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a b s t r a c t

Discontinuous Lyapunov functionals appeared to be very efficient for sampled-data systems (Fridman,
2010; Naghshtabrizi, Hespanha, & Teel, 2008). In the present paper, new discontinuous Lyapunov
functionals are introduced for sampled-data control in the presence of a constant input delay. The
construction of these functionals is based on the vector extension of Wirtinger’s inequality. These
functionals lead to simplified and efficient stability conditions in terms of Linear Matrix Inequalities
(LMIs). The new stability analysis is applied to sampled-data state-feedback stabilization and to a
novel sampled-data static output-feedback problem, where the delayed measurements are used for
stabilization.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Sampled-data systems have been studied extensively over the
past decades (see e.g. Chen & Francis, 1995, Fridman, 2010, Fujioka,
2009, Mirkin, 2007 and Naghshtabrizi, Hespanha, & Teel, 2008 and
the references therein). Three main approaches have been used
to uncertain sampled-data systems leading to conditions in terms
of LMIs: a discrete-time, a time-delay and an impulsive system
approach. Recently, the impulsive approach was extended to un-
certain and bounded sampling intervals, where a discontinuous
Lyapunov function method was introduced (Naghshtabrizi et al.,
2008). This method inspired a piecewise-continuous (in time) Lya-
punov functional approach to sampled-data systems in the frame-
work of time-delay approach (Fridman, 2010), which essentially
improved the existing results based on time-independent Lya-
punov functionals.

The input delay approach to sampled-data control has been
revised by using the scaled small gain theorem and a tighter
upper bound on the L2-induced norm of the uncertain term
(Mirkin, 2007). Recently, the latter result was recovered via an
input–output approach by application of the vector extension of
Wirtinger’s inequality (Liu, Suplin, & Fridman, 2010).
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presented at any conference. This paper was recommended for publication in
revised form by Associate Editor Tongwen Chen under the direction of Editor Ian
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NetworkedControl Systems (NCS),where the plant is controlled
via a communication network, became an active research area
(Zampieri, 2008; Zhang, Branicky, & Phillips, 2001). NCSs are
usuallymodeled as sampled-data systems under variable sampling
with an additional network-induced delay (Gao, Chen, & Lam,
2008; Naghshtabrizi, Hespanha, & Teel, 2007). Extensions of the
above discontinuous Lyapunov constructions to sampled-data
systems in the presence of input delay η lead to complicated
conditions (Liu & Fridman, 2011; Naghshtabrizi et al., 2007).
Moreover, these conditions become conservative if η is not small.

In the present paper, we develop a direct Lyapunov approach
via Wirtinger’s inequality to sampled-data stabilization in the
presence of a constant input delay η. In this approach, novel
discontinuous terms are added to ‘‘nominal’’ Lyapunov functionals
for the stability analysis of systems with the delay η (either to
simple or complete ones). Being applied to sampled-data systems
with η = 0, the new method recovers the result of Mirkin (2007),
but it is more conservative than the one of Fridman (2010).
However, the new analysis leads to simplified reduced-order LMIs
and improves the existing results for η > 0. In comparison to the
standard time-independent Lyapunov functional terms for interval
time-varying delays, the Wirtinger-based terms take advantage of
the sawtooth evolution of the delays induced by sampled-and-hold
and, thus, improve the results (both via simple and via discretized
Lyapunov functionals).

The new method is applied to the state-feedback sampled-
data stabilization. Also, a novel sampled-data static output-
feedback problem is studied via discontinuous discretized
Lyapunov functionals, where the delayed measurements are used
for stabilization. This is a sampled-data counterpart of using
an artificial delay for continuous-time stabilization studied in
Kharitonov, Niculescu, Moreno, and Michiels (2005). Note that the
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observer-based sampled-data control of systems with uncertain
coefficients may become complicated and may lead to conserva-
tive results. From the other side, a simple static output feedback
using the previous measurements can be easily designed and im-
plemented.

Notation: Throughout the paper Rn denotes the n dimensional
Euclidean space with vector norm | · |, Rn×m is the set of all n × m
real matrices, and the notation P > 0, for P ∈ Rn×n means that
P is symmetric and positive definite. The symmetric elements
of the symmetric matrix will be denoted by ∗. The space of
functions φ : [a, b] → Rn, which are absolutely continuous on
[a, b), have a finite limθ→b− φ(θ) and have square integrable first
order derivatives is denoted by W [a, b) with the norm ‖φ‖W =

maxθ∈[a,b] |φ(θ)| +

 b
a |φ̇(s)|2ds

 1
2
.

