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Summary

In this paper, we show that small artificial delays in the feedback loops operat-
ing in different time scales may stabilize singularly perturbed systems (SPSs).
An artificial delay approach is proposed for the robust stabilization and L2-gain
analysis of SPSs in the finite frequency domain. A two-time-scale delayed static
output feedback controller is designed, in which the controller gains are for-
mulated via a linear matrix inequality (LMI) algorithm. A distinctive feature of
the proposed algorithm is setting controller parameters as free variables, which
increases the degrees of freedom in controller design and leads to more flexi-
bility in solving LMIs. Moreover, the proposed method is further extended to
analyze the finite frequency system specifications of SPSs. The L2-gain perfor-
mance analysis is conducted for parameter-independent subsystems in their
dominant frequency ranges, and the disturbance attenuation level of the origi-
nal high-order system is then estimated. Finally, the efficiency of the proposed
design method is verified in an active suspension system subject to multiple
finite frequency disturbance.
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1 INTRODUCTION

Singular perturbation theory has been most suitable for modeling multiple-time-scale physical phenomena occurring
at disparate time scales.1-5 The multiscale modeling and Lagrangian-Euler methods have been successfully applied in
flexible manipulators6 and elastic joint robots.7 A distinctive feature of singularly perturbed systems (SPSs) is the simul-
taneous presence of slow and fast transients in the dynamical response to system inputs. Some “parasitic” parameters,
such as small mass and time constants, may increase the order of system models and easily result in the ill-conditioned
numerical problems.3-5 Based on the mathematical framework of singular perturbations, control engineers construct the
reduced-order subsystems in different time scales for handling the slow and fast dynamics, respectively. These reduc-
tion methods have been already used in the design of efficient composite control algorithms for SPSs. Recently, the
problem of robust control with finite frequency domain specifications for SPSs has been intensively investigated by many
researchers.8-12 The reasons are twofold: (i) many physical systems are sensitive to finite frequency disturbance that
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generates vibrations at specific frequencies and (ii) slow and fast modes are sensitive to finite frequency external distur-
bance. Among them, the static output feedback (SOF) is of fundamental importance, because the physically available
measurements usually comprise only part of the state variables.13,14 However, some types of systems can be only stabilized
via SOFs with delays.15,16

Some classes of systems, such as chains of integrators or inverted pendulums that cannot be stabilized by memoryless
SOFs, can be stabilized by using SOFs with delays.17,18 Recently, the design of delayed controllers has been intensively
investigated, which takes advantage of the stabilizing effect of time delays to achieve the robust stability of practical
systems.13,14,19-23 Among them, a simple Lyapunov-based method was proposed in the work of Fridman and Shaikhet20

for analyzing stability and system specifications. Based on the Taylor expansion with the integral remainder, a model
transformation method was used for approximating the output derivatives in the works of Fridman et al.19,21,23 In the work
of Ramírez and Sipahi,24 a derivative-free multiple-delay proportional-retarded protocol is designed for the fast consensus
in a large-scale multiagent system. It is noted that, in the aforementioned works, the controller gains were set to be fixed
or prescribed in order to deal with bilinear matrix inequalities (BMIs) via feasible linear matrix inequalities (LMIs). Thus,
the conservativeness of the existing approaches comes from two aspects: the choice of controller parameters and the high
dimensionality of LMIs. It is not easy for the pre-selection of controller parameters to guarantee that the closed-loop
system matrix is Hurwitz for the high-order system with singular perturbation parameters.

In the literature, studies of the artificial time-delay approaches of SPSs is currently at an early stage. This paper sug-
gests a design of a two-time-scale delayed SOF controller for the robust stabilization and performance analysis of SPSs
by inserting multiple time-delays in the feedback loops running at different time scales. The key idea is to construct an
artificial two-time-scale state feedback controller with full state information and then to formulate the approximations of
immeasurable states or output derivatives. First, we present a singularly perturbed Euler-Lagrange formulation of physi-
cal systems. Then, a delayed SOF controller with two time scales is designed to directly deal with stability constraints and
finite frequency specifications of SPSs without weighting functions or frequency gridding. Different from most existing
papers, this work presents an LMI algorithm for designing the artificial time-delay controller for a two-time-scale sys-
tem, which avoids the pre-formulation of controller parameters and provides a more user-friendly platform for control
engineers. Moreover, the proposed method is further extended for analyzing the finite frequency system specifications
of parameter-independent subsystems and estimating the disturbance attenuation level of the original high-order SPS.
The example of an active suspension system is used to verify the effectiveness and merits of the proposed design method
subject to finite frequency disturbance.

Throughout this paper, j stands for the imaginary unit
√
−1. Rn and Cn are used to denote the n-dimensional Euclidean

space and complex space, respectively. Rn×m denotes the set of n × m real matrices. Hn represents the set of n × n
Hermitian matrices. Given matrix X ∈ Cn×n, its singular value is defined as 𝜎(X). A ⊗ B stands for the Kronecker prod-
uct of matrices A and B. The superscripts T and ∗ denote the matrix transpose and the complex transpose, respectively.
He(M) = M + MT denotes the Hermitian part of a square matrix M. The convex hull of points (A1,A2, … ,AN) is
denoted as col{A1,A2, … ,AN}. diag{M1,M2, … ,ML} denotes the matrix with M1,M2, … ,ML as diagonal blocks. Func-
tion int(·) is a integral function. L2[0,∞) is a space of square integrable Lebesgue functions 𝑓 ∶ [0,∞) → Rn with the
norm ||𝑓 ||L2 = [∫ ∞

0 ||𝑓 (t)||2dt]1∕2. Unless explicitly stated, the matrices are assumed to have compatible dimensions for
algebraic operation.

2 PROBLEM FORMULATION AND PRELIMINARIES

A nominal singularly perturbed Euler-Lagrange system is considered as follows:{
𝜁 (t) = A11𝜁 (t) + A12�̇� (t) + A13𝜂(t) + A14�̇�(t) + Bu1u(t),

𝜖2�̈�(t) = A21𝜁 (t) + A22�̇� (t) + A23𝜂(t) + A24�̇�(t) + Bu2u(t),
(1)

where 𝜁 (t) ∈ Rn and 𝜂(t) ∈ Rm are the slow and fast states, respectively, u(t) ∈ Rnu is the control input, and 𝜖 is the
singular perturbation parameter that satisfies 0 < 𝜖 ≪ 1.

Define new variables as

x(t) = col
{
𝜁 (t), �̇� (t)

} ≜ col {x1(t), x2(t)} , z(t) = col {𝜂(t), 𝜖�̇�(t)} ≜ col {z1(t), z2(t)} .
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Taking the external disturbance into consideration, system (1) can be represented in the standard singularly perturbed
form {

ẋ(t) = Ā11x(t) + Ā12z(t) + B̄u1u(t) + B̄w1w(t),
𝜖ż(t) = Ā21x(t) + Ā22z(t) + B̄u2u(t) + B̄w2w(t),

(2)

where w(t) ∈ Rnw is the external disturbance, E𝜖 = diag{I2n, 𝜖I2m}, and

Ā11 =
[

0 In
A11 A12

]
, Ā12 =

[
0 0

A13 A14

]
, B̄u1 =

[
0

Bu1

]
,

Ā21 =
[

0 0
A21 A22

]
, Ā22 =

[
0 Im

A23 A24

]
, B̄u2 =

[
0

Bu2

]
.

(3)

Assuming that A23 is invertible, the inversion of Ā22 can be obtained as

Ā−1
22 =

[−A−1
23 A24 A−1

23
Im 0

]
.

It is observed that the following state feedback controller with full state information can successfully stabilize an
SPS in (2):

u(t) = K̄1x1(t) + K̄2x2(t) + K1z1(t) + K2z2(t), (4)

where K̄1 ∈ Rnu×n, K̄2 ∈ Rnu×n, K1 ∈ Rnu×m, and K2 ∈ Rnu×m are controller gains. Note that controller (4) is inherently a
PD controller.

