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a b s t r a c t

The use of connected devices or humans-in-the-loop for measuring outputs of dynamical systems
inevitably produces time-varying measurement delays. These delays can lead to instability or severe
degradation of system performance. In this paper, linearmatrix inequality-based sufficient conditions are
proposed for the design of state and unknown input observers based on delayedmeasurements for a class
of nonlinear systems, where the nonlinearities are characterized by incremental multiplier matrices. The
proposed observer is guaranteed to perform at specified operational levels in the presence of unknown
exogenous inputs acting on the states and measurement outputs. Sufficient conditions are also provided
for the estimation of these unknown inputs to a specified degree of accuracy. The potential of the proposed
approach is illustrated via estimation of enzyme kinetics.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

Delays in states and measurements are inevitable for large-
scale networked systems such as communication networks,
tele-operation systems or systems with humans-in-the-loop like
patientmonitoring systems. For linear systems, observers with de-
layed measurements have been proposed in, for example, Ahmed-
Ali, Van Assche, Massieu, and Dorleans (2013), Boutayeb (2001)
and Chakrabarty, Ayoub, Żak, and Sundaram (2017). Although
these observers have demonstrated excellent performance, the in-
troduction of nonlinearities into the system architecture results in
amore challenging scenario. Amethod is provided in Trinh, Aldeen,
and Nahavandi (2004) for de-constructing the delays intomatched
and unmatched components and a reduced-order functional ob-
server design is proposed. State observer design from an explicit
resolution of a time-invariant Lyapunov algebraic equation is ex-
plored in Farza, Sboui, Cherrier, and M’Saad (2010) for nonlinear
systemswith constant delays. In Germani,Manes, and Pepe (2002),
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a chain of observers for a class of uniformly observable nonlinear
systems is proposed, and conditions for asymptotic stability of
the observer chain in spite of constant measurement delays are
formulated. These conditions are relaxed in Kazantzis and Wright
(2005) using a partial differential equation based transformation of
the coordinate system. Further relaxations for triangular nonlinear
systems are proposed in Ahmed-Ali, Karafyllis, and Lamnabhi-
Lagarrigue (2013), Ibrir (2009) and Van Assche, Ahmed-Ali, Hann,
and Lamnabhi-Lagarrigue (2011) using high-gain or adaptive ob-
servers for time-varying measurement delays. Such time-varying
delays are also investigated in Cacace, Germani, and Manes (2014)
using Lyapunov–Razumikhin methods. For linear systems with
time-varying measurement delays and exogenous disturbance in-
puts acting on the system, input-to-state stability and H∞ based
state estimators are proposed in Fridman and Shaked (2001) and
Fridman, Shaked, and Xie (2003) leveraging Lyapunov–Krasovskii
functionals. Recently, a formalism for estimating the state in the
presence of unknown delays was proposed in Cacace, Conte, Ger-
mani, and Palombo (2017) by appending a delay identifier to a state
estimator.

It may become crucial in certain applications to identify the
unknown exogenous inputs acting on the dynamical system. We
refer to such observers as unknown input observers. To the best
of our knowledge, Han, Fridman, and Spurgeon (2014) is the
first attempt at the design of such an unknown input observer
for linear sampled-measurement systems exploiting sliding mode
techniques: however, disturbances simultaneously in the actuator
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and sensor are not considered. For nonlinear systems with delays
in the state, delay-dependent conditions and a descriptor system
approach introduced in Fridman and Shaked (2001) was exploited
in Hassan, Zemouche, and Boutayeb (2013) to estimate the state
and unknown input, based onH∞ and Sobolev norm-based defini-
tions of stability.

The relatively unexplored problem of designing unknown in-
put observers for nonlinear systems with delayed measurements
serves as the motivation for this paper. We design observers with
guaranteed performance in the presence of unknown exogenous
inputs acting on the states and measurement outputs. Sufficient
conditions are provided for the estimation of these unknown in-
puts to a specified degree of accuracy. A preliminary version of
this paper was presented in Chakrabarty, Buzzard, Fridman, and
Żak (2016). Herein, we present the key results of the preliminary
paper with proofs, and add new results that arise in special cases
such as constant delays and linear error dynamics to enable the
construction of simpler LMIs. For this latter scenario, we show that
detectability is sufficient to provide finite state and unknown input
estimation error bounds for any bounded unknown input.

2. Notation

We denote by R the set of real numbers, and Rn×m the set of
real n×mmatrices. For any matrix P , we denote P⊤ its transpose;
λ(P) is the largest eigenvalue of P , λ(P) is the smallest eigenvalue
of P , and ∥P∥ as the maximum singular value of P . For a vector
v and symmetric matrix P , the quadratic form v⊤Pv is written as
∥v∥2

P for brevity. For a symmetric matrixM = M⊤, we use the star
notation to avoid rewriting symmetric terms, that is,

[
Ma ⋆

M⊤
b Mc

]
≡[

Ma Mb
⋆ Mc

]
≡

[
Ma Mb
M⊤

b Mc

]
.For any vector v ∈ Rn, we consider the norm

∥v∥ =
√
v⊤v. For a bounded function v(·) : R → Rn, we consider

the norm ∥v(·)∥∞ = supt∥v(t)∥, and the space of functions which
satisfy ∥v(·)∥∞ < ∞ is denotedL∞. The space of square integrable
functions is denoted L2, with a corresponding norm ∥ · ∥L2 . We
also denote Df as the derivative of a differentiable function f . The
space of continuously differentiable functions φ : [a, b] → Rn is
denoted C[a, b] and a norm ∥φ∥C ≜ sup[a,b]|φ(·)| is defined. The
Banach space of absolutely continuous functions ψ : [a, b] → Rn

with Dψ ∈ L2(a, b) is denoted as W[a, b] possessing the norm
∥ψ(·)∥W = ∥ψ(·)∥C+∥Dψ∥L2

. The notation ⟨·, ·⟩ denotes an inner
product.