2. Problem formulation and useful lemmas

Consider the following system:

ẋ(t) = Ax(t) + Bu(t), (1)

where x(t) ∈ Rn is the state vector, u(t) ∈ Rnu is the control input,
A and B are system matrices with appropriate dimensions. Denote
by tk the updating instant time of the Zero-Order Hold (ZOH), and
suppose that the updating signal (successfully transmitted signal
from the sampler to the controller and to the ZOH) at the instant tk
has experienced a constant signal transmission delayη.We assume
that the sampling intervals are bounded

tk+1 − tk ≤ hs, k = 0, 1, 2, . . . (2)

i.e. that

tk+1 − tk + η ≤ hs + η , τM , k = 0, 1, 2, . . . . (3)

Here τM denotes the maximum time span between the time tk − η
at which the state is sampled and the time tk+1 at which the next
update arrives at the destination.

The state-feedback controller has a form u(tk) = Kx(tk − η),
where K is the controller gain. Thus, considering the behavior of
the ZOH, we have

u(t) = Kx(tk − η), tk ≤ t < tk+1, k = 0, 1, 2, . . . (4)

with tk+1 being the next updating instant time of the ZOH after tk.
Defining τ(t) = t − tk + η, tk ≤ t < tk+1, we obtain the following
closed-loop system (1), (4):

ẋ(t) = Ax(t) + A1x(t − τ(t)), tk ≤ t < tk+1, (5)

where k = 0, 1, 2, . . . and A1 = BK . Under (3), we have η ≤

τ(t) < tk+1 − tk + η ≤ τM and τ̇ (t) = 1 for t ≠ tk. For the sake
of brevity, further in the paper the notation τ stands for the time-
varying delay τ(t).

The objective of the present paper is to derive efficient LMI
(asymptotic and exponential) stability conditions for system (5).
Moreover,wewill consider the static output-feedback stabilization
of (1) under the sampled-data measured output y(tk) = Cx(tk),
k = 0, 1, 2, . . . , where y(tk) ∈ Rnl , C is a constant matrix. It
is well-known, that using artificial delay in the (continuous-time)
static output-feedback can stabilize some systems, which are
not stabilizable without delay (Kharitonov et al., 2005). For such
systems we will consider a sampled-data static output-feedback
that uses the previous measurements and we will derive LMI
conditions for stabilization.

We formulate next some useful lemmas. By using the standard
arguments, the following can be proved:

Lemma 1. Let there exist positive numbers α, β and a functional
V : R × W [−τM , 0] × L2[−τM , 0] → R such that

α|φ(0)|2 ≤ V (t, φ, φ̇) ≤ β‖φ‖
2
W . (6)

Let the function V̄ (t) = V (t, xt , ẋt), where xt(θ) = x(t + θ) and
ẋt(θ) = ẋ(t + θ) with θ ∈ [−τM , 0], is continuous from the right
for x(t) satisfying (5), absolutely continuous for t ≠ tk and satisfies
limt→t−k

V̄ (t) ≥ V̄ (tk).

If along (5) ˙̄V (t) ≤ −γ |x(t)|2 for t ≠ tk and for some scalar
γ > 0, then (5) is asymptotically stable.

A novel Lyapunov functional construction will be based on the
extension of the Wirtinger inequality (Hardy, Littlewood, & Polya,
1934) to the vector case:

Lemma 2 (Liu et al., 2010). Let z(t) ∈ W [a, b) and z(a) = 0. Then
for any n × n-matrix R > 0 the following inequality holds:∫ b

a
zT (ξ)Rz(ξ)dξ ≤

4(b − a)2

π2

∫ b

a
żT (ξ)Rż(ξ)dξ . (7)

3. Stabilization via novel Lyapunov functionals

The stability of system (5) canbe analyzed via time-independent
functionals of the form (Fridman, 2006a):

V (xt , ẋt) = Vn(xt , ẋt) + VZ (xt , ẋt), (8)

where Vn is a ‘‘nominal’’ functional for the ‘‘nominal’’ system with
constant delay

ẋ(t) = Ax(t) + A1x(t − η) (9)

and where (He, Wang, Lin, & Wu, 2007)

VZ (xt , ẋt) =

∫ t−η

t−τM

xT (s)Z1x(s)ds + VZ2(ẋt),

VZ2(ẋt) = (τM − η)

∫
−η

−τM

∫ t

t+θ

ẋT (s)Z2ẋ(s)dsdθ,

Z1 > 0, Z2 > 0.

