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a b s t r a c t

Exponential stability analysis via the Lyapunov–Krasovskii method is extended to linear time-delay
systems in a Hilbert space. The operator acting on the delayed state is supposed to be bounded. The
systemdelay is admitted to be unknownand time-varyingwith an a priori given upper bound on the delay.
Sufficient delay-dependent conditions for exponential stability are derived in the form of Linear Operator
Inequalities (LOIs), where the decision variables are operators in the Hilbert space. Being applied to a heat
equation and to a wave equation, these conditions are reduced to standard Linear Matrix Inequalities
(LMIs). The proposed method is expected to provide effective tools for stability analysis and control
synthesis of distributed parameter systems.

© 2008 Elsevier Ltd. All rights reserved.
1. Introduction

Time-delay naturally appears in many control systems, and it is
frequently a source of instability (Kolmanovskii & Myshkis, 1999).
In the case of distributed parameter systems, even arbitrarily small
delays in the feedback may destabilize the system (see e.g. Datko
(1988), Logemann, Rebarber, and Weiss (1996) and Nicaise and
Pignotti (2006)). The stability issue of systems with delay is,
therefore, of theoretical and practical value.
During the last decade, a considerable amount of attention

has been paid to stability of Ordinary Differential Equations
(ODEs) with uncertain constant or time-varying delays (see
e.g. Gu, Kharitonov, and Chen (2003), Kolmanovskii and Myshkis
(1999), Niculescu (2001) and Richard (2003)). Special forms of
Lyapunov–Krasovskii functionals have been used for derivation of
simple finite dimensional conditions in terms of LMIs (Boyd, El
Ghaoui, Feron, & Balakrishnan, 1994). These conditions are either
delay-independent or delay-dependent.
The stability analysis of Partial Differential Equations (PDEs)

with delay is essentially more complicated. There are only a few
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works on Lyapunov-based technique for PDEs with delay. The
second Lyapunov method was extended to abstract nonlinear
time-delay systems in the Banach spaces inWang (1994a), andwas
applied to stability analysis of some scalar heat/wave equations
with constant delays andwith the Dirichlet boundary conditions in
Wang (1994b). Stability and instability conditions for delay wave
equations were found in Nicaise and Pignotti (2006).
In the present paper, we study the exponential stability of

general distributed parameter systems. A class of linear systems
in a Hilbert space is considered, where a bounded operator acts
on the delayed state. The system delay is admitted to be unknown
and time-varying. Sufficient delay-dependent exponential stability
conditions are derived in the form of LOIs, where the decision
variables are operators in the Hilbert space. General methods for
solving LOI have not been developed yet. Some finite dimensional
approximations were considered in Ikeda, Azuma, and Uchida
(2001).
Being applied to a heat equation and to a wave equation,

the derived conditions are reduced to standard finite-dimensional
LMIs that appear to guarantee the exponential stability of the
first order and, respectively, the second order delay-differential
equations. The surprising fact is that this reduction of infinite-
dimensional LOIs to finite-dimensional LMIs is tight in the sense that
the stability of the latter delay-differential equations is necessary
for the stability of the PDEs in question.
Notation and Preliminaries
The notation used throughout is fairly standard. The superscript

‘T ’ stands for matrix transposition, Rn denotes the n-dimensional
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Euclidean space with the norm | · |, Rn×m is the set of all n × m
real matrices. The notation P > 0, for P ∈ Rn×n means that
P is symmetric and positive definite, whereas λmin(P) (λmax(P))
denotes its minimum (maximum) eigenvalue.
LetH be a Hilbert space equipped with the inner product 〈·, ·〉

and the corresponding norm | · |. Denote byL(H) bounded linear
operators from H to H . Given a linear operator P : H → H
with a dense domain D(P) ⊂ H , the notation P∗ stands for the
adjoint operator. Such an operator P is strictly positive definite,
i.e., P > 0, iff it is self-adjoint in the sense that P = P∗ and
there exists a constant β > 0 such that 〈x, Px〉 ≥ β〈x, x〉 and
for all x ∈ D(P), whereas P ≥ 0 means that P is self-adjoint and
nonnegative definite, i.e., 〈x, Px〉 ≥ 0 for all x ∈ D(P).
If an infinitesimal operator A generates a strongly continuous

semigroup T (t) on the Hilbert space H (see, e.g., Curtain and
Zwart (1995) for details), the domain of the operator A forms
another Hilbert spaceD(A)with the graph inner product (·, ·)D(A)
defined as follows: (x, y)D(A) = 〈x, y〉 + 〈Ax, Ay〉, x, y ∈ D(A).
Moreover, the induced norm ‖T (t)‖ of the semigroup T (t) satisfies
the inequality ‖T (t)‖ ≤ κeσ t everywhere with some constant
κ > 0 and growth bound σ .
The space of the continuousH-valued functions x : [a, b] → H

with the induced norm ‖x‖C([a,b],H) = maxs∈[a,b] |x(s)| is denoted
by C([a, b],H). The space of the continuously differentiable H-
valued functions x : [a, b] → H with the induced norm
‖x‖C1([a,b],H) = max(‖x‖C([a,b],H), ‖ẋ‖C([a,b],H)) is denoted by
C1([a, b],H). L2(a, b;H) is the Hilbert space of square integrable
H-valued functions on (a, b) with the corresponding norm.
W l,2([a, b], R) is the Sobolev space of absolutely continuous scalar
functions on [a, b] with square integrable derivatives of the order
l ≥ 1.
Given x(·) ∈ L2(a, b;H), we denote xt = x(t + θ) ∈

L2(−h, 0;H) for t ∈ [a+ h, b].

