−� if t ��,

� if t > �.

Setting in (6) F(∞)= 3
2 we have u(t)=−1/�

√
3/2z(t), where

z(t + h) =
∫ t

t−�(t)

y(s) ds

=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
−(t + �)2/2 if − �� t + h�0,

−(�2 + 2�t − 2t2)/2 if 0 < t + h��,

(6�t − 3�2 − 2t2)/2 if � < t + h�2�,

(t − 3�)2/2 if 2� < t + h�3�,

0 otherwise.

We achieve equality in (7) since

‖y‖2
L2

= 2

3
�3, ‖u‖2

L2
= 2

3�2
‖z‖2

L2
= 2

3�2
· �5 = 2

3
�3.

3.2. An improved frequency domain stability criterion

We assume

A1 Given the nominal value of the delay h > 0, the nominal
system

ẋ(t) = A0x(t) + A1x(t − h), (11)

is asymptotically stable.

The auxiliary system (5) can be written as y = Gu with the
transfer matrix

G(s) = �
√
F(p)sX(sI − A0 − A1e−hs)−1A1X

−1. (12)

By the small gain theorem (see e.g. Gu et al., 2003) system
(1) is input–output stable (and thus uniformly asymptotically
stable, since the nominal system is time-invariant) if

‖G‖∞ < 1. (13)

Theorem 1. Consider (1) with delay given by (2). Under A1
the system is uniformly asymptotically stable if there exists
a nonsingular matrix X such that (13) is satisfied, where G
is given by (12) with F(p) of (10) and where p ∈ [0, ∞)

corresponds to case C, while F(∞)= 7
4 corresponds to case B.

Remark 3. From Theorem 1 it follows that under A1 (1) is
stable if � < k/

√
F(p),

k = ‖sX(sI − A0 − A1e−hs)−1A1X
−1‖−1∞ .

By Fridman and Shaked (2006) F(p) = 2, p > 0 and thus (1)
(with �̇(t)�1 + p, p > 0 or with �(t) of case B) is asymptoti-
cally stable for �(t) ∈ [h − �, h + �], where � < 0.7071k. By
the new bounds of Lemmas 2 and 1 we obtain wider stability
intervals:

p = 0.1, �̇(t)�1.1, F(p) = 1.0909, � < 0.9574k,

p = 1, �̇(t)�2, F(p) = 1.5, � < 0.8165k,

p = ∞, case B, F(p) = 1.75, � < 0.7559k.

3.3. On improved time domain stability criteria

Theorem 2. System (1) is uniformly asymptotically sta-
ble for all delays of (2), if there exist n × n matrices
0 < P1, P2, P3, S > 0, Y1, Y2, R, Ra such that the following
Linear Matrix Inequality (LMI)

� =

⎡⎢⎢⎢⎢⎢⎣
| �P T

2 A1 0
�n | �P T

3 A1 �F(p)Ra

| 0 0
− − − −
∗ | −�Ra 0
∗ | ∗ −�F(p)Ra

⎤⎥⎥⎥⎥⎥⎦ < 0 (14)

is feasible, where ∗ denotes the symmetric elements and

�n =
⎡⎢⎣

�n P T
2 A1 − Y T

1 hY T
1

P T
3 A1 − Y T

2 hY T
2∗ −S 0

∗ ∗ −hR

⎤⎥⎦ , P =
[

P1 0
P2 P3

]
,

�n = P T
[

0 I

A0 −I

]
+

[
0 AT

0
I −I

]
P +

[
S + Y1 + Y T

1 Y2

Y T
2 hR

]
.

Here, F(p) is given by (10) in case C and F(∞)= 7
4 in case B.

Proof of Theorem 2 is similar to the time domain results of
Fridman and Shaked (2006), derived via the simple descriptor
Lyapunov functional

Vn = xT(t)P1x(t) +
∫ 0

−h

∫ t

t+�
ẋT(s)Rẋ(s) ds d�

+
∫ t

t−h

xT(s)Sx(s) ds.

The idea of the proof is the following: A1 and (13) (i.e. the con-
ditions of Theorem 1) are satisfied if along the trajectories of (5)
W := V̇n+yT(t)y(t)−uT(t)u(t) < 0. The standard calculations
and application of the Schur complements to yT(t)y(t) lead to
W �	T�	, where Ra = XTX and 	 = col{x(t), ẋ(t), x(t − h),
1
h

∫ 0
−h

ẋ(s) ds, u(t), ẋ(t)}. Hence, (14) implies the stability of
(1).

