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Robust Control of Distributed Delay Systems With
Application to Combustion Control

L. Xie, E. Fridman, and U. Shaked

Abstract—This note is concerned with the analysis and synthesis
of linear distributed delay systems. An efficient stability and -gain cri-
terion is established. It is based on a recent approach to the analysis and
design of linear time delay systems which represents the system in an equiv-
alent descriptor form. The obtained criterion is used to derive an efficient
state-feedback control design which stabilizes the distributed delay system
and achieves a guaranteed disturbance attenuation level in spite of a poly-
topic uncertainty in the system parameters. The new method is applied to
the robust stabilization and control of combustion in rocket motor cham-
bers.

Index Terms—Combustion control, distributed delay, -control,
linear matrix inequality (LMI), time delay systems.

I. INTRODUCTION

It is well-known (see, e.g., [1]–[3]) that the choice of an appropriate
Lyapunov–Krasovskii functional is crucial for deriving good stability
criteria for delay systems. The same is true concerning for bounded
real criteria. The general form of the Lyapunov–Krasovskii functional
leads to a complicated system of Riccati type partial differential equa-
tions [4], [5] or inequalities [6]. Special forms of Lyapunov–Krasovskii
functionals lead to simpler (but more conservative) delay-independent
[7]–[10] and delay-dependent [8]–[11] sufficient conditions. Recently,
a delay-dependent bounded real lemma (BRL) has been derived which
considerably reduces the conservatism entailed in previous results.
A new type of Lyapunov–Krasovskii functional is introduced in [12]
which is based on an equivalent “descriptor form” representation
of the system. Developing the BRL using the latter functional, a
significant reduction in the overdesign entailed in all existing methods
is achieved, mainly due to the fewer bounds needed to derive the
lemma.

The models used in [12] include multiple point time delays but ex-
clude distributed delays. Our interest in the latter stems from the works
of [15] and [16] that derived a linearized model with distributed delay
for the feeding system and the combustion chamber in a liquid mono-
propellant rocket motor with pressure feeding. In this model a non-
steady flow was assumed and nonuniform lags were taken into account.
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In the present note we formulate two types of linear systems with
distributed time delay and for each model we develop a BRL based
on the new approach of [12]. Since the latter requires the least over-
bounding, the results obtained will be the least conservative. Further,
a state-feedbackH1 control of linear systems with distributed delays
and polytopic uncertainty in system parameters is given. We also apply
our theory to the problem of stabilizing combustion in rocket motor
chambers. We obtain proportional and PI state-feedback controls that
stabilize the system and ensure a guaranteed bound for its disturbance
attenuation level, in spite of uncertainty in the process parameters.

Notation:Throughout this note the superscript “T ” stands for matrix
transposition,Rn denotes then dimensional Euclidean space,Rn�m

is the set of alln � m real matrices, and the notationP > 0, for
P 2 Rn�n means thatP is symmetric and positive definite. The space
of functions inRq that are square integrable over[0; 1) is denoted by
Lq
2
[0; 1).

II. L2-GAIN ANALYSIS OF LINEAR DISTRIBUTED TIME DELAY

SYSTEMS

We consider the following two models of linear systems with dis-
tributed time delay

1) The “convolution-type” model:The system is described by:

_x(t) =A0x(t) +A1x(t� h) +
0

�d

Ad(s)x(t+ s)ds

+B1w(t);

x(t) = 0 8 t 2 [�maxfh; dg; 0];

z(t) = colfC0x(t); C1x(t� h)g (1)

wherex(t) 2 Rn is the system state vector,w(t) 2 Lq
2
[0; 1)

is the exogenous disturbance signal andz(t) 2 Rp is the state
combination (objective function signal) to be attenuated. The
time delaysh and d are assumed to be known. The matrices
Ai; Ci; i = 0; 1 andB1 are constant matrices of appropriate
dimensions andAd(t) is a continuous matrix on[�d; 0).

2) The “summation-type” model:This model is described by

_x(t) =A0x(t) + A1x(t� h) +
t

t�d

Ad(s)x(s)ds+B1w(t);

x(t) = 0 8 t 2 [�maxfh; dg; 0];

z(t) = colfC0x(t); C1x(t� h)g (2)

where the vectorsx; w; z and the matricesAi; Ci; i = 0; 1 and
B1 are the same as in the “convolution-type” model andAd is a
continuous matrix on[�d; 1).