(10)

Remark 1. The time-dependent term of Fridman (2010) can be
modified to the case of η > 0 as follows:

VU(t, ẋt) = (tk+1 − t)
∫ t−η

tk−η

ẋT (s)Uẋ(s)ds,

U > 0, t ∈ [tk, tk+1). (11)

It is clear that VU does not grow in the jumps since VU |t=tk = 0.
Differentiation of VU leads to

d
dt

VU(t, ẋt)

= −

∫ t−η

tk−η

ẋT (s)Uẋ(s)ds + (tk+1 − t)ẋT (t − η)Uẋ(t − η). (12)

Hence, the additional term

V0U(ẋt) = (τM − η)

∫ t

t−η

ẋT (s)Uẋ(s)ds

is needed with
d
dt

V0U = (τM − η)ẋT (t)Uẋ(t) − (τM − η)ẋT (t − η)Uẋ(t − η).

This leads to the same positive term and the same negative integral
term (for U = (τM − η)Z2) as in

d
dt

VZ2(ẋt) = (τM − η)2ẋT (t)Z2ẋ(t) − (τM − η)

∫ t−η

tk−η

ẋT (s)Z2ẋ(s)ds

− (τM − η)

∫ tk−η

t−τM

ẋT (s)Z2ẋ(s)ds. (13)
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Therefore, VU + V0U has no clear advantages over the standard
double integral term VZ2 .

In the present paper we suggest a discontinuous Lyapunov
functional
Vd(t, xt , ẋt) = V̄1(t) = Vn(xt , ẋt) + VW (t, xt , ẋt) (14)
with a novel discontinuous term

VW (t, xt , ẋt) = (τM − η)2
∫ t

tk−η

ẋT (s)Wẋ(s)ds

−
π2

4

∫ t−η

tk−η

[x(s) − x(tk − η)]TW [x(s) − x(tk − η)]ds,

W > 0, tk ≤ t < tk+1, k = 0, 1, 2, . . . . (15)
We note that VW can be represented as a sum of the continuous in
time term (τM −η)2

 t
t−η

ẋT (s)Wẋ(s)ds ≥ 0with the discontinuous
one

VW1 , (τM − η)2
∫ t−η

tk−η

ẋT (s)Wẋ(s)ds

−
π2

4

∫ t−η

tk−η

[x(s) − x(tk − η)]TW [x(s) − x(tk − η)]ds.

Since [x(s) − x(tk − η)]|s=tk−η = 0, by the extended Wirtinger’s
inequality (7) VW1 ≥ 0. Moreover, VW1 vanishes at t = tk. Hence,
the condition limt→t−k

V̄1(t) ≥ V̄1(tk) holds.
Differentiating VW , we have

d
dt

VW = (τM − η)2ẋT (t)Wẋ(t) −
π2

4
vT (t)Wv(t),

v(t) = x(tk − η) − x(t − η).

(16)

Remark 2. For η = 0, it is easily seen from (16) that application of
the functional V0 = xT (t)P1x(t) + VW with P1 > 0 to (5) recovers
conditions of Mirkin (2007), which are based on the small-gain
theorem. An advantage of the direct Lyapunov method considered
in the present paper over the small-gain theorem-based results is
in its wider applications: to exponential bounds on the solutions of
the initial value problems, to finding domains of attraction of some
nonlinear systems.

3.1. Stabilization via the simple Lyapunov functional

We start with the stability conditions via Vd = Vn1 +VW , where
Vn1 is a simple functional of the form

Vn1(t, xt , ẋt) = xT (t)P1x(t) +

∫ t

t−η

xT (s)R1x(s)ds

+ η

∫ 0

−η

∫ t

t+θ

ẋT (s)R2ẋ(s)dsdθ, P1 > 0, R1 > 0, R2 > 0. (17)

Theorem 1. (i) Given η ≥ 0, hs > 0 and K , if there exist n× n ma-
trices P1 > 0,W > 0, Ri > 0, i = 1, 2 such that the following
LMI is feasible:

Ψ1 P1A1 + R2 P1A1 AT (h2
sW + η2R2)

∗ −R1 − R2 0 AT
1(h

2
sW + η2R2)

∗ ∗ −
π2

4
W AT

1(h
2
sW + η2R2)

∗ ∗ ∗ −(h2
sW + η2R2)

 < 0,

Ψ1 = P1A + ATP1 + R1 − R2.