LMI (14) is convex in F(p) and thus smaller values of
F(p) lead to a less restrictive conditions. Moreover, �n < 0
corresponds to the stability of the nominal system (11) and
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Table 1

d 1 1.1 1.5 2 ∞ (fast delay)

� 0.383 0.367 0.331 0.313 0.289

may be replaced by any other appropriate matrix, that guaran-
tees the stability of the nominal system. Thus, stability condi-
tions via descriptor discretized Lyapunov functional have the
following form: LMI (11) of Fridman (2006b) and the above
LMI (14), where �n in (14) should be substituted by the left-
hand side of (17) in Fridman (2006b).

Example 1 ((Kharitonov & Niculescu, 2003)). Consider the
system

ẋ(t) =
[

0 1
−1 −2

]
x(t) +

[
0 0

−1 1

]
x(t − �(t)),

where �(t)=1+�(t), |�(t)|��, �̇(t)�d. In Fridman (2006a)
the maximum value of �, for which the system is asymptotically
stable, was found to be �=0.271 for all d �1. The latter result
was less restrictive than the one by Kharitonov and Niculescu
(2003). By the time domain criterion of Fridman and Shaked
(2006) for d = 1 the resulting � is greater (� = 0.383), while
for d > 1 the result is the same (� = 0.271). Theorem 2 of the
present paper leads to a wider stability interval for d > 1 (see
Table 1).

4. Conclusions

Linear systems with bounded time-varying delays are ana-
lyzed under the assumption that the nominal delay values are
not equal to zero. Two cases of delay are considered: case
B (without any constraints on the delay derivative) and case
C (where the delay derivative is not greater than d �1). An
input–output approach to stability of such systems is known
to be based on the bound of the L2-norm of a certain integral
operator. In the present paper for the first time a tight d-
dependent bound is derived. The existing bound in case B is
also improved. The new bounds lead to improved stability cri-
teria and give tools for further improvements.

Acknowledgment

We thank the reviewers for their remarks, which have im-
proved the quality of the paper.

Appendix A.

Proof of Lemma 2. Our argument will prove the asserted
statement for the functions in the space L2(R), which is a
stronger statement, since the space L2[0, ∞) can be included
into L2(R) without change of the norm by extending the func-
tions of L2[0, ∞) as identically zero for the negative values of
the variable. Our problem is to estimate the norm ‖�‖L2 of the
operator � defined by (8) in the space L2(R).

Fig. 1. Domains D and D(t0): 
1 : s=t−h+�; 
2 : s=t−h; 
3 : s=t−h−�;
� : s = t − h − �(t); s1 := t0 − h − �(t0); s2 := t0 − h.

Denote by � : R2 → {0, 1} the characteristic function of the
domain D in the plane R2 = {(t, s) : t, s ∈ R}, bounded by the
line s = t −h and by the graph of the function s = t −h− �(t),
i.e. for arbitrary t, s ∈ R,

�(t, s) =
{

1 if (t − h − s)(t − h − �(t) − s)�0,

0 if (t − h − s)(t − h − �(t) − s) > 0

(shaded region in Fig. 1). Since |�(t)|��, the domain D entirely
lies in the strip between the lines 
1 = {s = t − h + �} and

3 = {s = t − h − �}. Then the operator � introduced by (8),
can be expressed as an integral linear operator

z(t) = sign �(t) ·
∫ ∞

−∞
�(t, s)y(s) ds.

It is well-known that ‖�‖L2 = ‖�∗‖L2 , where �∗ is the adjoint
operator, given by the formula

z̃(s) = �∗(y)(s) =
∫ ∞

−∞
sign �(t) · �(t, s)y(t) dt

(see e.g. Jörgens, 1982, Theorem 3.17 in Section 3.8 and Eq.
(8.56) in Section 8.6). Then we derive that

‖̃z‖2
L2

=
∫ ∞

−∞
z̃T(s)̃z(s) ds

=
∫ ∞

−∞

(∫ ∞

−∞
sign �(t0) · �(t0, s)y(t0) dt0

)T

×
(∫ ∞

−∞
sign �(t) · �(t, s)y(t) dt

)
ds

�
∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
�(t0, s)�(t, s) ds|yT(t0)y(t)| dt0 dt .

Bounding in the latter triple integral |yT(t0)y(t)|� 1
2 (‖y(t0)‖2+

‖y(t)‖2) and denoting

K(t0) =
∫ ∞

−∞

∫ ∞

−∞
�(t0, s)�(t, s) ds dt , (15)

we continue to estimate ‖̃z‖2
L2

as

‖̃z‖2
L2

� 1

2

∫ ∞

−∞
K(t0)‖y(t0)‖2 dt0

+ 1

2

∫ ∞

−∞
K(t)‖y(t)‖2 dt � sup

t0∈R

K(t0)‖y‖2
L2

.
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Fig. 2. Upper bound for the area of D(t0): t1 = t0 − �(t0); t2 = t0 − �(t0)/2.