Lemma 1 (Wang (1994b) (Wirtinger’s Inequality and its Generaliza-
tion)). Let z ∈ W 1,2([a, b], R) be a scalar function with z(a) =
z(b) = 0. Then∫ b

a
z2(ξ)dξ ≤

(b− a)2

π2

∫ b

a

[
dz(ξ)
dξ

]2
dξ . (1)

If additionally z ∈ W 2,2([a, b], R), then∫ b

a

[
dz(ξ)
dξ

]2
dξ ≤

(b− a)2

π2

∫ b

a

[
d2z(ξ)
dξ 2

]2
dξ . (2)

Lemma 2 (Jensen’s Inequality). Let H be a Hilbert space with the
inner product 〈·, ·〉. For any linear bounded operator R : H →

H, R > 0, scalar l > 0 and x ∈ L2([a, b],H) the following holds:

l
∫ l

0
〈x(s), Rx(s)〉ds ≥

〈∫ l

0
x(s)ds, R

∫ l

0
x(s)ds

〉
. (3)

Note that (3) follows from the Cauchy–Schwartz inequality

l
∫ l

0
〈R
1
2 x(s), R

1
2 x(s)〉ds ≥

〈∫ l

0
R
1
2 x(s)ds,

∫ l

0
R
1
2 x(s)ds

〉
.

2. Lyapunov method for exponential stability

Consider a linear infinite-dimensional system

ẋ(t) = Ax(t)+ A1x(t − τ(t)), t ≥ t0 (4)

evolving in a Hilbert spaceH where x(t) ∈ H is the instantaneous
state of the system. Let the following assumptions be satisfied:
A1 the operator A generates a strongly continuous semigroup
T (t) and the domainD(A) of the operator A is dense inH ;

A2 the linear operator A1 is bounded inH ;
A3 the function τ(t) is piecewise-continuous of class C1 on the

closure of each continuity subinterval and it satisfies

inf
t
τ(t) > 0, sup

t
τ(t) ≤ h (5)

with some constant h > 0 for all t ≥ t0.
Let the initial conditions

xt0 = ϕ(θ), θ ∈ [−h, 0], φ ∈ W (6)

be given in the space

W = C([−h, 0],D(A)) ∩ C1([−h, 0],H). (7)

Definition 1. A function x(t) ∈ C([t0− h, t0+ η],D(A)) is said to
be a solution of the initial-value problem (4), (6) on [t0− h, t0+ η]
if x(t) is initialized with (6), it is absolutely continuous for t ∈
[t0, t0 + η], and it satisfies (4) for almost all t ∈ [t0, t0 + η].

The initial-value problem (4), (6) turns out to be well-posed
on the semi-infinite time interval [t0,∞) and its solutions can be
found as mild solutions, i.e., as those of the integral equation

x(t) = T (t − t0)x(t0)

+

∫ t

t0
T (t − s)A1x(s− τ(s))ds, t ≥ t0. (8)

Lemma 3. Under A1–A3 there exists a unique solution of the initial
value problem (4), (6) on [t0,∞). This solution is also a unique
solution of the integral initial value problem (6), (8).

Proof. To begin with, let us choose a positive η0 small enough
to ensure that η0 < inft τ(t) and the first discontinuity point
t10 > t0 of τ(t) is such that the difference t10 − t0 is multiple to
η0, i.e., t10 = t0+k0η0 for some integer k0 > 0.While being viewed
over the time segment [t0, t0+ η0], the initial-value problem (4) is
equivalent to

ẋ(t) = Ax(t)+ A1φ(t − t0 − τ(t)), x(t0) = φ(0) (9)

where the inhomogeneous term A1φ(t− t0−τ(t)) is of class C1 on
[0, η0]. By Theorem 3.1.3 of Curtain and Zwart (1995), there exists
a unique local solution of (9) and this solution satisfies the integral
equation (8) on [t0, t0 + η0].
The same line of reasoning is step-by-step applied to the time

segments [ti−1, ti−1 + η0], i = 1, . . . , k0 with ti = ti−1 + η0
and tk0 = t10 . Following this line, the initial-value problem is
demonstrated to possess a unique solution x(t, t0, φ) for t ∈
[t0, t10 ], which satisfies the integral equation (8) on [t0, t

1
0 ]. The

assertion of Lemma 3 is then concluded by iteration on the time
segments [t j0, t

j+1
0 ], j = 1, 2, . . . where t

1
0 < t20 < · · · are the

successive discontinuity points of the function τ(t). �

Our aim is to derive exponential stability criteria for linear time-
delay system (4). The stability concept under study is based on the
initial data norm

‖φ‖W =
√
|Aφ(0)|2 + ‖φ‖2C1([−h,0],H) (10)

in space (7). Suppose x(t, t0, φ) denotes a solution of (4), (6) at a
time instant t ≥ t0.

Definition 2. System (4) is said to be exponentially stable with a
decay rate δ > 0 if there exists a constant K ≥ 1 such that the
following exponential estimate holds:

|x(t, t0, φ)|2 ≤ Ke−2δ(t−t0)‖φ‖2W ∀t ≥ t0. (11)
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Consider Lyapunov–Krasovskii Functionals (LKFs), which de-
pend on x and ẋ (Kolmanovskii & Myshkis, 1999). Given a con-
tinuous functional V : R × W × C([−h, 0],H) → R, its upper
right-hand derivative along solutions xt(t0, φ), t ≥ t0 of (4), (6) is
defined as follows:

V̇ (t, φ, φ̇) = lim sup
s→0+

1
s
[V (t + s, xt+s(t, φ), ẋt+s(t, φ))

− V (t, φ, φ̇)].

Lemma 4. Let A1–A3 be in force and let there exist positive numbers
δ, β, γ and a continuous functional V : R×W ×C([−h, 0],H)→
R such that the function V̄ (t) = V (t, xt , ẋt) is absolutely continuous
for xt , satisfying (4) and

β|φ(0)|2 ≤ V (t, φ, φ̇) ≤ γ ‖φ‖2W , (12)

V̇ (t, φ, φ̇)+ 2δV (t, φ, φ̇) ≤ 0. (13)

Then (4) is exponentially stable with the decay rate δ and (11) holds
with K = γ

β
.

