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Abstract

This paper considers the in"nite horizon nonlinear quadratic optimal control problem for a singularly perturbed system which is
nonlinear in both, the slow and the fast variables. The relationship between this problem and the analogous one for a descriptor
system is investigated. Parameter-independent controllers are constructed that solve the problem for the descriptor system and lead
the full-order system to the near-optimal performance. Estimates on the closeness of the cost under near-optimal controllers to the
optimal one are obtained. ( 2001 Elsevier Science Ltd. All rights reserved.
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1. Introduction

By standard singularly perturbed problem, we mean
such a problem that the algebraic equation of the limit
problem (i.e. the problem, where e"0) is solvable with
respect to the fast variable. Optimal control of a class of
standard nonlinear singularly perturbed system, being
nonlinear only on the slow variable, has been studied by
Chow and Kokotovic (1978, 1981), where a two-stage
procedure for design of e-independent composite control-
ler has been suggested. In the case of general standard
problem, nonlinear in both the fast and the slow vari-
ables, a composite controller has been designed by Saberi
and Khalil (1985) and the limit of the optimal cost as
eP0 has been found by Bensoussan (1987).

A descriptor system approach has been introduced by
Wang, Shi, and Zhang (1988) for the case of non-standard
LQ problem. It has been shown that optimal (e-indepen-
dent) regulators for the descriptor system are near-
optimal regulators for the corresponding singularly
perturbed system. For the full-order system the values of
the cost under these regulators are O(e)-close to the
optimal one. Xu, Mukaidani, and Mizukami (1997) have

shown that only the composite controller, which is O(e)-
close to the optimal regulator, achieves O(e2) near-opti-
mal cost. In the present paper we extend the results of
Wang et al. (1988) and Xu et al. (1997) to the non-
standard problem, which is nonlinear in both, the slow
and the fast variables.

Our results are based on the geometric approach of
Van der Schaft (1991), Isidori and Astol" (1992) and
Byrnes (1998), which relates Hamilton}Jacobi equations
with special invariant manifolds of Hamiltonian systems.
We apply results of Fridman (2000) on the existence of
the solution to Hamilton}Jacobi equation and its asymp-
totic approximation. Proofs of the theorems are given in
appendix.

2. Problem formulation

Consider the optimal control problem for the system

Eex5 "F(x)#B(x)u, Ee"C
I
n1

0

0 eI
n2
D, (1)

with respect to the functional

J"P
=

0

[k@(x)k(x)#u@R(x)u] dt, (2)

where x"colMx
1
, x

2
N, x

1
(t)3Rn

1 and x
2
(t)3Rn

2 are the
state vectors, u(t)3Rm is the control input, and e'0 is
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a small parameter. Prime denotes the transposition of
a matrix. The functions
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B
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R(x) and k(x) are di!erentiable with respect to x a
su$cient number of times. We assume also that
F(0)"0, k(0)"0 and R(x)"R@(x)'0.

System (1)}(2) has a non-standard singularly perturbed
form in the sense that we do not require that the algebraic
equation

F
2
(x

1
, x

2
)#B

2
(x

1
, x

2
)u"0 (3)

has a solution of the form x
2
"h(x

1
, u). In the standard

case, such an assumption is a crucial one (see e.g. Chow
et al. 1978, 1981; Saberi et al., 1985; Kokotovic, Khalil,
& O'Reilly, 1986; Bensoussan, 1987; Pan & Basar, 1996).

We are looking for a nonlinear state feedback

u"b(x), b(0)"0, (4)

that locally minimizes the cost (2). Consider the Hamil-
tonian function

H(x, p)"p@F(x)!1
2
p@S(x)p#1

2
k@(x)k(x), S"BR~1B@,

(5)

where p"colMp
1
, p

2
N, p

1
and ep

2
play the role of

the costate variables. The corresponding Hamiltonian
system has the form

x5
1
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2
), (6a)
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where
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Denote by <
x
"[<

x1
<

x2
] the Jacobian matrix of <.

