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case, the solution of these equations is reduced to linear matrix equations.

Keywords: time-delay systems, nonlinear systems, output regulation, regulator

equations, center manifold

1 Introduction

One of the most important problems in control theory is that of controlling
the output of the system so as to achieve asymptotic tracking of prescribed
trajectories. This problem of output regulation has been studied by many
authors (see e.g. a survey paper by Byrnes and Isidori [2] and the references
therein). In the linear case, Francis [4] showed that the solvability of a mul-
tivariable regulator problem corresponds to the solvability of a system of two
linear matrix equations. In the nonlinear case, Isidori and Byrnes [11] proved
that the solvability of the output regulation problem is equivalent to the solv-
ability of a set of partial differential and algebraic equations. This set of partial
differential and algebraic equations is now known as the regulator equations
or Francis-Isidori-Byrnes equations.

For linear infinite-dimensional control systems a solution of the regulator
problem was introduced by Schumacher [13] and Byrnes et al. [3], where a
Hilbert space was used as a state space. The case of the bounded input and
output operators was considered. In the case of systems with time-delay it
means that there are no discrete delays in the control input, controller output
and measured output. The solution was given in terms of the operator regulator
equations.
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The solution of the output regulation problem for retarded type systems
was obtained recently in [6], where a Banach space was used as a state-space.
In the present paper we generalize the results of [6] to the neutral type case.
Our solution is based on the application of the center manifold theory. The
existence, smoothness and the attractiveness of the center manifold for neutral
type systems were proved by Hale [8] (see also [9], chapter 10.2). A partial
differential equation for the function, determining the center manifold for such
system was derived in [14], [5], [1]. In the present paper, we consider output
regulation of nonlinear systems with state, controller output and measured
output delays. As for the systems of retarded type [6], the problem is solvable
iff certain regulator equations are solvable. These equations consist of partial
differential equations for a center manifold of the closed-loop neutral system
and of an algebraic equation. In the linear case the solution of these equations
is reduced to linear matrix equations.

Notations. Rm is the Euclidean space with the norm | · | and Cm[a, b] is
the Banach space of continuous functions φ : [a, b] → Rm with the supremum
norm || · ||.

A function f : X → Y , where X and Y are Banach spaces, is a Ck function
if it has k continuous Frechet derivatives.

Denote by xt(θ) = x(t + θ) (θ ∈ [−h; 0]).
L2([−h, 0], Rn) is the Hilbert space of square integrable Rn valued func-

tions with the corresponding norm.
W 1,2([−h, 0], Rn) is the Sobolev space of absolutely continuous Rn valued

functions on [−h, 0] with square integrable derivatives.
The transpose of a matrix M is written M ′.

2 Problem Formulation

We consider a nonlinear system modelled by equations of the form

d
dtDxt = f(xt, u(t), w(t)), e(t) = g(xt, w(t)) (1a,b)

where x(θ) = φ(θ), θ ∈ [−h, 0], with state x(t) ∈ Rn, initial function
φ ∈ Cn[−h, 0], control input u(t) ∈ Rm, exogenous input w(t) ∈ Rr and
tracking error e(t) ∈ Rp. The linear bounded operator D : Cn[−h, 0] → Rn is
represented in the form of Stieltjes integral [9]:

Dφ = φ(0)−
∫ 0

−h

d[ξ(θ)]φ(θ),

with n× n-matrix function ξ of bounded variations.
We assume
H0: The following conditions hold:

(i) ξ is nonatomic at zero, i.e. V ar[−s,0]ξ(·) → 0 for t → 0;
(ii) D is the stable operator, i.e. the equation Dxt = 0 is asymptotically stable.
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The exogenous input is generated by an autonomous dynamical system of
the form

ẇ(t) = s(w(t)) (2)

The functions f : V → Rn, s : W → Rr, g : Y → Rp are smooth (i.e. C∞)
mappings, where V ⊂ Cn[−h, 0] × Rm × Rr, W ⊂ Rr, Y ⊂ Cn[−h, 0] × Rr

are some neighborhoods of the origin of the corresponding spaces. We assume
that f(0, 0, 0) = 0, s(0) = 0, g(0, 0) = 0. Thus, for u = 0, the system (1a) has
an equilibrium state (x,w) = (0, 0) with zero error (1b).