3. Problem statement

In this section, we present the class of systems considered
and provide an observer architecture for the estimation of system
states to a specified degree of accuracy in spite of corruptive
exogenous inputs. We consider a class of nonlinear systems with
measurement delays modeled by

ẋ = Ax + Bf f (t, q) + Bw + g(t, u, y) (1a)
y = Cxτ + Dw (1b)
q = Cqx + Dqw (1c)

x(t) = φ0(t), ∀ t ∈ [−h, 0], (1d)

where t ≥ t0 ∈ R is the time variable, τ (t) : R ↦→ [0, h] is a
known, time-varying, bounded delay function, x ≜ x(t) ∈ Rnx is
the state-vector, xτ ≜ x(t − τ (t)) is the delayed state vector, and
w ≜ w(t) ∈ Rnw models unknown state and sensor attack vectors,
which we will equivalently refer to as the exogenous input vector.
If the unknown inputs in the state are denoted ws(t) and in the
outputswo(t − τ (t)), thenw(t)⊤ :=

[
ws(t)⊤ wo(t − τ (t))⊤

]
.The

variable y ≜ y(t) ∈ Rny denotes a delayed measured output,
and the function φ0 ∈ C([−h, 0]) is a continuous map of initial

conditions. The known nonlinearity f : R × Rnq → Rnf contains
the argument q ≜ q(t) ∈ Rnq . Since q is a function of the state x,
it is not known for all time. Therefore, q has to be estimated. The
nonlinearity g : R × Rnu × Rny → Rnx models the completely
known information, such as the control input u and the measured
output y. The matrices A, Bf , B, C , D, Cq and Dq are of appropriate
dimensions. In this paper, we characterize nonlinearities via their
incremental multiplier matrices (Chakrabarty, Corless, Buzzard,
Żak, & Rundell, 2017).

Definition 1 (Incremental Multiplier Matrices). A symmetric ma-
trix M ∈ R(nq+nf )×(nq+nf ) is an incremental multiplier matrix
(δMM) for f if it satisfies the following incremental quadratic
constraint (δQC) for all t ∈ R and q1, q2 ∈ Rnq :[
∆q
∆f

]⊤

M
[
∆q
∆f

]
≥ 0, (2)

where∆q ≜ q1 − q2 and∆f ≜ f (t, q1) − f (t, q2).

Example 1. Consider the nonlinearity f (q) = q
1
3 : note that

this is not globally Lipschitz. However, it satisfies the inequality
(q1 − q2) (f (q1) − f (q2)) ≥ 0. Hence, an δMM for f is given by
M = κ

[
0 1
1 0

]
,with κ > 0.

Characterizing nonlinearities using incremental multipliers al-
lows us to generalize our observer design methodology to a broad
class of nonlinear systems. A library of δMMs for many nonlineari-
ties are provided in Açıkmeşe and Corless (2011) and Chakrabarty,
Corless et al. (2017).

In order to estimate the states of the plant (1), we propose an
observer of the form
˙̂x = Ax̂ + Bf f

(
t, q̂

)
+ L1(ŷ − y) + g(t, u, y) (3a)

ŷ = Cx̂τ (3b)
q̂ = Cqx̂, (3c)

with initial condition φ̂0. Here, L1 ∈ Rnx×ny is the observer gain,
x̂ is the estimate of the plant state, and q̂ is the estimate of the
argument of the nonlinearity f .

Let the state estimation error be denoted ϵ ≜ x̂ − x. Then the
observer error dynamics are given by

ϵ̇ = Aϵ + L1Cϵτ + Bf∆f − (B + L1D)w, (4)

where ϵτ = ϵ(t − τ (t)),

∆f ≜ f (t, q̂) − f (t, q). (5)

For convenience, we write

∆q ≜ q̂ − q = Cqϵ − Dqw. (6)

We also define a performance output

z(t) = Hϵ(t) (7)

in case all components of the error states are not equally important
from a disturbance attenuation perspective. Before we formally
state our objective, we need the following definition. This is amod-
ification of L∞-stability for continuous and discrete time systems,
discussed in Chakrabarty, Corless et al. (2017) and Chakrabarty,
Żak, and Sundaram (2016) to time-delay systems.

Definition 2. Consider a general time-delayed nonlinear error
system

ϵ̇ = F (t, ϵ, ϵτ , w) (8a)

with initial condition ϵ(t) = φ0 for t ∈ [−h, 0], and performance
output

z = G(t, ϵ, w), (8b)
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where t ∈ R, ϵ, ϵτ ∈ Rnx , w ∈ Rnw , and z ∈ Rnz . The time-delay
system (8) is globally uniformly L∞-stable with performance level
γ > 0 for any delay 0 ≤ τ (t) ≤ h if the following conditions are
satisfied:

(P1) Global uniform exponential stability. The nominal system,
obtained by setting w ≡ 0, is globally uniformly exponen-
tially stablewith respect to the origin. That is, for every initial
condition φ0 ∈ W[−h, 0], there exist constants K ≥ 1 and
α > 0 such that

∥ϵ(t)∥2
≤ Ke−α(t−t0)∥φ0(·)∥2

W .