We shall show that K(t0)� 7
4�2 for all t0 ∈ R. Fix some number

t0 ∈ R. We can assume that �(t0)�0, since the treatment of
the case �(t0)�0 is completely similar. Geometrically, K(t0)

is the area of the part D(t0) of the domain D cut out by the
strip t0 −h�s� t0 −h−�(t0) (double shaded region in Fig. 1).
Indeed, �(t0, s) = 1 as far as t0 − h�s� t0 − h − �(t0), and
�(t, s) = 1 as far as (t, s) ∈ D, and their product vanishes
outside these limits, that is formula (15) gives the area of D(t0).

Thus, D(t0) lies inside the parallelogram

�(t0) := {(t, s) ∈ R2 : t0 − h − �(t0)�s� t0 − h,

t − h − ��s� t − h + �}
(see Fig. 2). The vertical lines t=t0 and t=t1 := t0−�(t0), pass-
ing through the intersection points of the line 
2 with the sides
of �(t0) (see Fig. 2), divide �(t0) into two trapezes of total area
�2 − (� − �(t0))

2, and the square S = {t1 � t � t0, s1 �s�s2} .

Our objective is to estimate the area of D(t0) ∩ S.
Consider the intersection of the vertical line t = r , where

t1 �r � t0, with D(t0) (see Fig. 1). The intersection of {t =
r} with �(t0) is divided by the line 
2 into two segments:
s1 �s�r −h and r −h�s�s2. The intersection of D(t0) with
{t = r} is entirely contained in one of these segments: in the
upper one if �(r)�0 and in the lower one if �(r)�0. Hence,
the area of D(t0) ∩ S does not exceed∫ t0

t0−�(t0)

max{r − h − s1, s2 − (r − h)} dr

=
∫ t0

t0−�(t0)

max{r − (t0 − �(t0)), t0 − r} dr = 3

4
�(t0)

2.

So the total area of D(t0) does not exceed �2 − (� − �(t0))
2 +

3
4�(t0)

2 � 7
4�2, which implies the required bound (9). �

Remark 4. The bound 7
4�2 can be interpreted geometrically as

the maximum (attained at �(t0)=�) of the area of the shaded re-
gion in Fig. 2. The bound ‖�‖2

L2
�2�2 of Fridman and Shaked

(2006) corresponds to the maximal area of the whole parallel-
ogram �(t0).

Proof of Lemma 1. As in the proof of Lemma 2, we come
to estimation from above of K(t0), or, equivalently, of the area
of the domain D(t0) for any given real t0. Without loss of
generality we can assume that the zero locus of � is locally
finite. Indeed, such functions form a dense (in the sense of
both sup-norm and L1-norm) subset in the space of almost
everywhere differentiable functions, and hence, our restriction
does not affect the estimation of K(t0). Again we also assume

Fig. 3. The case N = 1.

that �(t0) > 0, which, in particular, means that the vertical line
t = t0 crosses the domain D(t0) along the segment s1 �s�s2
(cf. Fig. 3(a)). Introduce the number N of the zeroes of the
function �(t) in the interval t3 := t0 −�(t0)−� < t < t0, where
it changes its sign (see the interval in Fig. 3(a)). Consider a few
possibilities.

Step 1: Suppose that N = 0. Then the graph � does not
cross the segment of the line 
2 inside the parallelogram �0,
and hence the domain D(t0) is entirely contained in one of the
halves of �(t0), cut out by the line 
2. Its area does not exceed
1
2 Area(�(t0)) = �(t0)���2 �F(p)�2.

Step 2: Suppose that N = 1, and let r0 ∈ (t3, t0) be the
(unique) zero of �(t), where it changes its sign (see Fig. 3(a)).
Geometrically, it is the abscissa of the intersection point x of
the line 
2 = {s = t − h} and the graph � = {s = t − h − �(t)}.
Since the intersection point y of the line l1 := {t = t0} with
the lower base of the parallelogram �(t0) belongs to � (it has
coordinates (t0, t − h − �(t0))), and since

d

dt
(t − h − �(t))� − p, (16)

we decide that for t �r0,

(i) the graph � lies below the line 
2 and above the line l3,
passing through x with the slope −p, and

(ii) the point x must lie below the line l2, passing through the
point y with the slope −p.

Similarly, for t �r0, the graph � must lie above the line 
2 and
below the line l3. So, the domain D(t0), bounded by 
2 and �,
is entirely contained in the polygonal region R in �(t0) shown
shaded in Fig. 3(a).

