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Abstract

Sampled-data output-feedbagk, control of linear systems is considered. The only restriction on the sampling and hold is
that the distances between the sequel sampling times and holding times are not greater than given bounds. A new approach, whict
was recently introduced to sampled-data state-feedback stabilization, is developeditg ttamtrol. The system is modelled
as a continuous-time one, where the control input and the measurement output have piecewise-continuous delays. Sufficient
linear matrix inequalities (LMIs) conditions fdi~, control of such systems are derived via Lyapunov—Krasovskii functionals
and descriptor approach to time-delay systems. For the first time the new approach allows to develop different robust control
methods for the case of sampled-datg control.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

Sampled-datd, control of systems has been studied in a number of papers (sg8-elgl1,15,16]and the
references therein). Two main approaches have been used. The first one is based on the lifting t&;h8]gue
which the problem is transformed to equivalent finite-dimensional diséfgteontrol problem. The second, more
direct, approach is based on the representation of the system in the form of hybrid discrete/continuous model and
the solution is obtained in terms of differential Riccati equations with jumps. These approaches give necessary and
sufficient conditions and lead to equivalent solutions.

To the best of our knowledge, the only LMI solution to sampled-data output-feedthackontrol was derived
by Lall and Dullerod11] for the lifted discrete system when the sampling and the hold operators are periodic and
their rates are commeasurable. This solution is computationally complicated because it includes the evaluation of
the matrices of the lifted system.
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The hybrid system approach has been applied recently to robust sampléd)-datarol for the case of equidistant
sampling[9]. To overcome difficulties of solving differential inequalities with jumps, a piecewise linear in time
Lyapunov function has been suggested. As a resyRJii.MIs have been derived, which do not depend on the
sampling interval, and thus are very conservative. The sampling interval independent LMI conditions have been
also derived recently for the case of rob#kt, filtering under sampled-data measureméhi§.

Modelling of continuous-time systems with digital control as continuous systems with delayed control input was
introduced by Mikheev et al., Astrom and Wittenm§tR,1]. The digital control law may be represented as delayed
control as follows:

u(t) =ud(ty) =ud( — (t — 1))
=uq(t —1(t)), (K<t <try1, t(@t)=1— 1, 1)

whereug is a discrete-time control signal and the time-varying delay—=r — 1, is piecewise linear with derivative
t(t) =1 fort # 1. Moreover,t<f,4+1 — ;. Recently, this input delay approach was applied to robust sampled-
data stabilization via Lyapunov—Krasovskii techniqugah It is the purpose of the present paper to develop this
approach to the case of sampled-déta control.

Bounded real lemmas (BRLSs) for systems with time-varying delays were derived for the cases where the derivative
of the delay is less than one via Lyapunov—Krasovskii functionals (sefL8]y.For the case of time-varying delay
without any restrictions on the delay of the derivative a BRL was obtain¢d] i his became possible due to a
new descriptor model representation of the delay system introdugBf in

In the present paper we consider the output-feedback sampledigatantrol problem by finding solution for
the continuous-timé{,, control problem for systems with uncertain but bounded (by the maximum sampling and
holding intervals) delays in the control input and in the measurement output. We apply the BRLlaotl derive
solution in terms of LMIs. The solution which we obtain is robust with respect to different sampling and holding
with the only requirement that the maximum sampling interval and maximum holding interval are not greater than
given bounds. The LMI conditions are sufficient only, but they are comparatively simple. For the first time the new
approach allows to develop different robust control methods for the case of sampledsdatantrol. We give a
solution toH,, control of systems with norm-bounded uncertainties.

Notation. Throughout the paper the superscriptstands for matrix transpositio®?” denotes th@-dimensional
Euclidean space with vector norm |, 2™ is the set of allz x m real matrices, and the notatiagh> 0, for
P € 2" means thaP is symmetric and positive definite. L€}, [a, b] denotes the space of continuous functions

¢: [a, b] — 2" with the supremum norrp- | and L>[0, oo) be the space of the square integrable functions with
the norm|| - ||,. We also denote; (0) = x(¢ + 0) (0 € [—h, 0]).

