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a b s t r a c t

Sampled-data observers/controllers under the sampled in space and time measurements were sug-
gested in the past for parabolic systems. In the present paper, for the first time, a sampled-data
observer is constructed for a hyperbolic system governed by 1D semilinear wave equation with
either viscous or boundary damping. The measurements are sampled in space and time. Sufficient
conditions for the exponential stability of the estimation error are derived by using the time-delay
approach to sampled-data control and appropriate Lyapunov–Krasovskii functionals. The dual sampled-
data controller problems are formulated. Numerical examples including observer design for unstable
damped sine–Gordon equation illustrate the efficiency of the method.

© 2019 Elsevier Ltd. All rights reserved.

1. Introduction

Modern control systems usually employ digital technology for
controller/observer implementation (see e.g. Åström & Witten-
mark, 1997 and the recent survey Hetel et al., 2017). Networked
control systems, where the plant is controlled via communication
network and where the signals from sensors to controllers and
from controllers to actuators are transmitted in discrete-time,
became another hot and related topic (Antsaklis & Baillieul, 2007;
Hespanha, Naghshtabrizi, & Xu, 2007). Sampled-data control of
partial differential equations (PDEs) is becoming an active re-
search area. General results on sampled-data control of linear
time-invariant PDEs were presented in Logemann (2013) and
Logemann, Rebarber, and Townley (2005). A model-reduction-
based approach to sampled-data control of parabolic systems was
suggested in Cheng, Radisavljevic, Chang, Lin, and Su (2009) and
Ghantasala and El-Farra (2012), where a finite-dimensional con-
troller was designed on the basis of a finite-dimensional system
that captures the dominant dynamics of the infinite-dimensional
one.

Distributed sampled-data control of parabolic PDEs has been
studied in Bar Am and Fridman (2014), Fridman and Bar Am
(2013), Fridman and Blighovsky (2012), Kang and Fridman (2018)
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and Selivanov and Fridman (2016, 2017). In-domain (point or
averaged) sampled-data measurements of the state together with
control actions applied through shape functions have been con-
sidered. Sufficient conditions for the exponential convergence
in terms of linear matrix inequalities (LMIs) have been derived
by using the time-delay approach to sampled-data control and
appropriate Lyapunov–Krasovskii functionals. Boundary sampled-
data control of 1-D linear heat and transport equations were
introduced recently in Karafyllis and Krstic (2017, 2018).

Distributed finite-dimensional continuous-time control of a
class of damped semilinear wave equations was recently initi-
ated in Kalantarov and Titi (2016). However, sampled-data con-
trollers/observers have not been considered yet for semilinear
hyperbolic PDEs. Note that in the case of wave equation, even
arbitrarily small delays in the damping term (either boundary
or viscous) may destabilize the system (Datko, 1988; Nicaise &
Pignotti, 2006), but wave equations with the viscous damping are
known to be robust with respect to small state-delay in the right-
hand side of PDE (Fridman & Orlov, 2009). Keeping this in mind,
in the present paper we introduce a sampled-data observer for
a system governed by 1D semilinear wave equation either with
a viscous or with a boundary damping. Such systems arise in
various applications including nonlinear elasticity as a model of a
vibrating string in a viscous medium, where the semilinear term
corresponds to the elastic force (Pata & Zelik, 2006). The con-
sidered class of systems includes damped sine–Gordon equations
that model the dynamics of a current driven coupled Josephson
junctions with applications in superconducting single-electron
transistors (Dickey, 1976; Levi, Hoppensteadt, & Miranker, 1978).

Similar to parabolic case (Fridman & Blighovsky, 2012), we
assume that the state measurements are sampled in space and
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in time, whereas the sampling intervals may be variable, but
bounded. We derive sufficient LMI conditions for the exponential
stability of the estimation error system by using appropriate
Lyapunov–Krasovskii functionals. By solving these LMIs, upper
bounds on the sampling intervals that preserve the exponential
convergence and on the resulting decay rate can be found. For
simplicity only we have not considered the case of additional
measurement delay, but the proposed method can be easily ex-
tended to the delayed case via appropriate Lyapunov–Krasovskii
functionals (see e.g. Fridman & Blighovsky, 2012). We also formu-
late the dual sampled-data control problems. Some preliminary
results on sampled-data observer in the case of viscous damping
will be presented in Terushkin and Fridman (2019).

Notation. Throughout the paper the notation P > 0 with P ∈

Rn×n means that P is symmetric and positive definite. The sym-
metric elements of a symmetric matrix will be denoted by ∗.
Functions, continuous (continuously differentiable) in all argu-
ments, are referred to as of class C (of class C1). L2(0, π ) is the
Hilbert space of square integrable functions z(ξ ), ξ ∈ [0, π]

with the corresponding norm ∥z∥2
L2

=
∫ π

0 z2(ξ )dξ . H 1(0, π ) is
the Sobolev space of absolutely continuous scalar functions z :

[0, π] → R with dz
dξ ∈ L2(0, π ). H 2(0, π ) is the Sobolev space

of scalar functions z : [0, π] → R with absolutely continuous dz
dξ

and with d2z
dξ2

∈ L2(0, π ).

2. Mathematical preliminaries

The following inequalities will be useful:

Lemma 2.1 (Wirtinger’s Inequality Hardy, Littlewood, & Pólya,
0000). Let z ∈ H 1

[a, b] be a scalar function, with the boundary
values stated below. Then

c
∫ b

a
z2(ξ )dξ ≤

(b − a)2

π2

∫ b

a

[
dz(ξ )
dξ

]2
dξ, (2.1)

where

c =

{
1, if z(a) = z(b) = 0;
1
4
, if z(a) = 0 or z(b) = 0.

Lemma 2.2 (Halanay’s Inequality Halanay, 1966 & p.138 of Frid-
man, 2014). Let 0 < α1 < α0 and let V : [t0 − h, ∞) −→ [0, ∞)
be an absolutely continuous function that satisfies

V̇ (t) + 2α0V (t) − 2α1 sup
−h≤θ≤0

V (t + θ ) ≤ 0, t ≥ t0.