For each e'0, the problem is locally solvable on
)LRn

1]Rn
2 , 03X if there exists a C2 non-negative

solution < : )PR to the Hamilton}Jacobi (HJ) partial
di!erential equation

<
x
E~1e F(x)!1

2
<

x
E~1e S(x)E~1e <@

x
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2
k@(x)k(x)"0,

<(0)"0,
(7)

with the property that the system

Eex5 "F(x)!S(x)E~1e <@
x

(8)

is asymptotically stable (Byrnes, 1998). The latter is
equivalent to the existence of the invariant manifold of (6)
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with asymptotically stable #ow (8), such that
<50, <(0)"0 (that implies <

x
(0)"0). The optimal

controller that solves the problem is given by

u"!R~1B@E~1e <@
x
"!R~1B@

1
Z

1
!R~1B@

2
Z

2
. (10)

We shall "nd e-independent controllers that near-opti-
mally solve the local problem on some e-independent
neighborhood )

0
for all small enough e.

3. Main results

3.1. Composite controller design

Consider the linearization of (1) at x"0:

Eex5 "Ax#B
0
u (11)

with the quadratic functional

J"P
=

0

[x@C@Cx#u@R(0)u] dt, (12)

where
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Denote
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D, i"1,2, j"1,2.

To guarantee that for all small e this LQ problem is
solvable we assume (Xu et al., 1997):

A1. The descriptor system (11), where e"0, is stabiliz-
able-detectable, i.e. both pencils [sE

0
!A; B] and

[sE@
0
!A@; C] are of full row rank for all s with non-

negative real parts.
A2. The triple MA

22
, B

20
, C

2
N is stabilizable-detect-

able.
Under A2 a fast Riccati equation
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has a solution X
&
"X@

&
50, such that the matrix

"
&
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is Hurwitz. Under A1 and A2

a slow algebraic Riccati equation
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where
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has a solution X
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50 such that the matrix

"
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is Hurwitz. It is known (Wang et al.,

1988; Xu et al., 1997) that for all small enough e the linear
controller
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solves the LQ problem.
Note that under A1 and A2 the Hamiltonian matrices

¹
22
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0

have no eigenvalues on the imaginary axis.
Then by implicit function theorem the system of equa-
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in a small enough neighborhood of Rn
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Consider the reduced Hamiltonian system
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This system results after substitution of (17) into (6a) and
(6b). From the theory of nonlinear di!erential equations
(Kelley, 1967) it follows that this system has a stable
manifold
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for x
1

from small enough neighborhood of 0. Note that
(20) results from substitution of (19) into (18a). Function
N

0
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0
(x
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) satis"es the slow partial di!erential equa-
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This PDE can be derived by di!erentiating on t of (19),
where p
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1
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where D ) D denotes the Euclidean norm of a vector.
For each x

1
such that (17) and (19) exist consider the

&fast' system
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From the theory of nonlinear di!erential equations
(Kelley, 1967), it follows that this system has a stable
manifold p6

2
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De"ne the composite controller as follows:
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From (16), (22) and (26) it follows that

u
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2
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We shall show that u
0

near-optimally solves the problem
on some e-independent neighborhood for all small
enough e. Let )

mi
"Mx

i
3Rn

i : Dx
i
D(m

i
N, i"1,2. From

Fridman (2000) we obtain the following result:

Lemma 3.1. Under A1 and A2 there exist m
1
'0,

m
2
'0 and e

0
'0 such that for all e3(0, e

0
] the following

holds:

(i) There exists a C2 function < :)
m1

])
m2

P[0,R),
satisfying the HJ equation (7) with the property that (8) is
asymptotically stable.

(ii) The invariant manifold, the solution to HJ equa-
tion and the optimal controller have the following
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approximations:
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0

is given by (27). Approximations are uniform
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1
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2
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. The composite controller (27)

achieves the cost O(e)-close to the optimal one
J
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for x(0)3)
0
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0
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where x
1
(t) is a solution to (20) with the initial data x

10
.

