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On robust stability of linear neutral systems with time-varying delays
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The application of the direct Lyapunov method to the stability analysis of neutral systems with time-
varying delays usually encounters a restrictive assumption on the function in the right side of the
differential equation. This function is supposed to satisfy the Lipschitz condition with respect to the
delayed state derivative with a constant less than 1. In the present paper, we extend the input—output
approach to consider the stability of neutral type systems with uncertain time-varying delays and norm-
bounded uncertainties. The assumption on the Lipschitzian constant can then be avoided. Sufficient
stability criteria are derived in the frequency domain and the time domain, where the descriptor
discretized Lyapunov—Krasovskii functional is applied. As a by-product, new necessary conditions for
neutral-delay-independent/retarded-delay-dependent stability criteria are obtained. The method can be
easily extended th »-gain analysis and can be applied to design problems.

Keywords neutral system; time-varying delay; input—output approach; Lyapunov—Krasovskii method.

1. Introduction

There are two main methods for the stability analysis of linear systems with delay: the direct Lyapunov
method and the input—output approach, based on the small-gain theorem (s&y etal, 2003.

The latter approach has been applied to robust stability analysis of linear ‘retarded-type’ systems with
norm-bounded uncertainties and uncertain time delaylduang & Zhou(2000, Gu et al. (2003,

Kao & Lincoln (2004 andFridman & Shaked20086.

The application of the direct Lyapunov method to neutral type systems with ‘constant neutral de-
lays’ requires a well-known assumption on the stability of the difference equadae & Lunel 1993
Kolmanovskii & Myshkis 1999 Niculescy 2001). Necessary and sufficient conditions for the stability
of this difference equation are givenliale & Lunel(1993 in the frequency domain. It was shown in
Fridman (2002 that the descriptor approach to neutral systems with constant delays (see, e.g.
Fridman 200]) implies the stability of the difference equation and thus avoids a verification of the
above assumption. In the casetiofie-varying neutral delayshe situation becomes more difficult and
the only known assumption for the application of direct Lyapunov method may be rather conservative:
the sum of the norms of the matrices, which multiply the delayed state derivatives, should be less than 1
(El'sgol'ts & Norkin, 1973 Kolmanovskii & Myshkis 1999. The latter assumption becomes especially
restrictive in the case of an uncertain neutral part or in the case of multiple delays in the derivative of
the state.

In the present paper, a new method is developed for the stability analysis of linear ‘neutral sys-
tems with time-varying delays and norm-bounded uncertainties’ in the neutral part. To the best of the
author’s knowledge, this is the first method that avoids the restrictive assumption mentioned above.
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The presented method extends the input—output approach to uncertain neutral systems with time-varying
delays and it leads to sufficient frequency-domain stability conditions. Also some ‘necessary conditions’
for the feasibility of the resulting stability conditions are deduced. To illustrate the efficiency of the new
method for neutral systems, the time-domain results are derived viketiogiptor discretized Lyapunov
functionalmethod Fridman 2006. The latter method combines the discretized Lyapunov functional
method ofGu (1997) with the descriptor model transformatidfridman 2001) and it efficiently solves
design problems (for the first time for the discretized method).

The descriptor discretized Lyapunov functional method is chosen because of the power of the dis-
cretized method (which, differently to the simple Lyapunov functional methods, can analyse systems
which are not stable without delays). We note thaFiidman(2006, the case of constant neutral de-
lays and fast-varying state delays (without any constraints on the delay derivative) was studied. In the
present paper, we extend the methodoéiman(2006 to the case of slowly varying delays in the state
and in the state derivative (where the delay derivative is bounded from above by a constant, which is
less than 1).

Notation: Throughout the paper, the superscript stands for matrix transpositioR" denotes the
n-dimensional Euclidean space with vector ndrnij, R"*™M is the set of alh x mreal matrices and the
notationP > 0, for P € R"™", means thaP is symmetric and positive definite. We also denqi@) =
X(t+6)@ € [—h— u, 0]). The symmetric elements of the symmetric matrix will be denotes. thyy is

the space of square-integrable functiong0, co) — C" with the normljv ||, = [ [~ ||v(t)||2dt]l/2.
[l All denotes the Euclidean norm of ax n (real or complex) matrid, which is equal to the maximum
singular value ofA. For a transfer function matrix of a stable systé&ifs), s € C,

IGlloo = sup |IG(iw)|, i=+—1

—o0<w <0

o (B) is the spectral radius of matrg (i.e. the maximum absolute value of its eigenvalues).