Proof. As in the case of ODE, from (13) with φ = xt we obtain

d
dt
V (t, xt , ẋt)+ 2δV (t, xt , ẋt) ≤ 0,

where V (t0, xt0 , ẋt0) = V (t0, φ, φ̇). Hence, by the comparison
principle argument (Khalil, 1992), it follows that

β|x(t)|2 ≤ V (t, xt , ẋt) ≤ V (t0, φ, φ̇)e−2δ(t−t0)

≤ γ e−2δ(t−t0)‖φ‖2W . �

3. Exponential stability in a Hilbert space

In this section, the delay is assumed to be either slowly-varying
with τ̇ ≤ d < 1, or fast-varying (with no restrictions on the delay-
derivative). Let A1–A3 be in force. We derive delay-dependent
conditions by using a ‘‘simple’’ (as defined in Gu et al. (2003)) LKF:

V (t, xt , ẋt) = 〈x(t), Px(t)〉 +
∫ t

t−h
e2δ(s−t)〈x(s), Sx(s)〉ds

+ h
∫ 0

−h

∫ t

t+θ
e2δ(s−t)〈ẋ(s), Rẋ(s)〉dsdθ

+

∫ t

t−τ(t)
e2δ(s−t)〈x(s),Qx(s)〉ds (14)

where P : D(A) → H is a linear positive definite operator and
R,Q , S ∈ L(H) are non negative definite operators, satisfying the
following inequalities:

β〈x, x〉 ≤ 〈x, Px〉 ≤ γP [〈x, x〉 + 〈Ax, Ax〉],
〈x,Qx〉 ≤ γQ 〈x, x〉, 〈x, Rx〉 ≤ γR〈x, x〉,
〈x, Sx〉 ≤ γS〈x, x〉, ∀x ∈ D(A)

(15)

for some positive constants β, γP , γQ , γS, γR. Thus condition (12)
of Lemma 4 is satisfied.
We note that the first inequality (15) allows one to use

unbounded operators P which are upper estimated by the
unbounded operator A according to (15). In the case of ODE, where
A is a matrix, the above upper bound is equivalent to the standard
onewith A = 0. For ODEwith delay the Lyapunov functional of the
form (14)was recently introduced in He,Wang, Lin, andWu (2007)
(for δ = 0), whereas this functional with S = 0 was introduced
earlier in Fridman and Shaked (2003) (for δ = 0) and in Sun, Zhao,
and Hill (2006) (for δ > 0).
Being viewed on solutions of (4), the LKF (14) is absolutely
continuous as a function of t because the solutions are absolutely
continuous in t . Differentiating V , we find

V̇ (t, xt , ẋt)+ 2δV (t, xt , ẋt)

≤ 2〈x(t), Pẋ(t)〉 + 2δ〈x(t), Px(t)〉 + h2〈ẋ(t), Rẋ(t)〉

− he−2δh
∫ t

t−h
〈ẋ(s), Rẋ(s)〉ds+ 〈x(t), (Q + S)x(t)〉

− (1− τ̇ (t))〈x(t − τ(t)),Qx(t − τ(t))〉e−2δh

−〈x(t − h), Sx(t − h)〉e−2δh.

(16)

Following He et al. (2007), we employ the representation

−h
∫ t

t−h
〈ẋ(s), Rẋ(s)〉ds = −h

∫ t−τ(t)

t−h
〈ẋ(s), Rẋ(s)〉ds

−h
∫ t

t−τ(t)
〈ẋ(s), Rẋ(s)〉ds

(17)

and apply the Jensen’s inequality (3)∫ t

t−τ(t)
〈ẋ(s), Rẋ(s)〉ds ≥

1
h

〈∫ t

t−τ(t)
ẋ(s)ds, R

∫ t

t−τ(t)
ẋ(s)ds

〉
,∫ t−τ(t)

t−h
〈ẋ(s), Rẋ(s)〉ds ≥

1
h

〈∫ t−τ(t)

t−h
ẋ(s)ds, R

∫ t−τ(t)

t−h
ẋ(s)ds

〉
.

(18)

Then, taking into account that τ̇ ≤ d < 1 and followingGouaisbaut
and Peaucelle (2006), we obtain

V̇ (t, xt , ẋt)+ 2δV (t, xt , ẋt)
≤ 2〈x(t), Pẋ(t)〉 + 2δ〈x(t), Px(t)〉 + h2〈ẋ(t), Rẋ(t)〉
− [〈x(t)− x(t − τ(t)), R(x(t)− x(t − τ(t)))〉
+ 〈x(t − τ(t))− x(t − h), R(x(t − τ(t))− x(t − h))〉
+ (1− d)〈x(t − τ(t)),Qx(t − τ(t))〉] e−2δh

+〈x(t), (Q + S)x(t)〉 − 〈x(t − h), Sx(t − h)〉e−2δh. (19)

We will derive stability conditions in two forms. The first form
will subsequently be applied to the wave equation and the second
one to the heat equation. The first form is derived by substituting
the right-hand side of (4) for ẋ(t). Setting η(t) = col{x(t), x(t −
h), x(t − τ(t))}, we find that the condition (13) of Lemma 4

V̇ (t, xt , ẋt)+ 2δV (t, xt , ẋt) ≤ 〈η(t),Φhη(t)〉 ≤ 0 (20)

is satisfied if the following LOI

Φh =

[
Φ11 0 PA1
0 0 0
A∗1P 0 0

]
+ h2

[A∗RA 0 A∗RA1
0 0 0
A∗1RA 0 A∗1RA1

]

−e−2δh
[ R 0 −R
0 (S + R) −R
−R −R 2R+ (1− d)Q

]
≤ 0,

(21)

holds provided that

Φ11 = A∗P + PA+ 2δP + Q + S. (22)

The resulting inequality (21) is convex with respect to h: given
h0 > 0, it becomes feasible for all h̄ ∈ [0, h0] whenever it is
feasible for h0. The convexity follows from the fact that Φh̄ ≤ Φh0
since h2 and −e−2δh multiply the non negative definite operators.
Summarizing, the following result is obtained:

Theorem 1. Let A1–A3 be in force. Given δ > 0, let there exist
linear operators P > 0 and R ≥ 0, S ≥ 0,Q ≥ 0 subject to (15)
such that the LOI (21) with notation (22) holds in the Hilbert space
D(A) ×D(A) ×D(A). Then system (4) is exponentially stable with
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the decay rate δ for all differentiable delays with τ̇ (t) ≤ d < 1.
The inequality (11) is satisfied with K = max{γP , h(γQ + γS +
h2γR/2)}/β . Moreover, (4) is exponentially stable for all fast-varying
delays 0 ≤ τ ≤ h if the LOI (21) is feasible with Q = 0.