The two models are equivalent in the case where the matrixAd is
independent of time. We first derive the stability and the BRL criteria
for the “convolution-type” model.

A. Delay-Dependent BRL for the “Convolution-Type” Model

Consider the system (1). For a prescribed scalar > 0, we define
the performance index

J (w) =
1

0

(zT z � 
2
w
T
w)d�: (3)
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We are looking for a BRL that depends on delaysh andd. Following
[12], we represent (1) in the equivalent descriptor form

_x(t) = y(t)

y(t) =A0x(t) + A1x(t� h) +
0

�d

Ad(s)x(t+ s)ds

+B1w(t) (4)

which is further equivalent to the following descriptor system:

_x(t) = y(t)

y(t) = (A0 +A1)x(t)� A1

t

t�h

y(� )d�

+
0

�d

Ad(s)x(t+ s)ds+B1w(t): (5)

We adopt the following Lyapunov-Krasovskii functional for the
system (5):

V (t) = [xT (t) y
T (t)]EP

x(t)

y(t)

+
0

�h

t

t+�

y
T (�)Ry(�)d� d� +

0

�d

t��

t

� xT (� + �)AT
d (�)RdAd(�)x(� + �)d� d� (6)

where

E =
In 0

0 0
P =

P1 0

P2 P3
; P1 > 0; R; Rd > 0:

(7a, b)

The following result is then obtained.
Theorem 2.1:Consider the system of (1). The system is asymptot-

ically stable and for a prescribed > 0, the cost function (3) satisfies
J (w) < 0 for all nonzerow 2 Lq

2[0; 1), if there existn�n-matrices

0 < P1; P2; P3; R andRd that satisfy the linear matrix inequality
(LMI) shown in (8), shown at the bottom of the page, where

�
�
= (A0 + A1)

T
P2 + P

T
2 (A0 +A1)

+
0

�d

A
T
d (�)RdAd(�)d�: (9)

Proof: We note that

[xT y
T ]EP

x

y
= x

T
P1x

and, hence, differentiatingV1, the first term of (6) with respect tot
gives us

dV (t)

dt
=

d

dt
[xT (t) y

T (t)]EP
x(t)

y(t)

= 2xT (t)P1 _x(t)

= 2[xT (t) y
T (t)]PT y(t)

�y(t) + _x(t)
: (10)

Substituting (5) into (10) and denoting�
�
= colfx(t); y(t); w(t)g we

obtain (11), as shown at the bottom of the page, where

�h(t)
�
= �2

t

t�h

[xT (t) y
T (t)]PT 0

A1

y(s)ds

�h[xT (t) y
T (t)]PT 0

A1

R
�1 [ 0 AT

1 ]
x(t)

y(t)

+
t

t�h

y
T (s)Ry(s)ds (12)

and

�d(t)
�
= �2

0

�d

[xT (t) y
T (t)]PT 0

Ad(s)
x(t+ s)ds

� d[xT (t) y
T (t)]PT 0

I
R
�1

d [ 0 I ]P
x(t)

y(t)

+
0

�d

x
T (t+ s)AT

d (s)RdAd(s)x(t+ s)ds: (13)

� P1 � P T
2 + (A0 + A1)

TP3 P T
2 B1 hPT

2 A1 dPT
2 CT

0 CT
1

P1 � P2 + P T
3 (A0 + A1) �P3 � P T

3 + hR P T
3 B1 hPT

3 A1 dPT
3 0 0

BT
1 P2 BT

1 P3 �2I 0 0 0 0

hAT
1 P2 hAT

1 P3 0 �hR 0 0 0

dP2 dP3 0 0 �dRd 0 0

C0 0 0 0 0 �I 0

C1 0 0 0 0 0 �I

< 0 (8)

dV (t)

dt
+ z

T (t)z(t)� 
2
w
T (t)w(t) = �

T
P T 0 I

(A0 +A1) �I
+

0 (AT
0 + AT

1 )

I �I
P P T 0

B1

0 BT
1 P �2Iq

�

+ x
T (t)

0

�d

A
T
d (�)