Then

V (t) ≤ exp
(
−2α(t − t0)

)
sup

−h≤θ≤0
V (t0 + θ ), t ≥ t0, (2.2)

where α > 0 is a unique positive solution of

α = α0 − α1 exp(2αh).

3. Sampled data observer: semilinear wave equation with vis-
cous damping

3.1. Problem formulation

Consider the semilinear damped wave equation

ztt (x, t) = zxx(x, t)−βzt (x, t) + f
(
z(x, t), x, t

)
, (3.1)

x ∈ (0, π ), t ≥ t0

under the Dirichlet

z(0, t) = z(π, t) = 0 (3.2)

or Neumann

zx(0, t) = zx(π, t) = 0 (3.3)

or mixed

z(0, t) = zx(π, t) = 0, or zx(0, t) = z(π, t) = 0 (3.4)

boundary conditions. Here z(x, t) ∈ R is the state, β > 0 is the
damping coefficient and f is a function of class C1. We assume
that the derivative fz is uniformly bounded by a constant g1 > 0:

|fz(z, x, t)| ≤ g1 ∀(z, x, t) ∈ R × [0, π] × [t0, ∞). (3.5)

The initial conditions are given by

z(x, t0) = z0(x), zt (x, t0) = z1(x). (3.6)

The above system with f = g1 sin(z) is referred as damped
sine–Gordon equation (Kobayashi, 2003; Levi et al., 1978). Note
that the damped sine–Gordon is globally asymptotically stable for
g1 < 1, whereas for g1 > 1 its zero solution becomes only locally
stable (Dickey, 1976). In the present paper we allow g1 > 1,
where the system may be unstable. We would like to point out
that the assumption (3.5) is restrictive, and the results of this
paper are not applicable e.g. to nonlinear Klein–Gordon equation
with f = zp, p = 2, 3, . . .. See also Remark 5.1 .

We design an observer for (3.1) under the appropriate bound-
ary conditions (3.2), (3.3) or (3.4) based on sampled in space and
in time measurements. Similar to Fridman and Blighovsky (2012),
the segment [0, π] is divided into N sampling intervals by the
points

0 = x0 < x1 < · · · < xN = π.

It is assumed, that N sensors are placed in the middle of each
interval [xj, xj+1] :

x̄j =
xj+1 + xj

2
, j = 0, . . . ,N − 1.

Let

t0 < t1 < · · · < tk, lim
k→∞

tk = ∞

be the sampling time instants. The sampling intervals in time and
space may be variable, but have known bounds h > 0 and ∆ > 0:

0 ≤ tk+1 − tk ≤ h, xj+1 − xj ≤ ∆. (3.7)

Discrete-time point measurements of the state are provided by N
sensors distributed over the whole domain [0, π]:

yjk = z(x̄j, tk), x̄j =
xj+1 + xj

2
, (3.8)

j = 0, . . . ,N − 1, k = 0, 1, 2, . . .

Our objective is to construct an observer for (3.1) under the
boundary conditions (3.2) or (3.3) or (3.4) by employing sampled-
data measurements (3.8), and to formulate sufficient conditions
for the global exponential convergence of the estimation error in
terms of LMIs.

3.1.1. Well-posedness of the original system
We prove the well-posedness of (3.1) under the Dirichlet

boundary conditions (3.2). For the Neumann or mixed bound-
ary conditions, the well-posedness can be established similarly.
The boundary-value problem (3.1), (3.2) can be represented as
an abstract differential equation by defining the state ζ (t) =

[ζ0(t) ζ1(t)]T = [z(t) zt (t)]T and the operators

A =

[ 0 I
∂2

∂x2
−βI

]
, F (ζ , t) =

[
0

F1(ζ0, t)

]
. (3.9)
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Here F1 : H 1(0, π ) × [t0, ∞) → L2(0, π ) is defined as F1(ζ0, t) =

f (ζ0, ·, t) so that it is continuous in t for each ζ0 ∈ H 1(0, π ). The
resulting differential equation

ζ̇ (t) = A ζ (t) + F (ζ (t), t), t ≥ t0 (3.10)

is considered in the Hilbert space H = H 1
0 × L2(0, π ), where

H 1
0 =

{
ζ0 ∈ H 1(0, π )

⏐⏐⏐⏐ ζ0(0) = ζ0(π ) = 0
}

, and ∥ζ∥
2
H =

∥ζ0x∥
2
L2

+ ∥ζ1∥
2
L2
. The operator A with the dense domain

D(A ) =

{[
ζ0
ζ1

]
∈ H 2(0, π )

⋂
H 1

0 × H 1
0

}
generates an exponentially stable semigroup (Curtain & Zwart,
1995). Due to (3.5) the following Lipschitz condition holds:

∥F1(ζ0, t) − F1(ζ̄0, t)∥L2 ≤ g1∥ζ0 − ζ̄0∥L2 (3.11)

where ζ0, ζ̄0 ∈ H 1(0, π ), t ∈ R. Then by Theorem 6.1.2 of Pazy
(1983), there exists a unique mild solution ζ ∈ C([t0, ∞); H ) of
(3.10) initialized by

ζ0(t0) = z0 ∈ H 1
0 , ζ1(t0) = z1 ∈ L2(0, π ). (3.12)

We note that F : H ×[t0, ∞) → H is continuously differentiable.
If ζ (t0) ∈ D(A ), then this mild solution is in C1([t0, ∞); H ) and
it is a classical solution of (3.1), (3.2) with ζ (t) ∈ D(A ) (see
Theorem 6.1.5 of Pazy, 1983).