The area of R depends only on the value of �(t0) and on the
position of the point x on the line 
2. First, we observe that,
increasing �(t0) up to � by pulling the lower base of �(t0)

down when the other sides remain fixed, we enlarge the region
R and respectively its area.
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Assuming now that �(t0) = �, we vary the point x along 
2
below the line l2. If p�1, then the maximal area is achieved
as x becomes the middle point of the segment of 
2 cut out
by �(t0) (see Fig. 3(b), where �(t0) is shown in a convenient
coordinate system t̄ , s̄). Indeed, if we move the point x and,
respectively, the line l3 away from the middle position (the new
position of l3 is shown as l4 in Fig. 3(b)), then in the region R
we replace the shaded trapeze between the lines l3, l4 by clear
trapeze, the latter one having shorter bases than the former one,
and thus the area of R would decrease.

In the case 0�p < 1, we cannot move the point x and line
l3 above the position shown in Fig. 3(c), since the point y,
which after equating �(t0) = � become the right lower vertex
of �(t0), cannot lie below the line l3 (see restriction (ii) in the
beginning of Step 2). We claim that this highest position of l3
gives the maximal area of the region R. Indeed, if we move
the line l3 down (its new position is shown as l4 in Fig. 3(c)),
then we replace a shaded parallelogram between the lines l3, l4
by a clear trapeze, whose bases are shorter than those for the
parallelogram, and the area of R would decrease.

It remains to compute the shaded areas shown in Fig. 3(b,c).
In Fig. 3(b) we remove from �(t0) two symmetric triangles
with the height �/2 and the base �(1 + 1/p)/2, and hence the
area of R is 2�2 − �2(1 + 1/p)/4 = (7p − 1)/4p�2.

If 0�p < 1, using the equation l3 = {s̄ = −p(t̄ − 2�), we
compute the coordinates of x = ((2p + 1)/(p + 1)�, p/(p +
1)�) and of the intersection of l3 with the left side of �(t0),
(2p/(p + 1)�, 2p/(p + 1)�). The clear triangle and trapeze in
Fig. 3(c) have the height �/

√
2 with the bases

√
2p/(p + 1)�

and
√

2/(p + 1)�, (
√

2(1 − p))/(p + 1)�, respectively. The
area of R is equal to

2�2 − �

2
√

2

√
2�

p + 1 + 1 − p

p + 1
= 2p + 1

p + 1
�2.

Step 3: Suppose that N > 1. We can take N to be odd, i.e.,
N = 2n + 1, adding (if necessary) one more zero as follows:
modify the graph � outside the parallelogram �(t0) (see the
dotted line of Fig. 3(a)) in such a way that � additionally crosses

2 in some point with the abscissa t∗ > t3 (such a modification
shown by the dotted line if Fig. 3(a)). This operation does not
affect D(t0). Then, using a certain inductive procedure, we
intend to show that the case N = 2n + 1 reduces to N = 1,
considered above.

Let r1 > r2 > · · · > r2n+1 be all the roots of �(t) in the interval
(t3, t0), where �(t) changes its sign. These are abscissas of the
respective intersection points x1, x2, . . . , x2n+1 of the graph �
with the line 
2, where � passes from one side of 
2 to the
other. More precisely, treating the point x1 (the highest one) as
the point x in Step 2, we see that the graph � passes through
x1 from the left half plane to the right one, and hence the same
holds for all odd numbered points x2i+1, whereas through the
even numbered point x2i the graph � passes in the opposite
direction (see Fig. 4(a)). Consider now the points x1, x2, x3.
Draw the lines l′1, l′2 through x1, x3 with the slope −p, and
the vertical line l′′1 through x2. In view of (16), the part of the
domain D(t0) in the strip r3 � t �r1 is contained in the region

Fig. 4. The case N > 1.

R in �(t0), bounded by the lines 
2, l
′
1, l

′
2, l

′′
1 (shown shaded

in Fig. 4(a)).
The line l′′1 contains two segments in the boundary of R,

joined by the point x2. Denote the length of the upper segment
by 1, and of the lower one by 2. If 1 �2, then the area of R
is less than the area of the region R1 shown shaded in Fig. 4(b)
(bounded from the left by 
2 and by l′2). Indeed, here we
replace a triangle or a trapeze by a trapeze of the same height,
but with bigger bases. Similarly, if 1 �2, then the area of R
is less than the area of the region R2 shown shaded in Fig. 4(c)
(bounded from the right by 
2 and l′1). Now we observe that the
replacement of R by R1 or by R2 is equivalent to the following
operation: having fixed points x1 and x3, we move the point
x2 along 
2 between x1 and x3 so that it merges either x1, or
x3. The meaning of both the operations is a modification of the
function �(t) so that two of its roots in (t3, t0) coincide and
thus �(t) does not change sign in such multiple root. Hence, the
number of the roots of �(t), where it changes its sign, decreases
by 2, whereas the area of the region (which is further used for
estimation of the area of D(t0)) increases. Repeating the above
procedure n times, we come to N = 1. �
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