(P2) Global uniform boundedness of the error state. For every
initial condition map φ0 ∈ W[−h, 0] and every exogenous
input w ∈ L∞, there exists a bound β(∥φ0(·)∥2

W , ∥w(·)∥∞)
such that

∥ϵ(t)∥ ≤ β(∥φ0(·)∥2
W , ∥w(·)∥∞)

for all t ≥ t0.
(P3) Output response for zero initial error state. For a zero

initial condition map φ0 ≡ 0, and every exogenous input
w ∈ L∞, we have

∥z(t)∥ ≤ γ ∥w(·)∥∞

for all t ≥ t0.
(P4) Ultimate output response. For every initial condition map

φ0 ∈ W[−h, 0], and every exogenous input w ∈ L∞, we
have

lim sup
t→∞

∥z(t)∥ ≤ γ ∥w(·)∥∞. (9)

Our objective is to construct an observer of the form (3) for
estimating the states of the plant (1) with delayed measurements
while attenuating the effect of the unknown exogenous inputs.
To this end, we design observer gains L1 and L2 using convex
programmingmethods to ensure that the observer error dynamical
system (4) is L∞-stable operating at a specified performance level
for any delay with known bounds.

4. State and unknown input estimation for nonlinear systems
with delayed measurements

In this section, we provide delay-dependent LMI conditions
for the observer design. The following lemma from Chakrabarty,
Buzzard et al. (2016) will be used to arrive at our main result.

Lemma 1. Let ϵ(t) ∈ Rnx be a solution to the error system (8a) with
initial condition φ0 ∈ W[−h, 0], and z(t) be a performance output of
the form (8b). Let φt (s) ≜ ϵ(t + s) for s ∈ [−h, 0] and t ≥ 0. Let
V : W[−h, 0] × L2(−h, 0) → [0,∞) be a functional of the form

V (φt , φ̇t ) = ⟨T1φt , φt⟩ + ⟨T2φ̇t , φ̇t⟩ (10)

where T1 and T2 are linear operators whose Frechet derivatives exist.
If there exist positive scalars χ1 < χ2, α, µ1, µ2 such that

χ1∥φt (0)∥2
≤ V (φt , φ̇t ) ≤ χ2∥φt (·)∥2

W , (11a)

and

V̇ (φt , φ̇t ) ≤ −2α
(
V (φt , φ̇t ) − µ1∥w(t)∥2) , (11b)

∥G(t, ϵ, w)∥2
≤ µ2V (φt , φ̇t ) (11c)

for any t ≥ 0, then the system (8a) with performance output (8b)
is L∞-stable with performance level γ =

√
µ1µ2 for any delay

0 ≤ τ (t) ≤ h.

The following design theorem guides the construction of ob-
servers of the form (3) operating at specified performance levels.

Theorem 1. Let the scalars h, η, α, ρ be fixed. If there exist matrices
P0 = P⊤

0 ≻ 0 ∈ Rnx×nx , P1 ∈ Rnx×nx , R = R⊤
≻ 0 ∈ Rnx×nx ,

S = S⊤
≻ 0 ∈ Rnx×nx , N ∈ Rnx×nx , Y1 ∈ Rnx×ny an incremental

multiplier matrix M = M⊤
∈ R(nq+nf )×(nq+nf ) for the nonlinearity

f , and a positive scalar µ > 0 such that the following inequalities
hold:

Ξ + Γ ⊤MΓ ⪯ 0 (12a)[
R N
⋆ R

]
⪰ 0 (12b)[

P0 H⊤

⋆ µI

]
⪰ 0 (12c)

where

Ξ =

⎡⎢⎢⎢⎢⎢⎣
Ξ11 ⋆ ⋆ ⋆ ⋆ ⋆

Ξ21 Ξ22 ⋆ ⋆ ⋆ ⋆

Ξ31 0 Ξ33 ⋆ ⋆ ⋆

Ξ41 Ξ42 Ξ43 Ξ44 ⋆ ⋆

Ξ51 Ξ52 0 0 −2αI ⋆

Ξ61 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎦ (13)

with

Ξ11 = A⊤P1 + P⊤

1 A + 2αP0 + S − e−2αhR,

Ξ21 = P0 − P1 + ρP⊤

1 A, Ξ22 = −ρ(P1 + P⊤

1 ) + h2R,

Ξ31 = e−2αhN⊤, Ξ33 = −e−2αh(S + R),

Ξ41 = C⊤Y⊤

1 + e−2αh(R − N)⊤,

Ξ42 = ρC⊤Y⊤

1 , Ξ43 = e−2αh(R⊤
− N),

Ξ44 = e−2αh (
N + N⊤

− 2R
)
, Ξ51 = −(B⊤P1 + D⊤Y⊤

1 ),

Ξ52 = −ρ(B⊤P1 + D⊤Y⊤

1 ), Ξ61 = B⊤

f P1,

and

Γ =

[
Cq 0 0 0 −Dq 0
0 0 0 0 0 I

]
,

then the observer (3) characterized by the gain L1 = P−⊤

1 Y1 has L∞-
stable error dynamics with a performance output z = Hϵ operating
at a performance level γ =

√
µ for any delay 0 ≤ τ (t) ≤ h.

Proof. As in Fridman (2014b, Proposition 1), let

V1 = ∥ϵ(t)∥2
P0 , (14a)

V2 =

∫ t

t−h
e−2α(t−s)

∥ϵ(s)∥2
S ds, (14b)

V3 = h
∫ 0

−h

∫ t

t+r
e−2α(t−s)

∥ϵ̇(s)∥2
R ds dr. (14c)

By interchanging the limits of integration, we get

V3 = h
∫ t

t−h
(h + s − t)e−2α(t−s)

∥ϵ̇(s)∥2
R ds.