2. Main results
2.1. Problem formulation
Consider the system

X(t) = Ax(t) + Biw(t) + Bou(t),
z(t) = C1x(t) + D1ou(t), (2

wherex(r) € #" is the state vectory (1) € #"" is the disturbancey(r) € 2" is the control input and(z) € £+
is the controlled output.
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The control signal is assumed to be generated by a zero-order hold function with a sequence of hold times
O<n<-"<thr<---

u(t) =ud(tx), tH<r<tisa, 3)

where lim,_, » fz = 00, andugq is a discrete-time control signal.
The measurementoutpyt € %" isassumed to be available at discrete sampling instantsi0< - - - < gy < - - -,
limy_ o o = 00, and it may be corrupted by, = w(oy):

vk = Cox(ox) + Daawg, k=0,1,2,.... (4)
We consider an output-feedback sampled-déata control. Assume that
Al. C{D1p,=0.

A2. tk+1 — tw<h Vk>0.
A3. o341 — o <g Vk=0.

We define the following performance index for a prescribed sgata®d:

Je(w) = f (2" (8)z(s) — y?wT (s)w(s)) ds. (5)
0

Our objective is to find a dynamic output-feedback control law of the form

u(t) = Cexc(ty) + Deyi, tr <t <tyy1,

Xc(t) = Acxc(t) + Beyk, (6)
which for all sampling and hold times satisfying A2 and A3 internally stabilizes the system and lekds @dfor
x(0) =0, and for all non-zeraw € L2[0, c0).

2.2. The input and the output delay model

We consider the following piecewise-constant measurement:
y(& = (1) = Cox(t — (1)) + Daaw(r — (1)),
n(t) =t — ok, t<0k <0k41. @)

From A3 it follows that O<#7(r) < g.
The output-feedback controller law is described by

Xe(t) = Acxc(t) + Bey(r — (1)),
xc(t)=0, te[-h,Q]
i (r) = Cexc(t) + Dey(t — n(1)), (8a—c)

where the sampled versiarir) = i(t — t(¢)) is applied to (2). We representn the form

_ x(1)
o=t el 0], ©
In order to restore the transference property of the sample and hold component, namely to recover the filtering
property of the sample and hold which filters out the high-frequency part of the sampled signal, and in order to
conveniently describe the sampling yf) andu(¢), we introduce prescribed LTI components that are connected
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in series toy(¢) of (7) andu(¢) of (8c) and produce the sampled versiony@f) andu(z). These components will
be later added to the controller of (8). We thus consider the following two components:

&) = —pln, E(1) + py(©),
E1(1) = —pln, E1(1) + Coxc(r) + DeE(1), (10a,b)

whereé € ", £, € #™, andp < 1 is a positive scalar.
Denotingl(t) = col{x(¢), &(t), &1, xc(¢)} the following closed-loop system is obtained:

L) = Aol(t) + 1L — n(0) + 2Lt — 1)) + Buw(), (11a)
where
A 0 0 0
Al0 —pr,, 0 0
MO a 0 DC ) _plnu CC
_O Bc O AC
- 0 0 0 O7
alpC2 0 0 O
“1=17" 0 0 ol
L 0 0O 0 0O
0 0 pBy 07
A0 O O O
Y2519 0 0o ol
L0 O 0 0
rB1 O
ae| 0 pPa | (11b-e)
L O O

The corresponding(t) is given by

z2(t) =6{(t), where ¥=[C1 0 Dip O0]. (12)

2.3. BRL for linear systems with time-varying delays
Consider an auxiliary system
x(1) = Aox (1) + Arx(t — n(1)) + Azx(t — 1(1)) + Biw(?),
z(1) = Cx(1), (13a,h)
with the performance index (5), wherér) € 2", w(r) € R™, z(t) € "%, 1(t) andy(t) are piecewise-continuous
delays satisfying(r) <h, n(t)<g,andA;, i =0,1,2, B;andC are constant matrices.