In the setup under consideration, only x1(t) and z1(t) are measurable. In order to estimate the differentiation items x2(t)
and z2(t), the stabilizing delay items can be used by introducing the time lags h1 and 𝜖h2 in system states x1(t) and z1(t),
respectively. The following approximation based on the Taylor expansion with integral remainder is utilized:

x2(t) =
1

h1
(x1(t) − x1(t − h1)) +

1
h1

Rx(t|h1) (5)

z2(t) =
1
𝜖h2

(z1(t) − z1(t − 𝜖h2)) +
1
𝜖h2

Rz(𝜖, t|h2), (6)

where the error items are written as

Rx(t|h1) = ∫
t

t−h1

(s − t + h1)x3(s)ds, Rz(𝜖, t|h2) = ∫
t

t−𝜖h2

(s − t + 𝜖h2)z3(s)ds

x3(t) = ẋ2(t), z3(t) = ż2(t).

The following controller, which is referred to as a delayed SOF controller,21 is formulated as

u(t, 𝜖) = K̄1x1(t) +
1

h1
K̄2 (x1(t) − x1(t − h1)) + K1z1(t) +

1
𝜖h2

K2 (z1(t) − z1(t − 𝜖h2)) . (7)

Remark 1. The reason for the choice of the two-time-scale control structure in (7) is to achieve the simultane-
ous control of slow and fast states, and the controller gains can be obtained based on the design of reduced-order
subsystems.

Consider (5) and (6), Equation (8) is further represented as

u(t, 𝜖) = K̄x(t) + Kz(t) − 1
h1

K̄2Rx(t|h1) −
1
𝜖h2

K2Rz(𝜖, t|h2). (8)

Due to the limitations of measurements, controller (4) cannot be directly implemented in system (2). To this end, we
resort to designing a delayed SOF controller (8) to approximately function as a state feedback controller in order to stabilize
system (2).

Remark 2. The proposed delayed controller (8) depends on both singular perturbation parameter 𝜖 and small time
delays h1 and h2. The two-time-scale characteristic of (8) leads to two different types of Taylor's formulation: one is
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𝜖-dependent in (6) and the other is 𝜖-independent in (5). In contrast to the work of Fridman and Shaikhet,21 the Taylor
expansion formulations in (5) and (6) enable the control engineers to use past measurements in different time-scales
for the formulation of control laws.

Substituting (7) into system (2) yields

⎧⎪⎨⎪⎩
ẋ(t) = 11x(t) +12z(t) − 1

h1
d

11x1(t − h1) − 1
𝜖h1

d
12z1(t − 𝜖h2) + B̄w1w(t),

𝜖ż(t) = 21x(t) +22z(t) − 1
h1
d

21x1(t − h1) − 1
𝜖h2

d
22z1(t − 𝜖h2) + B̄w2w(t),

(9)

where

11 = Ā11 + B̄u1

(
K̄1 +

1
h1

K̄2

)
[In 0], 12 = Ā12 + B̄u1

(
K1 +

1
𝜖h2

K2

)
[Im 0],

21 = Ā21 + B̄u2

(
K̄1 +

1
h1

K̄2

)
[In 0], 22 = Ā22 + B̄u2

(
K1 +

1
𝜖h2

K2

)
[Im 0],

d
11 = B̄u1K̄2, d

12 = B̄u1K2, d
21 = B̄u2K̄2, d

22 = B̄u2K2.

Considering (5), (6), and (8), system (9) can be further represented as

⎧⎪⎨⎪⎩
ẋ(t) = ̄11x(t) + ̄12z(t) − 1

h1
d

11Rx(t|h1) − 1
𝜖h2

d
12Rz(𝜖, t|h2) + B̄w1w(t),

𝜖ż(t) = ̄21x(t) + ̄22z(t) − 1
h1
d

21Rx(t|h1) − 1
𝜖h2

d
22Rz(𝜖, t|h2) + B̄w2w(t),

(10)

where

̄11 = Ā11 + B̄u1K̄, ̄21 = Ā21 + B̄u2K̄, K̄ =
[
K̄1 K̄2

]
,

̄12 = Ā12 + B̄u1K, ̄22 = Ā22 + B̄u2K, K = [K1 K2] .

Next, the separation of time scales is conducted for the model simplification and finite frequency disturbance atten-
uation. By similar arguments to the work of Anastassiou and Dragomir,25 the bounds of integral remainders are given
as

|Rz(𝜖, t|h2)| ≤ 𝜖2h2
2

2
ess sup

t∈[t−𝜖h2,t]
|z3(t)| .

Thus, it is easy to verify that

lim
𝜖→0

1
𝜖

Rz(𝜖, t|h1, h2) = 0. (11)

Consider (11), and the following quasi-steady state of the fast state is obtained by setting 𝜖 = 0 in (10):

zs(t) = −̄−1
22 ̄21x(t) + 1

h1
̄−1

22 d
21R̃x(t|h1, h2) − ̄−1

22 B̄w2ws(t), (12)

where ws(t) is the low frequency part of w(t), and

R̃x(t|h1) = ∫
t

t−h1

(s − t + h1)x3s(s)ds.

By replacing z(t) by zs(t) in (10), the slow subsystem is obtained as

ẋs(t) = sxs(t) −
1

h1
rsR̃x(t|h1) + wsws(t), (13)

where xs(t) is the slow component of x(t), and

s = ̄11 − ̄12̄−1
22 ̄21, rs = d

11 − ̄12̄−1
22 d

21, ws = B̄w1 − ̄12̄−1
22 B̄w2.
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Letting zf(t) = z(t) − zs(t), the fast subsystem is represented as

ż𝑓 (𝜏) = ̄22z𝑓 (𝜏) −
1

h2
d

22R̃z(𝜏|h2) + B̄w2w𝑓 (𝜏), (14)

where 𝜏 is the fast time scale satisfying t = 𝜖𝜏, z f (𝜏) is the fast component of z(𝜏), wf (𝜏) is the high frequency external
disturbance, and

R̃z(𝜏|h2) = ∫
𝜏

𝜏−h2

(s′ − 𝜏 + h2)z3𝑓 (s′)ds′.

Remark 3. From the representations of subsystems (13) and (14), we can see that K1 and K2 are used to control fast
states, while K̄1, K̄2, K1, and K2 are related with system performance of slow subsystem (13).

Based on the slow-fast decomposition, the states and disturbance input of the resulting closed-loop system (10) are
approximated as

x(t, 𝜖) = xs(t) + O(𝜖), z(t, 𝜖) = zs(t) + z𝑓 (𝜖, t) + O(𝜖), w(t, 𝜖) = ws(t) + w𝑓 (𝜖, t) + O(𝜖),

for all finite t ≥ 0 and all 𝜖 ∈ (0, 𝜖∗].
Now, we are ready to present the objective of this work: to choose appropriate controller gains K1,K2, K̄1, and K̄2 to

achieve the internal stability of the closed-loop system (9) with attenuating the influence of finite frequency external
disturbance w(t) on the measurement output z(t).

In frequency domain, the disturbance attenuation problem of system (9) can be decomposed into those of subsystems
subject to finite frequency disturbance. Moreover, two target frequency regions are defined for representing the finite
frequency specifications

Λl = {𝜔| 𝜔1 < 𝜔 < 𝜔2}, Λh = {𝜛|𝜛1 < 𝜛 < 𝜛2}, (15)

where 𝜔 and 𝜛 are frequency scales with the relationship of 𝜛 = 𝜖𝜔, 𝜔1, 𝜔2, 𝜛1, and 𝜛2 are the cutoff frequencies
operating in different frequency scales. In the following, we provide a time-domain characterization of the input-output
stability of the decoupled subsystems subject to finite frequency disturbance. Λl and Λh are used to characterize the their
dominant frequency ranges of subsystems.