A solution of (1) with initial value x0 ∈ Cn[−h, 0] is a continuous function
taking [−h,A), A > 0 into Rn such that D(xt) is continuously differentiable
and satisfies (1) for t ∈ (0, A). Assumption H0 (i) guarantees the existence
and the uniqueness of the solution to initial value problem for (1), where u(t)
and w(t) are continuous functions [9]. Assumption H0 (ii) guarantees that the
characteristic equation corresponding to the linear system

d

dt
Dxt = Lxt,

where L : Cn[−h, 0] → Rn is a linear bounded operator, has a finite number
of roots with nonnegative real part.

We consider both, a state-feedback and an error-feedback regulator prob-
lems.

Problem 1 (State-Feedback Regulator Problem): Find a state-feedback con-
trol law

u(t) = α(xt, w(t)), (3)

where α : Y → Rm is a Ck(k ≥ 2) function and α(0, 0) = 0 such that :
1a) the equilibrium x(t) ≡ 0 of

d

dt
Dxt = f(xt, α(xt, 0), 0),

is exponentially stable;
1b) there exists a neighborhood Y ⊂ Cn[−h, 0] × W of the origin such

that, the solution of the closed-loop system

d

dt
Dxt = f(xt, α(xt, w(t)), w(t)), ẇ(t) = s(w(t)) (4)

satisfies

lim
t→∞

g(xt, w(t)) = 0. (5)

Problem 2 (Error-Feedback Regulator Problem): Find an error-feedback
controller
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u = Θ(zt),
d

dt
D̄zt = η(zt, e(t)), z(t) ∈ Rν (6)

with Ck functions η : Z0 → Rν and Θ : Z1 → Rm, where Z0 ⊂ Cν [−h, 0]×Rp,
Z1 ⊂ Cν [−h, 0] are some neighborhoods of the origin, such that:

2a) the equilibrium (x(t), z(t)) ≡ 0 of

d

dt
Dxt = f(xt, Θ(zt), 0),

d

dt
D̄zt = η(zt, g(xt, 0))

is exponentially stable;
2b) there exists a neighborhood Z ⊂ Cn[−h, 0] × Cν [−h, 0] × W of the

origin such that, the solution of the closed-loop system

d
dtDxt = f(xt, Θ(zt), w(t)), d

dtD̄zt = η(zt, g(xt, w(t))), ẇ(t) = s(w(t))
(7)

satisfies (5).

3 Linearized Problem and Assumptions

Using Taylor expansion in the neighborhood of the origin of the Banach space
Cn[−h, 0] × Rm × Rr, we obtain the following approximation of the smooth
function f :

f(x0, u, w) = Ax0 + Bu + Pw + O(x0, u, w)2,

where the linear bounded operator [A, B, P ] : Cn[−h, 0] × Rm × Rr → Rn

is a Frechet derivative of f at the origin. The function O(·)2 vanishes at the
origin with its first-order Frechet derivative. Similarly, smooth functions g,
α, Θ and η can be represented in the form

g(x0, w) = Cx0 + Qw + O(x0, w)2,
α(x0, w) = Kx0 + Lw(t) + O(x0, w)2,
Θ(z0) = Hz0 + O(z0)2, η(z0, e) = Fz0 + Ge + O(z0, e)2,

where the functions O(·)2 vanish at the origin with their first-order Frechet
derivatives. The linear bounded operators A : Cn[−h, 0] → Rn and C :
Cn[−h, 0] → Rp by Riesz theorem can be represented in the form of Stieltjes
integrals [9]:

Aφ =
∫ 0

−h

d[µ(θ)]φ(θ), Cφ =
∫ 0

−h

d[ζ(θ)]φ(θ), (8)

with n × n and p × n-matrix functions µ and ζ of bounded variations. A
similar representation can be written for the linear bounded operators K :
Cn[−h, 0] → Rm, H : Cν [−h, 0] → Rm and F : Cν [−h, 0] → Rν .

The linearized system is given by
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d
dtDxt = Axt + Bu(t) + Pw(t), ẇ(t) = Sw(t), e(t) = Cxt + Qw(t).