(18)

Then the system (5) is asymptotically stable.
(ii) Given η ≥ 0, hs > 0, if there exist n × n matrices P̄1 > 0,Q ,

W̄ > 0, R̄i > 0, i = 1, 2, an nu × n-matrix L and a tuning

parameter ϵ > 0 such that the following LMI given in Box I is fea-
sible, then the closed-loop system (1), (4) is asymptotically stable
and the stabilizing gain is given by K = LQ−1.

Proof. (i) Differentiating V̄1(t) along (5) and taking into account
(16), we find

˙̄V 1(t) = 2xT (t)P1ẋ(t) + xT (t)R1x(t)
− xT (t − η)R1x(t − η) + ẋT (t)(η2R2 + h2

sW )ẋ(t)

−
π2

4
vT (t)Wv(t) − η

∫ t

t−η

ẋT (s)R2ẋ(s)ds. (20)

By Jensen’s inequality (Gu, Kharitonov, & Chen, 2003)

η

∫ t

t−η

ẋT (s)R2ẋ(s)ds ≥

∫ t

t−η

ẋT (s)dsR2

∫ t

t−η

ẋ(s)ds

= [x(t) − x(t − η)]TR2[x(t) − x(t − η)]. (21)

Then substitution of Ax(t) + A1x(t − η) + A1v(t) for ẋ(t) leads to

˙̄V 1(t) ≤ ζ T
1 (t)

Ψ1 P1A1 + R2 P1A1
∗ −R1 − R2 0

∗ ∗ −
π2

4
W

 ζ1(t)

+ [Ax(t) + A1x(t − η) + A1v(t)]T (η2R2 + h2
sW )

× [Ax(t) + A1x(t − η) + A1v(t)],

where ζ1(t) = col{x(t), x(t − η), v(t)}. Hence, by Schur comple-
ments, (18) guarantees that ˙̄V 1(t) ≤ −γ |x(t)|2 for some γ > 0
which completes the proof of (i).

(ii) For the state feedback design, the descriptormethod is used,
where the right-hand side of the expression

2[xT (t)PT
2 + ẋT (t)PT

3 ][Ax(t) + A1x(t − η) + A1v(t) − ẋ(t)] = 0,

with some n × n-matrices P2, P3 is added to ˙̄V 1(t). Then (20) and
(21) lead to ˙̄V 1(t) ≤ ζ T

2 (t)Ξsζ2(t) ≤ −γ |x(t)|2 for some γ > 0,
where ζ2(t) = col{x(t), ẋ(t), x(t − η), v(t)}, if the LMI given in
Box II is feasible.

Following Fridman (2006b) and Suplin, Fridman, and Shaked
(2007), we denote P3 = εP2, where ε is a scalar, Q = P−1

2 , P̄1 =

Q TP1Q , W̄ = Q TWQ , R̄i = Q TRiQ (i = 1, 2) and L = KQ . Mul-
tiplication of (22) by diag{Q T ,Q T ,Q T ,Q T

} and diag{Q ,Q ,Q ,Q },
from the left and the right, completes the proof of (ii). �

Remark 3. The recentmethod of Park, Ko, and Jeong (2011) for the
stability of (5) (via functional (8) with Vn = Vn1, Jensen’s inequality
and convexity arguments) leads to the following (affine inA andA1)
LMIs:[
Z2 S12
∗ Z2

]
≥ 0, (23)

Ψ1 R2 P1A1 0 AT (h2
s Z2 + η2R2)

∗ Ψ2 Z2 − S12 S12 0
∗ ∗ −2Z2 + S12 + ST12 Z2 − S12 AT

1(h
2
s Z2 + η2R2)

∗ ∗ ∗ −Z1 − Z2 0
∗ ∗ ∗ ∗ −(h2

s Z2 + η2R2)


< 0, (24)

where S12 is n × n matrix and Ψ2 = −R1 − R2 + Z1 − Z2.
Comparing LMI (18) with LMIs (23), (24), it is seen that (18)

is a lower order single LMI with a fewer decision variables (W in
(18) instead of Z1, Z2, S12 in (23), (24)). Note that conditions in Liu
and Fridman (2011) are essentially more complicated than those
of Park et al. (2011). See Table 1 for numerical complexity of the
above methods.
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Q TAT

+ AQ + R̄1 − R̄2 P̄1 − Q + ϵQ TAT R̄2 + BL BL
∗ −ϵ(Q + Q T ) + η2R̄2 + h2

s W̄ ϵBL ϵBL
∗ ∗ −R̄1 − R̄2 0

∗ ∗ ∗ −
π2

4
W̄

 < 0. (19)

Box I.