3.2. Sampled-data observer

Consider (3.1) under the boundary conditions (3.2) and sam-
pled in time and in space measurements (3.8). We suggest a
sampled-data observer of the form

ẑtt (x, t) =ẑxx(x, t) − β ẑt (x, t) + f (ẑ, x, t) (3.13)

+ L
N−1∑
j=0

χj(x)[yjk − ẑ(x̄j, tk)],

x ∈ (0, π ), t ∈ [tk, tk+1), k = 0, 1, 2, . . .

under the boundary conditions

ẑ(0, t) = ẑ(π, t) = 0, (3.14)

and the initial conditions [ẑ(·, t0), ẑt (·, t0)]T ∈ H . Here L is a
scalar observer gain. The measurements are applied after mul-
tiplication by the characteristic functions χj(x), defined by

χj(x) =

{
1, if x ∈ [xj, xj+1];

0, else. (3.15)

Note that
∑N−1

j=0 χj(x)[y(x̄j, t) − ẑ(x̄j, t)] ≈ [y(x, t) − ẑ(x, t)] when
∆ → 0.

The distributed correction term in the observer aims to com-
pensate the destabilizing effect of the nonlinearity f and to im-
prove the convergence of the estimation error e = z− ẑ governed
by

ett (x, t) = exx(x, t) − βet (x, t) + ge(x, t)

− L
N−1∑
j=0

χj(x)e
(
x̄j, tk

)
,

x ∈ (0, π ), t ∈ [tk, tk+1), k = 0, 1, 2, . . . (3.16)

under the Dirichlet boundary conditions

e(0, t) = e(π, t) = 0. (3.17)

Here ge = f (z, x, t) − f (z − e, x, t) is defined by

g = g(z, e, x, t) =

∫ 1

0

∂ f
∂z

(
z + (θ − 1)e, x, t

)
dθ. (3.18)

Due to (3.5)

|g| ≤ g1 ∀(z, e, x, t) ∈ R × R × [0, π] × [t0, ∞).

For (3.1) under the Neumann or mixed boundary conditions,
the observer (3.13) is considered under the Neumann

ẑx(0, t) = ẑ(π, t) = 0 (3.19)

or mixed

ẑ(0, t) = ẑx(π, t) = 0, or ẑx(0, t) = ẑ(π, t) = 0 (3.20)

boundary conditions respectively. The error under the Neumann
or mixed boundary conditions satisfies the corresponding bound-
ary conditions.

The step method is applied in order to establish the well-
posedness for the error system (3.16), (3.17). The error system
can be presented in the form of (3.10) with ζ = [e et ]T , where A

and F are defined by (3.9) with

F1(ζ0, t) =f (z, x, t) − f (z − ζ0, x, t) (3.21)

− L
N−1∑
j=0

χj(x)

[
ζ0
(
x, t0

)
−

∫ x

x̄j

ζ0ξ

(
ξ, t0

)
dξ .

]
By applying Theorem 6.1.2 (Theorem 6.1.5) of Pazy (1983) con-
secutively on each time interval t ∈ [tk, tk+1], k = 0, 1, 2, . . . we
find that a unique mild (classical) solution exists for (3.16), (3.17)
initialized by [e(·, t0), et (·, t0)]T ∈ H ([e(·, t0), et (·, t0)]T ∈ D(A )).

For the stability analysis, we employ the relation

e
(
x, tk

)
= e(x, t) − (t − tk)ν,

ν(x, t) ≜
1

t − tk

∫ t

tk

es(x, s)ds
(3.22)

and present (3.16) as

ett (x, t) = exx(x, t) − βet (x, t) + (g − L)e(x, t)

+ L
N−1∑
j=0

χj(x)

[
(t − tk)ν +

∫ x

x̄j

eζ

(
ζ , tk

)
dζ

]
,

x ∈ (0, π ), t ∈ [tk, tk+1), k = 0, 1, 2, . . . (3.23)

We will use an input delay approach to sampled-data con-
trol (Fridman, Seuret, & Richard, 2004; Mikheev, Sobolev, & Frid-
man, 1988), where the sampling time tk is presented as delayed
time t−τ (t) with τ (t) = t− tk for t ∈ [tk, tk+1). In order to derive
stability conditions for (3.16) we employ Lyapunov–Krasovskii
functional of the form

V (t) = V0(t) + Vr (t), t ∈ [tk, tk+1), (3.24)

where V0(t) is given by

V0(t) = p3

∫ π

0
e2xdx +

∫ π

0
[e et ]P0[e et ]Tdx (3.25)

with

P0 ≜

[
p1 p2
∗ p3

]
> 0, (3.26)

and

Vr (t) = r
∫ π

0

(
tk+1 − t

) ∫ t

tk

exp(2α0(s − t))e2s (ζ , s)dsdζ ,

r > 0, α0 > 0.
(3.27)

Here Vr is the simplest Lyapunov–Krasovskii term that treats
sampled-data systems as introduced for ODE systems in Frid-
man (2010). Note that augmented Lyapunov–Krasovskii func-
tionals may further improve the results, but on the account of
computational complexity.
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Differentiating Vr and applying Jensen’s inequality
(Gu, Kharitonov, & Chen, 2003), we have

V̇r + 2α0Vr

≤ r(tk+1 − t)
∫ π

0
e2t dx − re−2α0h

∫ π

0

∫ t

tk

e2s (x, s)dsdx

≤ r(tk+1 − t)
∫ π

0
e2t dx − r(t − tk)e−2α0h

∫ π

0
ν2dx.

(3.28)

Note that integration by parts and substitution of the boundary
conditions leads to∫ π

0
exx(p2e + p3et )dx = −p2

∫ π

0
e2xdx − p3

∫ π

0
extexdx. (3.29)

Then, differentiating V (t) along (3.23) and employing (3.28) and
(3.29) we obtain

V̇ + 2α0V ≤ 2
N−1∑
j=0

∫ xj+1

xj

{
(α0p3 − p2)e2x +

1
2
[e et ]A[e et ]T

+ L(p2e + p3et )
(
(t − tk)ν +

∫ x

x̄j

eζ (ζ , tk)dζ
)

+
r
2
(tk+1 − t)e2t −

r
2
(t − tk) exp(−2α0h)ν2

}
dx, (3.30)

where A is given by

A ≜

[
2p2(g − L) + 2α0p1 p1 + p3(g − L) + p2(2α0 − β)

∗ 2p2 + 2p3(α0 − β)

]
.