2. Retarded-delay-dependent/neutral-delay-independent stability conditions
2.1 Problem formulation

Consider a linear system
X(t) = (Ao + HAEp)X(t) + (A1 + HAEDX(t — z(1)) + (F + HAE2)X(t — g(t)), (2.1)

wherex(t) e R", Ag, A1, F andE;j, i =0, 1, 2, are constant matriceA(t) is a time-varying uncertain
n x n matrix that satisfies

AT®OA®R) < . (2.2)
The uncertain delays(t) andg(t) are differentiable functions of the form
) =h+n1), hOI<u<h M)<d<l, goH<f<l (2.3)

with the known boundg, d and f. The neutral delag(t) does not have bound other than the derivative
bound.

If z(t) = g(t), then the stability criterion may be applied with= d. For simplicity, we consider
a single delay(t). The presented results may be easily ‘generalized to the case of any finite number of

delaysg(t)’.
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The stability analysis of systems with a neutral time-varying delay is a classical prdblsgo('ts &
Norkin, 1973. In the robust stability context, where the parameter uncertainties and the variation of the
time delay are taken into account, this problem becomes especially important. In the past, robust stability
of (2.1) with time-varying delay was studied under the restrictive assumpiiem,(2005

IFI+IHIEl <1, (2.4)

where|| - || is any matrix norm. The latter assumption (which becomes especially restrictive in the case
of multiple neutral delays) allows the direct Lyapunov method to be applied where it is assumed that
the right side of2.1) (denoted byf (t, X, X)) satisfies the Lipschitz condition with respecttowith a
constant less than 1 (s&@Imanovskii & Myshkis 1999 p. 336). InequalityZ.4) guarantees the latter
Lipschitz condition since

IF(t, X, %) — F(t, X, %)l = [[(F + HAE)[X(t — g(t)) — X(t — g®)]|
< IFI+ IHITE2) 1% — g(t)) — x(t — gt)].

In some papers (see, eRark 2002 from the fact thalv < 0, whereV > 0 is a Lyapunov func-
tional, it is directly concluded that the neutral system is asymptotically stable (without any references to
the corresponding Lyapunov theorems). Unfortunately, such a conclusion is not correct.

In the present paper, we develop the input—output approach to the stability analysis of uncertain
neutral type systems with time-varying delays. We first derive frequency-domain stability conditions
and then deduce their implications. Further, we find time-domain conditions by applying descriptor
discretized Lyapunov functional method. Finally, we illustrate the efficiency of the proposed method by
numerical examples. The new method gives tools for solution of different robust control problems for a
wide class of neutral systems, where the conditibd)(is removed.

2.2 Frequency-domain stability conditions

Representing
t—h

Xt —z(t)) =x(t —h) —/ X(s)ds

t—h—n()

and applying the input—output approach (&aeet al., 2003and the references therein), we consider the
following forward system:

X(t) = AoX(t) + Arx(t — h) + xAgo1(t) + Foa(t) + Hoa(t),

yi) = x(®), ya(t) = X, ys(t) =

1 1
=T =0 (2.5a—d)
ya(t) = Eox(t) + Exx(t — h) + £ Eqo1(t) + E2v2(t),
with the feedback
oa(t) = =2 [0 it +9)ds,  va(t) = vI= Tya(t — g(1)),

v3(t) = v1-dys(t — (1), ova(t) = Aya(). (2.6)
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Similarly toHe et al. (2004, we add to (2.5a) the left side of the equation

—h

CIX(t — h) + uo1(t) — v3(t)] = C [x(t —h) —/ X(t + s)ds — x(t — t(t)):| —0,

—h—n(t)
whereC is an arbitraryn x n matrix (which is equivalent to the parameterized model transformation
Niculescy 2007). We represent the forward system in the following parameterized form:

X(t) = Agx(t) + (A1 + C)x(t — h) + u (A1 + Choa(t) + Foo(t)

— Cogz(t) + Hoa(1),
L o (2.7a~d)
Nie=ai ®), ys()——m

ya(t) = Eox(t) + Eax(t — h) + uEzv1(t) + Ezva(t).

yi®) = x(), ya(t) = x(1),

Note thatC = 0 corresponds to the moderately varying deléty with 7 < 1 (Fridman & Shaked
2006, while C= — A; corresponds ta-independent-dependent result. The input—output model
(2.7a—4q, (2.6) and the results of the present paper are appropriate also to the sysigmith delay
h > 0 and non-negativg € [0, u]. In the latter caseC = 0 corresponds to systems with fast-varying
delayz (i.e. without any constraints o).