T
RdAd(�)d�x(t) + hy

T (t)Ry(t)�
t

t�h

y
T (�)Ry(�)d�

�
0

�d

x
T (t+ �)AT

d (�)RdAd(�)x(t+ �)d� + �h(t) + �d(t) + z
T (t)z(t) (11)
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The stability of the system readily follows from the fact that by
(11)–(13), takingz � 0; B1 = 0 andw � 0, the following holds:

dV (t)

dt
� [xT (t) yT (t)] diagf�; hRg+ P T 0

A1

�R�1 [0 AT
1 ]P + P T 0

I
R�1d [0 I]P

x(t)

y(t)
:

The derivative ofV with respect totwill, therefore, be negative and the
system will thus be stable, if the matrix block that is built of the first,
second, fourth, and fifth row and column blocks in (8) is negative–def-
inite.

From (4), and due to the asymptotic stability ofx(t), it follows that
x(t) is square integrable on[0; 1). By noting that

1

0

zT z dt =
1

0

xT (� )CT
0 C0x(�)d�

+
1

0

xT (� � h)CT
1 C1x(� � h)d�

=

1

i=0

1

0

xT (�)CT
i Cix(�)d�

and substituting (12) and (13) into (11) we obtain (by Schur comple-
ments) thatJ < 0 if the following LMI holds:

�
�
=

	 P T 0

B1

hPT 0

A1
dPT 0

I

[ 0 BT
1 ]P �2Iq 0 0

h [ 0 AT
1 ]P 0 �hR 0

d [ 0 I ]P 0 0 �dRd

< 0 (14)

where

	
�
= P T 0 I

A0 + A1 �I
+

0 AT
0 + AT

1

I �I
P

+
CT
0 C0 + CT

1 C1 +
0

�d

AT
d (�)RdAd(�)d� 0

0 hR
:

Finally, the LMI (8) results from the latter LMI by expansion of the
block matrices.

Remark 1: The affinity of (8) ind andh implies that once Theorem
2.1 holds ford1 andh1 it also holds for alld 2 [0; d1] andh 2 [0; h1].

Remark 2: When Ad(s) is a constant matrix, i.e.,Ad(s) �
Ad; 8 s 2 [�d; 0], � in (9) can be rewritten as

� = (A0 +A1)
TP2 + P2(A0 + A1) + dAT

dRdAd:

In this situation, the LMI (8) is readily implementable. On the other
hand, if one choosesRd = �I , where� is a positive scaling parameter,
we have

� = (A0 +A1)
TP2 + P2(A0 + A1) + �

0

�d

AT
d (�)Ad(�)d�

and the LMI is implementable for any time-varyingAd(s); s 2
[�d; 0]. In general, one may choose to discretize the integral and
implement the LMI as follows:

� = (A0 + A1)
TP2 + P2(A0 +A1)

+�

N�1

i=0

AT
d (�d+ i�)RdAd(�d+ i�)

where� = d=N andN is a positive integer.
Remark 3: Theorem 2.1 presents an efficient LMI algorithm for

checking the stability andL2-gain of distributed delay systems. The
result is derived using minimum number of boundings and is expected
to be the least conservative.

B. Delay-Dependent BRL for the “Summation-Type” Model

We consider the system (2). Also here, for a prescribed scalar > 0,
we seek a condition that will verify the stability of the system and will
guarantee thatJ (w) of (3) will be negative for all nonzerow(t) 2
Lq2[0; 1).

We apply the following Lyapunov–Krasovskii functional

V (t) = [xT (t) yT (t)]EP
x(t)

y(t)

+
0

�h

t

t+�

yT (�)Ry(�)d� d�

+
0

�d

t

t+�

xT (�)AT
d (�)RdAd(�)x(�)d� d� (15)

whereE, the structure ofP and the positive definite matrices ofR and
Rd are defined in (7). Following the same lines of the proof of Theorem
2.1, we readily obtain the following BRL.

Theorem 2.2: Consider the system of (2). The system is asymptot-
ically stable and for a prescribed > 0, the cost function (3) achieves
J (w) < 0 for all nonzerow 2 Lq2[0; 1), if there existn�n-matrices
0 < P1; P2; P3; R andRd that satisfy the LMI of (8)8 t 2 [0; 1),
with

�
�
= (A0 +A1)

TP2 + P T
2 (A0 +A1) + dAT

d (t)RdAd(t): (16)

Remark 4: In the case whereAd depends on time, the validity of the
latter LMI should be guaranteed all over[0; 1). If Ad(t) is a smooth
function of time, an appropriate grid of time instants may be chosen for
which the LMI is to be solved.