Let V ≜
∑3

i=1Vi be a Lyapunov–Krasovskii functional candidate.
Since P0, R and S are positive definite, V is positive definite. Also,
λ(P0)∥φt (0)∥2

≤ V , and

V ≤
(
λ̄(P0) + hλ̄(S) + h2λ̄(R)

)
∥φt (·)∥2

W ,

which implies that χ1 = λ(P0), and χ2 = λ̄(P0) + hλ̄(S) + h2λ̄(R),
in (11a). In order to evaluate the time-derivative of V on the
trajectories of the observer error dynamics (4), we perform the
following computations. Using the general Leibniz integral rule
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yields

V̇1 = 2ϵ(t)⊤P0ϵ̇(t), (15a)

V̇2 = ∥ϵ(t)∥2
S − e−2αh

∥ϵ(t − h)∥2
S

− 2α
∫ t

t−h
e−2α(t−s)

∥ϵ(s)∥2
S ds, (15b)

V̇3 = h2
∥ϵ̇(t)∥2

R − he−2αh
∫ t

t−h
∥ϵ̇(s)∥2

R ds

− 2αh
∫ 0

−h

∫ t

t+r
e−α(t−s)

∥ϵ̇(s)∥2
R ds dr. (15c)

Note that the error dynamics (4) can be re-written as Aϵ+ L1Cϵτ +

Bf∆f − (B + L1D)w − ϵ̇ = 0, where ϵτ = ϵ(t − τ (t)) and ∆f is
defined in (5). We use the descriptor method proposed in Fridman
and Shaked (2002). This method involves treating ϵ̇ as an auxiliary
state, not parameter instead of replacing the dynamics (4) directly
into V̇1. That is,

V̇1 = 2e(t)⊤P0ϵ̇(t) + 2(ϵ⊤(t)P⊤

1 + ρϵ̇⊤(t)P⊤

1 ) (Aϵ + L1Cϵτ
+ Bf∆f − (B + L1D)w − ϵ̇

)
.

Next, we use Jensen’s inequality (see Fridman, 2014a, Lemma 3.4)
and inequality (12b) to bound the second term of V̇3 as follows:

− he−2αh
∫ t

t−h
∥ϵ̇(s)∥2

R ds ≤ −e−2αh
[
r1
r2

]⊤ [
R N
⋆ R

][
r1
r2

]
,

where r1 = ϵ − ϵτ and r2 = ϵτ − ϵh, where ϵh = ϵ(t − h). Let

ξ⊤
=

[
ϵ⊤ ϵ̇⊤ ϵ⊤

h ϵ⊤

τ w⊤ ∆f ⊤
]
.

Applying a congruence transform on the matrix inequality (12a)
with ξ , we obtain

0 ≥ ξ⊤
(
Ξ + Γ ⊤MΓ

)
ξ = ξ⊤Ξξ + ξ⊤Γ ⊤MΓ ξ .

Note that

Γ ξ =

[
Cqϵ − Dqw

f (t, q̂) − f (t, q)

]
=

[
∆q
∆f

]
,

where ∆q and ∆f are defined in (6) and (5), respectively. Since
M is an incremental multiplier matrix for f , we conclude that
ξ⊤Γ ⊤MΓ ξ ≥ 0. Hence,

0 ≥ ξ⊤Ξ ξ =

3∑
i=1

(
V̇i + 2αVi

)
− 2α∥w∥

2

= V̇ + 2α(V − ∥w∥
2).

Taking the Schur complement of (12c), we getµϵ⊤P0ϵ ≥ ϵ⊤H⊤Hϵ
= ∥z∥2. But µ > 0 and V ≥ ϵ⊤P0ϵ, hence the conditions of
Lemma1 are satisfiedwithµ1 = 1 andµ2 = µ, and that completes
the proof. □

Remark 1. The inequalities (12) are linear matrix inequalities in
M , N , P0, P1, R, S, Y and µ when the positive scalars α, ρ, η and h
are fixed.

5. Unknown input estimation

In this section, we present sufficient conditions for reconstruct-
ing components of the unknown input signal

v = Hw, (16)

where H ∈ Rnv×nw is known. From H, we can compute G from

G
[
B
D

]
= H,

which will be used to guarantee the unknown input estimation
quality.

Wemake the following assumption on the disturbance inputw
and state x.

Assumption 1. The exogenous input w ∈ L∞ is absolutely
continuous and its time-derivative ẇ ∈ L∞.

Assumption 2. The derivative of the state of the plant (1) is
bounded, that is, ẋ ∈ L∞.

The class of nonlinearities considered in this section have q as
their sole argument, and conform to the following condition.

Assumption 3. The function f ≜ f (q) is differentiable and there is
a scalar κ1 such that ∥Df (q)∥ ≤ κ1 for any q ∈ Rnq .

To proceed, the class of time-varying delays is restricted.

Assumption 4. The time delay τ is absolutely continuous, and
there exists a known scalar K > 0 such that |τ̇ (t)| ≤ K for any
t ∈ R.

5.1. Main unknown input estimation result

Suppose an estimate of the unknown input v be given by

v̂ ≜ G
[
L1(ŷ − y)
−(ŷ − y)

]
. (17)

Herein, we demonstrate that if certain linear matrix inequalities
are satisfied, then we can guarantee an ultimate bound on the
unknown input estimation error norm ∥v̂ − v∥ by leveraging the
notion of L∞-stability with specified performance for time delay
systems.