The conditions of Theorem 1 are delay-dependent, namely h-
dependent, even for δ → 0. Taking in the above derivations
S = R = 0 we obtain the following ‘‘quasi delay-independent’’
conditions, which become delay-independent for δ → 0 and
coincide in the case of ODE with the result of Mondie and
Kharitonov (2005):

Corollary 1. Let A1–A3 be in force. Given δ > 0, system (4) is
exponentially stable with the decay rate δ for all differentiable delays
with τ̇ (t) ≤ d < 1 if there exist linear operators P > 0 and Q ≥ 0
subject to (15) such that the LOI[
(A+ δ)∗P + P(A+ δ)+ Q PA1

A∗1P −(1− d)Qe−2δh

]
≤ 0 (23)

holds in the Hilbert spaceD(A)×D(A). The inequality (11) is satisfied
with K = max{γP , hγQ }/β .

Remark 1. Differently from the finite dimensional case, the
feasibility of the strict LOI (21) and (23) for h = 0 (δ = 0) does not
necessarily imply the feasibility of (21) and (23) for small enough
h (δ) because h2 (δ) is multiplied by the operator, which may be
unbounded.

It may be difficult to verify the feasibility of (21), if the
operator thatmultiplies h2 (and depends on A) inΦh is unbounded.
To avoid this, we will derive the second form of LOI by the
descriptor method (Fridman, 2001), where the right-hand sides of
the expressions

0 = 2〈x(t), P∗2 [Ax(t)+ A1x(t − τ(t))− ẋ(t)]〉,
0 = 2〈ẋ(t), P∗3 [Ax(t)+ A1x(t − τ(t))− ẋ(t)]〉

(24)

with some P2, P3 ∈ L(H) are added into the right-hand side of
(19). Setting ηd(t) = col{x(t), ẋ(t), x(t−h), x(t−τ(t))}, we obtain
that

V̇ (t, xt , ẋt)+ 2δV (t, xt , ẋt) ≤ 〈ηd(t),Φdηd(t)〉 ≤ 0,

if the LOI

Φd =


Φd11 Φd12 0 P∗2A1 + Re

−2δh

∗ Φd22 0 P∗3A1
∗ ∗ −(S + R)e−2δh Re−2δh

∗ ∗ ∗ −[2R+ (1− d)Q ]e−2δh


≤ 0 (25)

holds, where

Φd11 = A∗P2 + P∗2A+ 2δP + Q + S − Re
−2δh,

Φd12 = P − P∗2 + A
∗P3, Φd22 = −P3 − P∗3 + h

2R
(26)

and ∗ denotes the symmetric terms of the operator matrix. Thus,
the following result is obtained.

Theorem 2. Let A1–A3 be in force. Given δ > 0, let there exist
linear operators P > 0 and R ≥ 0, S ≥ 0,Q ≥ 0 subject to (15)
and indefinite operators P2, P3 ∈ L(H) such that the LOI (25) with
notations given in (26) holds in the Hilbert space D(A) × D(A) ×
D(A)×D(A). Then system (4) is exponentially stable with the decay
rate δ for all differentiable delays (5) with τ̇ ≤ d < 1. The inequality
(11) is satisfied with K = max{γP , h(γQ + γS + h2γR/2)}/β .
Moreover, (4) is exponentially stable for all fast-varying delays 0 ≤
τ ≤ h if the LOI (25) is feasible with Q = 0.
Differently from the LOI (21), the feasibility of the strict LOI (25)
for h = 0 implies the feasibility of (25) for small enough h (h2 is
multiplied by the bounded operator R).

Remark 2. Consider now the system (4) with A and A1 from the
uncertain time-invariant polytope

Ω =

M∑
j=1

fjΩj for some 0 ≤ fj ≤ 1,
M∑
j=1

fj = 1, (27)

where Ωj =
[
A(j) A(j)1

]
, A(j)1 ∈ L(H) and the operators A(j)

have a common domain, which is dense inH and A =
∑M
j=1 fjA

(j)

generates a strongly continuous semigroup for all fj, satisfying (27).
Applying conditions of Theorem 2 to the uncertain system, we
conclude that (4) is exponentially stable if LOI (25) is feasible. Since
LOI (25) is affine in A and A1, by the same arguments as for LMIs
(see Boyd et al. (1994)) we conclude that (25) is feasible if the LOIs
(25) inM vertices are feasible for the same P2, P3 and for different
Q (j) ≥ 0, S(j) > 0, R(j) > 0, P (j) > 0.

4. Stability of the delay heat equation

Consider the heat equation

zt(ξ , t) = azξξ (ξ , t)− a0z(ξ , t)− a1z(ξ , t − τ(t)), (28)

where t ≥ t0, 0 ≤ ξ ≤ l, with the constant parameters a > 0, a0
and a1, with the time-varying delay τ(t), satisfying (5), and with
the Dirichlet boundary condition

z(0, t) = z(l, t) = 0, t ≥ t0. (29)

The boundary-value problem (28) and (29) describes the propaga-
tion of heat in a homogeneous one-dimensional rod with a fixed
temperature at the ends in the case of the delayed (possibly, due
to actuation) heat exchange with the surroundings. Here a and
ai, i = 0, 1 stand for the heat conduction coefficient and for the
coefficients of the heat exchange with the surroundings, respec-
tively, z(ξ , t) is the value of the temperature field of the plant at
timemoment t and location ξ along the rod. In the sequel, the state
dependence on time t and spatial variable ξ is suppressed when-
ever possible.
The boundary-value problem (28) and (29) can be rewritten as

the differential equation (4) in the Hilbert spaceH = L2(0, l)with
the infinitesimal operator A = a ∂