Ξs ,


PT
2 A + ATP2 + R1 − R2 P1 − PT

2 + ATP3 R2 + PT
2 A1 PT

2 A1

∗ −P3 − PT
3 + η2R2 + h2

sW PT
3 A1 PT

3 A1
∗ ∗ −R1 − R2 0

∗ ∗ ∗ −
π2

4
W

 < 0. (22)

Box II.

Table 1
The numerical complexity of different methods.

Method Decision
variables

No. of
LMIs

The maximum order of LMI

Liu and Fridman
(2011)

12.5n2
+ 2.5n 2 7n

Park et al. (2011) 3.5n2
+ 2.5n 2 5n

Theorem 1(i) 2n2
+ 2n 1 4n

Remark 4. Consider now the LMI conditions via Vn1 + VZ2 and
Jensen’s inequality, which contain the same number of decision
variables and LMIs as Theorem1. From (13) and Jensen’s inequality,
we have d

dt VZ2(ẋt) ≤ (τM − η)2ẋT (t)Z2ẋ(t) − vT (t)Z2v(t) (v(t)
is given in (16)), which leads to more restrictive LMI (18), where
W = Z2 and where the (3, 3)-term−

π2

4 W is changed by the (more
than twice) bigger term −Z2.

More complicated LMI conditions via time-independent Lya-
punov functionals and Jensen’s inequality sometimes can be less
restrictive than the Wirtinger-based conditions. Thus, in Fridman
(2010) for η = 0 in one example out of three the results by Mirkin
(2007) (which are equivalent to Theorem 1) are more conserva-
tive than the results by Park and Ko (2007). In order to get the
less conservative LMI conditions, the functional Vn1 + VZ + VW
can be applied by combining arguments of Park et al. (2011) and of
Theorem 1.

Remark 5. For the exponential stability analysis we follow Seuret,
Fridman, and Richard (2005). By changing the variable x̄(t) =

x(t)eλt , (5) can be rewritten as

˙̄x(t) = (A + λI)x̄(t) + eλτA1x̄(t − τ). (25)

Asymptotic stability of (25) for someλ > 0 implies the exponential
stability with the decay rate λ of (5). Since eλτ

∈ [ρ1, ρ2] with
ρ1 = eλη and ρ2 = eλτM , (25) can be represented in the following
polytopic form:

˙̄x(t) =

2−
i=1

µi(t){(A + λI)x̄(t) + ρiA1x̄(t − τ)}, (26)

whereµ1(t) = (ρ2−eλτ )/(ρ2−ρ1) andµ2(t) = (eλτ
−ρ1)/(ρ2−

ρ1). We note that the LMIs of Theorem 1 are affine in the system
matrices. Therefore, one have to solve these LMIs simultaneously
for the two vertices of system (26) given by A1

(i)
= ρiA1(i = 1, 2),

where the same decision matrices are applied.

Example 1 (Zhang et al., 2001). Consider the system

ẋ(t) =

[
0 1
0 −0.1

]
x(t) +

[
0
0.1

]
u(t). (27)

Table 2
Example 1: Max. value of τM for different η.

τM \ η 0.1 0.2 0.4 0.6

Park et al. (2011) 1.05 1.06 1.07 1.07
Liu and Fridman (2011) 1.33 1.26 1.18 1.14
Theorem 1(i) 1.32 1.28 1.22 1.17

Table 3
Example 1: Max. value of λ for τM = 1 and different η.

λ \ η 0.1 0.2 0.4 0.6

Park et al. (2011) 0.04 0.05 0.05 0.05
Liu and Fridman (2011) 0.20 0.15 0.10 0.07
Theorem 1(i) 0.26 0.23 0.17 0.12

We start with the analysis of the closed-loop system under the
controller u(t) = −[3.75 11.5]x(tk − η), tk ≤ t < tk+1. It was
found in Naghshtabrizi et al. (2008) that the system remains stable
for all constant samplings less than 1.72 and becomes unstable for
samplings greater than 1.73. Moreover, the above system with the
continuous control u(t) = −[3.75 11.5]x(t − η) is asymptotically
stable for η ≤ 1.16 and becomes unstable for η > 1.17. The latter
means that all the existing methods, that are based on time-
independent Lyapunov functionals, corresponding to stability
analysis of systems with fast varying delays, cannot guarantee the
stability for the samplings with the upper bound greater than 1.17.

For the values of η given in Table 2, by applying (i) of Theorem1,
we obtain the maximum values of τM = hs + η, that preserve
the stability (see Table 2). For η = 0, the results of Mirkin (2007)
and of Fujioka (2009) lead to τM = 1.36, which coincides with our
results.