C. The Case of ConstantAd

If Ad is a constant matrix the two models are equivalent and indeed
the two expressions for� in (9) and (16) are then identical.

In view of Remark 2, and because the combustion control problem
to be solved below has a constantAd, we shall assume in the sequel,
for simplicity, thatAd(s) � Ad; 8 s 2 [�d; 0].

It follows from (8) that if there exists a solution to the LMI then
the resultingP3 cannot possibly be singular sinceP3 + P T

3 must be
negative definite. It thus follows that if there exists a solution to the
inequality (14) the resultingP will be nonsingular. Denoting, therefore

P�1
�
= Q =

Q1 0

Q2 Q3

an alternative representation for the BRL of Theorem 2.1 can be de-
rived. Multiplying� in (14) from the left and the right bydiagfQT ; Ig
anddiagfQ; Ig, respectively, we obtain the following.

Corollary 2.3: Consider the system of (1) withAd(s) � Ad; 8 s 2
[�d; 0]. The system is asymptotically stable and for a prescribed >
0, the cost function (3) achievesJ (w) < 0 for all nonzerow 2
Lq2[0; 1), if there existn � n-matrices0 < Q1; Q2; Q3, R andRd

that satisfy the following LMI as shown in (17) at the bottom of the
next page, where “*” denotes entry which can be deduced from the
symmetry of the matrix.

The BRL of Corollary 2.3 was derived for the system (1) where the
system matricesA0; A1; Ad; C0; C1, andB1 are all known. How-
ever, since the LMI of (17) is affine in the system matrices, the corol-
lary can be used to derive a criterion that will guarantee the required
attenuation level in the case where the system matrices are not exactly
known and they reside within a given polytope.

Denoting


(t) =
A0 A1 Ad

B1 C0 C1
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we assume that for allt 2 [0; 1) 
(t) 2 Cof
i; i = 1; . . . ; Ng,
namely


(t) =

N

i=1

fi(t)
i for some0 � fi(t) � 1;

N

i=1

fi(t) = 1 (18)

where theN vertices of the polytope are described by


i =
A
(i)
0 A

(i)
1 A

(i)
d

B
(i)
1 C

(i)
0 C

(i)
1

:

We readily obtain the following.
Corollary 2.4: Consider the system of (1) that satisfies (18). The

system is asymptotically stable and for a prescribed > 0, the cost
function (3) achievesJ (w) < 0 for all nonzerow 2 Lq

2[0; 1) and
for all 
 within the polytope of (18) if there existn � n-matrices
0 < Q1; Q

(i)
2 ; Q

(i)
3 ; R

(i)
d ; i = 1; . . . ; N andR > 0 that satisfy

the following set of LMIs fori = 1; . . . ; N ; see (19), as shown at the
bottom of the page.

Remark 5: It should be remarked that by explicitly exploiting the
fact thatAd is constant, we may obtain another BRL based on existing
result of [12] for point time delay systems. In fact, by definingy =
t

0
x(� )d� , (2) can be rewritten as a point time-delay system

_�(t) = ~A0�(t) + ~A1�(t� h) + ~Ad�(t� d) + ~B1w(t)

z(t) = colf ~C0x(t); ~C1x(t�h)g

where�(t) = colfx(t); y(t)g and

~A0 =
A0 Ad

In 0
~A1 =

A1 0

0 0
; ~Ad =

0 �Ad

0 0

~B1 =
B1

0
~C0 = [C0 0 ] ~C1 = [C1 0 ] :

III. STATE-FEEDBACK CONTROL

In this section, we shall apply the results of the previous section to the
problem of robust state-feedback control of systems with distributed
delay. Given the systemS(A0; A1; Ad; B1; B2; C1; D12)

_x(t) =A0x(t) + A1x(t� h) +
0

�d

Adx(t+ s)ds

+B1w(t) +B2u(t);

z = colfC1x; D12ug;

x(t) = 0 8 t 2 [�maxfh; dg; 0] (20)

wherex andw are defined in Section II,u 2 R` is the control input,
A0; A1; Ad; B1; B2 are constant matrices of appropriate dimension,
z is the objective vector,C1 2 Rp�n andD12 2 Rr�`. As noted
in Remark 2, the case whenAd is time varying over[�d; 0] can be
handled similarly.