Theorem 2. Suppose Assumptions 1–4 hold. Let scalars h, α, K, ρ be
fixed. Suppose there exist matrices P0 = P⊤

0 ≻ 0, P1, Y1, Q = Q⊤
≻ 0,

R = R⊤
≻ 0, S = S⊤

≻ 0, N, an incremental multiplier matrix M for
the nonlinearity f , and scalars ν > 0, µ > 0 such that the following
conditions, along with (12b) and (12c) with H = I , hold:⎡⎢⎣

Ξ ⋆ ⋆ ⋆

Φ0 −2αI ⋆ ⋆

Φ1 0 −νI 0
Φ2 0 0 −νI

⎤⎥⎦ +

[
Γ̂ ⊤MΓ̂ 0

0 0

]
⪯ 0 (18)

where the matrixΞ has been defined in (13),

Γ̂ =

[
Cq 0 0 0 −Dq 0 0
0 0 0 0 0 I 0

]
, (19)

and⎡⎣ Φ0

Φ1

Φ2

⎤⎦ =

⎡⎢⎣ B⊤

f P1 ρB⊤

f P1 0 0

− νKI 0 0 0
0 C⊤Y⊤

1 ρC⊤Y⊤

1 0

⎤⎥⎦ . (20)

Then the observer (3) with gain L1 = P−⊤

1 Y1 generates an estimate v̂
defined in (17) that satisfies

lim sup
t→∞

∥v̂ − v∥ ≤ γ1∥w(·)∥∞ + γ2∥ẇ(·)∥∞ + γ3∥ẋ(·)∥∞, (21)

for any delay 0 ≤ τ (t) ≤ h, where

γ1 = ∥G∥
(
κ1∥Bf ∥∥Dq∥

+
√
µ

(
∥A∥ + ∥C∥ + κ1∥Bf ∥∥Cq∥

))
, (22a)

γ2 =
√
µ∥G∥(1 + κ2∥Dq∥), (22b)

γ3 =
√
µκ2∥G∥∥Cq∥. (22c)
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Proof. Let∆f = f (q̂) − f (q), and recall that

ŷ − y = Cϵτ − Dw. (23)

We begin by rewriting the error dynamics (4) and output er-
ror equation (23) as[
L1(ŷ − y) − Bw
−(ŷ − y) − Dw

]
=

[
ϵ̇ − Aϵ − Bf∆f

−Cϵτ

]
.

Pre-multiplying throughout by G and recalling the definition of v̂
in (17), we obtain

v̂ − v = G
[
ϵ̇ − Aϵ − Bf∆f

−Cϵτ

]
.

Hence,

lim sup
t→∞

∥v̂(t) − v(t)∥ ≤ ∥G∥

(
∥A∥ lim sup

t→∞

∥ϵ(t)∥

+ ∥Bf ∥ lim sup
t→∞

∥∆f ∥

+ lim sup
t→∞

∥ϵ̇(t)∥

+ ∥C∥ lim sup
t→∞

∥ϵτ (t)∥
)
. (24)

The rest of the proof will leverage the notion of L∞-stability with
specified performance to bound each limit superior on the right-
hand side of (24).

We note that a feasible solution to the matrix inequalities (18),
(12b), and (12c) imply that there exists a feasible solution to the
matrix inequalities (12) with H = I . Applying Theorem 1, we
conclude that there exists an observer of the form (3) with gain
L1 = P−⊤

1 Y1 that satisfies

lim sup
t→∞

∥ϵ(t)∥ ≤
√
µ∥w(·)∥∞ (25)

for any delay 0 ≤ τ (t) ≤ h. Since this is true for arbitrarily large t
and τ is bounded, we also have

lim sup
t→∞

∥ϵτ (t)∥ ≤
√
µ∥w(·)∥∞. (26)

We now show that ∥∆f ∥ is ultimately bounded. It follows from
Assumption 3, and the definition of∆q in (6) that

∥∆f ∥ ≤ κ1∥∆q∥ ≤ κ1∥Cqϵ − Dqw∥.

Using (25), it is clear that

lim sup
t→∞

∥∆f ∥ ≤ κ1
(√
µ∥Cq∥ + ∥Dq∥

)
∥w(·)∥∞. (27)

It remains to show that ϵ̇ is ultimately bounded. We demon-
strate this by taking the time-derivative of the error system and
noting that this ‘error-derivative system’ is an uncertain system,
with τ̇ behaving like a norm-bounded uncertainty. With this in-
sight, we can verify that a feasible solution to (18) results in a finite
ultimate bound on ϵ̇ for the uncertain error-derivative system,
since w, ẇ and ẋ are bounded by assumption.

Let

η ≜ τ̇ /K. (28)

By Assumption 4,

|η(t)| ≤ 1 (29)

for any t ∈ R. Next, we take the time-derivative of the error
system (4), which yields the error-derivative system

ϵ̈ = Aϵ̇ + (L1 +∆L)C ϵ̇τ + Bf
d∆f
dt

− (B + L1D)ẇ, (30)

where

∆L ≜ ∆L(t) = −τ̇L1 = −Kη(t)L1.

Since the quantity τ̇ (equivalently η) is not readily available and
|η| ≤ 1, we treat the quantity ∆L as a norm-bounded uncertainty
in the sense of Petersen (1987). We also note that

d∆f
dt

=
d
dt

(f (q̂) − f (q)) = Df (q̂) ˙̂q − Df (q)q̇

= Df (q̂)( ˙̂q − q̇) +
(
Df (q̂) − Df (q)

)
q̇.