Applying to (13) and (5) the Lyapunov—Krasovskii functional of the form

V(X (1), X)) = Vi(x (1)) + Va(x1), (14)
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where
i([):COl{x(t)v 'x(t)}’ E:[lg 8]’

_|P O _pT _
P_|:P2 PJ, P =P] >0 (15a—d)

and

Vi(E (1) =X (1) EPX(1),
0 t 0 t

Vo(iy) = / / *T(s)Ryx(s)ds + / / %1 (s)Rox (s) ds do, (15e,f)
—g Jr+0 —h Jt+0

and finding the conditions thatl/dr)V (x (1), %;) + z' (t)z(1) — 72w (1)w(r) < 0, we obtain similarly t47,8] the
following BRL:

Lemma 1. Consider(13). For a prescribedy > 0, the cost functior{5) achieves/c(w) < 0 for all non-zerow €
Z1[0, oo) and for all piecewise-continuous delay(s), #(-), satisfying inequalities(r) <&, n(t) < g, if there exist
n x n-matricesP; > 0, P>, Pz andR; = Rl.T that satisfy the following LMts

o cT
Y, P |:B;|_ 0
<0,

* —2I 0
* * —1
and
_ T
[Rl [0 A] ]P} 50, i=12 (16a,b)
* Z;

where P is given by15c)and

0 O
l‘Ul_l‘UOJ”"'ZlJthZJF[0 gR1+hR2:|’
_pt| .0 1 0 7oAl
Yo=P |:Zi2=0Ai —I]+|:I .y P.

2.4. Output-feedbacK, control

Consider the closed-loop system (11), (12) and the performance igdex

We apply Lemma 1 to system (11), (12) directly, where we repRcby diagR;, 0} with R; € #"<*"¢, we
denotenc=n+n, +n,. Pre- and post-multiplying the resulting LMI that is equivalent to (16a) by{didg I, I}
and diagQ, I, I}, respectively, and the one equivalent to (16b) by fiag2T} and diag/, Q}, respectively,

whereP~1=0= [gl QO ] The following is obtained foZ; = Q7 Z; Q.
2 3

Lemma 2. Consider(11), (12).For a prescribed > 0, the cost functioifs) achieves.(w) < Ofor all non-zerow €
£1[0, oo) and for all piecewise-continuous delays), 7(-), satisfying inequalities(r) <%, (t) < g, if there exist
2ne x 2ncmatrices Q01>0, 02, O3 and nc x neg matrices R, = Rl.T that satisfy the following
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inequalities

LS
| —|
N ©
—_
| —|
©
o
%,
| I |
oQ
1
QS
wH NH
_
| —|
oz
| I |
:‘
| —|
QS
WA oo
ool_l
| —|
oz
| I |

*
* * —1I,. 0 <0,
* * * —gRI1 0
* * * * —hRE1
and
-
[Rl [ 1, OA][O&ii]}>O,i=1,2, (17a.0)
* Z,’
where
_ 0 1 1[0 Yo 5 5
‘I’—[Zl_zzoﬂi _I]Q+Q [1 iy +hZz+gZs.
We further denote
X M 1 _[vr NT
o[ M) o[} V)
7= Y| andJ=diags, J) (18)
- 0 N 9 - 9

Multiplying (17a) by diagJ", I} from the left and by diag/, 7} from the right, respectively, and (17b) by
diag{Z, J'}from the left and by diag/, J} from the right, respectively, we obtain

02+ 03 03— 03 +JT01(X2 DI . 5 . 5 0 IT 0147 oIt 05 e
e Loy > Jemeen [ 2] [790] o[t ] +[at]] %]
* —2Iy,, 0 0 0
* * —In, 0 0 <0,
* * * —gRIl 0
* * * * —hREl
and
Ri [he OO0/ 0y, (19a,b)
* Zl = E) 1) ] H
whereQ;1=J1Q;41J andZ; = JTZ;J,i = 1, 2 and where it is required that
+ +
T [X 1
J Qlj_[l Y]>o. (20)
It is readily found that
2
> o =diaglA, 0} + B20C>, (21a)

i=0
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0 0  —pl, Ine

~ [0 I _[Ac B

Cr= _C‘z 0 ] and@_[cC DJ (21b—d)
with

A i O A

By = Oi| andC2=[0 1, O].