Choosing next τM = 1, by applying Remark 5 and either (i) of
Theorem 1 or Park et al. (2011) in the affine form (23), (24), we
obtain the maximum value of the decay rate λ given in Table 3 for
different values of η.

We proceed next with the state-feedback design. Note that the
poles of the open-loop system (27) have non-positive real parts.
Therefore, by (ii) of Theorem 1 with ε = 0.9, we obtain a low
gain controller u(t) = −10−15

× [0.1482 0.5412]x(tk − η) which
stabilizes (27) preserving the stability for τM ≤ 108. Choosing
next η = 0.2, τM = 0.8 and applying (ii) of Theorem 1 (as in
Remark 5) with ε = 0.9, we find that the controller u(t) =

−[4.8260 11.2343]x(tk − η) exponentially stabilizes the system
with the decay rate λ = 0.50. Next, applying to the resulting
closed-loop system the conditions of Theorem 1(i), of Liu and
Fridman (2011) and of Park et al. (2011) (as in Remark 5), the
maximumdecay rate is found to be 0.52, 0.30 and0.23 respectively.
Hence, the method of Theorem 1 essentially simplifies the existing
conditions and improves the results.
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3.2. Stability via discretized Lyapunov functionals

If (9) with some constant delay η̄ ∈ [0, η) is not stable (and,
thus, the simple Lyapunov functional Vn1 is not applicable), the
nominal functional Vn can be chosen to be a complete one

Vn2(t, xt , ẋt) = xT (t)P1x(t) + 2xT (t)
∫ 0

−η

Q (s)x(t + s)ds

+

∫ 0

−η

∫ 0

−η

xT (t + s)R(s, θ)dsx(t + θ)dθ

+

∫ 0

−η

xT (t + s)S(s)x(t + s)ds, P1 > 0, (28)

with continuous and piecewise-linear functions Q (s), S(s) and
R(s, θ) (Gu, 1997). Following Gu (1997), we divide the delay
interval [−η, 0] into N segments [θp, θp−1], p = 1, . . . ,N of equal
length r = η/N , where θp = −pr . This divides the square [−η, 0]×
[−η, 0] into N × N small squares [θp, θp−1] × [θq, θq−1]. Each
small square is further divided into two triangles. The continuous
matrix functions Q (s) and S(s) are chosen to be linear within each
segment and the continuousmatrix function R(s, θ) is chosen to be
linear within each triangular:

Q (θp + αr) = (1 − α)Qp + αQp−1,

S(θp + αr) = (1 − α)Sp + αSp−1, α ∈ [0, 1],
R(θp + αr, θq + βr)

=


(1 − α)Rpq + βRp−1,q−1 + (α − β)Rp−1,q, α ≥ β,
(1 − β)Rpq + αRp−1,q−1 + (β − α)Rp,q−1, α < β.

Weuse Vd = Vn2 +VW . Then, following the descriptor method (see
Fridman, 2006b) and the arguments of Theorem 1, we arrive to

Corollary 1. Given η ≥ 0, hs > 0 and K , the system (5) is asymp-
totically stable, if there exist n × n matrices P1 > 0, P2, P3, Sp = STp ,

Qp, Rpq = RT
qp, p = 0, 1, . . . ,N, q = 0, 1, . . . ,N, W > 0, such

that the following LMIs hold:[
P1 Q̃
∗ R̃ + S̃

]
> 0, (29)

Ξd ,

Ωd

[
Ds

0

] [
Da

0

]
∗ −Rd − Sd 0
∗ ∗ −3Sd

 < 0, (30)

where r =
η

N and

Ωd

=


Ψd11 P1 − PT

2 + ATP3 −QN + PT
2 A1 PT

2 A1

∗ −P3 − PT
3 + h2

sW PT
3 A1 PT

3 A1

∗ ∗ −SN 0

∗ ∗ ∗ −
π2

4
W

 , (31)

Ψd11 = PT
2 A + ATP2 + Q0 + Q T

0 + S0,

Q̃ = [Q0 Q1 · · ·QN ], S̃ = diag{1/rS0, 1/rS1, . . . , 1/rSN},

R̃ =

R00 R01 · · · R0N
R10 R11 · · · R1N
· · · · · · · · · · · ·

RN0 RN1 · · · RNN

 ,

Rd =

Rd11 Rd12 · · · Rd1N
Rd21 Rd22 · · · Rd2N
· · · · · · · · · · · ·

RdN1 RdN2 · · · RdNN

 ,

Table 4
Example 2: Max. value of τM for different η.