From (6), we get ˙̂q − q̇ = Cqϵ̇ − Dqẇ and q̇ = Cqẋ + Dqẇ. Hence,

ϵ̈ = Aϵ̇ + (L1 +∆L1(t))C ϵ̇τ + Bf f̃ (t, q̃) + Bw̃w̃, (31a)

f̃ (t, q̃) = Df (q̂(t))q̃, (31b)

q̃ = Cqϵ̇ − Dqẇ, (31c)

where w̃ =
[
ẇ w̃2

]
with

w̃2 =
(
Df (q̂) − Df (q)

)
q̇, (32)

and Bw̃ =
[
−B − L1D Bf

]
. Since M is an incremental multiplier

for f , we know from D’Alto and Corless (2013, Lemma 4.4) that[
q̃

Df (q̂)q̃

]⊤

M
[

q̃
Df (q̂)q̃

]
≥ 0

for all q̂, q̃ ∈ Rnq . Hence, M is also an incremental multiplier
matrix for f̃ defined in (31b). Henceforth, we consider the error-
derivative system (31) as an uncertain nonlinear systemwith state
ϵ̇, nonlinearity f̃ , and exogenous input w̃. Since, by Assumptions 1
and 2, ẇ and ẋ are bounded, we have,

∥q̇∥ ≤ ∥Cq∥∥ẋ∥ + ∥Dq∥∥ẇ∥, (33)

that is, q̇ is bounded. Also, from Assumption 3, we know that
∥Df (q̂) − Df (q)∥ ≤ κ2, which implies that ∥w̃2∥ ≤ κ2

(
∥Cq∥∥ẋ∥ +

∥Dq∥∥ẇ∥
)
. Consequently,

∥w̃∥ ≤ κ2∥Cq∥∥ẋ∥ +
(
1 + κ2∥Dq∥

)
∥ẇ∥. (34)

Next, we demonstrate that solving (18) implies that the uncer-
tain nonlinear system (31) with norm-bounded uncertainty ∆L is
L∞-stable with a specified performance level for any delay 0 ≤

τ (t) ≤ h. To this end, we take Schur complements of (18). Since
ν > 0, the inequality (18) is equivalent to[
Ξ ⋆

Φ0 −2αI

]
+ Γ̂ ⊤MΓ̂ +

1
ν
Φ⊤

1 Φ1 +
1
ν
Φ⊤

2 Φ2 ⪯ 0, (35)

whereΦ0,Φ1 andΦ2 are defined in (20).
Let Φ̃1 =

[
−KI 0 0 0

]
. Then, we get (1/ν)Φ⊤

1 Φ1 +

(1/ν)Φ⊤

2 Φ2 = νΦ̃⊤

1 Φ̃1 + (1/ν)Φ⊤

2 Φ2. Using Young’s inequality,
we know that for any ν > 0 and any |η| ≤ 1,

ν Φ̃⊤

1 Φ̃1 +
1
ν
Φ⊤

2 Φ2 ⪰ η
(
Φ̃⊤

1 Φ2 +Φ⊤

2 Φ̃1
)
. (36)

Substituting (36) into (35), we obtain

0 ⪰

[
Ξ ⋆

Φ0 −2αI

]
+ Γ̂ ⊤MΓ̂ + η

(
Φ̃⊤

1 Φ2 +Φ⊤

2 Φ̃1
)

= Ξ̂ + Γ̂ ⊤MΓ̂ , (37)
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where

Ξ̂ =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

Ξ11 ⋆ ⋆ ⋆ ⋆ ⋆ ⋆

Ξ21 Ξ22 ⋆ ⋆ ⋆ ⋆ ⋆

Ξ31 0 Ξ33 ⋆ ⋆ ⋆ ⋆

Ξ̃41 Ξ̃42 Ξ43 Ξ44 ⋆ ⋆ ⋆

Ξ51 Ξ52 0 0 −2αI ⋆ ⋆

Ξ61 0 0 0 0 0 ⋆

Ξ71 Ξ72 0 0 0 0 −2αI

⎤⎥⎥⎥⎥⎥⎥⎥⎦
with Ξ̃41 = C⊤(L + ∆L(t))⊤P1, Ξ̃42 = C⊤(L + ∆L(t))⊤ρP1,
Ξ71 = B⊤

f P1, Ξ72 = ρB⊤

f P1, and Y = P⊤

1 L. The other sub-
matrices of Ξ are identical to those in (13) for the system (31).
The terms Ξ̃41 and Ξ̃42 reflect the change inΞ due to the presence
of the norm-bounded uncertainty term (L + ∆L(t))C ϵ̇τ . Since the
inequality (18) is equivalent to (37) for the uncertain nonlinear
system (31), applying Theorem 1 implies that a feasible solution
to (18) guarantees that

lim sup
t→∞

∥ϵ̇(t)∥ ≤
√
µ∥w̃(·)∥∞ (38)

for any delay 0 ≤ τ (t) ≤ h.
Replacing the right hand side of (24) with the corresponding

bounds in (25), (26), (27), and (38), we obtain the desired perfor-
mance bounds (21) for any delay 0 ≤ τ (t) ≤ h. This completes the
proof. □

Remark 2. One can pose the unknown input estimation problem
as a generalized eigenvalue problem to yield good performance.
For example, if solving

µ⋆ := argminµ subject to the constraints (18)

yields a small value of µ⋆, then the ultimate unknown input esti-
mation error is expected to be small.

