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State-feedback H
�
control of nonlinear singularly

perturbed systems

E. Fridman*��

Department of Electrical Engineering/Systems, Tel Aviv University, Tel Aviv 69978, Israel

SUMMARY

We study the H
�
control problem for an a$ne singularly perturbed system, which is nonlinear in the state

variables. Under suitable assumptions on the linearized problem, we construct �-independent composite and
linear controllers that solve the local H

�
control problem for the full-order system for all small enough �.

These controllers solve also the corresponding problem for the descriptor system. The &central' nonlinear
controller can be approximated in the form of expansions in the powers of �. An illustrative example shows
that the higher-order approximate controller achieves the better performance, while the composite (zero-
order approximate) controller leads to the better performance than the linear one. Copyright � 2001 John
Wiley & Sons, Ltd.
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�
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1. INTRODUCTION

H
�
-control of a class of singularly perturbed system being nonlinear only on the slow variable

have been studied in References [1}3]. In Reference [1] a composite �-independent controller has
been designed. In Reference [2] it has been shown that any �-independent H

�
controller of the

linearized singularly perturbed system is a local H
�

controller for nonlinear problem. In
Reference [3] a high-order approximate controller has been constructed in the form of expan-
sions in the powers of �.
In the present note, we consider a general singularly perturbed system, being a$ne in the

control and nonlinear in both, the slow and the fast variables. We generalize results of References
[4, 5] obtained for the case of optimal control problem of such systems to the H

�
control: we

construct an �-independent composite controller and a high-order approximate one by expand-
ing in the powers of � the &central' controller, that solves the problem for each �. Assuming that the
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corresponding linearized H
�
control problem is solvable we show that

(i) the composite controller is O(�)-close to the &central' one and solves the local H
�
control

problem for the singularly perturbed system for all small enough �'0;
(ii) the composite controller solves the local H

�
control problem for the corresponding

descriptor system;
(iii) the truncated expansion approximates the &central' controller and solves the local H

�
control problem.

Proofs of the theorems are given in the appendix.

2. PROBLEM FORMULATION

Consider the system

xR
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�
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where x
�
(t)3R�� and x

�
(t)3R�� are the state vectors, x"col �x

�
, x

�
�, u (t)3R� is the control

input, w 3R� is the disturbance and z 3R� is the output to be controlled. The functions F
�
, B

�
,

D
�
and k are di!erentiable with respect to x a su$cient number of times. We assume also that

F
�
(0, 0)"0 and k (0, 0)"0.
Unlike Reference [1] we consider a non-standard singularly perturbed problem in the sense

that we do not require the solvability with respect to x
�
of the algebraic equation

F
�
(x

�
, x

�
)#B

�
(x

�
, x

�
) u#D

�
(x

�
, x

�
)w"0

For more information on non-standard singularly perturbed system we refer to Reference [5] and
example therein, where the above algebraic equation has the form x

�
#u"0.

Denote by � ) � the Euclidean norm of a vector. Let � be a "xed positive constant. Then, the
nonlinear H

�
control problem (for performance level �) is to "nd a nonlinear state-feedback

u"�(x), � (0)"0 (2)

such that the closed-loop system of (1) and (2) has a ¸
�
-gain less than or equal to � (see Reference

[6]). It means that the following inequality holds:

�
�

�

�z (t)�� dt)�� �
�

�

�w(t)�� dt (3)

for all w 3¸
�
[0, �] and all �*0, where z denotes the response of the closed-loop system of (1)

and (2) for w 3¸
�
[0, �] and the initial condition x (0)"0 (see References [6, 7]). The H

�
control

problem is solvable on �LR���R�� containing 0 as an interior point if (3) holds for every �*0
and for every w 3¸

�
[0, �] for which the state trajectory of the closed-loop system (1) and (2)

starting from 0 remains in � for all t 3[0, �].
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Consider the Hamiltonian function
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where prime denotes the transposition of a matrix, p
�
and �p