τM \ η 0.5 0.65 0.8

N = 1 Vn2 + VW 1.03 1.27 1.36
Vn2 + VZ 0.84 1.05 1.16

N = 2 Vn2 + VW 1.07 1.39 1.65
Vn2 + VZ 0.86 1.12 1.34

Table 5
Example 2: Max. value of λ for τM = 0.81 and different η.

λ \ η 0.5 0.65 0.8

N = 2 Vn2 + VW 0.08 0.22 0.36
Vn2 + VZ 0.02 0.18 0.35

Rdpq = r(Rp−1,q−1 − Rpq),

Sd = diag{S0 − S1, S1 − S2, . . . , SN−1 − SN},

Ds
= [Ds

1 Ds
2 · · · Ds

N ], Da
= [Da

1 Da
2 · · · Da

N ],

Ds
p =

r/2(R0,p−1 + R0p) − (Qp−1 − Qp)

r/2(Qp−1 + Qp)

−r/2(RN,p−1 + RNp)

 ,

Da
p =

−r/2(R0,p−1 − R0p)

−r/2(Qp−1 − Qp)

r/2(RN,p−1 − RNp)

 .

(32)

Remark 6. Differently from Corollary 1, the results of Theorem 1
are convex in η: if LMIs of Theorem 1 are feasible for some η̄ > 0,
then they are feasible for all η ∈ [0, η̄]. Therefore, Theorem 1 gives
sufficient conditions for the stability of (5) with the unknown but
bounded constant delay η ∈ [0, η̄].

Conditions of Corollary 1 are derived via the descriptor method
and, thus, can be easily applied to the state-feedback design by
choosing e.g. P3 = εP2 (Fridman, 2006b).

Remark 7. Following themethod of Park et al. (2011), the stability
of system (5) via the time-independent functional Vn2 + VZ leads
to LMIs (23), (29) and (30), where Ωd is changed as in Box III,
with Ψd11 given by (32). It is seen that also in the case of complete
Vn2, the discontinuous Lyapunov functional leads to numerically
simpler conditions than the time-independent one.

Results of Corollary 1 and of Remark 7 can be applied to the
exponential stability analysis by using the method of Remark 5.

Example 2. Consider the system from Gu et al. (2003):

ẋ(t) =

[
0 1

−2 0.1

]
x(t) +

[
0
1

]
u(t), (33)

where u(t) = [1 0]x(tk − η), tk ≤ t < tk+1. This system with
x(tk − η) changed by x(t − η) is stable for 0.1003 < η < 1.72
and unstable if η ∈ [0, 0.1]. Thus, the simple Lyapunov functional-
based results of Park et al. (2011), Liu and Fridman (2011) and
Theorem 1 are not applicable.

This is an example of the system that can be stabilized by using
an artificial delay. For the values of η > 0 given in Table 4, by
applying Corollary 1 and Remark 7we obtain themaximum values
of τM = hs + η that preserve the stability.

Choosing next τM = 0.81, by applying Corollary 1 and Remark 7
with N = 2 via Remark 5, we obtain the maximum value of the
decay rate λ given in Table 5 for different values of η. Also in
this case the discontinuous discretized Lyapunov functional leads
to reduced-order LMIs and improves the results via the time-
independent one.
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Ω̃d =


Ψd11 P1 − PT

2 + ATP3 −QN PT
2 A1 0

∗ −P3 − PT
3 + h2

s Z2 0 PT
3 A1 0

∗ ∗ −SN + Z1 − Z2 Z2 − S12 S12
∗ ∗ ∗ −2Z2 + S12 + ST12 Z2 − S12
∗ ∗ ∗ ∗ −Z1 − Z2


Box III.

4. Sampled-data stabilization by using the delayed measure-
ments

It iswell-known, that using an artificial delay in the (continuous-
time) static output-feedback can stabilize some systems,which are
not stabilizable without delay (see e.g. Kharitonov et al., 2005 and
Example 2 above). Thus, the double integrator

ẍ(t) = u(t), y(t) = x(t) (34)

can be stabilized by using a control action of the form u(t) =

−k1x(t − h1) − k2x(t − h2), where h1 and h2 are constant delays
and 0 ≤ h1 < h2. The main criticism of the above method,
that it has no advantages over the dynamic output-feedback and
that its implementation needs buffer for all the measurements
y(t + θ), θ ∈ [−h2, 0].