This work extends our results on unknown input estimation
for the delay-free case in Chakrabarty, Corless et al. (2017) in the
following twoways. The additional challenge of non-constant time
delays in the measurement equation (1b) leads to novel analysis
and design via existing Lyapunov–Krasovskii techniques. We also
present a novel estimation method for unknown input estima-
tion based on the performance analysis of the error derivative
system (30). Specifically for time-delay case an additional term
−τ̇L1Cėτ has to be taken into account. This challenge is overcome
by treating this as a norm-bounded uncertainty and leveraging this
insight to construct new conditions detailed in Theorem 2.

5.2. Some special cases

Based on the main unknown input estimation result of this pa-
per (Theorem 2), we can formulate simpler LMIs when additional
conditions are satisfied. In particular, we consider the cases when
(i) the time delay τ (t) is constant, and, (ii) the error dynamics are
linear.

5.2.1. Case I: Constant time delay
We now consider the special case when the time delay τ is

constant, that is, τ̇ ≡ 0. The time derivative system of the error
dynamics of the observer (3) becomes

ϵ̈ = Aϵ̇ + L1C ϵ̇τ + Bf
d∆f
dt

− (B + L1D)ẇ. (39)

Note that, unlike (30), this derivative system is not uncertain,
which yields the following result.

Corollary 1. Suppose Assumptions 1–4 hold. Let the scalars h, α, K
and ρ be fixed. Suppose there exist matrices P0 = P⊤

0 ≻ 0, P1 ≻ 0,
Y1, Q = Q⊤

≻ 0, S = S⊤
≻ 0, an incremental multiplier matrix

M for the nonlinearity f , and a scalar µ > 0 such that the following
conditions, along with (12c) with H = I hold:[
Ξ ⋆

Φ0 −2αI

]
+ Γ̂ ⊤MΓ̂ ⪯ 0 (40)

where the matrix Ξ is defined in (13), Γ̂ is defined in (19), and Φ0 is
defined in (20). Then the observer (3)with gain L1 = P−⊤

1 Y1 generates
an estimate v̂ defined in (17), which satisfies (21) for any constant
delay 0 ≤ τ ≤ h, where γ1, γ2 and γ3 are described in (22).

Proof. Taking Schur complements of (40) yields (37) with∆L = 0.
The inequality (12b) is not required for the case of constant delays
(Fridman, 2014a). The rest of the proof follows arguments used in
the proof of Theorem 2. □

5.2.2. Case II: Linear error dynamics
For f = 0, we have a system of the form

ẋ = Ax + Bw + g(t, u, y) (41a)
y = Cxτ + Dw, (41b)

with the symbols bearing the same meaning as in (1). The corre-
sponding unknown input observer has the structure

˙̂x = Ax̂ + L(ŷ − y) + g(t, u, y) (42a)
ŷ = Cx̂τ (42b)

that yields the error dynamics

ϵ̇ = Aϵ + LCϵτ − (B + LD)w. (43)

Taking the derivative of (43) with respect to t and recalling As-
sumption 4 yields the uncertain, linear time-delay system

ϵ̈ = Aϵ̇ + (L +∆L(t))C ϵ̇τ − (B + LD)ẇ, (44)

with ∆L(t) = −τ̇L = −Kη(t)L by (28). Note that η satisfies (29).
The following corollary provides LMIs to reconstruct the unknown
input w using the observer (42).

Corollary 2. Suppose Assumptions 1 and 4 hold. Let the scalars h, α,
K and ρ be fixed. Suppose there exist matrices P0 = P⊤

0 ≻ 0, P1 ≻ 0,
Y , Q = Q⊤

≻ 0, R = R⊤
≻ 0, S = S⊤

≻ 0, N, and scalars ν > 0,
µ > 0 such that the following inequalities, alongwith (12b) and (12c)
with H = I , hold:[
Ξ ⋆ ⋆

Φ1 −νI 0
Φ2 0 −νI

]
⪯ 0 (45)

where thematrixΞ has been defined in (13) andΦ1,Φ2 are described
in (20). Then the observer (3) with gain L = P−⊤

1 Y generates an
estimate v̂ defined in (17), which satisfies

lim sup
t→∞

∥v̂(t) − v(t)∥ ≤
√
µ∥G∥(∥A∥ + ∥C∥)∥w(·)∥∞

+
√
µ∥G∥∥ẇ(·)∥∞,

for any delay 0 ≤ τ (t) ≤ h.

Proof. We prove this by removing the matrices associated with
the nonlinearity, namely,M , Cq,Dq, and Bf from the conditions (18)
and Eq. (22). □

Next, we demonstrate that if, for the system (41), the pair
(A, C) is detectable, then the performance level γ is finite for any
performance output z = Hϵ.
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Theorem 3. Consider the system (41). Suppose (A, C) is detectable.
Then, for any performance output z = Hϵ and sufficiently small h,
there exists an observer (42) with gain L such that the observer error
dynamics (43) is L∞-stable with performance level γ < ∞, for any
0 < τ (t) ≤ h.