(9a-c)
The linearized state-feedback and error-feedback controllers have the form

u(t) = Kxt + Lw(t) (10)

and
u(t) = Hzt,

d

dt
D̄zt = Fzt + Ge(t). (11)

respectively.
Similarly to the case without delay [11] we assume the following:
H1. The exosystem (2) is neutrally stable (i.e. Lyapunov stable in forward

and backward time, and thus S has all its eigenvalues on the imaginary axis).
H2. The triple {D, A, B} is stabilizable, i.e. there exists a linear bounded

operator K : Cn[−h, 0] → Rm such that the system

d

dt
Dxt = (A + BK)xt (12)

is asymptotically stable.
H3. The pair [

A P
0 S

]
, [C Q]

is detectable in the following sense: there exists a (n + r) × p-matrix G such
that the system

d

dt

[
Dz̃1t

z̃2(t)

]
=

{[
A P
0 S

]
+ G[C Q]

}[
z̃1t

z̃2(t)

]
, (13)

where z̄1(t) ∈ Rn, z̄2(t) ∈ Rr, is asymptotically stable.
We note that H2 is equivalent to the following condition [10]:
H2’. rank

[
λ[I − ∫ 0

−h
d[ξ(θ)]eλθ]− ∫ 0

−h
d[µ(θ)]eλθ, B

]
= n for all λ ∈

C with Reλ ≥ 0.
Similar condition equivalent to H3 can be written for the case of Cxt =

C0x(t), where C0 is a constant matrix. Some sufficient conditions for H2 and
for finding a stabilizing controller u(t) = K0x(t) or u(t) = K1x(t − h) may
be found e.g. in [7] (see also references therein) in terms of linear matrix
inequalities. Similar sufficient conditions may be derived for H3.

4 Solution of the Regulator Problems

4.1 Center manifold of the closed-loop system.

The solution of the output regulation problem is based on the center manifold
theory [8], [9].
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Lemma 1. Let H0 hold. Assume that all eigenvalues of S are on the imagi-
nary axis and that for some α(xt, w) condition 1a) holds. Then the closed-loop
system (4) has a local center manifold xt(θ) = π(w(t))(θ), θ ∈ [−h, 0], where
π : W0 → Cn[−h, 0] (0 ∈ W0 ⊂ W ⊂ Rr) is a Ck mapping with π(0)(θ) ≡ 0.
The center manifold is locally attractive, i.e. satisfies

||xt − π(w(t))|| ≤ Me−at||x0 − π(w(0))||, M > 0, a > 0 (14)

for all x0, w(0) sufficiently close to 0 and all t ≥ 0.

Proof: The closed-loop system (4) has the form

ẇ(t) = Sw(t) + O(w(t))2,
d
dtDxt = (A + BK)xt + (P + BL)w(t) + O(xt, w(t))2. (15a,b)

By assumption, the zeros of the characteristic equation corresponding to (12)
are in C−, and the eigenvalues of the matrix S are on the imaginary axis.

It is well-known (see e.g.[8]) that according to this dichotomy, the space
Rr × Cn[−h, 0] of the initial values of the linear system

ẇ(t) = Sw(t),
d

dt
Dxt = (A + BK)xt + (P + BL)w(t), (16)

can be decomposed as a direct sum Rr ×Cn[−h, 0] = P ⊕Q, where P and Q
are invariant sub-spaces of the solutions of (16), in the sense that for all initial
conditions from P ( Q), solutions of (16) satisfy {w(t), xt} ∈ P ({w(t), xt} ∈
Q) for all t ≥ 0. Moreover, P is an r-dimensional and corresponds to solutions
of (16) of the form p(t)eλt, where p(t) is a polynomial in t and λ is an eigenvalue
of S. The space Q corresponds to exponentially decaying solutions of (16). By
Theorem 2.1 of [9] (p. 314) the system (15) has a local smooth center manifold
x0 = π(w). The flow on this manifold is governed by (15a). By Theorem 2.2
of [9] (p.216) this manifold is locally attractive. ut

The function π which determines a center manifold of (4) can be considered
as a function of one variable π : W0 → Cn[−h, 0] in the Banach space or a
function of two variables π : W0×[−h, 0] → Rn in the Euclidean space. Further
we find relation between the smoothness properties in both considerations by
introducing two classes of functions:

Class M1 of C1 functions π : W0 → Cn[−h, 0](W0 ⊂ Rr), satisfying the
following conditions:
(i) For each w ∈ W0 there exists a continuous in θ ∈ [−h, 0] partial derivative
∂π(w)(θ)

∂θ

∆= γ(w)(θ);
(ii) The function γ : W0 → Cn[−h, 0] is continuous.

Class M2 of functions ψ : W0 → Cn[−h, 0] such that the functions
ψ̄(w, θ) ∆= ψ(w)(θ), ψ̄ : W0 × [−h, 0] → Rn are continuously differentiable.