The boundary layer term %(q) is exponentially decaying for
qPR and satisxes the following initial value problem:
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The remainders satisfy inequality Dr
i
(t, e)D4ce~at, i"1, 2.

Note that (29c) and (29d) follow from (29a) and (29b).

3.2. Optimal controller for descriptor system.

Consider the corresponding to (1) descriptor system

E
0
x5 "F(x)#B(x)u. (32)

A controller u"u(x) is called an admissible, if the closed-
loop system (32) has a unique solution for any initial
condition E

0
x(0) from small enough neighborhood in

Rn1]M0N containing 0 as an interior point. The problem
is to "nd, of all admissible locally asymptotically stabiliz-
ing controllers, the one that minimizes (2).

Theorem 3.1. (i) Assume that A1 holds and that the linear
descriptor system (11), where e"0, is impulsively control-
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E
0
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u
d
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solves the local optimal control problem for the descriptor
system (32) with respect to the functional (2) and leads to the
optimal cost

J
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0
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(ii) Under A1 and A2 the solution to (33) and (34) is given
by
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and the composite controller (27) is locally optimal one
for (32).

(iii) Assume that A1 and A2 hold. Let MM :)PRn2 be
any continuously diwerentiable function that vanishes at
x
2
"0 and such that fI
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(0,0) is non-singular, where
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is locally optimal one for (32). The resulting optimal cost
J
d
"2<

0
(x

1
(0)) is O(e)-close to the optimal cost J

015
of

singularly perturbed system (1) for all initial conditions
x(0) from small enough neighborhood )

0
LRn1]Rn2

containing 0.

Note that relation (33) is analogous to one in Xu and
Mizukami (1994).

3.3. Near-optimal controllers for the singularly perturbed
system

Theorem 3.2. Under A1 and A2 for all small enough e and
for all initial conditions from small enough neighborhood
)

0
LRn1]Rn2 containing 0 the following holds:
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Table 1

e 0.1 0.01 0.001 0.0001
J(u

0
) 1.5509 0.4740 0.3948 0.3871

J(u6 ) 1.5965 0.4830 0.3957 0.3872

(i) The composite controller (27), where M
0

satisxes the
fast PDE (25), leads the full-order system (1) to the cost
O(e2)-close to the optimal one J

015
.

(ii) ¸et MM :)PRn2 be any continuously diwerentiable
function that vanishes at x

2
"0 and such that (24) with

M
0
"MM is exponentially stable uniformly on x

1
. Then the

controller (38) leads the full-order system (1) to the cost
O(e)-closeto J

015
.

Thus, as in the linear case (Wang et al., 1988) and in the
standard nonlinear case (Saberi et al., 1985), there exist
many near-optimal e-independent solutions (27) to the
non-standard problem (1), (2), where the fast gain is any
function that exponentially stabilizes (24) with M

0
"MM

(e.g. one can choose MM (x
1
, x

2
)"Kx

2
such that A

22
#

B
20

K is Hurwitz). These solutions lead to the values of
the cost O(e)-close to the optimal one. However, as well as
in the linear case (Kokotovic et al., 1986; Xu et al., 1997),
only the composite controller, being an O(e)-approxima-
tion to the optimal controller, achieves O(e2) near-opti-
mal cost.

Example. Consider the system
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1
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2
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2
#u2]dt, x(0)"colM0.4, 1N. (39)

This is a non-standard problem since the algebraic equa-
tion x

1
#u"0 is not uniquely solvable with respect to

x
2
. We obtain the following Hamiltonian function:
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and the Hamiltonian system
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We "nd
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1
, /"!arctan p

1
, N

0
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1
,

K"1#J2,

M
0
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1
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2
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1
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2
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)]]/

cos2(x6
2
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)).

The composite controller of (27) has a form

u
0
"!x

1
!(Kx

1
#tanx

2
)/cos2x

2
. (40)

By choosing MM "3x6
2
, that stabilizes (24), we obtain

another near-optimal controller given by the right-hand
side of (38)

u6 "!x
1
!3x

2
!3 arctan(Kx

1
).