(3.31)

In order to compensate
∫ x
x̄j
eζ (ζ , tk)dζ in (3.30), we apply Ha-

lanay’s inequality (2.2). For some α1 < α0 we have

V̇ (t) + 2α0V (t) − 2α1 sup
−h≤θ≤0

V (t + θ ) (3.32)

≤ V̇ (t) + 2α0V (t) − 2α1p3

∫ π

0
e2x (x, tk)dx.

For application of Halanay’s inequality we define continuously
V (t0 + θ ) = V (t0), θ ∈ [−h, 0]. By Wirtinger’s inequality (2.1)
with b − a =

∆
2 and c =

1
4 we find

− 2α1p3
N−1∑
j=0

∫ xj+1

xj

e2x (x, tk)dx (3.33)

= −2α1p3
N−1∑
j=0

[∫ x̄j

xj

e2x (x, tk)dx +

∫ xj+1

x̄j

e2x (x, tk)dx

]

≤ −2α1p3
π2

∆2

N−1∑
j=0

[∫ x̄j

xj

[e(x, tk) − e(x̄j, tk)]2dx

+

∫ xj+1

x̄j

[e(x, tk) − e(x̄j, tk)]2dx

]

≤ −2α1p3
π2

∆2

N−1∑
j=0

∫ xj+1

xj

[∫ x

x̄j

eζ (ζ , tk)dζ

]2

dx.

Define

C =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1, for Dirichlet b.c.
1
4
, for mixed b.c.

0, for Neumann b.c.

(3.34)

We apply further S-procedure (Yakubovich, 1971), where the
inequality (that follows from Wirtinger’s inequality)

λ1

∫ π

0

(
e2x − Ce2

)
dx ≥ 0 (3.35)

with some λ1 ≥ 0 is added to V̇ . Then

W ∆
= V̇ (t) + 2α0V (t) − 2α1p3

∫ π

0
e2x (x, tk)dx

≤

N−1∑
j=0

∫ xj+1

xj

{
[e et ]A[e et ]T + (2α0p3 − 2p2 + λ1)e2x

− λ1Ce2 + 2L(p2e + p3et )
(
τ (t)ν +

∫ x

x̄j

eζ (ζ , tk)dζ
)

− rτ (t) exp(−2α0h)ν2
+ r

(
h − τ (t)

)
e2t

− 2α1p3
π2

∆2

[∫ x

x̄j

eζ (ζ , tk)dζ

]2 }
dx

Denote ητ = [e et ν
∫ x
x̄j
eζ (ζ , tk)dζ ]

T , t − tk = τ (t).
Then

W ≤

N−1∑
j=0

∫ xj+1

xj

(2α0p3 − 2p2 + λ1)e2xdx

+

N−1∑
j=0

∫ xj+1

xj

ηT
τ Φτητdx ≤ 0,

if

2α0p3 − 2p2 + λ1 ≤ 0 (3.36)

and

Φτ ≜

⎡⎢⎢⎢⎢⎢⎢⎢⎣
φ11 φ12 τ (t)Lp2 Lp2

∗ φτ 22 τ (t)Lp3 Lp3

∗ ∗ −τ (t)r exp(−2α0h) 0

∗ ∗ ∗ −2α1p3
π2

∆2

⎤⎥⎥⎥⎥⎥⎥⎥⎦
≤ 0,

φ11 = 2p2(g − L) + 2α0p1 − Cλ1,

φ12 = p1 + p3(g − L) + p2(2α0 − β),

φτ 22 = 2p2 + 2p3(α0 − β) + r
(
h − τ (t)

)
. (3.37)

Note that Φτ is affine in g ∈ [−g1, g1] and in τ ∈ [0, h]. So it is
sufficient to verify Φτ ≤ 0 in the four vertices τ = 0, τ = h and
g = ±g1:

Φ0|g=±g1 ≤ 0, Φh|g=±g1 ≤ 0, (3.38)

where

Φ0 ≜

⎡⎢⎢⎢⎣
φ11 φ12 Lp2
∗ 2p2 + 2p3(α0 − β) + rh Lp3

∗ ∗ −2α1p3
π2

∆2

⎤⎥⎥⎥⎦ ,

Φh ≜

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

φ11 φ12 hLp2 Lp2

∗ 2p2 + 2p3(α0 − β) hLp3 Lp3

∗ ∗ −hr exp(−2α0h) 0

∗ ∗ ∗ −2α1p3
π2

∆2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

(3.39)
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Moreover, the feasibility of strict inequalities (3.36) and (3.38)
with α0 = α1 > 0 implies their feasibility with a slightly larger
ᾱ0 = α0 + ε > 0, where ε > 0 is small. Therefore, if the strict
inequalities (3.36) and (3.38) hold with α0 = α1 > 0, then the
error system (3.16) is exponentially stable with some small decay
rate ε > 0.

Remark 3.1. Consider now the case of continuous-time mea-
surements

yj(t) = z(x̄j, t), j = 0, . . . ,N − 1,

where the observer has the form

ẑtt (x, t) = ẑxx(x, t) − β ẑt (x, t) + f
(
ẑ(x, t), x, t

)
(3.40)

+ L
N−1∑
j=0

χj(x)[yj(t) − ẑ(x̄j, t)], x ∈ (0, π ), t ≥ t0

under the corresponding boundary conditions. The continuous-
time error equation is governed by

ett (x, t) = exx(x, t) − βet (x, t) + ge(x, t)

− L
N−1∑
j=0

χj(x)

[
e(x, t) −

∫ x

x̄j

eζ (ζ , t)dζ

]
, (3.41)

t ≥ t0, x ∈ (0, π ).

Taking into account (3.36) and (3.37), for V0 defined by (3.25) we
conclude that V̇0+2α0V0 ≤ 0 along (3.41) if the inequalities (3.36)
and

Ψ
∆
=

⎡⎢⎣φ11 φ12 Lp2
∗ 2p2 + 2p3(α0 − β) Lp3

∗ ∗ −
π2

∆2 (2p2 − 2α0p3 − λ1)

⎤⎥⎦ ≤ 0

(3.42)

are satisfied. Moreover, it is sufficient to verify (3.42) in the
vertices ±g1. Since Halanay’s inequality is not applied in the
continuous-time case, by employing Wirtinger’s inequality (2.1),
the condition P0 > 0 can be relaxed to

P1 =

[
p1 + Cp3 p2

∗ p3

]
> 0.