Proposition 1. [6] M1 = M2 .
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Lemma 2. Assume H0. A C1 mapping π : W0 → Cn[−h, 0], π(0) = 0 defines
a center manifold xt(θ) = π(w(t))(θ), θ ∈ [−h, 0] of (4) if and only if π ∈
M1 and ∀w ∈ W0, ∀θ ∈ [−h, 0] it satisfies the following system of partial
differential equations

∂π(w)(θ)
∂w s(w) = ∂π(w)(θ)

∂θ
∂[Dπ(w)]

∂w s(w) = f(π(w), α(π(w), w), w).
(17a,b)

Proof. Note that for a C1 mapping π : W0 → Cn[−h, 0] and for w(t),
satisfying (2), we find that for each θ ∈ [−h, 0]

d

dt
[π(w(t))(θ)] =

∂π(w(t))(θ)
∂w

s(w(t)). (18)

Necessity: Let a C1 mapping π : W0 → Cn[−h, 0] determine a center
manifold of (15). Then there exists δ > 0 such that xt(θ) = π(w(t))(θ) satisfies
(4) for t ∈ [−δ, δ] and, hence

∂xt(θ)
∂t = ∂xt(θ)

∂θ , x0 = φ, θ ∈ [−h, 0], t ∈ [−δ, δ],
∂Dxt

∂t = f(xt, α(xt, w(t)), w(t)), ẇ(t) = s(w(t)).
(19)

Substituting xt = π(w(t)), w(0) = w, t ∈ [−δ, δ] into (19) and setting further
t = 0, we obtain that for all w ∈ W0, π(w)(θ) is differentiable in θ ∈ [−h, 0]
and π satisfies (17). The function ∂π

∂θ : W0 → Cn[−h, 0] is continuous since
the left hand side of (17a) has the same property.

Sufficiency: let a C1 mapping π : W0 → Cn[−h, 0] satisfy (17). Substitute
w = w(t) into (17), where w(t) is a solution of (2), then xt = π(w(t)) satisfies
(19) (and thus (4)) and therefore π determines the invariant manifold of (4).
ut
Remark 1. Approximate solution to (17) can be found in a form of series
expansions in the powers of w (similarly to [8], [14], [1]).

4.2 State-Feedback Regulator Problem

Applying Lemmas 1 and 2, we obtain regulator equations by using arguments
of [11].

Lemma 3. Under H0 and H1 assume that for some α(xt, w) condition 1a)
holds. Then, condition 1b) is also fulfilled iff there exists a Ck(k ≥ 2) mapping
π : W0 → Cn[−h, 0], π(0) = 0 satisfying (17) and the algebraic equation

g(π(w), w) = 0. (20)

Proof is similar to [6].
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Theorem 1. Under H0, H1 and H2, the state-feedback regulator problem is
solvable if and only if there exist Ck(k ≥ 2) mappings x0(θ) = π(w)(θ),
with π ∈ M1, π(0)(θ) = 0, and u = c(w), with c(0) = 0, both defined in a
neighborhood W ⊂ Rr of the origin, satisfying the conditions ∀w ∈ W0, ∀θ ∈
[−h, 0]

∂π(w)(θ)
∂w s(w) = ∂π(w)(θ)

∂θ ,
∂[Dπ(w)]

∂w s(w) = f(π(w), c(w), w),
g(π(w), w) = 0.

(21a-c)

Suppose that π and c satisfy (21), then the state-feedback

u = α(xt, w(t)) = c(w(t)) + K[xt − π(w(t))], (22)

where K is a stabilizing gain which is defined in H2, solves the state-feedback
regulator problem.

Proof. The necessity follows immediately from Lemma 3. For the suffi-
ciency consider the state-feedback (22). This choice satisfies 1a), since

f(xt, α(xt, 0), 0) = (A + BK)xt + O(xt)2.

Moreover, by construction

α(π(w), w) = c(w)

and therefore, (21a), (21b) reduce to (17). From (21c) by Lemma 2 it follows
that condition 1b) is also fulfilled. ut

4.3 Error-Feedback Regulator Problem

Applying Lemmas 1 and 2 to the system (7), we obtain the following:

Lemma 4. Let H0 hold. Assume that all eigenvalues of S are on the imagi-
nary axis and that for some θ(zt) and η(zt, e) condition 2a) holds. Then
(i) the closed-loop system (7) has a local center manifold xt(θ) = π(w(t))(θ),
zt(θ) = σ(w(t))(θ), where π : W0 → Cn[−h, 0], σ : W0 → Cν [−h, 0] (0 ∈
W0 ⊂ W ⊂ Rr) are Ck mappings with π(0)(θ) ≡ 0, σ(0)(θ) ≡ 0;
(ii) the center manifold is locally attractive, i.e. satisfies

||xt − π(w(t))||+ ||zt − σ(w(t))|| ≤ Me−at(||x0 − π(w(0))||+ ||z0 − σ(w(0))||),
M > 0, a > 0