Applying now u
0

and u6 to (39) we "nd the corresponding
values of costs J(u

0
) and J(u6 ) for di!erent values of e

(see Table 1). We "nd from Table 1 that for all e under
consideration J(u

0
)(J(u6 ). The values of J(u

0
) and J(u6 )

approach the same limit as eP0.

4. Conclusions

We have designed e-independent controllers for non-
standard singularly perturbed systems being nonlinear in
both, the slow and the fast state variables. We have
shown that these controllers are optimal for the corre-
sponding descriptor system. The slow gain of these con-
trollers N

0
is uniquely de"ned from the slow PDE. The

fast gain can be found either as a solution to the fast PDE
or as a stabilizing gain for the fast system. In the "rst case
the controller is O(e)-close to the optimal controller and
leads the singularly perturbed system to O(e2) near-opti-
mal cost, i.e. J(u

0
)"J

015
#O(e2). In the second case the

controllers lead to O(e) near-optimal cost. The optimal
cost of the descriptor system is O(e)-close to J

015
.

The results are local. More general results under less
restrictive assumptions than those of A1 and A2 is an-
other interesting problem that remains open.

Appendix

Proof of Theorem 3.1. (i) Note that under assumptions of
the theorem ME

0
,F,B, kN is locally stabilizable-detectable

and locally impulsively controllable and observable. Let
x(t) satisfy (32) and start from E

0
x(0). Applying (33), (32)

and (34) we "nd

2
d<

$
(E

0
x)

dt
#k@k#u@Ru"2=(x)(F(x)#B(x)u)

#k@k#u@Ru

"(u@#=(x)B(x)R~1(x))R(x)

](u#R~1(x)B@(x)=@(x)).

(A.1)

For asymptotically stabilizing controllers<
$
(E

0
(x

=
))"0.

Then, integrating (A.1) on t from 0 to R, we "nd

J
$
(x

0
, u)52<

$
(E

0
x
0
)"J

$
(x

0
, u

d
), (A.2)

i.e. u
$

is a minimizing controller.
Consider the closed-loop system (32), (35). By the non-

singularity of fI
x2

(0,0) and the implicit function theorem,

E. Fridman / Automatica 37 (2001) 543}549 547



the last n
2

algebraic equations of the closed-loop system
(32), (35) can be solved with respect to x

2
in a small

neighborhood of x"0. Substituting the resulting x
2

into
the "rst n

1
di!erential equations of (32) and (35) we see

that the initial condition for x
1

de"nes the unique solu-
tion. Hence, u

$
is admissible.

(ii) From (37) and (29d) we have

L<
$
(E

0
x)

Lx
"C

L<
0
(x

1
)

Lx
1

0D"[N@
0
(x

1
) 0]"=(x)E

0
.

Lemma 3.1 implies<
x
E~1e "=#O(e). Substituting this

relation into (7) and neglecting the O(e)-terms in the
resulting equation, we "nd that = satis"es (34). Under
A1 and A2, conditions of (i) of Theorem 3.1 are satis"ed
and therefore u

$
(x)"u

0
(x

1
,x

2
).

(iii) Note that M
0
(x

1
, 0)"MM (x

1
, 0)"0 and for the

descriptor system x
2
"/(x

1
,N

0
(x

1
)). Then MM [x

1
,

x
2
!/(x

1
, N

0
(x

1
))]"M

0
[x

1
, x

2
!/(x

1
, N

0
(x

1
))]"0

and u6 (x)"u
0
(x

1
, x

2
) is locally optimal controller for (32).

Moreover, descriptor system (32) is impulse free since
fI
x2

(0,0) is non-singular. From (36), (37a) and (29c) it
follows that J

d
"J

015
#O(e). h.