Definition 1 (See the work of Iwasaki and Hara26).
For the given disturbance attenuation indices 𝛾 s and 𝛾 f, finite frequency disturbance is said to be locally attenuated
by 𝛾 if the slow subsystem (13) and the fast subsystem (14) are internally stable, and

∫
∞

0
xT

s1(t)xs1(t)dt ≤ 𝛾2
s ∫

∞

0
wT

s (t)ws(t)dt, (16)

∫
∞

0
zT
𝑓1(𝜏)z𝑓1(𝜏)dt ≤ 𝛾2

𝑓 ∫
∞

0
wT
𝑓
(𝜏)w𝑓 (𝜏)d𝜏, (17)

for all solutions of (13) and (14) with ws ∈ L2[0,∞) and wf ∈ L2[0,∞) such that

∫
∞

0

(
𝜔1xs(t) + jẋs(t)

) (
𝜔2xs(t) + j ẋs(t)

)Tdt ≤ 0, (18)

∫
∞

0

(
𝜛1z𝑓 (𝜏) + jż𝑓 (𝜏)

) (
𝜛2x(t) + jż𝑓 (𝜏)

)Td𝜏 ≤ 0. (19)

The disturbance attenuation index 𝛾 of the whole system (10) will be estimated based on the system parameters and
the values of 𝛾 s and 𝛾 f.

Note that the equivalence between the formulation of the frequency sets shown in (15) and inequalities (18) and (19)
can be investigated by using Parseval's theorem in the work of Zhou and Doyle.27

Before ending this section, the following lemmas are used for developing our main results.
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Lemma 1 (Jensen's inequality16,21).
Denote G = ∫ b

a 𝑓 (s)x(s)ds, where a ≤ b, f ∶ [a, b] → [0,∞), x(s) ∈ Rn and the integration concerned is well defined.
Then, for any matrix R ∈ Cn×n satisfying R > 0, the following inequality holds:

GTRG ≤ ∫
b

a
𝑓 (𝜃)d𝜃 ∫

b

a
𝑓 (s)xT(s)Rx(s)ds.

Lemma 2 (S-procedure26,28).
Let Θ ∈ Cn×n and M ∈ Cn×n be Hermitian matrices, and 𝜁 ∈ Cn be a vector. The following conditions are equivalent:

(1) ∃𝜏 ∈ R such that 𝜏 ≥ 0, Θ + 𝜏M ≤ 0; and
(2) 𝜁TΘ𝜁 < 0 for all 𝜁 ≠ 0 such that 𝜁TM𝜁 > 0.

3 FINITE FREQUENCY APPROACH FOR THE DESIGN OF AN ARTIFICIAL
DELAY CONTROLLER

3.1 Internal stability
We present the internal stability analysis of the closed-loop system (10) for w(t) = 0. The internal stability problem of an
SPS can be decomposed into two separate stability problems: one for the slow subsystem (13) and the other for the fast
subsystem (14). Condition w(t) = 0 implies that ws(t) = 0,wf (𝜏) = 0.

Then, the multiplier method will be used to represent the derived delay-dependent stability criteria in the form of LMIs,
which leads to a significant reduction of conservatism with respect to the existing approaches. The following theorem
investigates the internal stability of subsystem (14) with no high frequency disturbance input, ie, wf (𝜏) = 0.

Theorem 1. For given small positive scalars 𝛿1 and 𝛿1 and a small constant delay h2, a delayed SOF controller (8) can
stabilize subsystem (14), if there exist symmetric matrices P𝑓1 ∈ Rm×m, P𝑓3 ∈ Rm×m, L𝑓 ∈ Rnu×nu , R𝑓 ∈ Rnu×nu , and
matrices P𝑓2 ∈ Rm×m, 𝑓1 ∈ Rnu×m, and 𝑓2 ∈ Rnu×m, such that the following LMIs are satisfied:⎡⎢⎢⎢⎢⎢⎣

He(P𝑓 Ā22 + 𝜒2) − 1
h2

P𝑓 B̄u2 ĀT
22DT

𝑓
P𝑓3 + 𝜒1 0

⋆ −4R𝑓 − 1
𝜙

BT
u2P𝑓3 0

⋆ ⋆ −He(P𝑓3) T
𝑓2BT

u2

⋆ ⋆ ⋆ −He
(

BT
u2P𝑓3

)
+ h4

2R𝑓

⎤⎥⎥⎥⎥⎥⎦
< 0, (20)

[
−𝛿1Im ⋆

P𝑓2Bu2 −Im

]
< 0,

[
−𝛿1Im ⋆

P𝑓3Bu2 − Bu2L𝑓 −Im

]
< 0, (21)[

P𝑓1 P𝑓2

⋆ P𝑓3

]
> 0, (22)

where Df = [0 Im], and

P𝑓 =
[

P𝑓1 P𝑓2

⋆ P𝑓3

]
, 𝜒1 =

[T
𝑓1BT

u2

T
𝑓2BT

u2

]
, 𝜒2 =

[
0 0

Bu2𝑓1 Bu2𝑓2

]
. (23)

Proof. We investigate the asymptotical stability of subsystem (14). Inspired from the work of Fridman and Shaikhet,21

the following Lyapunov-Krasovskii functional is used:

V𝑓 (𝜏) = V𝑓1(𝜏) + V𝑓2(𝜏), (24)

wherein we choose V𝑓1(𝜏) = zT
𝑓
(𝜏)P𝑓 z𝑓 (𝜏), P𝑓 = PT

𝑓
> 0. Differentiating Vf1(𝜏) with respect to the trajectories of

system (14) is written as

V̇𝑓1(𝜏) = 2zT
𝑓
(𝜏)P𝑓 ż𝑓 (𝜏),

= zT
𝑓
(𝜏)He(P𝑓 ̄22)z𝑓 (𝜏) −

2
h2

zT
𝑓
(𝜏)P𝑓d

22R̃z(𝜏|h2),
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where

R̃z(𝜏|h2) = ∫
𝜏

𝜏−h2

(s′ − 𝜏 + h2)z3𝑓 (s′)ds′.

To compensate the items R̃z(𝜏|h2) in (25), the formulation of Vf2(𝜏) is given as

V𝑓2(𝜏) = h2
2 ∫

𝜏

𝜏−h2

(s′ − 𝜏 + h2)2zT
3𝑓 (s

′)KT
2 R𝑓K2z3𝑓 (s′)ds′,

with Rf > 0. Moreover, the derivative of Vf2(𝜏) with respect to time scale 𝜏 is given as

V̇𝑓2(𝜏) = h4
2zT

3𝑓 (𝜏)K
T
2 R𝑓K2z3𝑓 (𝜏) − 2h2

2 ∫
𝜏

𝜏−h2

(s′ − 𝜏 + h2)zT
3𝑓 (s

′)KT
2 R𝑓K2z3𝑓 (s′)ds′. (25)

Based on the Jensen's inequality in Lemma 1, the following relaxed technique is used:

−2h2
2 ∫

𝜏

𝜏−h2

(s′ − 𝜏 + h2)zT
3𝑓 (s

′)KT
2 R𝑓K2z3𝑓 (s′)ds′ ≤ −4R̃T

z (𝜏|h2)KT
2 R𝑓K2R̃T

z (𝜏|h2). (26)

Define D𝑓 =
[

0 Im
]
. From (14), it is easy to obtain that, when wf (𝜏) = 0,

z3𝑓 (𝜏) = D𝑓 ż𝑓 (𝜏),

=
[

D𝑓 ̄22 − 1
h2

D𝑓 B̄u2

]
𝜙(t),

(27)

where 𝜑(𝜏) = col{z𝑓 (𝜏), K2R̃z2(𝜏|h2)}.
By using (26) and (27) in (25), we arrive at

V̇𝑓 (𝜏) = V̇𝑓1(𝜏) + V̇𝑓2(𝜏) ≤ 𝜑T(𝜏)
[

He(P𝑓 Ā22 + P𝑓 B̄u2K) − 1
h2

P𝑓 B̄u2

⋆ −4R𝑓

]
𝜑(𝜏)

− 𝜑T(𝜏)
⎡⎢⎢⎣

ĀT
22DT

𝑓
+ KTB̄T

u2DT
𝑓

− 1
h2

B̄T
u2DT

𝑓

⎤⎥⎥⎦
(
−R̂−1

𝑓

)−1⎡⎢⎢⎣
ĀT

22DT
𝑓
+ KTB̄T

u2DT
𝑓

− 1
h2

B̄T
u2DT

𝑓

⎤⎥⎥⎦
T

𝜑(𝜏),

where R̂𝑓 = KT
2 (h

4
1R𝑓 )K2.