In the case of a retarded system with= 0 and withz < 1, the input—output modeR(7a—d, (2.6)
has been introduced Fridman & Shaked2006, whereC, »; and y,i = 2, 3, were taken to be zero.
Moreover,y; andy, correspond to the descriptor methdetiiman 2001), wherex(t) appears in the
derivative of the Lyapunov functional.

We assume the following.

(Al) The (parameterized) nominal system
X(t) = Agx(t) + (AL + C)x(t —h) (2.8)
is asymptotically stable.
Leto! =[o] -+ vjlandy’ =[y] --- y,j]. Assume thaty(t) = O,vt < 0,i =
1, ..., 4. The following holds:
loill, < Yille,, T=1,...,4 (2.9)

The forward system2(7a—¢ can be written ay = Go with transfer matrix

1 1
— sl ——
JI—t " Ji=d"

.
G(s) = [s In Eg +Ef e‘hs}

x (sl —Ag— (AL +C)e ") u(A+C) F —C H]

OSnxn O3n><n 03n><2n
+ . (2.10)

uEr B2 Onx2n
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By the small-gain theorem (see, e@u et al, 2003, the system2.1) is input—output stable (and
thus asymptotically stable, since the nominal system is time invariaf@|if, < 1. A stronger result
may be obtained by scaling.

THEOREM1 ConsiderZ2.1) with delays given byZ.3), wherey(t) andg(t) are differentiable functions.
If there exists am x n matrix C such that A1 holds and there exist non-singumlar n matricesX;, i =
1, 2, 3, and a scalar # 0 such that

IGxlloo <1, Gx(s) = diagiX1, X2, X3, r1n}G(s)diagi X7, X5 1, X34, r~2n), (2.11)

then @.1) is input—output stable.

REMARK 1 In Sectior2.4below sufficient conditions for the feasibility of A1 an2l.{1) will be derived
in terms of linear matrix inequalities (LMIs). The free matri€gsX; and the scalar of (2.11) will be
related to the decision variables of the LMIs (see Ren3asklow).

2.3 Implications of the frequency-domain stability conditions
Now, we are in a position to formulate some necessary conditions for the feasibilRyld.
ProPOSITIOND If (2.17) holds, then

(i) the eigenvalues ofi (A1 + C) are inside the unit circleis (A1 + C) < 1), i.e. the difference
equation

X(t) = u(Ar+ C)x(t — go) =0, (2.12)

with constant delayy is stable;

(ii) the eigenvalues OJ% F are inside the unit circle, i.e. the difference equation

1
x(t) — ﬁFx(t —-g) =0, (2.13)

with constant delay is stable;
(i) og < 1, where

op = sup{a (ﬂ(Al +C)d% 4 F ée) 160, 6 € [0, 2;;]] , (2.14)

1
J1-f

which is equivalent to the delay-independent stability of the following difference equations with
constant delaygp andg (Hale & Lunel, 2003, Theorem 6.1, p. 286):

X(t) — u (AL + C)x(t — go) —

1
mFx(t —g)=0. (2.15)
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Proof. We will prove (iii) only. The proof of (i) and (ii) is similar.
Assume thatZ.11) holds. Then,

X1 ~1 —1
X, |[w(AL+C)XT™ FX57]
T

< sup

—o0<w <X

X1 .
iw |: Xz :| (iwly —Ag _(A1+C)e—h|u>)—1

1-f

x [u(AL+C)XTH FX3M| < lIGxlloo < 1. (2.16)

Let A anda be an eigenvalue and an elgenvecto(p(Al + C)ef 4 F e'") i

(,u(Al + C)e% + a=.a.

éﬁ)
/1 —
From @.16), it follows that

Xia i X1 ]
Xza = X2 /Ia
=

4]

1 _1 X1 glog
= Xo [ﬂ(Al+C)X1 FX2 ] X2 _dfg

VT

Hence| | < 1. This completes the proof. d

‘ (2.17)

Xl glog
Xz e|9

REMARK 2 We note that the existing LMI stability criteria, derived via different direct Lyapunov meth-
ods, may usually be recovered via an input—output approach (simi&ngnget al, 200% Guet al,
2003. In this case, the LMI conditions (which give sufficient conditions for the frequency-domain con-
dition (2.11) and for Al) are feasible if the difference equati@nl® is stable, wher€ is related to the
decision variables of these LMIs (as, e.g. 2134 below).