Denoting


s(t) =
A0 A1 Ad

B1 B2 C1D12

we assume that for allt 2 [0; 1) 
s(t) 2 Cof
i; i = 1; . . . ; Ng,
namely


s(t) =

N

i=1

fi(t)
s; i for some0 � fi(t) � 1;

N

i=1

fi(t) = 1

(21)
where theN vertices of the polytope are described by


s; i =
A
(i)
0 A

(i)
1 A

(i)
d

B
(i)
1 B

(i)
2 C

(i)
1 D

(i)
12

:

For a prescribed scalar > 0, we consider the performance index
of (3) and seek a state-feedback gain matrixK which, via the control
law u(t) = Kx(t), achieves, within the polytope of (21),J (w) < 0
for all nonzerow 2 Lq

2[0; 1):

Q2 +QT
2 Q3 �QT

2 +Q1(A
T
0 + AT

1 ) 0 0 0 Q1C
T
0 Q1C

T
1 dQ1A

T
d hQT

2

� �Q3 �QT
3 B1 hA1R dRd 0 0 0 hQT

3

� � �2I 0 0 0 0 0 0

� � � �hR 0 0 0 0 0

� � � � �dRd 0 0 0 0

� � � � � �I 0 0 0

� � � � � � �I 0 0

� � � � � � � �dRd 0

� � � � � � � � �hR

< 0 (17)

Q
(i)
2 +Q

(i)T
2 Q

(i)
3 �Q

(i)T
2 +Q1(A

(i)
0 +A

(i)
1 )T 0 0 0 Q1C

(i)T
0 Q1C

(i)T
1 dQ1A

(i)T
d hQ

(i)T
2

� �Q
(i)
3 �Q

(i)T
3 B

(i)
1 hA

(i)
1 R dR

(i)
d 0 0 0 hQ

(i)T
3

� � �2I 0 0 0 0 0 0

� � � �hR 0 0 0 0 0

� � � � �dR
(i)
d 0 0 0 0

� � � � � �I 0 0 0

� � � � � � �I 0 0

� � � � � � � �dR
(i)
d 0

� � � � � � � � �hR

< 0: (19)
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Substitutingu = Kx into (20), we obtain the structure of (1) with

A0 =A0 +B2K; A1 = A1

C
T
0 C0 =C

T
1 C1 +K

T
D

T
12D12K: (22)

DenotingY = KQ1, we apply Corollary 2.3 on the latter system
and obtain the following.

Theorem 3.1:Consider the system of (20) that satisfies (21).
The system is stabilizable and for a prescribed > 0, the cost
function (3) achievesJ (w) < 0 for all nonzerow 2 Lq

2[0; 1) and
for all 
 within the polytope of (21) if there existn � n-matrices
0 < Q1; Q

(i)
2 ; Q

(i)
3 ; R

(i)
d ; i = 1; . . . ; N , 0 < R andY 2 R`�n

that satisfy the following set of LMIs, fori = 1; . . . ; N , see (23)
shown at the bottom of the page. The state-feedback gain is then given
by K = Y Q�1

1 .
The latter result has been obtained for the proportional feedback rule.

If an integral action is also allowed, the model of (5) can be used. Ap-
plying the state-feedback result of [12] to the latter system we obtain
the following.

Theorem 3.2:Consider the system of (20) and (21). For a prescribed
 > 0, there exists a PI controlleru(t) = K1x(t) +K2

t

0
x(� )d�

that stabilizes the system and achievesJ (w) < 0 for all nonzerow 2
Lq
2[0; 1) and for all
 within the polytope of (21) if there exist2n�

2n-matrices0 < Q1; Q
(i)
2 ; Q

(i)
3 ; i = 1; . . . ; N , 0 < Rd, 0 < R and

Y 2 R`�2n that satisfy the following set of LMIs fori = 1; . . . ; N ;
see (24), as shown at the bottom of the page, where the augmented
matrices are defined in Remar 5 and~B(i)T

2 = [B
(i)T
2 0].