(23)
for all x0, z0, w(0) sufficiently close to 0 and all t ≥ 0.
(iii) C1 mappings π : W0 → Cn[−h, 0], π(0)(θ) = 0, σ : W0 → Cν [−h, 0],
σ(0)(θ) = 0 define a center manifold xt(θ) = π(w(t))(θ), zt(θ) = σ(w(t))(θ), θ ∈
[−h, 0] of (7) if and only if π : W0× [−h, 0] → Rn, σ : W0× [−h, 0] → Rν are
continuously differentiable functions and ∀w ∈ W0, ∀θ ∈ [−h, 0] they satisfy
the following system of partial differential equations
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∂π(w)(θ)
∂w s(w) = ∂π(w)(θ)

∂θ , ∂σ(w)(θ)
∂w s(w) = ∂σ(w)(θ)

∂θ ,
∂[Dπ(w)]

∂w s(w) = f(π(w), θ(σ(w)), w), ∂[D̄σ(w)]
∂w s(w) = η(σ(w), 0).

(24a-d)

Remark 2. In the case when z(t) = col{z1(t), z2(t)}, where z2 appears in (7)
without delay and thus col{z1t(θ), z2(t)} = col{σ1(w(t))(θ), σ2(w(t))}, (24b)
holds only for σ = σ1.

Similarly to Lemma 3, the following lemma can be proved

Lemma 5. Under H0 and H1, assume that for some Θ(zt) and η(zt, e) con-
dition 2a) holds. Then, condition 2b) is also fulfilled iff there exist Ck(k ≥ 2)
mappings π : W0 → Cn[−h, 0], π(0) = 0, σ : W0 → Cν [−h, 0], σ(0) = 0
satisfying (24) and the algebraic equation (20).

From the latter lemmas we deduce a necessary and sufficient condition for
the solvability of the error-feedback regulator problem

Theorem 2. Under H0-H3, the error-feedback regulator problem is solvable
if and only if there exist Ck(k ≥ 2) mappings x0(θ) = π(w)(θ), with π ∈
M1, π(0)(θ) = 0, and u = c(w), with c(0) = 0, both defined in a neighborhood
W ⊂ Rr of the origin, satisfying the conditions (21) ∀w ∈ W, ∀θ ∈ [−h, 0].

Suppose that π and c satisfy (21), and that a linear bounded operator H
: Cn[−h, 0] → Rm is such that the system

d

dt
Dxt = (A + BH)xt (25)

is asymptotically stable. Then the error-feedback (6), where

z(t) = col{z1(t), z2(t)}, η = col{η1, η2}, D̄ = diag{D, I},
u = Θ(zt) = c(z2(t)) + H[z1t − π(z2(t))],
η1(z1t, z2(t), e(t)) = f(z1t, Θ(zt), z2(t))−G1(h(z1t, z2(t))− e(t)),
η2(z1t, z2(t), e(t)) = s(z2(t))−G2(h(z1t, z2(t))− e(t)),

(26)

and where G = col{G1, G2} is defined in H3, solves the regulator problem.

Proof. The necessity follows immediately from Lemma 5. For the suffi-
ciency we note, that there exist a linear bounded operator H : Cν [−h, 0] → Rm

and a matrix G = col{G1, G2} such that (25) and (13) are asymptotically
stable. A standard calculation shows that for any m× r-matrix K, the char-
acteristic quasipolynomial that corresponds to the system




d
dtDxt
d
dtD̄z1t

ż2(t)


 =




A BH BK
G1C A + BH−G1C P + BK −G1Q
G2C −G2C S −G2Q







xt

z1t

z2(t)


 (27)

is equal to the product of the characteristic quasipolynomials that correspond
to (25) and (13) respectively. Therefore, (27) is asymptotically stable.
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Consider the error-feedback controller of (6), (26). The linearized system
corresponding to the closed-loop system (7) has exactly the form of (27),
where

K =
[

∂c

∂w

]

w=0

−H
[

∂π

∂w

]

w=0

.