2

∂ξ2
− a0 with the dense domain

D

(
∂2

∂ξ 2

)
= {z ∈ W 2,2([0, l],R) : z(0) = z(l) = 0}, (30)

and with the bounded operator A1 = −a1 of the multiplication
by the constant −a1. The infinitesimal operator A generates an
exponentially stable semigroup (see, e.g., Curtain and Zwart (1995)
for details).
Wewill first derive simple delay-independent conditions, based

on LOI (23). Consider the LKF of the form

V = p
∫ l

0
z2(ξ , t)dξ + q

∫ t

t−τ(t)

∫ l

0
e2δ(s−t)z2(ξ , s)dξds (31)

with some positive constants p and q. Then the operators P and
Q in (23) take the form P = p, Q = q of the bounded operators
of the multiplication by positive constants p and q, respectively.
Integrating by parts and taking into account (29), we find that for
x ∈ D(A)

〈x, (A∗P + PA)x〉 = 2a
∫ l

0
pzzξξdξ − 2a0

∫ l

0
pz2dξ

= −2
∫ l

0
(apz2ξ + a0pz

2)dξ ≤ −2
(
π2

l2
a+ a0

)∫ l

0
pz2dξ (32)
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where the last inequality follows from the Wirtinger’s inequality
(1). We thus obtain that (23) is satisfied if

Ψδ
∆
=

q− 2(π2l2 a+ a0 − δ
)
p −a1p

−a1p −(1− d)qe−2δh

 < 0. (33)

From Ψ0 < 0 it follows that Ψδ < 0 for small enough δ, since
Ψδ = Ψ0 + diag{2δp, (1− d)q(1− e−2δh)}.We proved

Theorem 3. Given δ > 0, let the LMI (33) holds for some scalars
p > 0 and q > 0. Then the Dirichlet boundary-value problem
(28), (29) is exponentially stable for all differentiable delays (5) with
τ̇ (t) ≤ d < 1, and the inequality∫ l

0
z2(ξ , t)dξ ≤ Ke−2δ(t−t0) max

s∈[t0−h,t0]

∫ l

0
z2(ξ , s)dξ (34)

is satisfied for all t ≥ t0 with K = 1+ hq/p. If (33) holds for δ = 0,
then the inequality (34) is satisfied with K = 1 + hq/p and small
enough δ.

Remark 3. By Schur complements formula, LMI (33) with δ = 0
is feasible iff for some p > 0 and q > 0 the following holds:
q2 − 2(π

2

l2
a+ a0)pq+ a21p

2/(1− d) < 0. The left part of the latter

inequality achieves its minimum at q = (π
2

l2
a+ a0)p and, thus, the

inequality holds iff

π2

l2
a+ a0 > 0, a21 <

(
π2

l2
a+ a0

)2
(1− d). (35)

To derive delay-dependent conditions, we apply Theorem 2 (it
is difficult to find operators that satisfy Theorem 1 since h2 is
multiplied by the unbounded operator in (21)). For simplicity we
consider l = π . We choose V of the form

V (t, zt , zts ) = (p1 − p3a)
∫ π

0
z2(ξ , t)dξ + p3a

∫ π

0
z2ξ (ξ , t)dξ

+

∫ π

0

[
r
∫ 0

−h

∫ t

t+θ
e2δ(s−t)z2s (ξ , s)dsdθ

+ s
∫ t

t−h
e2δ(s−t)z2(ξ , s)ds+ q

∫ t

t−τ(t)
e2δ(s−t)z2(ξ , s)ds

]
dξ

with some constants p1 > 0, p3 > 0, s > 0, r > 0 and q ≥ 0. Then
the operators in (14) take the form P = −p3(a ∂

2

∂ξ2
+ a)+ p1, R =

r, Q = q, S = s.We choose P2 = p2 and P3 = p3, where p2 > 0
and

p2 − δp3 ≥ 0. (36)

Here P is unbounded operator and all the others are bounded
operators in L2(0, π). We note that the above choice of P ,
depending on the slack variable P3, is different to that of the ODEs
(where these matrices are independent). Thus, for the first time,
the slack variable allows one to construct an appropriate LKF.
Integrating by parts and utilizing theWirtinger’s inequality (1),

we find that for x ∈ D(A)

〈x, Px〉 =
∫ π

0

[
−p3azξξ z − p3az2 + p1z2

]
dξ

=

∫ π

0

[
ap3[z2ξ − z

2
] + p1z2

]
dξ ≥ p1

∫ π

0
z2dξ > 0.

Moreover, (15) is satisfied, since by the generalized Wirtinger’s
inequality (2) the following holds

〈x, Px〉 ≤
∫ π

0
[ap3(zξξ )2 + (ap3 + p1)z2]dξ ≤ γP [|Ax|2 + |x|2]
for some γP > 0. We obtain that

〈ẋ, (P − P∗2 + A
∗P3)x〉 = 〈ẋ, (p1 − p2 − (a+ a0)p3)x〉;

〈x, A∗P2x〉 + 〈x, P∗2Ax〉 + 2δ〈x, Px〉

= 2a(p2 − δp3)
∫ π

0
zξξ zdξ + 2[δ(p1 − ap3)− a0p2]

∫ π

0
z2dξ

= −2a(p2 − δp3)
∫ π

0
z2ξ dξ + 2[δ(p1 − ap3)− a0p2]

∫ π

0
z2dξ

≤ [−2(a+ a0)p2 + 2δp1]
∫ π

0
z2dξ,

where the latter inequality follows from (36) and the Wirtinger’s
inequality (1). Therefore, (25) holds if
φ11 φ12 0 φ14
∗ −2p3 + h2r 0 −p3a1
∗ ∗ −(s+ r)e−2δh re−2δh

∗ ∗ ∗ φ44

 < 0,
φ11 = −2(a+ a0)p2 + 2δp1 + q+ s− re−2δh,

φ12 = p1 − p2 − (a+ a0)p3, φ14 = −p2a1 + re−2δh,

φ44 = −[2r + (1− d)q]e−2δh.