Proof. Since the pair (A, C) is detectable, this implies that there
exists a matrix L such that A + LC is Hurwitz. Consider the error
dynamics (43) with τ ≡ 0, namely ϵ̇ = (A + LC)ϵ − (B +

LD)w Since A + LC is Hurwitz, from Krichman, Sontag, and Wang
(2001, Proposition 2.6), we know that this implies the existence
of two positive scalars δ1 ∈ (0,∞) and δ2 ∈ (0, ∥A + LC∥) such
that ∥ϵ(t)∥ ≤ δ1e−δ2t∥ϵ(0)∥ +

δ1
δ2

∥B + LD∥∥w(·)∥∞. Therefore,
lim supt→∞∥z(t)∥ ≤

δ1
δ2

∥H∥∥B + LD∥∥w(·)∥∞, which implies
γ = ∥H∥∥B + LD∥δ1/δ2 < ∞. As we have LMI-based sufficient
conditions that are feasible for non-delay case, then by standard
arguments for delay-dependent conditions via simple Lyapunov–
Krasovskii functionals (Fridman, 2014a), the time-delay system
will preserve a finite gain for small enough delays. □

6. Simulation results on enzyme kinetics

To demonstrate the performance of our proposed observer, we
use a modification of an enzyme kinetic model for studying oscil-
lations at the cellular level, fitted to experimental data in Goodwin
(1965). A challenge in estimating the states of such cellular systems
in vitro or in vivo is that measurements are generally delayed due
to inherent time lags in the measurement apparatus/method. The
delay is also non-constant, typically exhibiting low variance.

We incorporate these difficulties into the nonlinear dynamical
system of enzyme kinetics as follows:

ẋ1(t) = −x1(t) +
360

43 + xr3
+ w(t) (46a)

ẋ2(t) = x1 − 0.6 x2 (46b)
ẋ3(t) = x2 − 0.8 x3 (46c)
y(t) = x1(t − τ (t)) + w(t). (46d)

Here, x1 represents the concentration of an enzymewhose synthe-
sis rate is regulated by a metabolite x3, and is regulated in turn
by the metabolite x2. The nonlinear term is akin to a Hill function,
and r is chosen to be 10, as in Chis, Banga, and Balsa-Canto (2011)
to induce oscillatory behavior in the cells. We made the following
modifications to illustrate the performance of our method: (a) the
unknown input w(t) representing measurement noise and intra-
cellular crosstalk, is added to the state x1 and the output y; this
w is generated from a uniform distribution with smoothing (to
ensure differentiability of w) and lies in the range [−1, 1]; and,
(b) the time delay signal τ (t) = 0.5 + 0.2 sin(0.2t) is introduced
to reflect the realistic challenge of delayed measurements: τ is
a positively biased sinusoidal signal bounded by h = 0.7 that
satisfies |τ̇ | ≤ 0.04.

We begin by rewriting the system (46) in the form (1). This
yields the matrices

A =

[
−1 0 0
1 −0.6 0
0 1 −0.8

]
, Bf =

[1
0
0

]
, B =

[1
0
0

]
C =

[
1 0 0

]
, D = 1, Cq =

[
0 0 1

]
, Dq = 0.

Note that since there is no control input or other redundant in-
formation, we have g = 0. With q = x3, the nonlinearity can be
written as f (q) = 360/(43 + q10), and g = 0. Numerically, we
obtain that the derivative of f is bounded by σf = 14.514, implying
from D’Alto and Corless (2013, Section 6.1) that an incremental
multiplier matrix for f is given by M = diag

([
kσ 2

f −k
])
,where

Fig. 1. (Top right) Decay of the state estimation error norm ∥e(t)∥. (Bottom left)
Decay of the unknown input estimation error norm ∥w(t) − ŵ(t)∥. (Top left) Time-
varying delay signal τ (t). (Bottom right) Unknown input w(t) and its estimate.

k > 0 is a decision variable for the LMIs to be solved. We fix α =

0.05, ρ = 2, and choose the known time-varying measurement
delay illustrated in the top right plot of Fig. 1. Note that ∥w(·)∥∞ ≤

1 as shown in the bottom right plot of Fig. 1. Since we wish to
estimate v = w, we deduce that H = 1, and therefore, G =[
1 0 0 1

]
.We solve the LMIs in Theorem 2 using CVX (Grant

& Boyd, 2008) to obtain k = 372.2974, ν = 1.83 × 105, L1 =[
−0.9971 −0.0005 0.0000

]⊤, and γ = 0.0016.
The cellular oscillator and proposed observer is simulated in

MATLAB. The result of our in-silico evaluation is shown in Fig. 1.
As expected, the state estimation and unknown input estimation
errors decay to small levels in spite of sharp changes in τ andw, and
the unknown input estimation (bottom-right plot) is of satisfactory
accuracy.

7. Conclusions

Many engineering applications involving cyber–physical sys-
tems or sensor signals arising from the internet-of-things pro-
duce measurable outputs that are delayed due to sensor lag or
communication protocols such as handshaking. In this paper, we
develop a systematic framework for developing observers that
are capable of leveraging delayed measurements to provide state
estimates in the presence of exogenous disturbances in the state
and measurement vector fields, in addition to nonlinearities in the
system structure. We express a wide range of nonlinearities via
incremental quadratic constraints and generate computationally
tractable conditions that are used to derive the observer gains.
Furthermore, we provide sufficient conditions that enable the
estimation of the unknown inputs acting on the system, despite
measurement delays; this problem is very challenging and has
remained relatively unexplored in the literature.

The suggested method has some limitations that pose open
challenges. For example, there is no automaticmethod for deriving
incremental multiplier matrices for a given nonlinearity, so some
domain-specific knowledge is required to fix the structure of M .
Another challenge is to relax the assumption of boundedness on ẋ,
although this is not a practical concern. Advantages of our observer
design strategy include simplicity and tractability of design, inher-
ent graceful degradation that enables weakening of the derogatory
effects of w in cases where w cannot be asymptotically estimated
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with arbitrary precision, and integrability into a wide range of sys-
tems arising in distributed autonomy, such as connected vehicles
and medical internet-of-things.
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