Thus requirement 2a) is satisfied. By construction z2(t) appears in (7) with-
out delay and thus (21a)-(21b) imply (24) with σ(w) = col{σ1(w), σ2(w)} =
col{π(w), w}, where in (24b) σ = σ1. Thus requirement 2b) follows from
Lemma 5. ut

5 Linear Case.

5.1 Linear Regulator equations.

Consider the linear regulator problem (9). In the linear case the center mani-
fold has a form xt = Π(θ)w(t), where Π is an n× r matrix function continu-
ously differentiable in θ ∈ [−h, 0]. From Theorems 1 and 2 it follows, that the
linear problem (9) is solvable iff there exists Π and an m × r-matrix Γ that
satisfy the following system

Π̇(θ) = Π(θ)S, θ ∈ [−h, 0],
(DΠ)S =

∫ 0

−h
d[µ(θ)]Π(θ) + BΓ + P,∫ 0

−h
d[ζ(θ)]Π(θ) + Q = 0.

(28a-c)

Eq. (28a) yields Π(θ) = Π(0) exp Sθ. Substituting the latter into (28b)
and (28c), we obtain the following linear algebraic system for initial value
Π(0):

[Π(0)− ∫ 0

−h
d[ξ(θ)]Π(0)eSθ]S =

∫ 0

−h
d[µ(θ)]Π(0)eSθ + BΓ + P,∫ 0

−h
d[ζ(θ)]Π(0)eSθ + Q = 0.

(29)

The latter system is a generalization of Francis equations [4] to the case of
neutral systems.

We consider now a particular, but important in applications case of (9)
with

Dxt = x(t)−∑k
i=1 Dix(t− hi)−

∫ 0

−h
Dd(θ)x(t + θ)dθ,

Axt =
∑k

i=0 Aix(t− hi) +
∫ 0

−h
Ad(θ)x(t + θ)dθ,

Cxt =
∑k

i=0 Cix(t− hi) +
∫ 0

−h
Cd(θ)x(t + θ)dθ,

(30)

where 0 = h0 < h1 < . . . < hk ≤ h, Dd, Ad and Cd are piecewise continu-
ous matrix functions and where Di, Ai and Ci are constant matrices of the
appropriate dimensions. In this case (29) has the form:
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[Π(0)−∑k
i=1 DiΠ(0)e−Shi − ∫ 0

−h
Dd(θ)Π(0)eSθdθ]S =

∑k
i=0 AiΠ(0)e−Shi

+
∫ 0

−h
Ad(θ)Π(0)eSθdθ + BΓ + P,∑k

i=0 CiΠ(0)e−Shi +
∫ 0

−h
Cd(θ)Π(0)eSθdθ + Q = 0.

(31)

Theorem 3. Under H0-H2, the linear state-feedback regulator problem (9)
((9) and (30)) is solvable if and only if there exist n× r and m× r-matrices
Π(0) and Γ which solve the linear matrix equations (29) ((31)).

In the case of error-feedback regulator problem, the similar result holds
under H0-H3.

Consider the case of (30) with the general controller output. We assume
that the regulator problem for (9) without delay, i.e. for

(I −∑k
i=1 Di)ẋ(t) = (

∑k
i=0 Ai)x(t) + Bu(t) + Pw(t),

ẇ(t) = Sw(t),
e(t) = (

∑k
i=0 Ci)x(t) + Qw(t)

is solvable for all P and Q. This is equivalent (see e.g. [4]) to the following
assumption

A1. detG0(λ) 6= 0 for all eigenvalues λ of S, where

G0(λ) = (
k∑

i=0

Ci)[λ(I −
k∑

i=1

Di)−
k∑

i=0

Ai]−1B.

Under A1 the linear regulator equations

(I −
k∑

i=1

Di)Π0S = (
k∑

i=0

Ai)Π0 + BΓ + P, (
k∑

i=0

Ci)Π0 + Q = 0,

where Π0 and Γ are constant matrices, are solvable for all P and Q. Then,
by the implicit function theorem for all small enough h > 0 (31) is solvable.
We have:

Proposition 2. Under H0-H2 and A1, the output regulation of (9) with (30)
via state-feedback of (10) is achievable and the regulator equations (31) are
solvable for all small enough h.

6 Conclusions

The geometric theory of output regulation is generalized to nonlinear neutral
type systems. It is shown that the state-feedback and the error-feedback regu-
lator problems are solvable, under the standard assumptions on stabilizability
and detectability of the linearized system, if and only if a set of regulator
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equations is solvable. This set consists of partial differential and algebraic
equations. In the linear case these equations are reduced to the linear matrix
equations.

The solvability of the nonlinear regulator equations and the approximate
solutions to these equations are issues for the future study.
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