(37)

Summarizing the following result is obtained

Theorem 4. Given δ > 0, let there exist scalars p1 > 0, p2 >
0, p3 > 0, s > 0, r > 0 and q ≥ 0 such that LMIs (36) and (37)
hold. Then the boundary-value problem (28) and (29), where l = π ,
is exponentially stablewith the decay rate δ for all differentiable delays
(5) with τ̇ ≤ d < 1 and the inequality

p1

∫ π

0
z2(ξ , t)dξ ≤ e−2δ(t−t0)

{
ap3

∫ π

0
z2ξ (ξ , t0)dξ

+ max{p1 − p3a+ hq+ hs, h3r/2}

× max
s∈[t0−h,t0]

∫ π

0
[z2(ξ , s)+ z2t (ξ , s)]dξ

}
(38)

is satisfied for all t ≥ t0. Moreover, (28), (29) is exponentially stable
with the decay rate δ for all fast varying delays (5)with no restrictions
on τ̇ if (36), (37) are feasible with q = 0. If (37) holds for δ = 0, then
(28), (29) is exponentially stable with a sufficiently small decay rate.

Remark 4. The same LMIs (33) (with l = π ) and (37) guarantee
the exponentially stability of the scalar ODE

ẏ(t)+ (a+ a0)y(t)+ a1y(t − τ(t)) = 0. (39)

System (39) corresponds to the first modal dynamics (with k =
1) in the modal representation of the Dirichlet boundary-value
problem (28), (29) with l = π

ẏk(t)+ (ak2 + a0)yk(t)+ a1yk(t − τ(t)) = 0, k = 1, 2, . . . (40)

projected on the eigenfunctions of the operator ∂2

∂ξ2
(this operator

has eigenvalues −k2, see e.g. Wu (1996)). The stability of (28),
(29) implies the stability of (40). Thus the reduction of infinite-
dimensional LOI of Corollary 1 (Theorem 2) to finite-dimensional
LMI of Theorem 3 (Theorem 4) is tight, since the stability of (39) is
necessary for the stability of (28), (29).

Remark 5. Consider now the Dirichlet boundary-value problem
(28), (29) with the uncertain coefficients from the uncertain time-
invariant polytope Ω given by (27) with Ωj =

[
a(j) a(j)0 a(j)1

]
.

Here M = 2k and k is the number of uncertain parameters
and it may take values from the finite set {1, 2, 3}. The uncertain
infinitesimal operator A =

∑M
j=1 fja

(j) ∂2

∂ξ2
− a(j)0 with the
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dense domain (30) generates strongly continuous semigroup,
whereas the uncertain operator A1 =

∑M
j=1 fja

(j) is bounded. By
applying Remark 2 and Theorem 4, we conclude that (28), (29)
is exponentially stable if (36) holds and LMIs (37) in the vertices
are feasible for the same p2, p3 and for different q(j) ≥ 0, s(j) >
0, r (j) > 0, p(j) > 0, j = 1, . . . ,M . By Theorem 3, (28), (29) is
exponentially stable if LMIs (33) in the vertices are feasible for the
same p > 0 and for different q(j), j = 1, . . . ,M .

Example 1. Consider the controlled heat equation

zt(ξ , t) = zξξ (ξ , t)+ rz(ξ , t)+ u, z(0, t) = z(l, t) = 0, (41)

where ξ ∈ (0, l), t > 0 and where r is uncertain parameter
satisfying |r| ≤ β with given β . It was shown in Rebiai and Zinober
(1993) that for l = 1 the state-feedback u = −γ z(ξ , t) with
γ > (

β

2π )
2 exponentially stabilizes (41). By verifying LMI (33),

we conclude that the closed-loop system is exponentially stable
if there exists p > 0 such that−2(π2− r+γ )p < 0 for all |r| ≤ β ,
i.e. if γ > β − π2. Since β − π2 ≤ ( β2π )

2, our method guarantees
exponential stabilization of (41) via a lower gain, which becomes
essentially lower for big β .
Noting that a time-delay often appears in the feedback, we

consider next the case of l = π , β = 1.9 and the delayed feedback
u = −z(ξ , t − τ(t)) with uncertain delay satisfying A3. This
is a polytopic system reached by choosing r = ±1.9. Applying
Theorem 4 (with δ = 0) and Remark 5 to the resulting closed-
loop system,we verify the feasibility of LMI (37) in the two vertices
corresponding to r = ±1.9. We use LMI toolbox of Matlab and
let d to be 0 and unknown, respectively. We find the maximum
values of h for which the system remains exponentially stable:
d = 0, h = 1.025; unknown d, h = 1.021.
As shown before, the latter results correspond also to the

stability of ẏ = (−1+ r)y(t)− y(t − τ(t)),with |r| ≤ 1.9.

5. Stability of the delay wave equation

Consider the wave equation

ztt(ξ , t) = azξξ − µ0zt(ξ , t)− µ1zt(ξ , t − τ(t))
−a0z(ξ , t)− a1z(ξ , t − τ(t)), t ≥ t0, 0 ≤ ξ ≤ π

(42)

with the Dirichlet boundary condition (29), where l = π and with
the constant parameters a > 0, µ0 > 0, µ1, a0, and a1, with
the time-varying delay τ(t), satisfying (5). The boundary-value
problem (29), (42) describes the oscillations of a homogeneous
string with fixed ends in the case of the delayed (possibly, due
to actuation) stiffness restoration and dissipation. Here a stands
for the elasticity coefficient, µ0 and µ1 stand for the dissipation
coefficients, and a0, a1 stand for the restoring stiffness coefficients,
the state vector x = col{z, zt} consists of the deflection z(ξ , t) of
the string and its velocity zt(ξ , t) at time moment t and location ξ
along the string.
Let us introduce the operators

A =

 0 1

a
∂2

∂ξ 2
− a0 −µ0

 , A1 =
[
0 0
−a1 −µ1

]
(43)

where A1 is a bounded operator of multiplication by the constant
matrix andwhere the domainD( ∂