By virtue of the Schur complement formula, condition V̇𝑓 (𝜏) < 0 is equivalent to

⎡⎢⎢⎢⎢⎣
He
(

P𝑓 Ā22 + P𝑓 B̄u2K
)

− 1
h2

P𝑓 B̄u2 ĀT
22DT

𝑓
+ KTB̄T

u2DT
𝑓

⋆ −4R𝑓2 − 1
h2

B̄T
u2DT

𝑓

⋆ ⋆ −R̂−1
𝑓

⎤⎥⎥⎥⎥⎦
< 0. (28)

In order to obtain an LMI, matrix Pf is partitioned as

P𝑓 =
[ P𝑓1 P𝑓2

⋆ P𝑓3

]
.

Define a transformation matrix as 𝑓1 = diag{I2n, I2n, I2n,P𝑓3}. Performing a congruent transformation 𝑓1 on (28)
yields

⎡⎢⎢⎢⎢⎣
He(P𝑓 Ā22 + P𝑓 B̄u2K) − 1

h2
P𝑓 B̄u2 ĀT

22DT
𝑓

P𝑓2 + KTB̄u2DT
𝑓

P𝑓3

⋆ −4R𝑓2 − 1
h2

B̄T
u2DT

𝑓
P𝑓3

⋆ ⋆ −P𝑓3R̂−1
𝑓

P𝑓3

⎤⎥⎥⎥⎥⎦
< 0. (29)
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The following inequality is derived based on the definition of positive definite matrix:

(M − N−1)TN(M − N−1) ≥ 0,

where N is a positive definite matrix, which is equivalent to

MTN−1M − He(M) + N ≥ 0. (30)

Let M = Pf 3 and N = R̂𝑓 in (30), we construct

−P𝑓3R̂−1
𝑓

P𝑓3 ≤ −He(P𝑓3) + R̂𝑓 . (31)

Consider (31) together with D𝑓 B̄u2 = Bu2, BMI (29) becomes

⎡⎢⎢⎢⎣
He
(

P𝑓 Ā22 + P𝑓 B̄u2K
)

− 1
h2

P𝑓 B̄u2 ĀT
22DT

𝑓
P𝑓3 + KTB̄T

u2DT
𝑓

P𝑓3

⋆ −4R𝑓 − 1
h2

BT
u2P𝑓3

⋆ ⋆ −He(P𝑓3)

⎤⎥⎥⎥⎦
−

[ 0
0

KT
2

](
−R̄−1

𝑓

)−1
[0 0 K2] < 0,

with R̄𝑓 = h4
2R𝑓 , which is equivalent to

⎡⎢⎢⎢⎢⎢⎣

He
(

P𝑓 Ā22 + P𝑓 B̄u2K
)

− 1
h2

P𝑓 B̄u2 ĀT
22DT

𝑓
P𝑓3 + KTB̄T

u2DT
𝑓

P𝑓3 0

⋆ −4R𝑓2 − 1
h2

BT
u2P𝑓3 0

⋆ ⋆ −He(P𝑓3) KT
2

⋆ ⋆ ⋆ −R̄𝑓

⎤⎥⎥⎥⎥⎥⎦
< 0, (32)

based on the Schur complement lemma. Note that (32) is a BMI on K1, K2, Pf, Rf 1, and Rf 2, which is not a convex
optimal problem. Thus, a BMI may not be efficiently solved by MATLAB.

A slack variable L𝑓 ∈ Rnu×nu is introduced that satisfies P𝑓 B̄u2 = B̄u2L𝑓 , and then, we can obtain

P𝑓2Bu2 = 0, P𝑓3Bu2 = Bu2L𝑓 ,

such that

P𝑓 B̄u2K = B̄u2L𝑓K =
[

0 0
Bu2L𝑓K1 Bu2L𝑓K2

]
,

KTB̄T
u2DT

𝑓
P𝑓3 =

[
KT

1 BT
u2P𝑓3

KT
2 BT

u2P𝑓3

]
=

[
KT

1 LT
𝑓

BT
u2

KT
2 LT

𝑓
BT

u2

]
.

(33)

Define a transformation matrix as

𝑓2 = diag{I2n, I2n, I2n, I2n,P𝑓3Bu2}.

Premultiply and postmultiply (32) with 𝑓2 and  T
𝑓2, respectively, yield

⎡⎢⎢⎢⎢⎢⎣

He(P𝑓 Ā22 + P𝑓 B̄u2K) − 1
h2

P𝑓 B̄u2 ĀT
22DT

𝑓
P𝑓3 + 𝜒1 0

⋆ −4R𝑓 − 1
h2

BT
u2P𝑓3 0

⋆ ⋆ −He(P𝑓3) KT
2 BT

u2P𝑓3

⋆ ⋆ ⋆ −P𝑓3Bu2R̄−1
𝑓

BT
u2P𝑓3

⎤⎥⎥⎥⎥⎥⎦
< 0, (34)

where 𝜒1 = KTB̄T
u2DT

𝑓
P𝑓3.
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Setting M = BT
u2P𝑓3 and N = R̄𝑓 in (35), we have

−P𝑓3Bu2R̄−1
𝑓

BT
u2P𝑓3 ≤ −He

(
BT

u2P𝑓3
)
+ R̄𝑓 . (35)

Consider (35), the sufficient condition for the feasibility of (34) is written as

⎡⎢⎢⎢⎢⎢⎣

He
(

P𝑓 Ā22 + 𝜒2
)

− 1
h2

P𝑓 B̄u2 ĀT
22DT

𝑓
P𝑓3 + 𝜒1 0

⋆ −4R𝑓 − 1
h2

BT
u2P𝑓3 0

⋆ ⋆ −He(P𝑓3) KT
2 BT

u2P𝑓3

⋆ ⋆ ⋆ −He
(

BT
u2P𝑓3

)
+ R̄𝑓

⎤⎥⎥⎥⎥⎥⎦
< 0, (36)

where

𝜒2 =
[ 0 0

Bu2L𝑓K1 Bu2L𝑓K2

]
, 𝜒1 =

[
KT

1 LT
𝑓

BT
u2

KT
2 LT

𝑓
BT

u2

]
.

The following multipliers are defined to convert (36) into an LMI:

𝑓1 = L𝑓K1, 𝑓2 = L𝑓K2.

such that

𝜒1 =

[T
𝑓1BT

u2

T
𝑓2BT

u2

]
, 𝜒2 =

[
0 0

Bu2𝑓1 Bu2𝑓2

]
,

which can be further represented as (20). Moreover, the following constraints are introduced:

(P𝑓2Bu2)T(P𝑓2Bu2) < 𝛿1Im,

(P𝑓3Bu2 − Bu2L𝑓 )T(P𝑓3Bu2 − Bu2L𝑓 ) < 𝛿1Im,

where 𝛿1 and 𝛿1 are sufficiently small positive scalars, which are equivalent to (21) based on the Schur complement
lemma.

After solving Theorem 1, the fast controller gain K can be calculated. Thus, ̄12 and ̄22 that depend on K are known
matrices. Letting Cm = ̄12̄−1

22 , we have

s = ̄11 − Cm̄21 = Ās + B̄usK̄, rs = B̄usK̄2, ws = B̄ws,

where
Ās = Ā11 − CmĀ21, B̄us = B̄u1 − CmB̄u2 = col{0,Bus}, B̄ws = B̄w1 − CmB̄w2.

Thus, with fast controller, the slow subsystem (13) is of the same structure as the fast subsystem (14).
We can directly extend the result in Theorem 1 to the slow subsystem (13). Then, the following theorem presents the

sufficient conditions for the internal stability of the slow subsystem (13) with ws(t) = 0.