For ∆ → 0 (3.42) holds with λ1 = 2p2 − 2αp3 if

Ψ0
∆
=

[
φ11 φ12
∗ 2p2 + 2p3(α0 − β)

]
|λ1=2p2−2α0p3

≤ 0, p2 ≥ α0p3.

The inequalities Ψ0 ≤ 0 and P1 > 0 coincide with the
Lyapunov inequalities for the exponential stability with a decay
rate α0 of the following second-order ODE

ζ̇ (t) =

[
0 1

−(C − g + L) −β

]
ζ (t), ζ ∈ R2. (3.43)

In the linear case g ≡ g1, (3.43) is the first mode in the modal
decomposition of ztt = zxx−βzt+(g−L)z under the corresponding
boundary conditions, and the choice of

L ≥ g1 +
β2

4
− C (3.44)

leads to the maximal possible decay rate α =
β

2 . Note that the
choice of minimal L = g1 +

β2

4 − C subject to (3.44) enlarges

the values of ∆ that preserve the stability (this follows from
application of Schur complements to Ψ ) and corresponds to the
result of Smyshlyaev, Cerpa, and Krstic (2010) (see Section 4) for
the stability of the damped wave equation.

By Schur complements, LMIs (3.36) and (3.38) are feasible for
h → 0 and λ1 = 0 if p2 ≥ α0p3 and

Ψ01|g=±g1 +
∆2

2α1p3π2 [Lp2 Lp3]T [Lp2 Lp3] ≤ 0, (3.45)

where

Ψ01
∆
=

[
2p2(g − L) + 2α0p1 φ12

∗ 2p2 + 2p3(α0 − β)

]
.

The Lyapunov inequalities in the vertices g = ±g1

Ψ01|g=±g1 < 0, P0 > 0 (3.46)

guarantee the quadratic exponential stability with a decay rate α0
of the following second-order ODE

ζ̇ (t) =

[
0 1

g − L −β

]
ζ (t), ζ ∈ R2. (3.47)

Therefore, if LMIs (3.46) are feasible, then LMIs (3.36) and (3.38)
are feasible for small enough ∆ and h provided α0 is not too large
(to guarantee p2 ≥ α0p3). Note that in the linear case the choice
of L > g1 guarantees the exponential stability of (3.47).

We are in a position to summarize the main result of this
section:

Theorem 3.1. Consider the sampled-data error system (3.16) under
the Dirichlet, Neumann or mixed boundary conditions with bounds
∆, h and g1 in (3.7) and (3.5). Let C be defined by (3.34). Choose
L > g1 subject to (3.44).

(i) Given scalars α0 > α1 > 0 with α0 <
β

2 , assume that
there exist scalars p1, p2, p3, r > 0 and λ1 ≥ 0 that satisfy LMIs
(3.26), (3.36) and (3.38) with notations given by (3.37), (3.39).
Then the error system is exponentially stable with a decay rate α,
meaning that (2.2) holds for solutions of the error system with V
defined by (3.24)–(3.27). Here α is a unique positive solution of
α = α0 − α1 exp(2αh). Moreover, if the strict inequalities (3.26),
(3.36) and (3.38) are feasible with α0 = α1 > 0, then the error
system is exponentially stable with a small enough decay rate.

(ii) If the ODE (3.47) is quadratically exponentially stable with a
small enough decay rate α0 < 0.5β , i.e. if LMIs (3.46) are feasible,
then LMIs (3.26), (3.36) and (3.38) are also feasible (and the error
system is exponentially stable) for small enough ∆ and h.

3.3. Numerical example

Consider the damped wave equation (3.1) under the Dirichlet
boundary conditions (3.2), and its corresponding observer (3.13)
under the discrete-time point measurements with the following
parameters:

β = 3, g1 = 2, L = g1 − 1 + β2/4 = 3.25. (3.48)

Here L is the minimal gain subject to L > g1 and (3.44). As
mentioned in Remark 3.1, a smaller L leads to larger ∆ and h that
preserve the convergence. We consider the case of either linear
f = g1z, where we verify the feasibility of LMIs of Theorem 3.1
in one vertex g = g1, or the general case with |fz | ≤ g1, where
the feasibility of LMIs is verified in both vertices g = ±g1.
We use the standard LMI Toolbox of Matlab for the verification
of the feasibility of LMIs. Note that for f = g1z, the system
is unstable (cf. Remark 3.1). Simulations of solutions to sine–
Gordon equation with f = g1 sin z and the initial conditions
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Fig. 1. The state z(x, t), for f = 2 sin z.

Table 1
Maximal decay rate vs. number of sensors: tk+1 − tk ≤ 0.01.
N 2 3 4 100 105

α
⏐⏐
fz≡2 – 0.3698 0.5098 0.8998 0.989

α0 0.59 0.7 0.99 0.99
α1 0.22 0.19 0.09 0.001

α
⏐⏐
|fz |≤2 – 0.05 0.23 0.69 0.78

α0 0.4 0.5 0.7 0.79
α1 0.35 0.27 0.01 0.01

Table 2
Maximal value of h vs. number of sensors and small α.
N 2 3 4 100 105

h
⏐⏐
fz≡2 – 0.5 0.59 1.67 1.84

α0 = α1 0.2 0.1 0.001 0.0001

h
⏐⏐
|fz |≤2 – 0.04 0.21 0.76 0.86

α0 = α1 0.4 0.2 0.001 0.0001

z0 = sin x, z1 = 0 (see Fig. 1) show instability. For simplicity
only we present in Tables 1 and 2 the LMI-based results under
the uniform spatial sampling xj+1 − xj =

π
N , j = 0, . . . ,N − 1

with ∆ = π/N . The resulting maximal achievable decay rates α

for small enough upper bound h = 0.01 on the time sampling
intervals are shown in Table 1, whereas maximal values of h that
preserve the exponential stability with a small enough decay rate
are given in Table 2.