—Inu

Hence

REar MT XCI7 sTo0 N

_|:Inc ! [Inc Y]+[ 0 ég @ Bg BoY

_[xAT o I 0 1[B) 0]a-

—[AT ATY}L[O ég]K [o == (22)

where

0 I, M 0 0 0
K_[NT Yéz]@[ézx I,,},]JF[YAX o] (23)

Substituting the above result in (19a,b) and choostng-= diag{¢1 7;,, ely,, &ly,} andRo = diag{el,4ny, €21y, }
where O< & tends to zero, angj ande; are positive tuning parameters, we obtain the following.

Theorem 1. Consider systen(R). For prescribed scalary >0 and0< p, Je(w) <0V w(r) € L»[0 co) under
the sampled-data output-feedback controlle(&fand (10) for all holding and sampling times satisfyi®® and
A3, respectivelyif for some tuning scalar parametess ande, there existine x 4nc matricesZy, Zo, 2nc x 2n¢

matrices)s, Q2, nc x nc matricesX, Y, and a(ne+ ny) x (nc+ ny)-matrix K that satisfy{20) and the following
three LMIs

F+h22+g21<0,
el [0 [0 pC3 Ol Y11,
* Zl =
821nu [_o pBér [ Iy 0 0] [ Inc Y]] >0 (24a_c)
* Zz =
where
— _ - - 0 X 0 0 71
T T = T n,ny T
[Q2+ 0, 03— ng{ru] I | B 1 |el g[Q%} Inv} h[—%} 0
* —03— Q3 Y 0 Q3 0 Q3 I,
Fé * _yzlnw+nv O O O 5
* * _Inz 0 0
% * - —ger 0
L * * * * —hez_llnu _

(25)
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By = [ 0 PD21:| , and C1=[C1 0 Dip].
0 0

If a solution to the above exists then the output-feedback controller that achieves the required performance is
described by the series connection of the pre- and the post-contrli@a3and(10b),respectivelywith the system
described ir(8), where the matrices of the latter are obtained by solyZ®)for @ and takingN=1,,, M=1,.—Y X.

Remark 1. In(23) the matricedlandM can be obtained by factorizing, — Y X=NTM.One ofthese factorizations
yieldsN =1I,,.. The transfer function matrix of the obtained controller will not depend on the specific factors chosen.

The LMIs in Theorem 2 apply variables that are in fact redundant. Inequalities (24b,c) set lower boufds on
andZ,. The latter matrices can thus be replaced in (24a) by their respective bounds. We thus obtain the following:

Corollary 1. Consider syster®). Jo(w) <0V w(t) € L2[0 oo) for prescribed scalars > 0and0 < p, under the
sampled-data output-feedback controlle8f and (10) for all holding and sampling times satisfyid® andA3,
respectivelyif for some tuning scalar parametets and ¢, there exists @nc x 2nc matricesQ», 0z, ne X nc
matricesX, Y, and a(n¢ + n,) x (nc + ny)-matrix K that satisfy(20) and the following inequality

097 0 07 pB2
e[l ] [ ]
vyllL o vylL o <0. (26)

0 0
—géerl, 0
* * —héealy,

2.5. The case of systems with norm-bounded uncertainties

The results of the previous section can be easily generalized to the case of systems with norm-bounded uncer-
tainties.