The feedback gains are then given by[K1 K2] = Y Q�1
1 .

IV. A N EXAMPLE OF COMBUSTION CONTROL

In this section, we shall demonstrate the application of the results in
Theorems 3.1 and 3.2 to robust stabilization and control of combustion
in rocket motor chambers.

We consider a liquid monopropellant rocket motor with a pressure
feeding system. Assuming nonsteady flow and taking nonuniform lag

into account, a linearized model of the feeding system and the com-
bustion chamber equations has been obtained by [15], [16], and [13].
Their model is of the form (20) with

x(t) = colfx1(t); x2(t); x3(t); x4(t)g

wherex1(t); x2(t) andx3(t) are, respectively, the relative deviations
of the instantaneous combustion chamber pressure, the instantaneous
mass flow upstream of the capacitance and the instantaneous mass rate
of the injected propellant from their steady values, andx4(t) is the
ratio between the deviation of the instantaneous pressure in a special
place in the feeding line from its value in steady operation and twice
the injector pressure drop in steady operation.

The model matrices are

A0 =

�� 1 0 0 0

0 0 0 �
1

�J

�0:5
p

(1� �)J
0 �

1

(1� �)J

1

(1� �)J

0
1

Ee

�
1

Ee

0

A1 =0 Ad =

�
�

d
0

1

d
0

0 0 0 0

0 0 0 0

0 0 0 0

B1 =

0

0

1

0

B2 =

0
1

�J

0

0

C1 = [ 1 0 0 0 ] D12 = 1

where� is the fractional length for pressure supply,J is the line inertia,
Ee is the line elasticity parameter,p is the ratio of steady-state pressure
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and steady-state injector pressure drop and� is the pressure exponent
of the combustion process.

The nominal value of the pressure exponent� is 1. We consider the
following uncertainty in�: � 2 [1 � ��max; 1 + ��max]. Let � =
0:1; p = 1; J = 2 andEe = 1. Then, the system can be described by
a polytope of two vertices with

A
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���max 0 0 0

0 0 0 �5

�0:5556 0 �0:5556 0:5556

0 1 �1 0

A
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�0:5556 0 �0:5556 0:5556

0 1 �1 0

A
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�
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d
0

1

d
0

0 0 0 0

0 0 0 0

0 0 0 0

A
(2)
d

=

�
1 + ��max

d
0

1

d
0

0 0 0 0

0 0 0 0

0 0 0 0

:

Let ��max = 0:15 and d = 1 sec. By applying Theorem
3.1 the minimum value of which admits a solution to the
LMIs is min = 14. The solution for this value of provides
the robust state-feedback control law ofu(t) = Kx(t) with
K = [68:8632 �2:7737 �48:7091 �11:7800]: This state-feed-
back controller is applied to the system and the frequency response
of the resulting transference betweenw and z is plotted. Since the
inequalities in Theorem 3.1 guarantee the stability of the closed-loop,
the peak value of the latter plot represents the actual bound that is
achieved for the disturbance attenuation in the system. In our case the
height of the peak was 4.75.

Applying, on the other hand, the result of Theorem 3.2 a
minimum value of min = 22 was obtained withK1 =
[61:095 �2:7302 �40:251 �10:298] andK2 = [�7:0411 �
10�12 �1:4372�10�11 �1:1798�10�11 �1:6519�10�11].
The latter result implies that the integral part of the feedback is not
used and that, in fact, the resulting controller is a standard proportional
feedback. The frequency plots for this controller showed that an
attenuation bound of 4.6 is actually achieved.

V. CONCLUSION

A comprehensive theory for dealing with linear systems with both
point and distributed time delays is introduced. Two models of dis-
tributed delays have been considered. Based on the recent approach of
[12], efficient BRLs have been obtained for both models. The criteria
obtained provide sufficient conditions for stability and for achieving
a prescribed attenuation level. The conservatism of the results stems
from the bounding of the terms in (12) and (13). The overdesign that
is entailed in all the recent methods for controlling distributed delay
systems is proportional to the number of bounding involved. The de-
scriptor approach we used to derive our results applies the minimum
number of bounding. The conservatism of these results is therefore the
minimum. We have also applied the result to the combustion control
design in rocket motor chambers.
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