Necessary conditions for delay-dependent stability via different model transformations of linear re-
tarded type systems with ‘small’ delays (whére= 0 andy € [0, u]) were found inGu & Niculescu
(2001 and Kharitonov & Melchor-Aguilar (2002, where additional dynamics of the transformed
systems were analysed. A simple conditionGi & Niculescu(200]) (for the constant delay case)
1o (A1) <1 coincides with (i) for the case of fast-varying delay. However,Hoe x« and7 < 1 (i)
guarantees the stability on the double interwéll) € [0, 2u]. A simple condition ofKharitonov &
Melchor-Aguilar(2002 > ; ukl Akl < 1 for the system

X(t) =D AX(t — (), () [0, ud, <1,
k=1
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is more restrictive than (i) in the case@af < 1, where the latter has the form

m
sup[a (Z,ukAk ei"’k): Ok € [0, 27:]} <1
k=1

and guarantees the stability on the double interdals [0, 2uk] for hy = uk.

2.4 Time-domain criterion for robust stability

We will derive sufficient conditions for2(11) by using the complete Lyapunov—Krasovskii functional
(LKF):

0 0 0
V(x) = X' (t)Px(t) + 2x () / QE)X(t + &)dE + / / X" (t + S)R(S, &)dsx(t + &)de
—h —hJ-h

0
+ KM+ OSOXA+ O, P> 0, (2.18)

which for S = 0 corresponds to necessary and sufficient conditions for stability of the nominal system
(2.8). The time-domain results will be derived via the discretized Lyapunov functional method (Gu,
2003), since this powerful method (differently from simple Lyapunov functionals) can be applied to
the systems, which are not stable without delays. The new descriptor discretized Lyapunov method of
Fridman(2006 will be used, which allows to solve the design problems.

Since

o0 _ o _
| oTosmd < [y oxyod.
0 0
X = diagiuRa, 1 — HU, (1 - d)S, pln},
the following condition along withZ.7a—q

A

d
W= V0 + - )y, (OUY2(t) + 1y{ (©)Raya(t)

+(1 - d)ys (OSaYat) + pys ©)yat) — (1 — Fog ©)Uoa(t)
— o] () Rav1(t) — (L= d)og (1) Sava(t) — pog (Doa(t)
< —e(IXO 1% + IXOI% + lo®I?), &> 0, (2.19)

for somen x n matricesR; > 0,U > 0, §; and a scalap > 0 guarantees the asymptotic stability of
(2.1) (Guetal, 2003. Note that 2.19 guarantees Al. Therefore, in the time domain we do not assume
the asymptotic stability of the nominal system.
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DifferentiatingV (x;) along the trajectories o2(7a—¢, we obtain thaV is given by
V(%) =2x" (1) |:Plx(t) + /_(:1 QO)x(t +é‘)dé} + 2xT(t)/_(:1 QOxX(t + &)Hde
0 0 0
+ 2/_h /_h X' (t + S)R(s, &)ds x(t + &)de + 2/_h X T (t + &)SE)X(t + &)dE. (2.20)

Adding toV (x) the right side of the expression
0=2[x" ()P, X' (t)P;]

[on(t) —X(t) + (A1 + C)x(t — h) + u (A1 + C)o1(t) + Foa(t) — Cos(t) + Hv4(t)]
Aox(t) — X(t) + (A1 + C)X(t — h) + u(Ar + C)o1(t) + Foa(t) — Cos(t) + Hoa(t) |’
(2.21)

whereP, and P; aren x n matrices, which is equivalent to descriptor model transformatidfrioiman
(2007 and integrating by parts ir2(20, we find

0
Vix) = T2 +2¢T (1) / QEX( o
0 0 0 0
_ T I i
/_h/_hx (t+5)(aéR(§,9)+66R(§,9))X(t+9)d0d{
0 .
+oxT (1) / Q) + RO.OIX( + )k