Theorem 2. For given small positive scalars 𝛿2 and 𝛿2 and a small constant delay h1, a delayed SOF controller (8) can
stabilize subsystem (13), if there exist symmetric matrices Ls ∈ Rnu×nu , Rs ∈ Rnu×nu , Ps1 ∈ Rn×n, and Ps3 ∈ Rn×n, and
matrices Ps2 ∈ Rn×n, s1 ∈ Rnu×n, and s2 ∈ Rnu×n, such that the following LMIs hold:

⎡⎢⎢⎢⎢⎢⎣

He
(

PsĀs + 𝜒4
)

− 1
h1

B̄us ĀT
s DT

s Ps3 + 𝜒3 0

⋆ −4Rs − 1
h1

BT
usPs3 0

⋆ ⋆ −He(Ps3) T
s2BT

us

⋆ ⋆ ⋆ −He
(

BT
usPs3

)
+ R̄s

⎤⎥⎥⎥⎥⎥⎦
< 0, (37)

[ −𝛿2In ⋆

Ps2Bus −In

]
< 0,

[
−𝛿2In ⋆

Ps3Bus − BusLs −In

]
< 0, (38)

[ Ps1 Ps2

⋆ Ps3

]
> 0, (39)
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where 𝜙 = h2 − h1, R̄s = h4
1Rs1 + h4

2Rs2,Ds = [0 Im], and

Ps =
[ Ps1 Ps2

⋆ Ps3

]
, 𝜒3 =

[T
s1BT

us

T
s2BT

us

]
, 𝜒4 =

[ 0 0
Buss1 Buss2

]
.

The proof of the internal stability of the slow subsystem (13) is similar to that of Theorem 1, which is omitted here.

Remark 4. The design methods in the work of Fridman and Shaikhet21 depend on the pre-selection of Ki, which results
from full state feedback that guarantees the stabilization and the values of delay that guarantees the LMIs feasibility.
Moreover, it is shown that the resulting LMIs are feasible for such choice of gains and small enough delays. In this
paper, we provide LMIs for the direct design of the delayed controller gains. The example in Section 6 illustrates the
efficiency of the presented design method.

Remark 5. Note that BMI (34) is in the standard form of the work of He and Wang.29 Compared with the iter-
ative LMI method in the aforementioned work,29 our method is derived based on the relaxed technique, which
avoids formulating the initial values, investigating the stopping criterion, and proving the uniform convergence
of iterations.

4 L2- GAIN PERFORMANCE ANALYSIS IN FINITE FREQUENCY DOMAIN

It has been mentioned in the work of Kokotovic et al1 that SPSs are sensitive to low frequency and high frequency exter-
nal disturbance. The closed-loop SPS with the proposed delayed controller is designed to be robust to two different types
of disturbance ws(t) and wf (𝜏). The frequency bands of ws(t) and wf(𝜏) are characterized by using the cutoff frequen-
cies 𝜔1, 𝜔2, 𝜛1, and 𝜛2. Thus, the controller gains K̄1, K̄2 and K1,K2 are separately designed based on the slow and fast
performance specifications, which will finally arrive at a physically realizable composite controller (8).

First, we present the sufficient conditions for the high frequency disturbance attenuation of system (14).

Theorem 3. Given the cutoff frequencies 𝜛1 and𝜛2, and a positive scalar 𝛾 f, subsystem (14) with K1 and K2 can achieve
the finite frequency specification (17) with respect to (19), if there exist symmetric matrices P𝑓1 ∈ Rm×m,P𝑓3 ∈ Rm×m,L𝑓 ∈
Rnu×nu ,𝑓 ∈ R2m×2m, 𝑓 ∈ R2m×2m,R𝑓 ∈ Rnu×nu , and matrices P𝑓2 ∈ Rm×m, 𝑓1 ∈ Rnu×m, and 𝑓2 ∈ Rnu×m,
such that LMIs (21)-(22) hold, and

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Θ̄𝑓1 Θ̄𝑓2 P𝑓 B̄w2 𝑓 + j𝜛c𝑓 ĀT
22DT

𝑓
P𝑓3 + 𝜒1 0

⋆ Θ̄𝑓3 0 0 − 1
h2

BT
u2P𝑓3 0

⋆ ⋆ −𝛾2
𝑓

Im 0 B̄T
w2DT

𝑓
P𝑓3 0

⋆ ⋆ ⋆ −𝜛1𝜛2𝑓 0 0
⋆ ⋆ ⋆ ⋆ −He(P𝑓3) T

𝑓2BT
u2

⋆ ⋆ ⋆ ⋆ ⋆ −He
(

BT
u2P𝑓3

)
+ 4R𝑓

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
< 0, (40)

where 𝜛c = 0.5(𝜛1 + 𝜛2), matrices P𝑓 ,R𝑓1,R𝑓2, R̄𝑓 , 𝜒1, and 𝜒2 have been given in Theorem 1, and

Θ̄𝑓1 = He
(

P𝑓 Ā22 + 𝜒2
)
+ ET

𝑓
E𝑓 −𝑓 , Θ̄𝑓2 = − 1

h2
P𝑓 B̄u2, Θ̄𝑓3 = −4R𝑓 , E𝑓 = [Im 0]T . (41)

Proof. We shall investigate the L2-gain performance of the closed-loop subsystem (14) under zero initial conditions.
The performance index can be denoted as

J𝑓 = ||z𝑓1(𝜏)||22 − 𝛾2
𝑓
||w𝑓 (𝜏)||22.

The attenuation of high frequency disturbance wf(𝜏) is considered, which aims to realize the system specification (17)
subject to (19).
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Taking the Lyapunov functional Vf (𝜏) in (24) into account, we can obtain that

J𝑓 ≤ ∫
∞

0
zT
𝑓1(𝜏)z𝑓1(𝜏) − 𝛾2

𝑓
wT
𝑓
(𝜏)w𝑓 (𝜏) + V̇𝑓 (𝜏) d𝜏. (42)

When wf (𝜏) ≠ 0, the derivative of Vf (𝜏) is obtained as

V̇𝑓 (𝜏) ≤ 𝜉T(𝜏)

⎡⎢⎢⎢⎢⎣
He
(

P𝑓 Ā22 + P𝑓 B̄u2K
)

− 1
h2

P𝑓 B̄u2 P𝑓 B̄w2 0

⋆ −4R𝑓 0 0
⋆ ⋆ 0 0
⋆ ⋆ ⋆ 0

⎤⎥⎥⎥⎥⎦
𝜉(𝜏)

− 𝜉T(𝜏)

⎡⎢⎢⎢⎢⎢⎣

ĀT
22D𝑓 + KTB̄T

u2D𝑓

− 1
h2

B̄T
u2DT

𝑓

B̄T
w2DT

𝑓

0

⎤⎥⎥⎥⎥⎥⎦
(
−R̂−1

𝑓

)−1

⎡⎢⎢⎢⎢⎢⎣

ĀT
22DT

𝑓
+ KTB̄T

u2DT
𝑓

− 1
h2

B̄T
u2DT

𝑓

B̄T
w2DT

𝑓

0

⎤⎥⎥⎥⎥⎥⎦

T

𝜉(𝜏),

(43)

where 𝜉(𝜏) = col{𝜑(𝜏),w𝑓 (𝜏), ż𝑓 (𝜏)}. Combining (43) with (42), we have

J𝑓 ≤ ∫
∞

0
𝜉T(𝜏)Θ𝑓 𝜉(𝜏)d𝜏,

where

Θ𝑓 =

⎡⎢⎢⎢⎢⎢⎣

He
(

P𝑓 Ā22 + P𝑓 B̄u2K
)
+ ET

𝑓
E𝑓 − 1

h2
P𝑓 B̄u2 P𝑓 B̄w2 0

⋆ −4R𝑓 0 0
⋆ ⋆ −𝛾2

𝑓
Inw 0

⋆ ⋆ ⋆ 0

⎤⎥⎥⎥⎥⎥⎦
+

⎡⎢⎢⎢⎢⎢⎣

ĀT
22D𝑓 + KTB̄T

u2D𝑓

− 1
h2

BT
u2

B̄T
w2DT

𝑓

0

⎤⎥⎥⎥⎥⎥⎦
(
−R̂−1

𝑓

)−1

⎡⎢⎢⎢⎢⎢⎣

ĀT
22DT

𝑓
+ KTB̄T

u2DT
𝑓

− 1
h2

BT
u2

B̄T
w2DT

𝑓

0

⎤⎥⎥⎥⎥⎥⎦

T

.