Theorem 2. Consider syster(2) where A By, B, C», and D»; are replaced byA + AA, B1 + ABj, By + ABo,
C2 + AC3 and D21 + A Dy, respectivelyand where

[AA AB1 AB]=HA@®[E E1 Ez], i=0,1,2 and

[AC2 AD1]=HA()[Ec  Eq) (27a,b)
with A and A satisfying
ADOTAWKT and A@WTA@)LI. (28a,b)

For prescribed scalary >0 and0 < p, Je(w) <0V w(t) € L2[0 co) under the sampled-data output-feedback
controller of (8) and (10) for all holding and sampling times satisfyid@ andA3, respectivelyif for some tuning
scalar parameters; andep, r1 andrp there existing x 4ne matricesZy, Zo, 2n¢ x 2nc matricesQz, Qo, ne X ng
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matricesX, Y, and a(nc + n,) x (nc + ny)-matrix K that satisfy(20) and the following inequalities

_ ET
: HIESIRRIE
. . 0 T I11]]|0
F+hZy+gZ 11 H 110 I ]| pE; 0
r1 vllo I Y H. 0 T
Sl
0 0 <0,
* —r1l 0 0 0
* * —rol 0 0
* * * —r1l 0
L * * * * —ral _
rel, [0 [0 pCg O1[L, Y1l pE{ 00
* Zl 0 |:r2Hc:| >0
0 = Vs
* rol 0
L * *  ral
_821’114 [0 [pBér 0 O][I”C Y]] pE-Zr 0
0
* Z> 0 |:61H:| >0, (293—0)
* * riI O
L * * * 11l

wherel is defined in25).
If a solution to the above exists then the output-feedback controller that achieves the required performance is

described by the series connection of the pre- and the post-contr@l@a$and(10b),respectivelywith the system
described in(8), where the matrices of the latter are obtained by solN#®) for © and takingN =1,,, M=1,,—Y X.

Proof. The result follows by replacing in (24, B1, B2, C2, andD21 by A+ AA, B1+ AB1, B2+ AB3, C2 + ACo,
and D21 + A D31 respectively, and by using inequalities of the type

—rHH" — v 1ETE
<HAE +E"ATHT
<rHH" +r ETE V scalars O<r

and applying Schur complements formuld.]

Similarly to Corollary 1, the three LMIs of Theorem 2 can be combined to one LMI.
2.6. On state-feedbadif,, control

Assume A2 and
Al'. D1>=0.

Our objective is to find a state-feedback controller of the form

u(t) = Kx(t), tr <t <trq1, (30)
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which for all hold times satisfying A2 internally stabilizes the system and leads <0, for x(0) = 0 and for all
non-zerow € L7[0, co). Under AT a simple solution to state-feedbagk, control will be derived.

We represent a piecewise constant control law as continuous time control with time-varying piecewise-continuous
delayt =t — 1, as given in (1). We will thus look for a state-feedback controller of the form

u()=Kx(@ — (). (31)
Substituting (31) into (2), we obtain the following closed-loop system:

x(t) = Ax(t) + BoKx(t — (1)) + Brw(t),
7(t) = C1x(1). (32)

From A2 it follows that G< t(7) < i sincet <#+1 — tx. We will further consider (32) as the system with uncertain
and bounded delay, and we require ttigak 0 holds for all non-zerav € L2[0, co) and for zero initial condition
x(t)=0, t<0.

In order to apply Lemma 1 to (32), we dendtg= cP,, wheree is ascalarP = P, ', Pr=PT PP, R=PTRP,

Zi=P"Z;P, i=1,2,3andY =K P. Multlplylng(16a)byd|agPT PT, I, I}anddlagP P, I, I}and (16b)

by d|aquT PT, PTyanddiag{P, P, P}, from the right and the left, respectively, the following is obtained.

Theorem 3. AssumeAl’. Consider(2). For a prescribed scalary > 0, Je(w) <0V w(t) € L»[0 oco) under
sampled-data state-feedback controller for all holding times satis#@gf for some tuning scalar parameter

¢ there exist x n matricesO < Py, P, Z1, Z», Z3, R, andn, x n- matrixY that satisfy

TPTAT + AP+ BoY + Y 'Bo+hZy Pr—P+¢PTAT +¢YTB] +hZ, P'C{ Bi
* —ePT —eP +h(R+ Zg) 0 ¢B;
<0,
* * -1 0
L * * * —yzl
"R Y'B] eYTB]
x 21 Zp i| >0 (33a,b)
L % * Z3
The state-feedback gain is given by
K=YP L (34)