For f = 2z and f = 2 sin z, we employ the finite-difference
method and proceed with simulations of solutions to the error
equation for L and β given by (3.48). The initial conditions are
taken as z0 = sin x, z1 = 0. We consider the uniform spatial
sampling with N = 3 and variable time sampling with sam-
pling intervals generated from a uniform distribution probability
density function in [0, h]. The simulations confirm the theoretical
results and illustrate their conservatism: the minimal h that leads
to unstable error system from simulations is essentially larger
than h in Table 2 as shown in Figs. 2 and 3 (upper lines).

4. Sampled-data observer for semilinear wave equation with
boundary damping

4.1. Problem formulation

In this section we consider the wave equation

ztt (x, t) =zxx(x, t) + f
(
z(x, t), x, t

)
, (4.1)

x ∈ (0, π ), t ≥ t0

under the boundary damping

z(0, t) = 0, zx(π, t) = −βzt (π, t). (4.2)

Here z(x, t) ∈ R is the state, β > 0 is the damping coefficient,
and f is a function of class C1. We assume that the derivative fz
is uniformly bounded as follows:

|fz(z, x, t) − g1| ≤ δ ∀(z, x, t) ∈ R × [0, π] × [t0, ∞), (4.3)

where g1 and δ are given constants. Note that differently from the
case of viscous damping, here f is close to the linear function g1z.
The initial conditions are given by (3.6).

The boundary-value problem (4.1)–(4.2) can be represented
as an abstract differential equation by defining the state ζ (t) =

[ζ0(t) ζ1(t)]T = [z(t) zt (t)]T and the operators

A =

[ 0 I
∂2

∂x2
0

]
, F (ζ , t) =

[
0

F1(ζ0, t)

]
. (4.4)

Here F1 : H 1(0, π ) × [t0, ∞) → L2(0, π ) is defined as F1(ζ0, t) =

f (ζ0, ·, t) so that it is continuous in t for each ζ0 ∈ H 1(0, π ). The
resulting differential equation (3.10) is considered in the Hilbert
space H = H 1

L × L2(0, π ), where

H 1
L =

{
ζ0 ∈ H 1(0, π )

⏐⏐⏐⏐ ζ0(0) = 0
}

.

and ∥ζ∥
2
H = ∥ζ0x∥

2
L2

+ ∥ζ1∥
2
L2
. The operator A has the dense

domain

D(A ) =

{[
ζ0
ζ1

]
∈ H 2(0, π )

⋂
H 1

L × H 1
L

⏐⏐⏐⏐ζ0x(π ) = −βζ1(π )
}

.

Existence of mild (classical) solutions to (4.1)–(4.2), for ζ (t0) ∈ H

(and classical solution for ζ (t0) ∈ D(A )) can be proved similar
to Fridman (2013) (see Section 2).

4.2. Sampled in time and space observer

We aim to derive conditions for the case of sampled in time
and in space measurements (3.8). Consider a sampled-data ob-
server of the form

ẑtt (x, t) = ẑxx(x, t) + f
(
ẑ, x, t

)
+ L

N−1∑
j=0

χj(x)[yjk − ẑ(x̄j, tk)],

x ∈ (0, π ), t ∈ [tk, tk+1), k = 0, 1, 2, . . . (4.5)

under the mixed boundary conditions

ẑ(0, t) = 0, ẑx(π, t) = −β ẑt (π, t), (4.6)

and the initial conditions [ẑ(·, t0), ẑt (·, t0)]T ∈ H . Here the mea-
surements yjk are given by (3.8), L is the observer gain, and the
characteristic functions χj(x) are given by (3.15). The estimation
error e = z − ẑ satisfies the following semilinear wave equation

ett (x, t) = exx(x, t) + ge(x, t) − L
N−1∑
j=0

χj(x)e(x̄j, tk),

x ∈ (0, π ), t ∈ [tk, tk+1), k = 0, 1, 2, . . . (4.7)

under the mixed boundary conditions

e(0, t) = 0, ex(π, t) = −βet (π, t), (4.8)

where g is defined by (3.18). The well-posedness of the error
equation can be proved by using the step method, similarly to
Section 3.2.
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Fig. 2. Error energy for f = 2z,N = 3 and h = 0.5 (lower line) or h = 2.62 (upper line).

Fig. 3. Error energy for f = 2 sin z,N = 3, and h = 0.04 (lower line) or h = 2.3 (upper line).

By using the relation (3.22) we represent (4.7) as

ett (x, t) = exx(x, t) + (g − L)e(x, t) + σ ,

σ = L
N−1∑
j=0

χj(x)

[
(t − tk)ν +

∫ x

x̄j

eζ

(
ζ , tk

)
dζ

]
,

x ∈ (0, π ), t ∈ [tk, tk+1), k = 0, 1, 2, . . . (4.9)

Rewriting the error system in Riemann coordinates

R(x, t) ≜ et (x, t) − ex(x, t), (4.10)
Q (x, t) ≜ et (x, t) + ex(x, t),

we arrive at

Rt = −Rx + (g − L)e + σ ,

Qt = Qx + (g − L)e + σ
(4.11)

under the boundary conditions

R(0, t) = −Q (0, t), Q (π, t) =
1 − β

1 + β
R(π, t). (4.12)

Here

e(x, t) = 0.5
∫ x

0
(Q (ξ, t) − R(ξ, t)) dξ .