0 0
—2x(t— h)/ R(=h, )x(t + )dg — / X T (t 4+ &)SE)X(t + &)de
—h —h

. A1+ C)o1(t) + Foz(t) — Cos(t) + Hoa(t)
2T () Py TtPT[“(l } 2.22
FRCOR OB (g 4+ Coa) + Foalt) — Cos) + Hoay ] 472
where
x(t) v P, (A1+C) _[Q(—h)}
(=1 X |, &= Py (A1 +C) 0 ,
x(t —h) * —S(=h)
PpL O
"= [Pz PJ ’
0 o 0 A} QO)+Q"(0)+5S(0 0
_pT —
Y=P [Ao —I}JF[O _I]P+[ 0 ol (2.23a—c)
We apply next the discretization &u (1997). Divide the delay intervalth, 0] into N segments
[0p,0p-1], P = 1,..., N, of equal lengthh = h/N, whered, = —ph. This divides the square

[—h, 0] x[—h, Q] into N x N small squares,, 9p_1] x [0y, 0g—1]. Each small square is further divided
into two triangles.
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The continuous matrix function®(¢) andS(¢) are chosen to be linear within each segment and the
continuous matrix functiofR(¢&, 0) is chosen to be linear within each triangular:
Q(p + ah) = (1 —@)Qp + aQp-1,
SOp+ah)=1-a)S+aSy1. ae0,1],

- o _ | A=a)Rpg+ SRp-1q-1+ (@ = f)Rp-1q, & = p,
R@p + ah, 6 + gh) = {(1—/3)qu F Ry 1g 1+ (f—@Rog 1. o <f (2.24)

Thus, the LKF is completely determined By, Qp, Sp, Rpg, P, =0,1,..., N.
The LKF conditionV (x) > ¢[|x(t)|?, ¢ > 0, is satisfiedGu et al, 2003 p. 185) ifS, > 0, p =

0,1,...,N,and

[Pl . 9} > 0, (2.25)
+ R4+S
where
- ~ . 1 1 1
Roo Ro1 -+ Ron
. Rio Ru -+ RN
R=|. ) ) . (2.26)
Rvo Rni -+ Ran
To derive the LKF derivative condition, we note that
. 1 . 1
)=, Q) =7,
) h(Sp-1—Sp) ) h(Qp-1—Qp)
0 0 1
—R(E,0)4+ —R(E,0) = = . 2.27
o &, 9) 20 &, 0) A(Rp—1q-1 — Rog) ( )

We have

1 1 1
_ T:. _ T _ T
W= 56 /O ¢ (0)Su6 () /0 [ /0 $ (a)Rd¢(ﬁ)da:| dp

1
+2H/O [DS + (1 — 2a) D?]¢(ar)h dar, (2.28)

where

="'t x"® x"t-h o],
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PZTA]_ YT PZTF _YT PZTH ]
Z u|PjA +,U|:a0j| Py F [oa} Py H
0 0 0
2, = * — 1R, 0 0 0
* * —-(1-fu 0 0
. « * —1-d)S 0
| * * * * —pln
- arF ~T
Es || Eo
Onxn Onxn
ET ET
+ ! ! (2.29)
P\ el | | uE]
E; || B2
T _
== | ' [EZT?}_[QON]JFY&T p_[P O] yr_|RC
=" 3 A SR Y R Sy |
* -SN
0 I 0 A} Q+Q+S9+S 0
—_pT 0
wer [ ) Al [ 0] e
¢ (@) =[x"(t—h+ah) xT(t—2h+ah) x'(t — Nh+ah)],
SjZdiag{s)_slasl_SZ9"')S\|—l_S\l}a
Ria11  Rd12 Ra1n
Ra21  Ra22 Razn _
= . : . deq = h(Rp—l,q—l - qu),
Rint  Rdanz RinN
Ds=[Df DS Df\,], Daz[Dil Dg Da],
[ h/2(Ro,p-1+ Rop) = (Qp-1— Qp)
D?) = _h/Z(Qp—1+ Qp) and
—h/2(RN,p-1+ Rnp)
[ —h/2(Ro.p-1 — Rop)
Dy =| —h/2Qp-1-Qp) |- (2.31a-i)
| h/2(Rn,p-1— Rnp)
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Applying Proposition 5.21 o6Gu et al. (2003 to (2.28 and Schur complements to the last term of
Z,, we conclude thaxV < 0 if the following LMI holds:

P F T P, H Eq |
E oy Py F [ 0 ] PAH| p| O DS D2
0 0 =
* —uRy 0 0 0 pUE] 0 0
* * —-(1-f)u 0 0 pE; 0 0 -0
* * * —-1-d)S 0 0 0 0 ’
* * * * —pln 0 0 0
* * * * * —pln 0 0
* * * * * * Ry — & 0
| * * * * * * * -3 |
(2.32)
where
P A1 T
w=u P;Al +,u|:g:|. (2.33)

We thus obtain the following.

