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An Improved Delay-Dependent H Filtering of
Linear Neutral Systems

Emilia Fridman and Uri Shaked, Fellow, IEEE

Abstract—An improved delay-dependent filtering design is
proposed for linear, continuous, time-invariant systems with time
delay. The resulting filter is of the Luenberger observer type, and
it guarantees that the -norm of the system, relating the exoge-
nous signals to the estimation error, is less than a prescribed level.
The filter is based on the application of the descriptor model trans-
formation and Park’s inequality for the bounding of cross terms.
The advantage of the new filtering scheme is clearly demonstrated
via simple examples.

I. INTRODUCTION

THE filtering problem for linear systems with delay-
dependent [1]–[3] and (more conservative) delay-indepen-

dent [4], [5] designs have received a lot of attention recently. The
prevailing methods are based on bounded real lemmas (BRLs)
in terms of Riccati algebraic equations or linear matrix inequal-
ities (LMIs), which guarantee a prescribed attenuation level.
Recently, a new approach to filtering has been introduced
[6]. This approach is based on representing the system by a de-
scriptor type model [7] and on deriving a BRL for the corre-
sponding adjoint system. The new BRL was found to be very
efficient, and it considerably reduced the achievable attenuation
level as compared with other results reported in the literature.
By assuming a Leunberger-type estimator [8], the new BRL was
applied to the resulting estimation error system. In spite of the
advantage of the new filter design, it still entails a significant
amount of conservatism stemming from the overbounding of
mixed terms in the proof of the BRL in [6].

A new overbounding technique has recently been proposed
that produces tighter bounds [9]. In the present paper, this tech-
nique is applied to reduce the overdesign entailed in the ap-
proach of [6]. The treatment is also extended to the more general
class of neutral-type systems with multiple delays. It is shown,
via simple examples, that the resulting schemes significantly
improve the estimation results.

Notation: Throughout the paper, the superscript “ ” stands
for matrix transposition, denotes the -dimensional Eu-
clidean space, is the set of all real matrices, and
the notation , for , means that is symmetric
and positive definite. The space of functions in that are
square integrable over is denoted by , and

denotes .
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II. PROBLEM FORMULATION

Consider the following system:

(1a,b)

where is the system state vector,
is the exogenous disturbance signal, and , , ,
2, and are constant time delays. The matrices , ,

, , and are constant matrices of appropriate dimensions.
For simplicity only, two delays and and one are consid-
ered; however, the results can easily be generalized to any finite
number of delays: and .

Equation (1) describes a system of neutral type since it con-
tains derivatives in delayed states. In the case of , (1)
is a retarded-type system (see, e.g., [10]). Neutral systems are
encountered in the modeling of lossless transmission lines, or
in dynamical processes, including steam and water pipes (see,
e.g., [10] and the references therein). Unlike retarded systems,
linear neutral systems may be destabilized by small changes of
the delay [10].

To guarantee robustness of the results with respect to small
changes of delay, we assume that the difference equation

is asymptotically stable for all values of
or, equivalently, the following.
A1) is a Schur–Cohn stable matrix, i.e., all the eigenvalues

of are inside the unit circle.
Given the measurement equation

(2)

where is the measurement vector and the matrices
and are constant matrices of appropriate dimension, a filter
of the following Luenberger observer form is sought:

(3)

This form of the observer is known to produce an estimation
error that is independent of the system trajectory, and it only
depends on the initial condition of the system state [8]. It is
therefore widely used in many practical estimation applications
(e.g Kalman filtering).
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The filter of (3) must ensure that the performance index

(4)

is negative for a prescribed value of . The
signal is the state combination to be estimated and is
given by

(5)

where is a constant matrix.

III. DELAY-DEPENDENT FILTERING

From (1)–(3), it follows that the estimation error

(6)

is described by the following model:

(7a,b)

The problem then becomes one of finding the filter gain such
that the -norm of the system of (7) will be less than a pre-
scribed value of .

A. -Norm of the “Adjoint” System

Using the arguments of [6], it can be shown that the -
norms of the system described by (7) and the following system
are equal:

(8a,b)

where , , and . Note that the
latter system represents the forward adjoint of (7) (as defined in
[13, vol. 1]).