Following Bastin and Coron (2016), we choose the Lyapunov
function

Vq(t) =

∫ π

0

[
q1R2(x, t) exp(−µx) + q2Q 2(x, t) exp(µx)

]
dx (4.13)

with positive scalars q1,2 and µ. Differentiating (4.13) along (4.11)
we have

V̇q = 2
∫ π

0
[q1RRt exp(−µx) + q2QQt exp(µx)] dx

=

∫ π

0

[
−q1

∂

∂x
R2 exp(−µx) + q2

∂

∂x
Q 2 exp(µx)

+2
(
q1R exp(−µx) + q2Q exp(µx)

)
(g − L)e

]
dx

+2L
N−1∑
j=0

∫ xj+1

xj

(
q1R exp(−µx) + q2Q exp(µx)

)
×

(
(t − tk)ν +

∫ x

x̄j

eζ

(
ζ , tk

)
dζ

)
dx.
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Integrating by parts and substituting the boundary conditions we
obtain

V̇q ≤ −µVq −

(
q2 − q1

)
R2(0, t)

−

(
q1 exp(−µπ ) − q2(

1 − β

1 + β
)2 exp(µπ )

)
Q 2(π, t)

+2
∫ π

0

(
q1R exp(−µx) + q2Q exp(µx)

)
(g − L)edx

+2L
N−1∑
j=0

∫ xj+1

xj

(
q1R exp(−µx) + q2Q exp(µx)

)
×

(
(t − tk)ν +

∫ x

x̄j

eζ

(
ζ , tk

)
dζ

)
dx.

(4.14)

For the stability analysis of (4.9), we employ the Lyapunov–
Krasovskii functional Vb(t) = Vq(t) + Vr (t) with Vr (t) given
by (3.27) (to compensate ν) and Halanay’s inequality (2.2) (to
compensate

∫ x
x̄j
eζ

(
ζ , tk

)
dζ ). For some α1 < α0 we have

V̇b(t) + 2α0Vb(t) − 2α1 sup−h≤θ≤0 Vb(t + θ )

≤ V̇b(t) + 2α0Vb(t) − 2α1

∫ π

0

[
q1R2(x, tk) exp(−µx)

+q2Q 2(x, tk) exp(µx)
]
dx.

(4.15)

Note that the diagonal Lyapunov function Vq leads to
non-restrictive conditions for (4.11) with e = σ = 0 (see
Theorem 2.4 of Bastin & Coron, 2016). So, the term (L−g)e will be
treated in our stability analysis as the disturbance, and it is clear
from (4.14) that the best choice for the observer gain is L = g1
leading to the minimal interval g − L ∈ [−δ, δ]. By Wirtinger’s
inequality (2.1)∫ π

0
(g − L)2e2dx ≤

∫ π

0
δ2e2dx ≤ 4δ2

∫ π

0
e2xdx,

where ex = 0.5[Q − R]. Then, by S-procedure, the following
non-negative term

λ2

∫ π

0

[
δ2(Q − R)2 − (g − L)2e2

]
dx ≥ 0, λ2 ≥ 0, (4.16)

can be added to the right-hand side of (4.15). Taking into ac-
count (3.33), we add to the right-hand side of (4.15) one more
non-negative term

λ3

N−1∑
j=0

∫ xj+1

xj

[ 1
4

(Q (x, tk) − R(x, tk))2

−
π2

∆2

(∫ x

x̄j

eζ (ζ , tk)dζ

)2 ]
dx, λ3 ≥ 0.

(4.17)

Denote

η1 =

[
R exp(−µx) Q exp(µx) ν

∫ x

x̄j

eζ

(
ζ , tk

)
dζ (g − L)e

]T
and η2 =

[
R(x, tk) Q (x, tk)

]T . Then from (4.14), (4.16)–(4.17)
and (3.28) we have

V̇b(t) + 2α0Vb(t) − 2α1 sup
−h≤θ≤0

Vb(t + θ )

≤ −

(
q1 exp(−µπ ) − q2

(
1 − β

1 + β

)2

exp(µπ )
)
Q 2(π, t)

−

(
q2 − q1

)
R2(0, t) +

N−1∑
j=0

∫ xj+1

xj

(η1ΞηT
1 + η2Υ ηT

2 )dx ≤ 0,

if

q2 ≥ q1, q1(1 + β)2 − q2(1 − β)2 exp(2µπ ) ≥ 0, (4.18)

Υ
∆
=

[
−2α1q1 exp(−µx) +

λ3
4 −

λ3
4

∗ −2α1q2 exp(µx) +
λ3
4

]
≤ 0

and

Ξ
∆
= (4.19)⎡⎢⎢⎢⎢⎢⎣
ξ11 −λ2δ

2
+

r(h − τ )
4

τLq1 Lq1 q1
∗ ξ22 τLq2 Lq2 q2
∗ ∗ −rτ exp(−2α0h) 0 0
∗ ∗ ∗ −

π2

∆2 λ3 0
∗ ∗ ∗ ∗ −λ2

⎤⎥⎥⎥⎥⎥⎦ ≤ 0,

where

ξ11 =

(
λ2δ

2
+

r(h − τ )
4

)
exp(2µx) − (µ − 2α0)q1 exp(µx),

ξ22 =

(
λ2δ

2
+

r(h − τ )
4

)
exp(−2µx) − (µ − 2α0)q2 exp(−µx).

By upper bounding the diagonal elements of Υ and Ξ and em-
ploying the affinity of Ξ in τ ∈ [0, h], we arrive at

Υ ≤

[
−2α1q1 exp(−µπ ) +

λ3
4 −

λ3
4

∗ −2α1q2 +
λ3
4

]
≤ 0, (4.20)

and

Ξ

⏐⏐⏐
τ=0,h

≤ 0, (4.21)

where

ξ11 = −(µ − 2α0)q1 +

(
λ2δ

2
+

r(h − τ )
4

)
exp(2µπ ),

ξ22 = −(µ − 2α0)q2 exp(−µπ ) + λ2δ
2
+

r(h − τ )
4

. (4.22)

Note that in LMI conditions of Theorem 4.1, the damping
β appears only in (4.18). So, β = 1 leads to less restrictive
conditions. Note also that by Schur complements, for all µ >

2α0 > 0 and small enough δ, ∆ and h the inequalities (4.18),
(4.20) and (4.21) are always feasible for β = 1. We are in a
position to formulate our main result for the case of boundary
damping:

Theorem 4.1. Consider the sampled-data error system (4.9) under
the boundary conditions (4.8) with bounds ∆, h and δ in (3.7) and
(4.3). Choose L = g1.