THEOREM 2 System 2.1) is asymptotically stable for all delays satisfying.3), if there exist
nx n matrices O< P1, P2, Ps, Ra, S, Y1a, Y2a, USp = Sy, Qp, Rpg = Ryp, P=0,1,...,N,q =

0,1,...,N, and a scalap > 0 such that LMIs 2.25 and @.32) are satisfied with¥; = [Y1a  Yaa]

and with the notation defined 2,30, (2.26), (2.31b-i) andZ.33.

REMARK 3 Similar to Fridman & Shaked2006, it can be shown that the time-domain conditions
(2.32 are sufficient for the frequency-domain conditio@s1(l), where Ry = X1TX1, U= XZTXZ,

S = X3T X3 andp = r2. Since Propositiof gives necessary conditions for feasibility @11), while
(2.17) is necessary for feasibility o2(32), the conditions of Propositioh are necessary for feasibility
of (2.32. We note that the conditions of Propositibfollow immediately from the feasibility 0fZ.32).

If LMI ( 2.32) is feasible, then the following LMI

—P3—P/ +U+uRa P/F  uPJ(A1+C)
% —(1- f)u 0 <0,
% % —uRy
C=P;'Y,,

(2.34)

holds. LMI (2.32 guarantees the stability of the difference equatidh$3 and .15 with constant
delays Fridman 2002.

REMARK 4 Since the LMIs2.25 and .32 are affine in the system matrices, the results of The@em
can be applied to systems with polytopic-type uncertainties by solving LMIs in the polytope vertices
(Boydet al,, 19949.
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REMARK 5 Stability conditions in the case af(t) < 1 follow from (2.25 and @.32 by choosing
Ya = 0 andS; — 0. In the case of fast-varying delaygt) (without any constraints on the derivative
of z(t)), the stability conditions have the form &.25 and .32, where the termu Ry in & should be
multiplied by 2 and wher&y = 0 andS; — 0.

REMARK 6 FollowingDe Oliveira & Skelton(2001), He et al. (2004 andSuplinet al. (2004, we can
introduce additional degrees of freedom by changin(f)P, X' (t)P5'] in the right side of 2.21)

by the full-order vectoz,)T, multiplied by the corresponding weighting matrices. This means that the
right side of the following equation can be added/tox) (additionally to @.22)):

0=2[x"(t—hP of®OP 0Py 03MP 04 (t)Pg]

Aox(t) — X(t) + (A1 + Ca)x(t — h) 4+ (A1 + Ca)oa(t) + Foo(t) — Caoz(t) + Hoa(t)
Apx(t) — X(t) + (AL + Cs)X(t — h) + 1 (A1 + Cs)o1(t) + Foz(t) — Csoz(t) + Hoa(t)
x | Aox(t) — X(t) + (A1 + Ce)X(t — h) + 1 (A1 + Ce)oa(t) + Foa(t) — Cevs(t) + Hoa(t)
AoX(t) — X(t) + (AL + C7)x(t — h) + u (A1 + C7)o1(t) + Foa(t) — Croz(t) + Hoa(t)
AoXx(t) — X(t) + (A1 + Cg)x(t — h) + u (A1 + Cg)oa(t) + Foa(t) — Cgos(t) + Hoa(t)

(2.35)
The LMI (2.32 in this case will take the form
Do+ P+ @] <0, (2.36)

whereSy > 0,U > 0, Ry > 0, § > 0 anddg is the matrix in the left side of(.32), while

O2nx2n O2nxn O2nxn Oonxn  O2nxn O2nxn O
P/[Ao—11 PJAL+Y,] uP/A+uY, PJF =Y/ P/H 0
Pa[Ao—11 PJAL+Y] wuPJAt+uYy P/F —-YS P/H 0

®1=|PJ[Ao—1] P AL+Yy uP{Ai+uYy PJF =Y/ PJH 0],
PTlAc—1] PTAL+Y] uPTAL+uYS PJF —YJ PJH 0
Pa[Ao—1] PgAL+Yy uPdAi+uYy PFF =Yy PfH 0

L 0 0 0 0 0 0 0
YiT: PiTCi, i=4,...,8

The above weighting matrices may lead to some improvement.