Following [7], we represent (8a) in the form of the equivalent
descriptor system

Since , the latter system is
equivalent to the following one:

(9)

The following Lyapunov–Krasovskii functional has been sug-
gested in [7] and [11]:

(10)

where

(11a,b)

The first term of (10) corresponds to the descriptor system (see,
e.g., [15] and [16]), the third corresponds to the delay-indepen-
dent conditions with respect to the discrete delays of , whereas
the second and the fourth terms correspond to the delay-depen-
dent conditions with respect to the distributed delays (with re-
spect to and ).

Based on a similar functional, a BRL was derived in [6] that
provided an LMI sufficiency condition for the -norm of (8)
to be less than . This condition, though still efficient compared
with other methods in the literature, is still conservative, due to
the bounding of a mixed term in the proof of the BRL in [6]. Re-
cently, an improved BRL was proposed by [11], which consider-
ably reduces the overdesign entailed in the over bounding of the
above mixed term. It is based on the fact that for any -ma-
trices and , the following inequality holds (see [9]):

(12)

for , and defined for .

Here, .
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In the proof of the BRL in [6], was chosen. Taking
, the following result is obtained (see [11]).

Lemma 1: Consider the system of (7). Given and
, the cost function (4) achieves for all nonzero

and for all positive delay , if there exist
-matrices , , , , , and
-matrices , , and , 2 that satisfy the LMI

in (13), shown at the bottom of the page, where is given by
(11), and for , 2

Remark 1: For

(14)

the LMI of (13) produces, for , the following BRL
condition that is delay-independent:

(15)
where

B. Case of Instantaneous Measurements

Restricting the discussion to the case of , ,
2, where is a scalar parameter, enables a LMI formu-
lation. Note that for , (13) implies the delay-dependent
conditions of [7] and [17], whereas for , (13) yields the
delay-independent condition of Remark 1. It is obvious from the
requirement of , and the fact that the (2,2) block in is
negative definite, that must be negative definite,
and thus, is nonsingular. Defining

and diag

(16a,b)
Equation (13) is multiplied by and on the left and on the
right, respectively. Applying Schur’s formula to the quadratic
term in , the following inequality results:

(17)

where

diag

and

Denoting by , we obtain the following.
Theorem 1: Consider the system of (1) and the cost function

of (4). For a prescribed , for all nonzero
if for some prescribed scalars , , there exist

, , , , , , , , , and
that satisfy the following LMI:

(18a)

(13)
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where

diag

(18b,c)

and where

The filter gain is then given by

(19)

Note that in the latter LMI , , , , and are the in-
verses of , , , , and of (17), respectively. If this LMI
possesses a solution for and , then because of the
special dependence of its matrix entries on the delay length, it
will also posses a solution for all , , 2.

Remark 2: The result of Theorem 1 applies the tuning pa-
rameters and . The question arises about how to find the
optimal combination of these parameters. One way to address
the tuning issue is to choose for a cost function the parameter

that is obtained while solving the feasibility problem using
Matlab’s LMI toolbox. This scalar parameter is positive in cases
where the combination of the tuning parameters is one that does
not allow a feasible solution to the set of LMIs considered. Ap-
plying a numerical optimization algorithm, such as the program
fminsearch in the optimization toolbox of Matlab [18] to the
above cost function, a locally convergent solution to the problem
is obtained. If the resulting minimum value of the cost func-
tion is negative, the tuning parameters that solve the problem
are found. In the examples we solved, the single tuning param-
eter achieved results that are quite close to those
obtained by the fminsearch program.

The result of Theorem 1 is applied to the following example.
Example 1: Consider the same system as found in [12] (for

) to which a state-feedback has been applied. Assuming
that the measurement equation is the same as in (2), an observer
that achieves a minimum estimation level is sought. The ma-
trices corresponding to (1), (2), and (5) are as follows:

s

Consider first . Note that the system is unstable. Using the
method of [6], a minimum value of was obtained
with a filter gain matrix of .

On the other hand, applying Theorem 1 for s,
a minimum value of was achieved by using

. The resulting filter gain was .