�
play the role of the co-state

variables and S
��
"B

�
B	
�
!1/��D

�
D	

�
. The corresponding Hamiltonian system has the form
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For each �'0 the problem is solvable on �LR���R�� if there exists a C� non-negative
solution < :�PR to the Hamilton}Jacobi (HJ) partial di!erential equation
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with the property that the system
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is asymptotically stable (see References [6, 7]), where <
�
"(<

��
, <

��
) denotes the Jacobian matrix

of <. The latter is equivalent to the existence of the invariant manifold of (5) p
�
"<	

��
,

p
�
"���<	

��
, with asymptotically stable #ow, such that <*0, <(0)"0 (that implies <

�
(0)"0).

The controller that solves the problem is then given by

u"![B	
�
, ���B	

�
] <	

�
(8)

Similarly to the linear case, the latter will be denoted as the &central' controller.
Note that the &central' controller of (8) is found by solving high-order �-dependent HJ partial

di!erential equation (6). We shall construct H
�
controllers by solving the simpli"ed �-indepen-

dent reduced-order partial di!erential and algebraic equations.

3. MAIN RESULTS

3.1. H
�
composite controller

Composite controller will be constructed similar to the one in the optimal control case (see
Reference [5]). Consider the linearization of (1) at x"0:
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z"col �C
�
x
�
#C

�
x
�
, u�
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where A
��
"(
f

�
/
x

�
) (0, 0), B

��
"B

�
(0, 0), D

��
"D

�
(0, 0), C

�
"(
k/
x

�
) (0, 0), i"1, 2; j"1, 2.

Hamiltonian system that corresponds to (9) can be written in the form
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To guarantee that for all small � this linear H
�

control problem is solvable we assume:

A1
For a given � a fast Riccati equation
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"0 (11)

has a solution X
�
"X	

�
*0, such that the matrix �

�
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��
!S

��
X

�
is Hurwitz.

A2
For a given � a slow Riccati equation
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has a solution X
�
"X	

�
*0 such that the matrix �
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�
!S

�
X

�
in Hurwitz.

Note that under assumptions of stabilizability}detectability and absence of invariant zeros on
the imaginary axis of Reference [8] assumptions A1 and A2 are necessary and su$cient for
solvability of the linear H

�
control problem for all small enough �. It is known (see Reference [8])

that under A1 and A2 for all small enough � the linear controller
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X
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� (14)

solves the linear H
�

control problem. Therefore, for each small �, the H
�

control problem is
solvable on a small enough neighbourhood of R���R�� containing 0 (see Reference [6]). We shall
show that there exists an �-independent neighbourhood that is appropriate for all small enough �.
Under A1 the Hamiltonian matrix ¹

��
has n

�
eigenvalues with negative real parts and n

�
with

positive ones. Under A1 and A2 the Hamiltonian matrix ¹
�
"¹

��
!¹

��
¹��

��
¹

��
, has n

�
eigenvalues with negative real parts and n

�
with positive ones. Then by implicit function theorem
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in a small enough neighbourhood of R���R�� containing 0 the system of equations
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Consider the reduced Hamiltonian system
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This system results after substituting (15) into (5a) and (5b). From A2 and the theory of nonlinear
di!erential equations (see e.g. Reference [9]) it follows that this system has a stable manifold
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for x
�
from small enough neighbourhood of 0. Function N

�
"N

�
(x

�
) satis"es the slow �-

independent partial di!erential equation (PDE)
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Approximate solution of the slow PDE may be obtained by the power-series method as given in
Reference [10] (see also Reference [6] and references therein). Due to this method N

�
can be

approximately found in the form of expansion in the powers of x
�
:
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with N	�
 denoting the ith-order terms of N
�
(x

�
). Substitution of (20) into (19) and equating of

terms of the same order lead to algebraic equations with respect to N	�
. From the latter equations
N	�
 can be computed inductively via X

�
,2, N	���
.
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�
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satis"es the fast �-independent PDE
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Similarly to N
�
, function M

�
can be found in the form of expansion in the powers of x

�
:
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) denoting the ith-order terms with respect to x

�
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parameter x
�
.