REMARK 7 During the last few years, new techniques for adding free weighting matrices have been
developed (see, e.gle et al, 2005 Parlakcj 2006and the references therein). All these work consider
simple Lyapunov functionals. The extension of these methods to the discretized Lyapunov functional
method may be the topic of future research.

The LMI conditions via discretized Lyapunov functional method are known to be numerically com-
plex, depending on the large number of decision varialikes 1997 Guet al, 1997;Han, 2009. The
descriptor discretized Lyapunov functional methédigman 2006 adds to the existing method two
moren x n decision variable®, and P3, that allow, however, to solve the design problems. Simplifica-
tion of the discretized Lyapunov functional method is another direction for future research.
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ExAamMPLE 1 Consider2.1) with
-2 0 -1 0 01 1
Ao [o —0.9}’ ! [—1 —1}’ [o 0.1}’

02 0 10 05 0
H:[o 0.2]’ EOZEF[O 1]’ Ez:[o 0.5] (2.37)

This system withF = diag{0.1, 0.1} and E; = 0 was analysed ifan (2005 by the discretized
Lyapunov functional method, where the following upper bound on the constant delay was found for
N=3:0<g=r1 <212 Theoren2 with N = 3 leads to a less restrictive bound for constant delays:

T < 2.4 and allg.

Consider now the case d¢fi and E, given by .37 and time-varyingg(t) and z (t). Applying
the Euclidean matrix norm, we find thaF || + ||H||||E2]l = 1.1 > 1 and thus the existing (direct)
Lyapunov methods cannot be applied. By Theofar N = 3, we find that for allg(t) the system is
asymptotically stable for (t) from the following intervals:

f=d=0, x=0 h<048 0<rt <048
f=d=01 h=x=020, 0< z(t)<0.40,
f=d=05 h=x=008  0<z(t)<0.16

Note that in this example, the free weighting matrides..., Pg, Yy, ..., Yg of (2.36 do not
improve the results.

ExaMPLE 2 (Michiels & Vyhlidal, 2005 Consider

X(t) = AX(t) + BKx(t — 7(t)) + F1x(t — g1(t)) + FoxX(t — ga(t)), (2.38)
where

[0 02 —04] -03 -01 O

Fi=|-05 03 0 ., =10 02 o0 |,
02 07 0 | 01 o0 04
[—48 47 3 ] 0.3

A=|01 14 -04|, B=]|07
07 31 -15 0.1

It was shown inMichiels & Vyhlidal (2005 that there exist& that stabilizesZ.38 with constant
delayst = 0.5, g1 = 0.7 andg; = 1.7. Note that in this examplgF1 || + ||Fz|| = 1.22 > 1 and thus
the existing (direct) Lyapunov methods cannot be applied to the case of ‘time-vagying,.

Consider now constam, and time-varyingg: (t) andz (t) with g; < f, 7 < d. We chooseK =
[-0.3626 —6.7792 13247](this gain was found by using the stabilization via descriptor discretized
Lyapunov functionalFridman 2006 and we analyse the asymptotic stability of the resulting closed-
loop system. By applying the extension of Theor2and .36 with N = 3 to multiple delaygy; and
02, we obtain for allg; (t) andgs the following stability intervals fot (t):

f=d=0, h<012 u=0  0<7<012
f=d=01 h=007 x=003 004<(t)<0.1L
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In this example, the weighting matrics, ..., Ps, Y4, ..., Yg improve the results; however, verifica-
tion of the latter condition takes more computation time. Thus, without these matricés=fod = 0
we find 0< 7 < 0.04.

3. Conclusions

The input—output approach is extended to the stability analysis of linear neutral type systems with un-
certain time-varying delays and either norm-bounded or polytopic-type uncertainties. This allows a
restrictive assumption to be avoided on the sum of the norms of the matrices in the neutral part to be
less than 1. New sufficient and necessary stability criteria are derived in the frequency and in the time
domains. These conditions are retarded-delay-dependent/neutral-delay-independent. The time-domain
criterion is based on the descriptor discretized Lyapunov functionals, which is known to be efficient for
the solution of design problems. The method can be extendeg-gain analysis.

The approach presented allows robust control theory to be developed to a wide class of neutral
uncertain systems with multiple time-varying delays. It gives insight to further development of the direct
Lyapunov method for neutral and more general descriptor systems with time-varying delays.
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