For the sampled-data control of systems with uncertain
coefficients, the observer-based design is complicated and may
lead to conservative results. From the other side, a simple static
output feedback using the previous measurements can be easily
designed and implemented. Thus in the system of Example 2, one
can insert an artificial delayη (as in Table 4) and apply the sampled-
data controller with the sampling intervals satisfying tk+1 − tk ≤

τM − η.
In this section we will extend sampled-data stabilization to

the case, where (as in the double integrator) two sampled-data
measurements are needed. Consider (1) and assume that the
measured output y(tk) = Cx(tk) ∈ Rnl is available at the discrete
time instants 0 = t0 < t1 < · · · < tk < · · · with the constant
sampling interval tk+1 − tk = h. Consider the following static
output-feedback controller, which uses the delayed measurement
y(tk−m):

u(t) = K1y(tk) + K2y(tk−m)

= K1Cx(tk) + K2Cx(tk − mh),
m = 1, 2, . . . , tk ≤ t < tk+1. (35)

The closed-loop system (1), (35) has the form

ẋ(t) = Ax(t) + Ac1x(tk) + Ac2x(tk − η), (36)

where η = mh, Ac1 = BK1C, Ac2 = BK2C .
We extend the analysis of Section 3.2 to the system of (36) by

adding the term (Fridman, 2010)

VU(t, ẋt) = (h − t + tk)
∫ t

tk
ẋT (s)Uẋ(s)ds, U > 0

to Vd = Vn2 + VW :

Vsam(t, xt , ẋt) = V̄2(t) = Vn2(xt , ẋt)
+ VW (t, xt , ẋt) + VU(t, ẋt), tk ≤ t < tk+1, (37)

and where VW (t, xt , ẋt) is given by (15) with τM = (m + 1)h.
The term VU vanishes before tk and after tk. By using arguments
of Corollary 1 and of Fridman (2010) we arrive to the following:

Corollary 2. Given h > 0 and K1, K2, the system (36) is asymptoti-
cally stable, if there exist n × n matrices P1 > 0, P2, P3, Sp = STp ,Qp,

Rpq = RT
qp, p = 0, 1, . . . ,N, q = 0, 1, . . . ,N, and U > 0,W > 0

such that LMIs (29) and

Ξ̄di ,


Ω̄di

[
Ds

0

] [
Da

0

]
∗ −Rd − Sd 0

∗ ∗ −3Sd

 < 0, i = 1, 2, (38)

hold, where Q̃ , S̃, R̃, Sd, Rd,Ds and Da are defined in (32). In (38)

Ω̄d1 = Ωd + diag{0n×n, hU, 0},

Ω̄d2 =

Ωd

−hPT
2 Ac1

−hPT
3 Ac1

0


∗ −hU

 ,

withΩd given by (31), where A, A1 and hs are changed by A+Ac1, Ac2
and h, respectively.

Remark 8. LMIs of Corollary 2 are affine in A. Therefore, if A resides
in the uncertain polytope

A =

M−
j=1

µj(t)A(j), 0 ≤ µj(t) ≤ 1,
M−
j=1

µj(t) = 1,

one have to solve these LMIs simultaneously for all the M vertices
A(j), applying the same decision matrices.

Example 3. Consider the following system:

ẋ(t) =

[
0 1

g(t) 0

]
x(t) +

[
0
1

]
u(t),

y(tk) = [1 0]x(tk), tk ≤ t < tk+1, x(t) ∈ R2,

(39)

where |g(t)| ≤ 0.1. This system is not stabilizable by the non-
delayed static output-feedback u(t) = Ky(tk), tk ≤ t < tk+1. We
takem = 3 and choose

u(t) = −0.35y(tk) + 0.1y(tk−3),

tk ≤ t < tk+1, tk+1 − tk = h. (40)

We treat the closed-loop system (39), (40) as a system with poly-
topic type uncertainty defined by the two vertices corresponding
to g(t) = ±0.1. By applying Remark 8 to the closed-loop system
(39), (40) we find the values of sampling period h that preserve the
stability:

N = 1, h ∈ [10−5 0.380], N = 2, h ∈ [10−5 0.499].

5. Conclusions

Novel discontinuous Lyapunov functionals have been intro-
duced for sampled-data systems in the presence of constant input
delay. The construction of the functionals is based on the vector ex-
tension of theWirtinger’s inequality. The newmethod leads to nu-
merically simplified LMIs for the stability analysis and it is applied
to a novel problem of sampled-data stabilization by using the pre-
vious measurements. Numerical examples illustrate the efficiency
of the method.
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