Proof of Theorem 3.2. (i) The closed-loop system (1), (2)
and (27) has the form:

Eex5 "F(x)!S(x)=@(x), (A.3a)

J(u
0
)"P

=

0

[k@(x)k(x)#=(x)S(x)=@(x)] dt, (A.3b)

where= is given by (37b). Note that u
0

is asymptotically
stabilizing controller and thus (A.3a) is asymptotically
stable for small e. Similarly to (36) it can be proved that
for each e J(u

0
)"2;(x(0)), where ; : )

m1
])

m2
PR is

a twice continuously di!erentiable function, such that
;(x)50,;(0)"0,;

x
(0)"0 and

2;
x
E~1e (F(x)!S=@(x))#k@(x)k(x)

#=(x)S(x)=@(x)"0.
(A.4)

The optimal cost J
015

"2<(x(0)), where< is a solution to
HJ equation (7).

Under A1 and A2 there exists a non-negative twice
continuously di!erentiable solution to (7) and this solu-
tion can be approximated in the form (Fridman, 2000):

<
x
E~1e "[Z

1
(x

1
, x

2
) Z

2
(x

1
, x

2
)]

"=(x)#e<
1
(x)#O(e2), (A.5)

where <
1

is continuously di!erentiable and approxima-
tion is uniform on x from small enough neighborhood of 0.
Analogously, under A1 and A2 there exists a non-negative
twice continuously di!erentiable solution to (A.4) and this
solution can be uniformly approximated in the form

;
x
E~1e "=(x)#e;

1
(x)#O(e2), (A.6)

where ;
1

is continuously di!erentiable.

Denote *(x)";(x)!<(x). From (A.4) and (7) we
obtain

2*
x
E~1e (F(x)!S=@(x))

#(<
x
E~1e !=(x))S(x)(E~1e <@

x
!=@(x))"0. (A.7)

Continuously di!erentiable in x functions F!S=@,
<

x
E~1e != and *

x
vanish at x"0 and, therefore

F!S=@"AM (x)x, (A.8a)

<
x
E~1e !="ex@>(x, e), (A.8b)

*
x
(x)"x@K(x, e), (A.8c)

where the right-hand side of (A.8b) is multiplied by e due
to (A.5). The functions on the right-hand side of
(A.8a)}(A.8c) are continuous in x. Substituting
(A.8a)}(A.8c) into (A.7), we obtain

2K(x, e)E~1e AM (x)#e2>(x, e)S(x)>@(x, e)"0. (A.9)

From (A.5) and (A.6) it follows that for all small
enough e function *

x
can be approximated by

*
x
E~1e "x@K(x, e)E~1e "x@K

0
(x)#ex@K

1
(x)#O(e2),

(A.10)

where K
0

and K
1

are continuous. Denote AM
ij
(x),

i"1,2, j"1,2 the corresponding blocks of the continu-
ous matrix-function AM (x) and AM

0
(x)"AM

11
(x)!

AM
12

(x)AM ~1
22

(x)AM
12

(x). Matrices AM
22

(x) and AM
0
(x) are Hur-

witz for x from small enough neighborhood of 0 ince
matrices AM

22
(0)"A

22
!S

22
(0)X

f
and AM

0
(0)"A

0
!

S
0
X

0
are Hurwitz. Substituting (A.10) into (A.9) and

equating terms with e0 and e1 we obtain, similarly to
Kokotovic et al. (1986, p. 118), K

0
"K

1
"0 and

*
x
E~1e "O(e2). Hence, for all x(0) from small enough

neighborhood of 0 and for all small enough e the follow-
ing holds: J(u

0
)!J

015
"2*(x(0))"O(e2).

(ii) Consider the closed-loop system (1), (38), where
MM is any stabilizing function for (24) with M

0
"MM .

Compare it with the closed-loop system (1), (27), where
M

0
satis"es the fast PDE (23). The reduced problems for

these systems, resulting after substitution 0 for e, have the
same solution x

2
"/(x

1
,N

0
(x

1
)), where x

1
satis"es (20).

Hence, solutions to these closed-loop systems have the
same regular parts in the zero-order approximations.
Therefore, the resulting values of J are O(e)-close (bound-
ary layer terms after integrating become O(e)-terms). By
(ii) of Lemma 3.1 these values are O(e)-close to the opti-
mal cost. h
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