De"ne the composite controller as follows:
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From (14), (17) and (22) it follows that

u
�
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�
��) (25)

Both �-independent controllers, the composite (24) and the linear (14), solve H
�
control problem

on some neighbourhood for all small enough �:

Theorem 3.1
Under A1 and A2 there exist m

�
'0, m

�
'0 and �

�
'0 such that for all � 3(0, �

�
] the following

holds:

(i) There exists a C� function < :�
��

��
��

P[0, R), satisfying the HJ equation (6). The
solution to HJ equation and the &central' controller have the following approximations:

<(x
�
, x

�
)"<

�
(x

�
)#O(�), u (x)"u

�
(x)#O(�) (26)

where u
�
is given by (24) and 
<

�
/
x

�
"N	

�
(x

�
).

(ii) H
�
control problem is solvable on �

��
��

��
by the composite controller of (24).

(iii) H
�
control problem is solvable on �

��
��

��
by the linear controller of (14).

Remark 3.1
Example in Reference [3] and the one below show that the composite controller leads to the

better performance than the linear controller.

3.2. H
�
control of nonlinear descriptor system

In this subsection, we show that similarly to the linear case (see Reference [8]), the composite
controller solves H

�
control problem for the corresponding descriptor system

ExR "F (x)#B (x)u#D(x)w, z"col �k (x), u� (27)
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Unlike the non-descriptor case, the initial condition for (27) is de"ned only for the slow variable
x
�
. We restrict ourselves to admissible controllers of form (8) which guarantee a unique solution

to the closed-loop system (27) and (8) for any small enough initial condition Ex (0) and for any
square integrable function w ( ) ) from small enough neighbourhood of 0 in R�. An admissible
controller solves local H

�
control problem for (27) on �LR���R�� containing 0 as an interior

point if (3) holds for every �*0 and for every square integrable w 3¸
�
[0, �] for which the state

trajectory of the closed-loop system (27) and (8) starting from Ex (0)"0 is uniquely de"ned and
remains in � for all t 3[0, �].

Theorem 3.2
Under A1 and A2 the following holds:

(i) Let there exists a twice continuously di!erentiable function <
�
:�

��
��0�PR such that

<
�
(Ex)*0,


<
�
(Ex)


x
"=(x)E (28)

2=(x)F (x)!=(x)S (x)=	(x)#k	(x)k (x)"0, S"BB	!���DD	 (29)

with the property that fI
��
(0) and FI

��
(0) are non-singular, where fI"F

�
!B

�
B	
�
=	,

FI "F
�
!S=	, and that the systems

ExR "F (x)!B (x)B	 (x)=	(x), ExR "F(x)!S(x)=	(x) (30)

are asymptotically stable. Then the controller

u
�
(x)"!B	(x)=	(x) (31)

solves the local H
�
control problem for the descriptor system (27).

(ii) The composite controller (24) solves the local H
�

control problem for (27).
(iii) The linear controller (9) solves the local H

�
control problem for (27).

3.3. High-order approximate controller

An asymptotic approximation to the controller (8)

u (x)"u
�
(x)#O(����), u

�
(x)"

�
�
���

�� u	�
(x) (32)

can be found similarly to Reference [4] by expanding the invariant manifolds into the powers of �.
The controller u

�
solves local H

�
control problem:

Theorem 3.3
Given �'0, under A1 and A2 there exist m

�
, m

�
, �

�
such that for all � 3(0, �

�
] the following

holds on �
��

��
��
:

(i) The &central' controller exists and can be approximated by (32), where all functions are
continuously di!erentiable in x and approximation is uniform on x and �.