Denote J̄𝑓 = ∫ ∞
0 𝜉T(𝜏)Θ𝑓 𝜉(𝜏)d𝜏. Following the similar argument in the work of Sun et al,9 it is readily verified that

J̄𝑓 = 1
2𝜋 ∫

∞

−∞
𝜉T(𝜔)Θ𝑓 𝜉(𝜔)d𝜔,

based on the Parseval's theorem. It follows from the S-procedure in Lemma 2 that the following condition:

𝜉T(𝜔)(Θ𝑓 + M𝑓 )𝜉(𝜔) < 0, U2𝜉(𝜔) = 0, (44)

can guarantee that
𝜉T(𝜔)Θ𝑓 𝜉(𝜔) < 0, and 𝜉T(𝜔)M𝑓 𝜉(𝜔) ≥ 0,

where M ∈ Mf, and
M𝑓 =

{
FT(Φ⊗ 𝑓 + Ψ⊗𝑓 )F ∶ 𝑓 ,𝑓 ∈ H2m

}
, (45)

with

F =
[ Im 0 0 0

0 0 0 Im

]
. (46)

Then, a frequency set is defined as W𝑓 = {𝜀 ∈ C ∶ 𝜀 ≠ 0, 𝜀TM𝑓 𝜀 ≥ 0, ∃M𝑓 ∈ M𝑓}, which can be used to express the
prescribed finite frequency region.9,26

In the work of Iwasaki and Hara,26 the frequency set Λh can be specified by setting

Φ =
[ 0 1

1 0

]
, Ψ =

[ −1 j𝜛c

−j𝜛c −𝜛1𝜛2

]
.



12 XU ET AL.

From (45) and (46), we can reformulate (44) as

Θ𝑓 + M𝑓 ≤
⎡⎢⎢⎢⎢⎢⎣

He(P𝑓 Ā22 + P𝑓 B̄uK) + ET
𝑓

E𝑓 − 1
h2

P𝑓 B̄u P𝑓 B̄w2 0

⋆ −4R𝑓 0 0
⋆ ⋆ −𝛾2

𝑓
Im 0

⋆ ⋆ ⋆ 0

⎤⎥⎥⎥⎥⎥⎦
+

⎡⎢⎢⎢⎢⎢⎣

ĀT
22D𝑓 + KTB̄T

u D𝑓

− 1
h2

BT
u

B̄T
w2DT

𝑓

0

⎤⎥⎥⎥⎥⎥⎦
(
−R̂−1

𝑓

)−1

⎡⎢⎢⎢⎢⎢⎣

ĀT
22DT

𝑓
+ KTB̄T

u DT
𝑓

− 1
h2

BT
u

B̄T
w2DT

𝑓

0

⎤⎥⎥⎥⎥⎥⎦

T

+
[ Im 0 0 0

0 0 0 Im

]T [−𝑓 𝑓 + j𝜛c𝑓

⋆ −𝜛1𝜛2𝑓

] [ Im 0 0 0
0 0 0 Im

]
.

(47)

Condition (47) is equivalent to

⎡⎢⎢⎢⎢⎢⎢⎢⎣

Θ̄𝑓1 Θ̄𝑓2 P𝑓 B̄w2 𝑓 + j𝜛c𝑓 ĀT
22D𝑓 + KTB̄T

u D𝑓

⋆ Θ̄𝑓3 0 0 − 1
h2

BT
u P𝑓2

⋆ ⋆ −𝛾2
𝑓

Im 0 B̄T
w2DT

𝑓

⋆ ⋆ ⋆ −𝜛1𝜛2𝑓 0
⋆ ⋆ ⋆ ⋆ −R̂−1

𝑓

⎤⎥⎥⎥⎥⎥⎥⎥⎦
< 0, (48)

where Θfi is shown in (41). Following the same line with Theorem 1, the sufficient condition for the feasibility of (48)
is given as LMI (40). This completes the proof.

Now, the following theorem presents the sufficient conditions for the attenuation of low frequency external disturbance.

Theorem 4. Given the cutoff frequencies 𝜔1 and 𝜔2 and a positive scalar 𝛾 s, subsystem (13) with K̄1 and K̄2 can achieve
the finite frequency specification (16) with respect to (18), if there exist symmetric matrices Ps1 ∈ Rn×n,Ps3 ∈ Rn×n,L𝑓 ∈
Rnu×nu ,s ∈ R2n×2n,s ∈ R2m×2m,Rs ∈ Rnu×nu and matrices Ps2 ∈ Rn×n,s1 ∈ Rnu×n, and s2 ∈ Rnu×n, such that LMIs
(38)-(39) hold, and

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

Θ̄s1 Θ̄s2 PsB̄ws s + j𝜔cs ĀT
s DT

s Ps3 + 𝜒3 0
⋆ Θ̄s3 0 0 − 1

h1
BT

usPs3 0

⋆ ⋆ −𝛾2
s In 0 B̄T

wsDT
s Ps3 0

⋆ ⋆ ⋆ −𝜔1𝜔2s 0 0
⋆ ⋆ ⋆ ⋆ −He(Ps3) T

s2BT
us

⋆ ⋆ ⋆ ⋆ ⋆ −He
(

BT
usPs3

)
+ R̄s

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
< 0, (49)

where 𝜔c = 0.5(𝜔1 + 𝜔2), matrices Ps,Rs1,Rs2, R̄s, 𝜒3, and 𝜒4 have been given in Theorem 2, and

Θ̄s1 = He(PsĀs + 𝜒4) + ET
s Es −s, Θ̄s2 = − 1

h1
PsB̄us, Θ̄s3 = −4Rs2, Es = [In 0]T . (50)

Proof. For the frequency set Λl, matrices Φ and Ψ can be specified as

Φ =
[ 0 1

1 0

]
, Ψ =

[ −1 j𝜔c

−j𝜔c −𝜔1𝜔2

]
.

The following proof is similar to that of Theorem 3, which is omitted here.
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5 ESTIMATION FOR THE DISTURBANCE ATTENUATION LEVEL AND THE
UPPER BOUND OF SINGULAR PERTURBATION PARAMETER

In previous sections, controller gains are formulated based on the reduced-order models of plant dynamics

K1 = L−1
𝑓
𝑓1, K2 = L−1

𝑓
𝑓2, K̄1 = L−1

s s1, K̄2 = L−1
s s2.

We will investigate whether the obtained controller gains K̄1, K̄2, K1, and K2 are effective for the original two-time-scale
system (10). The accurate knowledge of the stability bound of singular perturbed parameters and disturbance atten-
uation index is very important for control engineers, which indicate the application range of the proposed method.
The disturbance attenuation level and the upper bound of singular perturbation parameter are estimated based on
frequency-domain transfer functions.

Denote a new vector as y(t) = col{x1(t), z1(t)}. Under zero initial conditions, (9) is written as

ẋ(t) =
1∑

i=0
̃1ix(t − hi) +

1∑
i=0

̃2iz(t − 𝜖h̃i),

𝜖ż(t) =
1∑

i=0
̃3ix(t − hi) +

1∑
i=0

̃4iz(t − 𝜖h̃i),

(51)

where h0 = 0, h̃0 = 0, h̃1 = h2, and

̃10 = 11 ̃11 = − 1
h1

d
11ET

s , ̃20 = 12, ̃21 = − 1
𝜖h2

d
12ET

𝑓
,

̃30 = 21, ̃31 = − 1
h1

d
21ET

s , ̃40 = 22, ̃41 = − 1
𝜖h2

d
22ET

𝑓
.

The following theorem estimates the stability bound and disturbance attention index of SPS (9).

Theorem 5. If subsystems (13) and (14) are internally stable and satisfy control system specifications (16) and (17)
subject to constraints (18) and (19), then there exists a positive scalar 𝜖∗ such that the original system (9) is robustly and
asymptotically stable with the disturbance attenuation level 𝛾 , ie,

||T(s, 𝜖)||∞ < 𝛾, (52)

and 𝜖∗ can be estimated following the method below.

(1) Search for 𝜖∗1 that satisfies

‖‖‖‖‖‖
(
𝜖sIn − ̃40

)−1
( 2∑

i=1
̃4i exp

(
−𝜖h̃is

))‖‖‖‖‖‖∞ < 1, ∀𝜖 ∈
(
0, 𝜖∗1

]
.