2

∂ξ2
) of the double differentiation

operator is determined by (30). Then the boundary-value problem
(29), (42) can be represented as the differential equation (4) in
the Hilbert spaceH = L2(0, π) × L2(0, π) with the infinitesimal
operator A, possessing the domainD(A) = D( ∂

2

∂ξ2
)× L2(0, π) and

generating an exponentially stable semigroup (see, e.g., Curtain
and Zwart (1995) for details).
We first derive quasi delay-independent conditions by choosing
V in the form

V = ap03

∫ π

0
z2ξ (ξ , t)dξ +

∫ π

0
vT(ξ , t)P0v(ξ, t)dξ

+

∫ t

t−τ(t)

∫ π

0
vT(ξ , s)e2δ(s−t)Qv(ξ, s)dξds,

P0 =
[
p01 p02
p02 p03

]
, Pw

∆
= P0 + diag{ap03, 0} > 0, Q ≥ 0,

(44)

where vT(ξ , t) = [z(ξ , t) zt(ξ , t)]. Then the operators P
(unbounded) and Q (bounded) in (23) are given by P =

diag{−ap03 ∂
2

∂ξ2
, 0} + P0, Q ≥ 0. Now, integrating by parts and

taking into account the inequality p03 > 0 (extracted from Pw > 0)
and Wirtinger’s inequality (1) we obtain that

〈x, Px〉 =
∫ π

0

[
−ap03zξξ z + zTP0z

]
dξ

= a
∫ π

0
p03z2ξ dξ + 〈x, P0x〉

≥ 〈x, Pwx〉 ≥ λmin(Pw)|x|2 > 0 (45)

for all x ∈ D(A) × L2(0, π). Moreover, by the generalized
Wirtinger’s inequality (2) the following holds

〈x, Px〉 ≤
∫ π

0
ap03(zξξ )2dξ + 〈x, P0x〉 ≤ γP(|Ax|2 + |x|2) (46)

with some constant γP > 0 and thus (15) is satisfied.
Finally, integration by parts and application of Wirtinger’s

inequality (1) under p02 − δp03 ≥ 0 yield

〈x, P(A+ δ)x〉 + 〈x, (A∗ + δ)Px〉

=

∫ π

0
[z zt ]


p01 − ap03 ∂2∂ξ 2 p02

p02 p03

 δ 1

a
∂2

∂ξ 2
− a0 −µ0 + δ


+

δ a
∂2

∂ξ 2
− a0

1 −µ0 + δ

p01 − ap03 ∂2∂ξ 2 p02

p02 p03


[
z
zt

]
dξ

= −2a(p02 − p03δ)
∫ π

0
(zξ )2dξ −

∫ π

0
[z zt ]

×

[
−2p02a0 + 2p01δ p01 − (µ0 − 2δ)p02 − p03a0

p01 − (µ0 − 2δ)p02 − p03a0 2p02 − 2(µ0 − δ)p03

]
×

[
z
zt

]
dξ ≤

∫ π

0
[z zt ](PwCδ + CTδ Pw)

[
z
zt

]
dξ, (47)

where

Cδ =
[

δ 1
−a− a0 −µ0 + δ

]
. (48)

Therefore (23) is feasible if the following LMI

Ωδ
∆
=

[
CTδ Pw + PwCδ + Q PwA1

AT1Pw −(1− d)e−2δhQ

]
≤ 0 (49)

is feasible. Since the LMI (49) ensures that the (1,1)-term of its left-
hand side satisfies

−2p02(a0 + a)+ 2(p01 + ap03)δ + q1 ≤ 0,

whereas q1 + 2δ(p01 + ap03) ≥ 0, it follows that p02 ≥ 0. From
Ω0 < 0 it follows that p02 > 0 and, thus, p02 − δp03 ≥ 0 for small
enough δ. Moreover, Ω0 < 0 yields Ωδ < 0 for small enough δ,
sinceΩδ = Ω0 + diag{2δPw, (1− d)Q (1− e−2δh)}. Summarizing,
we arrive at the following.
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Theorem 5. Given δ > 0, let the LMIs p02 − δp03 ≥ 0 and (49)
hold for some symmetric 2 × 2-matrices Pw > 0 and Q ≥ 0,
where p02 and p03 are respectively (1, 2) and (2, 2) terms of Pw . Then
the Dirichlet boundary-value problem (42), (29), where l = π , is
exponentially stable with the decay rate δ for all differentiable delays
(5) with τ̇ (t) ≤ d < 1, and the inequality

λmin(Pw)
∫ π

0
[z2(ξ , t)+ z2t (ξ , t)]dξ

≤ e−2δ(t−t0)
{
Kw max

s∈[t0−h,t0]

∫ π

0
[z2(ξ , s)+ z2t (ξ , s)]dξ

+ ap03

∫ π

0
z2ξ (ξ , t0)dξ

}
(50)

is satisfied with

Kw = λmax(Pw − diag{ap03, 0})+ hλmax(Q )

for all t ≥ t0. If Ω0 < 0 holds for δ = 0, then (42), (29) is
exponentially stable with a sufficiently small decay rate.

Corollary 2. In a particular case where a = 1 and a0 = a1 = 0,
the Dirichlet boundary-value problem (29), (42), where l = π , is
exponentially stable for all differentiable delays with τ̇ ≤ d < 1 if
µ21 < (1− d)µ20.
Proof. Since the delay appears only in zt , we choose the decision
variables of LMI (49) in the form Pw =

[
1 2δ
2δ 1

]
, Q =[

0 0
0 µ0

]
, and thus PwA1 =

[
0 −2µ1δ
0 −µ1

]
. Deleting from Ωδ the

column and the row, consisting of zero elements, we obtain the
matrix−2δ 4δ2 − 2µ0δ −2µ1δ
∗ −µ0 + 6δ −µ1
∗ ∗ −(1− d)e−2δhµ0

 .
Applying the Schur complements formula to the last column and
the last row of this matrix, we conclude that (49) is feasible if the
following LMI holds−2δ + O(δ2) O(δ)