(ii) H
�
control problem is solvable on �

��
��

��
by the controller u

�
.

Examples in Reference [3] and the one below show that the higher-order terms in (32) lead to
improved performance.
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3.4. Example

Consider the systems

xR
�
"!tan x

�
#2u#w, �xR

�
"tan x

�
!u, z"(x

�
u)	 (33)

Here (11) has a stabilizing solution X
�
"2. We obtain the following Hamiltonian function:

H"!p
�
tan x

�
#p

�
tan x

�
#1/2(1/��!4) p�

�
#2p

�
p
�
!1/2p�

�
#1/2x�

�

and the corresponding Hamiltonian system

xR
�
"!tan x

�
#(1/��!4) p

�
#2p

�
, pR

�
"!x

�

�xR
�
"tan x

�
#2p

�
!p

�
, �pR

�
"cos�� x

�
(p

�
!p

�
)

We "nd

�"!arctan p
�
, �"p

�
, N

�
"Kx

�
, M

�
"2 tan[x

�
!arctan(Kx

�
)]#2Kx

�

where K"(1!1/��)���, and A2 is satis"ed for �'1. The linear (14) and the composite (24)
controllers have the following form:

u
	
"Kx

�
#2x

�
, u

�
"Kx

�
#2 tan x

�
(34)

By algorithm of Reference [4] we "nd the "rst-order approximate controller u
�
:

u
�
"u

�
#3�K(x

�
#arctan(Kx

�
))#

�x
�

1#K�x�
�

!4�
x
�
sec� x

�
(1#K�x�

�
)�

#�l, l"O(�x
�
#arctan(Kx

�
)��)

We made some simulations of the behaviour of (33) under u
	
, u

�
and u

�
(with l"0) and

constant and sinusoidal disturbance functions. Choosing �"1.1'1 we found K"2.4004. Thus,
for w(t)"0.5 sin 3t the values of the functional cost

J"�


�

[x�
�
(s)#u� (s)!��w�(s)] ds

under all these controllers are negative for the following values of �(0.08: �"0.07, 0.001 and 0.
Therefore, under this particular disturbance input all the controllers achieve the performance
bound of �"1.1.
We include in Figure 1 plots of the functional cost for w (t)"0.5 sin 3t, �"0.08 and �"0.09,

where &.' is the plot under u"u
	
, &- -' is the plot under u"u

�
and &}' is the plot under u"u

�
. For

�"0.08 functional costs under u
�
and u

�
are negative, while for u

	
it becomes positive for t'15.

Hence, under this particular disturbance input the composite and the "rst-order controllers
achieve the performance bound of �"1.1, whereas, the linear controller does not achieve this
bound. For �"0.9 only the "rst-order controller u

�
leads to negative values of cost and, hence

achieves the performance bound �"1.1. Therefore, the linear controller (14) is robust for
0)�)0.07, the composite controller (34) is robust for 0)�)0.08 in the sense that they achieve
�"1.1 for w"0.5 sin 3t. For �"0.09 only u

�
achieves �"1.1 for w"0.5 sin 3t. Thus the

O(��)-approximation to the &central' controller (8) achieves the better performance bound than its
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Figure 1. Functional costs for �"1.1 and w"0.5 sin 3t: () - ) - ) -) u"u
	
; (- - -) u"u

�
; (*) u"u

�
.

O(�)-approximation, whereas, the composite controller leads to the better performance than the
linear one.

4. CONCLUSIONS

We have designed robust �-independent H
�
controllers for singularly perturbed systems that are

nonlinear in both, the slow and the fast state variables. We have shown that these controllers
achieve � performance for all small enough �. Moreover, they solve a local H

�
-control problem

for the corresponding descriptor system. We have shown that a higher-order accuracy controller
improves the performance.