(2) Search for 𝜖∗2 that satisfies

||Hs(s, 𝜖)||∞ < 1, ∀𝜖 ∈
(
0, 𝜖∗2

]
,

where

Hs(s, 𝜖) = 𝜖sMs(s)

( n∑
i=0

̃2i exp
(
−𝜖h̃is

))( n∑
i=0

̃4i exp
(
−𝜖h̃is

))−1

(
𝜖sIm −

n∑
i=0

̃4i exp (−his)

)−1( n∑
i=0

̃3i exp
(
−𝜖h̃is

))
,

Ms(s) =
⎧⎪⎨⎪⎩sIn −

⎡⎢⎢⎣
2∑

i=0
̃1i exp(−his) −

2∑
i=0

̃2i exp
(
−𝜖h̃is

)( 2∑
i=0

̃4i exp(−𝜖h̃is)

)−1 2∑
i=0

̃3i exp(−his)
⎤⎥⎥⎦
⎫⎪⎬⎪⎭
−1

,
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and 𝜖∗ = min(𝜖∗1 , 𝜖
∗
2 ). Then, the disturbance attenuation index of the whole system (51) over the target frequency range

Λt = Λl ∪ Λh can be given by

𝛾 = max
⎧⎪⎨⎪⎩𝛾s + 𝜎max

⎛⎜⎜⎝ET
𝑓

( 2∑
i=0

̃4i

)−1

B̄w2

⎞⎟⎟⎠ , 𝛾𝑓
⎫⎪⎬⎪⎭ ,

where 𝜎max(·) denotes the maximum singular value of a matrix.

Proof. From the work of Pan et al,30 the stability of the slow and fast subsystems (13) and (14) can guarantee the
asymptotical stability of the original system (9) for ∀𝜖 ∈ (0, 𝜖∗].

First, we investigate the stability bound of system (51), which is characterized by the range (0, 𝜖∗]. Then, the problem
of the formulation of the stability bound is converted into the estimation of the upper bound of singular perturbation
parameters. By setting 𝜖 = 0 in (9), we have⎧⎪⎪⎨⎪⎪⎩

sXs(s) − xs(0) =
1∑

i=0
̃1i exp(−his)Xs(s) +

1∑
i=0

̃2iZs(s),

0 =
1∑

i=0
̃3i exp(−his)Xs(s) +

1∑
i=0

̃4iZs(s).

(53)

Then, it can be derived that
Xs(s) = Ms(s)xs(0),

where

Ms(s) =
⎧⎪⎨⎪⎩sIn −

⎡⎢⎢⎣
2∑

i=0
̃1i exp(−his) −

2∑
i=0

̃2i

( 2∑
i=0

̃4i

)−1 2∑
i=0

̃3i exp(−his)
⎤⎥⎥⎦
⎫⎪⎬⎪⎭
−1

.

Based on the time-scale techniques, we can obtain the counterpart of fast subsystem

Z𝑓 (s) = M𝑓 (s, 𝜖)z𝑓 (0),

where

M𝑓 (s, 𝜖) =

{
𝜖sIm −

2∑
i=0

̃4i exp
(
−𝜖h̃is

)}−1

.

Then, the upper bound of system (51) can be obtained by using the result in the work of Pan et al.30

Next, we investigate the H∞ disturbance attention capability of the original system (9). Due to the presence of the
singular perturbation parameter 𝜖, it can be seen that T(s, 𝜖) is a two-frequency-scale transfer function matrix, which
can be decomposed into two parts. The establishment of (16) subject to (18) implies||Ts(j𝜔)||∞ < 𝛾s, 𝜔 ∈ Λl,||T𝑓 (j𝜛)||∞ < 𝛾𝑓 , 𝜛 ∈ Λh.

Under zero initial conditions, the transfer function matrix of fast subsystem is obtained by using Laplace transforma-
tions

T𝑓 (p) = ET
𝑓

(
pIm −

2∑
i=0

̃4i exp(−hip)

)−1

B̄w2,

where p = 𝜖s. Similarly, we have
Ts(s) = ET

s Ms(s)B̄w1.

The singular perturbation analysis of T(s, 𝜖) from the input w(t) to the output y(t) yields

T(s, p) = Ts(s) + T𝑓 (p),

such that ||T(s, p)||∞ ≤ ||Ts(s)||∞ + ||T𝑓 (p)||∞.
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In the frequency set Λl, the frequency s is significant, that is, s = O(1) and p = O(𝜖), and

||T(s, p)||∞ ≤ ||Ts(s)||∞ + ||T𝑓 (0)||∞,
≤ 𝛾s + 𝜎max

⎛⎜⎜⎝ET
𝑓

( 2∑
i=0

̃4i

)−1

B̄w2

⎞⎟⎟⎠ , s = j𝜔, 𝜔 ∈ Λl.
(54)

Similarly, we can obtain that s → ∞, p = O(1), in the frequency set Λh, such that

lim
s→0

M(s) = 0, T(s, p) = T𝑓 (p).

Thus, we have

||T(s, p)||∞ = ||T𝑓 (p)||∞ ≤ 𝛾𝑓 , p = j𝜛, 𝜛 ∈ Λh. (55)

By integrating (54) with (55), it can be seen that conditions (16) and (17) subject to (18) and (19) can guarantee the
establishment of (52). Then, the disturbance attenuation index 𝛾 is given as

𝛾 = max
⎧⎪⎨⎪⎩𝛾s + 𝜎max

⎛⎜⎜⎝ET
𝑓

( 2∑
i=0

̃4i

)−1

B̄w2

⎞⎟⎟⎠ , 𝛾𝑓
⎫⎪⎬⎪⎭ .

This completes the proof.

Remark 6. There are two types of methods to compute the stability bound of SPSs: one is based on transfer function
matrices such as those in other works3-5,30-32 and the other is the use of 𝜖-dependent Lyapunov functions and the result-
ing LMIs such as those in the works of Fridman15 and Yang and Zhang.33 In this paper, we could also use Lyapunov
functionals depending the singular perturbation parameter 𝜖, but this might result in the higher-order LMIs. Here,
we prefer to use the simplest reduced-order LMIs. The controller design of this work is based on the slow-fast decom-
position method. The upper bound of singular perturbation parameters is estimated based on the transfer function
matrix of system (51). The proposed design method consists of two sequent steps: (1) the formulation of controller
gains based on subsystems and (2) the estimation of 𝜖∗ and 𝛾 based on the closed-loop SPS (51).

6 PRACTICAL EXAMPLE: VEHICLE ACTIVE SUSPENSION SYSTEM

In this section, the proposed design method is applied in a vehicle active suspension system to improve the ride comfort
and road handling performance. The following state-space model is considered:

⎡⎢⎢⎢⎢⎣
ẋ1(t)
ẋ2(t)
ẋ3(t)
ẋ4(t)

⎤⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎣

0 1 0 −1

− ks
ms

− cs
ms

0 cs
ms

0 0 0 1
ks

mu

cs
mu

− ku
mu

− cs+ct
mu

⎤⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣

x1(t)
x2(t)
x3(t)
x4(t)

⎤⎥⎥⎥⎥⎦
+

⎡⎢⎢⎢⎢⎢⎣

0
1

ms

0
1

mu

⎤⎥⎥⎥⎥⎥⎦
u(t) +

⎡⎢⎢⎢⎢⎣
0
0
−1

ct
mu

⎤⎥⎥⎥⎥⎦
w(t), (56)

where ms and mu are the sprung and unsprung masses, cs and ks represent damping and stiffness of the active suspension
system, kt and ct are compressibility and damping of the pneumatic tire, u(t) stands for the control force from the hydraulic
actuator, and w(t) is the road disturbance.34,35 The state variables are defined as

x1(t) = zs(t) − zu(t), x2(t) = żs(t), x3(t) = zu(t) − zr(t), x4(t) = żu(t),

where x1(t) denotes the suspension travel, x2(t) is the car body velocity, x3(t) represents the tire deflection, and x4(t) is the
wheel velocity.
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Define a new variable as x̃2(t) = x2(t) − x4(t). The ratio between sprung mass and unsprung mass is sufficiently small to
play the role as a singular perturbation parameter, ie, 𝜖 = mu

ms
. We transform model (56) into model (2):

⎡⎢⎢⎢⎢⎣
ẋ1(t)
̇̃x2(t)
𝜖ẋ3(t)
𝜖ẋ4(t)

⎤⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎣
0 1 0 0

a11 a12 a13 a14

0 0 0 1
a21 a22 a23 a24

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣

x1(t)
x̃2(t)
x3(t)
x4(t)

⎤⎥⎥⎥⎥⎦
+

⎡⎢⎢⎢⎢⎣
0

bu1

0
bu2

⎤⎥⎥⎥⎥⎦
u(t) +

[ Bw1

Bw2

]
w(t), (57)

where

a11 = − ks

ms
− ks

mu
, a12 = − cs

ms
− cs

mu
, a13 = ku

mu
, a14 = cs + ct

mu
+ cs

ms
, bu1 = 1

ms
− 1

mu
,

a21 = ks

ms
, a22 = cs

ms
, a23 = − ku

ms
, a24 = −cs − ct

ms
, bu2 = 1

ms
, Bw1 =

[
0

− ct
mu

]
, Bw2 =

[
−1

ct
ms

]
.