O(δ) −µ0 +
µ21

(1− d)µ0
e2δh + 6δ

 < 0, (51)

where |O(δk)| ≤ cδk (k = 1, 2) for some constant c > 0 and for
all sufficiently small δ. If µ21 < (1 − d)µ20, then the (2,2)-term of
the left-hand side of (51) is negative for small enough δ. Finally,
applying the Schur complements formula to the second column
and the second row of the matrix in (51), we obtain the expression
of the form−2δ + O(δ2), which is negative for small δ. Therefore,
(51) and, thus (49) are feasible for small δ. �

Remark 6. The condition 0 ≤ µ1 < µ0 for the stability of the
wave equation with constant delay and a = 1, a0 = a1 = 0 and
with mixed Dirichlet–Neumann boundary condition was obtained
byNicaise and Pignotti (2006),where itwas shown that ifµ1 ≥ µ0,
there exists a sequence of arbitrary small delays that destabilize
the system.
We will further derive delay-dependent stability conditions for

(42), (29) with µ1 = 0. We apply the conditions of Theorem 1. We
choose V as follows:

V = ap03

∫ π

0
z2ξ (ξ , t)dξ +

∫ π

0
[z(ξ , t) zt(ξ , t)]P0

×

[
z(ξ , t)
zt(ξ , t)

]
dξ +

∫ π

0

[
hr
∫ 0

−h

∫ t

t+θ
z2t (ξ , s)e

2δ(s−t)dsdθ

+ s
∫ t

t−h
z2(ξ , s)e2δ(s−t)ds+ q

∫ t

t−τ
z2(ξ , s)e2δ(s−t)ds

]
dξ,
where P0 and p03 satisfy (44) andwhere r > 0, s > 0, q ≥ 0. Then
the operators P,Q , R in (21) are given by

P = diag
{
−ap03

∂2

∂ξ 2
, 0
}
+ P0 > 0, Q = diag{q, 0} ≥ 0,

R = diag{r, 0} ≥ 0, S = diag{s, 0} ≥ 0.

We have h2A∗RA = diag{0, h2r}, h2A∗RA1 = 0, h2A∗1RA1 = 0.
From (47) it follows that (21) is feasible if p02 − δp03 ≥ 0 and the
following LMI are satisfied:φw 0 Pw

[
0
−a1

]
+

[
re−2δh

0

]
∗ −(s+ r)e−2δh re−2δh

∗ ∗ −(2r + (1− d)q)e−2δh

 < 0, (52)

whereφw = CTδ Pw+PwCδ+diag{q+s−re
−2δh, h2r}. Summarizing

the following result is obtained

Theorem 6. Given δ > 0, let there exist a 2× 2-matrix Pw > 0 and
scalars q ≥ 0, r > 0, s > 0 such that satisfy LMIs p02 − δp03 ≥ 0
and (52), where p02 and p03 are respectively (1, 2) and (2, 2) terms
of Pw . Then the wave time-delay equation (42)withµ1 = 0 and with
the Dirichlet boundary condition (29), where l = π , is exponentially
stable with the decay rate δ for all differentiable delays (5) with τ̇ ≤
d < 1, and the inequality (50) is satisfied with

Kw = λmax(Pw − diag{ap03, 0})+max{hq+ hs, h3r/2}

for all t ≥ t0. Moreover, if LMIs (36) and (52) are feasible with q = 0,
then (29), (42) with µ1 = 0 is exponentially stable with the decay
rate δ for all fast varying delays 0 ≤ τ ≤ h. If the LMI (52) holds for
δ = 0, then (29), (42) with µ1 = 0 is exponentially stable with a
sufficiently small decay rate.

Remark 7. The same LMIs (49) and (52) appear to guarantee
the exponential stability of ODE with delay ˙̄z(t) = C0z̄(t) +
A1z̄(t − τ(t)), z̄(t) ∈ R2 or, equivalently, of the first modal
dynamics (with k = 1) of themodal representation of the Dirichlet
boundary-value problem (29), (42) with l = π

ÿk(t)+ µ0ẏk(t)+ µ1ẏk(t − τ(t))+ (ak2 + a0)yk(t)
+ a1yk(t − τ(t)) = 0, k = 1, 2, . . .

on the eigenfunctions of the operator ∂2

∂ξ2
. Hence, the results of

Theorem 5 and of Theorem 6 are tight.

Remark 8. One can derive ‘‘mixed’’ stability conditions for the
wave equation (42) with µ1 6= 0: delay-dependent (with respect
to delay in z)/ delay-independent (with respect to delay in zt ). This
is similar to neutral systems,where the delay in the state derivative
is treated in the delay-independent manner (Niculescu, 2001).

Example 2. Consider the controlled wave equation

ztt(ξ , t) = 0.1zξξ (ξ , t)− 2zt(ξ , t)+ u, (53)

with boundary condition (29) and l = π, t ≥ t0, 0 ≤ ξ ≤

π, 0 ≤ τ ≤ h, τ̇ ≤ d < 1. Applying Theorem 6 to the open-
loop system we find that (53) with u = 0 is exponentially stable
with the decay rate δ = 0.05. Considering next a delayed feedback
u = −z(ξ , t−τ(t)) and verifying conditions of Theorem6,we find
that the closed-loop system is exponentially stable with a greater
decay rate δ = 0.8 for all 0 ≤ τ(t) ≤ 0.31.
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6. Conclusions

A general framework is given for the stability analysis of
linear time-delay systems in a Hilbert space with a bounded
operator acting on the delayed state. The exponential stability
conditions are derived in terms of linear operator inequalities
in the Hilbert space. In the case of a heat/wave scalar equation
with the Dirichlet boundary conditions, these LOIs are reduced
to finite-dimensional LMIs by applying new Lyapunov–Krasovskii
functionals. The reduced-order LMIs coincide with the stability
conditions for appropriate ODEs with delay, whereas the stability
of the latter ODEs are necessary for the stability of the original
boundary value problems. LOIs are expected to provide effective
tools for robust control of distributed parameter systems.
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