APPENDIX

Proof of Theorem 3.1. (i) The existence of C� solution to (6) and (26) follows from Reference [4].
We shall show that <*0 by proving that the closed-loop system of (1) and (8) with w"0 is
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asymptotically stable (see References [6, 7]). To prove the latter consider linearization of the
closed-loop system in the 0:

�
xR
�

xR
�
�"�

AI
��

AI
��

���AI
��

���AI
��
� �

x
�

x
�
�"�

A
��

A
��

���A
��

���A
��
� �

x
�

x
�
�#�

B
��

���B
��
� u

	
(A1)

Under A1 and A2 the fast matrix AI
��

and the reduced one AI
��

!AI
��

AI ��
��

AI
��

are Hurwitz (see
proof of Lemma 3.4 from Reference [11]). The system of (1) and (8) with w"0 is then
asymptotically stable since its fast and reduced systems are stable (see e.g. Reference [12]).
(ii) Consider the closed-loop system of (1) and (24). We have to prove that the corresponding to

this system HJ equation has a non-negative stabilizing solution. Due to (ii) of this theorem we
have to verify that assumptions A1 and A2 are satis"ed for the corresponding linearized problem

xR
�
"AI

��
x
�
#AI

��
x
�
#D

��
w, �xR

�
"AI

��
x
�
#AI

��
x
�
#D

��
w, z"[CI

�
CI

�
] x (A2)

where CI
�
"[C

�
, B	

��
X

�
!B	

��
X



], CI

�
"[C

�
, !B	

��
X

�
]. Note that the latter system coincides

with the closed-loop system of (9) and (14). Hamiltonian system that corresponds to (A2) has the
form

xR
�

pR
�

xR
�

pR
�

"H am

x
�

p
�

x
�

p
�

(A3)

where H am is de"ned by (10) with all matrices taken with tilde and SI
��
"!���D

�
D	

�
.

We observe that A1 and A2 means that the fast and the reduced systems corresponding to (A3)
have stable manifolds. Set �"0 and see that substitution of p

�
"X

�
x
�
and p

�
"X



x
�
#X

�
x
�

leads (A3) to (10) with �"0. Therefore, p
�
"X

�
x
�
and p

�
"X

�
x
�
are the above-mentioned

stable manifolds.
Proof of (iii) is similar to (ii).

Proof of Theorem 3.2. (i) Let x (t) satis"es (27) and initial condition Ex(0)"0. Applying (28),
(27) and (29) we "nd

2
d<

�
(Ex)

dt
!��w	w#z	z"2=(x) ( f (x)#B (x)u#D(x)w)!��w	w#k	k#u	u

"(u	#= (x)B(x)) (u#B	 (x)=	(x))!��(w	!���=	(x)D	 (x)) (w!���D(x)=) (A4)

Substituting in (A4) u"u
�
and integrating the resulting inequality on t from 0 to � (for any �'0)

we "nd

2<
�
(Ex(�))!�� �

�

�

�w (t)�� dt#�
�

�

�z(t)�� dt)0

that implies (3). Due to non-singularity of fI
��
(0) and FI

��
(0) systems (30) have unique solution for

small enough Ex(0) and the closed-loop system (27) and (31) has a unique solution for small
enough Ex(0) and w ( ) ). Hence, controller (31) is admissible.
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(ii) Choosing <
�
(Ex)"<

�
(x

�
), where <

�
satis"es (26), we see that


<
�
(Ex)


x
"= (x)E, =(x)"[N	

�
(x

�
) �	(x

�
, N

�
(x

�
))#M	[x

�
, x

�
!� (x

�
, N

�
(x

�
))]]

Since by Theorem 3.1 [<
��

���<
��
]"=#O(�), where < is solution to HJ equation (6), then

= satis"es (29). Moreover, (31) coincides with (24) that together with item (i) of this theorem
completes the proof. Proof of (iii) is similar to (ii) of Theorem 3.1. �

Proof of Theorem 3.3. Item (i) follows from Reference [4]. Proof of (ii) is similar to (ii) of
Theorem 3.1.
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