Furthermore, although it was impossible to obtain a solution for
, using the method of [6], it was found that, by applying

the LMI of Theorem 1, a solution for all was avail-
able. For, say, s and , a minimum value of

, with was obtained.
For , the maximum value of for which there exists

a solution to (18) remains 1.295 s. The minimum achievable
for s also remains . The only thing that
changed, in comparison with the solution found for , is
the resulting filter gain. For , we obtain, for ,

C. Case of Delayed Measurements

The above results were obtained for the case where no delay
is encountered in the measurement. In case the measurement
includes delayed state information of the form

(20)

where and are constant matrices
and , an additional component is placed in series
with the delayed component of . The state space model of this
component is given by

(21)

for . Denoting the augmented state vector by
, the augmented system is then described by

(22)

where

and

The following augmented filter should be considered:

(23)

where

The resulting estimation error vector is denoted by
with the following state space representation:

(24)

Letting , , and considering

(25)
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one could apply Lemma 1 to obtain via an LMI that corre-
sponds to the one in Theorem 1. The problem is, however, that
due to the entries in and , the restriction of ,

, and , 2, which was made in order to obtain the
LMI of Theorem 1, forces to be , and thus, the solu-
tion that will be achieved for these scalars will tend to the one
obtained in [6].

In order to utilize the extra freedom provided by Park’s over-
bounding method, diagonal matrices are sought that satisfy

, , 2. Similarly to Theorem 1, the choice of
leads to delay-independent conditions. Denoting

diag

and applying the method of Section III-B, the following theorem
is obtained.

Theorem 2: Consider the system of (20), (22), and (23) and
the cost function (25). For a prescribed and for ,

for all nonzero if for some prescribed
diagonal matrices , , there exist , , ,

, , , , , and
that satisfy

(26)

where

where is defined in (18c), and where

The filter gain is then given by

(27)

Remark 3: The problem of choosing , , , 2 is now
more involved. One way to reduce the complexity is to choose
zeros for those diagonal elements of that correspond to the

elements in and the same scalar for all the other diag-
onal elements in , , , 2.

The existence of a solution to the LMI of Theorem 2 guaran-
tees that the filter built from the series connection of (21) and
(23) will achieve the required performance as long as .
Considering, however, and denoting

it follows from Theorem 2 that if the LMI is feasible, then the
estimate of is given by

When and (namely, when all of the measurements
are delayed), the latter equation, together with the one obtained
from (23) for , lead to the following filter:

where

(28a,b)

and where . The latter filter, with , will
achieve the required estimation accuracy if is chosen to be
large enough.

The use of the results of Theorem 2 are demonstrated by the
following example.

Example 2: Consider the system of Example 1 with
and a delay of . The measurement equation is as in
(20) with

and

This example was solved in [6], where, for , a min-
imum value of was obtained for the gain matrix

. Applying the result of Theorem 2,
for and diag , a minimum
value of is achieved for .
Taking diag , as was suggested in Remark
2, a slightly higher minimal value of is obtained with

.

IV. CONCLUSIONS

A solution to the problem of filtering for linear, con-
tinuous, time-invariant neutral systems with time delay has
been presented. The solution procedure is based on applying
an observer type filter, and it provides a sufficient condition for
achieving a prescribed estimation accuracy. Since the results are
only sufficient, the question arises as to how large an overdesign
is entailed in this method and whether or not it is smaller than
the one encountered in other designs appearing in the literature.
To answer this question, one has to bear in mind that the filter
designs are based, one way or another, on a related BRL that
provides the sufficient condition for a system with delay to
possess an -norm that is less than a prescribed value. The
overdesign of the corresponding filter design approach will
therefore strongly depend on the conservatism of the BRL
used. In this paper, the BRL utilized is less conservative than
other finite-dimensional BRLs appearing in the literature, and
it therefore provides a less conservative filtering solution.

The solution method in this paper is based on a neutral-type
Luenberger estimator. In spite of the fact that the LMI of The-



FRIDMAN AND SHAKED: IMPROVED DELAY-DEPENDENT FILTERING OF LINEAR NEUTRAL SYSTEMS 673

orem 1 is affine in the system matrices, it cannot be used to treat
the case of polytopic uncertain system parameters.
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