In the experiment setup, the parameters of model (57) are given as

ms = 1000 kg, mu = 110 kg, ks = 42720 kN/m, ku = 10115 kN/m, cs = 1095 Ns/m, ct = 14.6 Ns/m,

which have been listed in the work of Li et al.36 The singular perturbation parameter is obtained as 𝜖 = 0.11. In the active
suspension system, the ride quality and the road-holding property are the key factors to be considered. For the comfort of
passengers in the vehicle, the frequency should be situated between 0.5 and 1.5 Hz.34,35 Thus, the cutoff frequencies are
formulated as

𝜔1 = 2𝜋 × 0.5 rad/s, 𝜔2 = 2𝜋 × 1.5 rad/s, 𝜛1 = 𝜖𝜔1, 𝜛2 = 𝜖𝜔2,

which covers the target frequency range 0.5-1.5 Hz.
(1) Controller design based on the slow and fast subsystems.
Choose 𝛿1 = 0.01, 𝛿1 = 0.01, h1 = 0.1, h2 = 0.3, 𝛾𝑓 = 0.1. By solving LMIs (20)-(22) and LMI (40), the fast controller

gains are obtained as

K1 = 1.0098e + 5, K2 = 0.8795. (58)

To evaluate the disturbance attenuation capability of the closed-loop fast subsystem (14), three types of disturbance
are considered. First, the following sinuous disturbance signal is used to verify the effectiveness of our finite frequency
delayed output feedback controller:

w(t) =
⎧⎪⎨⎪⎩

0.5 sin(2𝜋 × 1.25t), t ≤ 30 s,

0, t > 30 s.
(59)

The time domain response of the closed-loop fast subsystem (14) subject to disturbance wf(𝜏) is shown in Figure 1. It
can be seen that system states can reach their stable states in the presence of sinusoidal disturbance, and the effect of
disturbance input has been suppressed to a low level. Then, the case of isolated bumps in a smooth road surface is taken
into account, with the disturbance inputs given as

w(t) =

⎧⎪⎪⎨⎪⎪⎩
0.9 sin(2𝜋t), t ≤ 0.5 s,

0.5 sin(2𝜋t), 2 ≤ t < 2.5 s,

0, t ≥ 2.5 s.

(60)
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FIGURE 1 Time-domain response of fast subsystem subject to sinuous disturbance [Colour figure can be viewed at wileyonlinelibrary.com]
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FIGURE 2 Time-domain response of fast subsystem subject to sinuous bump disturbance [Colour figure can be viewed at
wileyonlinelibrary.com]

To further valuate the effectiveness of fast controller (58), the case of harmonic disturbance is considered, with disturbance
input being in the form of

w(t) =
⎧⎪⎨⎪⎩

0.0254 sin(2𝜋t) − 0.005 sin(10.5𝜋t) + 0.001 sin(21.5𝜋t), t ≤ 7.8 s,

0, t ≥ 7.8 s.
(61)

Figures 1 to 3 show the time-domain response of the closed-loop fast subsystem (14) with respect to sinuous, sinuous
bump, and harmonic disturbance inputs, respectively. In all Figures, three types of disturbances can be attenuated to an
acceptable level.

Similarly, slow controller gains K̄1 and K̄2 will be designed to achieve the control performance (16) with respect to
constraint (18). The corresponding design parameters in Theorems 2 and 4 are chosen as 𝛿2 = 0.001, 𝛿2 = 0.001,h1 =
0.1, h2 = 0.3, and 𝛾 s = 0.5. A feasible solution by solving LMIs (37)-(39) and LMI (49) is given as

K̄1 = 2.2555e + 04, K̄2 = −6.1686. (62)

http://wileyonlinelibrary.com
http://wileyonlinelibrary.com
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FIGURE 3 Time-domain response of fast subsystem subject to harmonic disturbance [Colour figure can be viewed at
wileyonlinelibrary.com]
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FIGURE 4 Time-domain response of slow subsystem subject to sinuous disturbance [Colour figure can be viewed at
wileyonlinelibrary.com]

In Figures 4 to 6, it can be seen that the state trajectories for system (13) move toward the origin of the state space, even
in the presence of sinuous, sinuous bump, and harmonic disturbance.

(2) Performance evaluation of the delayed output feedback controller in the SPS (1).
In order to evaluate the disturbance attenuation capability of finite frequency disturbance, sinuous bump oscillations

are simultaneously imposed on the whole system (10) to validate the robustness of the designed controller (8). In Figure 7,
it is observed that the bounded-input–bounded-output property (BIBO) is achieved, and the effects of disturbance inputs
are attenuated to a satisfactory level. Figure 8 reveals the bode diagram of system (57) from road disturbance to the mea-
sured outputs. Compared with the passive case and full frequency case, the active system with finite frequency controller
improves the disturbance attenuation capability near 1 Hz, which indicates the improvement of ride comfort of pas-
sengers. The first peak of the magnitude-frequency characteristic has been reduced to the lowest level with the aid of
finite frequency delayed controller. Moreover, controller (8) cannot function as well as that of the finite frequency state

http://wileyonlinelibrary.com
http://wileyonlinelibrary.com
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FIGURE 5 Time-domain response of slow subsystem subject to sinuous bump disturbance [Colour figure can be viewed at
wileyonlinelibrary.com]
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FIGURE 6 Time-domain response of slow subsystem subject to harmonic disturbance [Colour figure can be viewed at
wileyonlinelibrary.com]

feedback controller in the work of Sun et al.9 The reason behind this is the lack of measurements of x2(t) and z2(t), which
sacrifice part control quality for the approximation of unmeasurable system states.

To further evaluate the performance of the delayed SOF controller, the value of disturbance attenuation index 𝛾 is
estimated. This problem can be effectively tackled by using the command mincx in MATLAB (LMI toolbox). We have

min 𝛾s = 0.22, min 𝛾𝑓 = 0.25.

Based on Theorem 5, the disturbance attenuation index is estimated as 𝛾 = 0.28. Moreover, the upper bound of the
singular perturbation parameter 𝜖∗ is given as 𝜖∗ = 0.96, which reveals the effective application of our design method in
SPSs. Otherwise, the stability or BIBO property of system (1) may be destroyed, or even results in the instability. Because
𝜖∗ > 𝜖 = 0.11 in (57), the designed delayed SOF controller can be used in system (57).

http://wileyonlinelibrary.com
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FIGURE 7 Time-domain response of the whole system subject to sinuous bump disturbance [Colour figure can be viewed at
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FIGURE 8 The Bode plot of the whole system [Colour figure can be viewed at wileyonlinelibrary.com]

7 CONCLUSION

In this work, the problem of the delayed SOF stabilization of SPSs has been investigated by inserting artificial time
delays in the feedback loops. Based on the singular perturbation analysis of a time-delay system, a two-stage design

http://wileyonlinelibrary.com
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procedure is put forward for the LMI formulation of controller gains, which avoids the pre-selection of controller param-
eters and the technique of bounding cross terms. First, a time-delay SPS is decomposed into slow and fast subsystems
operating in different time scales. Then, the stability and performance analysis of an SPS is achieved by investigating those
of parameter-independent subsystems, respectively. The disturbance attenuation index and the upper bound of singular
perturbed parameter are estimated. The proposed design method is verified in an active suspension system to show its
merits and effectiveness.
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