Consider now (2) under the continuous state-feedld@ck= K x(r) and the index (5). It is well-known that in
the continuous casg < 0 iff there existn x n-matrix 0< P1, andn, x n-matrixY that satisfy

* —1I 0
* * —yzl

PIAT + AP1+ BY +YTB, PIC] By
[ } <0 (35)

wherek = YPIl. If (35) is feasible than for small enough> 0 (33) is feasible too (take e.g. the safeY =Y,
and P = P1,¢ — 0, whileRandZ are any matrices satisfying (33b)). We, therefore, obtain the following result
(similar to the one of13] which was proved by using the lifting technique):

Corollary 2. Consider(2) underAl’, A2. If the continuous-time state-feedback= K x(¢) achieves/c(w) <0,
then there exist8* > 0 such that for allz € (0, »*] the sampled-data state-feedbd86), with the same gain K
achieves/¢(w) < 0.
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The LMIs of Theorem 3 are affine in the system matrices and thus the solution for the system with polytopic
type uncertainty readily follows. The results of this subsection may be easily adapted to the case of systems with
norm-bounded uncertainties.

2.7. Examples

Example 1. We consider an example {4]. The system is

X(t) = —0.8x(t) + w(t) + 2u(r),

() = m X0+ m (o),
y(k) =x(ox) + 0.3k, k=0,1,.... (36)

We choose = 0.01 and apply Theorem 1, faf = 0.1 andez = 0.4 we obtainy,;, = 1.25. This result is higher
than the minimum attenuation level pf,;, = 0.816 reported irj14] for the case of equidistant sampling with the
periodg = n/4 and holding with the period = 1.

Consider next the state-feedback sampled-#@tacontrol of (36a) withz (7)) = [é]x(r).

Applying Theorem 3 for holding bound df = 1 a minimum attenuation level of = 0.8866 is obtained for
¢ =0.74. The corresponding feedback gairkis= —0.2678. The result obtained for holding that tends to zero is
y=1.872x 107°,

Example 2. We consider here another exampldbf]. Given the system:
. 0 1 0 0
x(”z[—le —4.8}x(t)+[16}w(t)+[16}”(t)’

z(t) = |:é 8i| x(t) + |:81:| u(t),

vk =[1 Olx(ox) + 0.1vx, k=0,1,... . (37)

For the output-feedback control with=1 andg =7 /4 we choos@ =0.01 and apply Theorem 1. For=0.4x 104
andep = 1.2 x 102 we obtainy,,,, = 1.125. This result is close to the minimum attenuation level,gf = 1.02
found in[14] for the case of equidistant holding with the period 1 and equidistant sampling with the pédiod
It is noted that the two poles introduced by the components of (8) and (16).81 are canceled by zeros of the
controller so that the overall feedback controller possesses four poles and two zeros.

We assume next that the model of (37) encounters norm bounded uncertainty of type (2#) wifd 1]T,
E=[3 0], and with zercE1, E2 andH,. Applying Theorem 2, for the above value@£0.01, we obtain a minimum
value of i, = 1.432 forr; = 39,61 = 0.4 x 1074, andep = 1.2 x 1073,

3. Conclusions

A new approach, which was recently introduced to sampled-data state-feedback stabilization, is developed to
the sampled-datél,, control. The system is modelled as a continuous-time one, where the control input and the
measurement output have piecewise-continuous delays. It is assumed that the maximum holding interval is not
greater thark > 0 and the maximum sampling interval is not greater than0. Theh andg-dependent sufficient
LMI conditions are derived for output-feedbagk, control of such systems via Lyapunov—Krasovskii functionals
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and descriptor approach to time-delay systems. The results are generalized to the case of systems with norm-bounde:
uncertainties.

The solution of the output-feedback control problem is based on introducing simple filters that precede the
sampling of the measurement and the control input. The steady-state gain of these filters is one, and they filter out
signal components of frequencies equal to or larger than the corresponding Nyquist freq{ijci&khough
the poles of these components are cancelled by the zeros of the controller that is obtained by solving the LMIs of
Theorems 1 and 2, the fact that this controller should possess zeros at prespecified locations is somewhat restrictive
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