(i) Given positive scalars µ, α0 and α1 such that α1 < α0 < 0.5µ,
assume that there exist scalars q1,2 > 0, r > 0 and λ2,3 > 0 that
satisfy LMIs (4.18), (4.20) and (4.21) with the notations (4.19) and
(4.22). Then, the error system is exponentially stable with a decay
rate α, meaning that the following inequality holds:

Vb(t) ≤ exp
(
−2α(t − t0)

)
Vb(t0), t ≥ t0,

where α is a unique positive solution of α = α0 − α1 exp(2αh).
Moreover, if the strict inequalities (4.18), (4.20) and (4.21) are
feasible with α0 = α1 > 0, then the sampled-data error system
is exponentially stable with a small enough decay rate.
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Fig. 4. The state z(x, t) for f = g1z.

Table 3
max{α} vs. N , for tk+1 − tk ≤ 10−5 and µ = 0.4.
N 4 5 100 1e5

α
⏐⏐
fz≡g1

0.013 0.046 0.1881 0.1989
α0 0.13 0.1 0.19 0.199
α1 0.108 0.054 0.002 0.0001

α
⏐⏐
|fz−g1 |≤0.01 – 0.006 0.133 0.1471

α0 – 0.14 0.147 0.1472
α1 – 0.0801 0.014 0.0001

Table 4
max{h} vs. N , for small α and µ = 0.4.
N 4 5 100 105

h
⏐⏐
fz≡g1

0.013 0.032 0.089 0.089
α0 = α1 0.09 0.09 0.03 0.03

h
⏐⏐
|fz−g1 |≤0.01 – 0.004 0.063 0.063

α0 = α1 – 0.09 0.03 0.03

(ii) For β = 1, LMIs (4.18), (4.20) and (4.21) are always feasible
(hence, the error system is exponentially stable) for small enough
δ, ∆ and h.

4.3. Numerical example

Consider the boundary-damped wave system (4.1)–(4.2), and
its corresponding observer (4.5)–(4.6) with

β = 1, g1 = 1, L = g1, δ = 0.01. (4.23)

We consider the case of either linear f = g1z, or the general
case with |fz − g1| ≤ δ. Note that simulation of solution to the
original system with the initial condition z0 = sin x, z1 = 0 for
f = g1z shows instability (see Fig. 4). For simplicity, the results
are presented under the uniform spatial sampling xj+1 − xj =
π
N , j = 0, . . . ,N−1 with ∆ = π/N . We verify the LMI conditions
of Theorem 4.1. See Table 3 for maximal decay rates under the
time sampling tk+1 − tk ≤ 10−5 and Table 4 for maximal time
sampling and small enough decay rate.

By employing the finite-difference method, we proceed with
simulations of solutions to the error equation for f = g1z and
f = g1z + δ sin z, with the initial conditions z0 = sin x, z1 = 0. In
simulations we choose L = g1 and β, δ that are given by (4.23)
and consider the uniform spatial sampling. The variable time
sampling is chosen with sampling intervals that are generated
from a uniform distribution probability density function in [0, h].
Similar to the case of viscous damping, the minimal h that leads
to unstable error system from simulation is essentially larger than
h obtained in Table 4 and is shown in Fig. 5 for fz ≡ g1, and in
Fig. 6 for f = g1z + δ sin z.

5. Dual sampled-data control problems

We formulate in this section the dual distributed sampled-
data controller problems that can be solved by the methods of
the previous sections. The controlled semilinear wave equation
with the viscous damping has the following form:

ztt (x, t) = zxx(x, t) − βzt (x, t) + f
(
z(x, t), x, t

)
z(x, t)

+

N−1∑
j=0

χj(x)uj(tk), (5.1)

x ∈ (0, π ), t ∈ [tk, tk+1), k = 0, 1, 2 . . . ,

whereas the boundary conditions are either Dirichlet (3.2) or
Neumann (3.3) or mixed (3.4). The controlled boundary-damped
wave equation has the form

ztt (x, t) =zxx(x, t) + f
(
z(x, t), x, t

)
z(x, t) +

N−1∑
j=0

χj(x)uj(tk),

x ∈ (0, π ), t ∈ [tk, tk+1), k = 0, 1, 2 . . . (5.2)

under the mixed boundary conditions

z(0, t) = 0, zx(π, t) = −βzt (π, t), β > 0. (5.3)

In (5.1) and (5.2)–(5.3), β > 0 is a damping coefficient, uj(tk)
is the control input, f (z, x, t) is a function of class C1, satisfying
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Fig. 5. Error energy for f = g1z,N = 4, and h = 0.013 (lower line) or h = 3.7 (upper line).

Fig. 6. Error energy for f = g1z + δ sin z,N = 5, and h = 0.004 (lower line) or h = 3.1 (upper line).

|f (z, x, t)| ≤ g1 with a known g1 > 0. The discrete sampling
points are given by (3.8).

The stabilizing sampled-data controller has a form

uj(tk) = − Kz(x̄j, tk), x̄j =
xj+1 − xj

2
, (5.4)

k = 0, 1, 2, . . . , j = 0, . . . ,N − 1

with the gain K > 0. Then, conditions of Theorems 3.1 and 4.1
with K = L guarantee the exponential stability of the closed-loop
systems (5.1), (5.4) and (5.2), (5.4), respectively.

Remark 5.1. As already mentioned, the global boundedness
assumption (3.5) is restrictive. This assumption can be relaxed
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to regional boundedness as considered in Section 4 of Fridman
and Terushkin (2016) that, for the case of control, should lead to
regional stabilization and should be applicable to Klein–Gordon
equation. Regional stabilization under regional boundedness in
(3.5) may be a topic for future research.

6. Conclusions

In this paper we introduced sampled-data observers for 1D
damped semilinear wave equations under sampled in time and
in space measurements. Sufficient LMI-based conditions for the
exponential stability of the estimation error were formulated in
terms of LMIs. The dual distributed sampled-data control prob-
lem was presented. The presented method can be developed
for event-triggered control under discrete time measurements.
Extension of the method to other classes of hyperbolic systems
may be a topic for the future research.
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