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a b s t r a c t

New design of interval observers for continuous-time systems with discrete-time measurements is
proposed. For this purpose new conditions of positivity for linear systems with sampled feedback
are obtained. A sampled-data stabilizing control is synthesized based on provided interval estimates.
Efficiency of the obtained solution is demonstrated on examples.
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1. Introduction

State estimation in dynamical systems is a rather complicated
and practically important problem [1,2]. Sparse discrete measure-
ment of the output for a continuous-time plant makes solution of
this problemevenmore intricate [3–7]. An observer synthesis is es-
pecially problematical for the cases when the model of a nonlinear
system is uncertain, and it contains parametric and/or signal un-
certainties. An observer solution for thesemore complex situations
is highly demanded in applications. Interval or set-membership es-
timation is a promising framework for observation in uncertain
systems [8–13], when all uncertainty is included in the corre-
sponding intervals or polytopes, and as a result the set of admis-
sible values (an interval) for the state is provided at each instant of
time. The size of that set is related with the level of uncertainty of
the plant model.

In this work the problem of design of interval sampled-data
observers is studied. A peculiarity of an interval observer is that
in addition to stability conditions, some restrictions on positivity of
estimation error dynamics have to be imposed (in order to envelop
the system solutions). In the present work we are going to use
the time-delay framework for modeling and analysis of sampled-
data systems [14–17]. The first objective of this work is to recall
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the delay-dependent positivity conditions, which are based on
the theory of non-oscillatory solutions for functional differential
equations [18,19], and to develop them to the time-varying
sampled-data case, i.e. new sampling dependent conditions of
positivity are derived. Next, continuing the research direction
of [20], where the pure time-delay case has been studied, design of
interval observers is given for continuous-time linear systemswith
discretemeasurements (with time-varying sampling). The existing
solutions in the field [21,22] are based on delay-independent
positivity conditions, and the interval observer constructed in [22]
has a hybrid nature, which is more complicated than one proposed
in the present work. Finally, following the ideas of [23] a sampled-
data stabilizing control algorithm is synthesized based on interval
estimates.

The paper is organized as follows. Some preliminaries are
given in Section 2. The delay-dependent positivity conditions
for continuous systems under sampled-data measurements are
presented in Section 3. The interval observer design is performed
for a class of linear systems (or a class of nonlinear systems in the
output canonical form)with sampledmeasurements in Section 4. A
dynamic output control design is carried out in Section 5. Examples
of numerical simulation are presented in Section 6.

2. Notation and preliminaries

In the rest of the paper, the following notation will be used:
• R is the Euclidean space (R+ = {τ ∈ R : τ ≥ 0});
• |x| denotes the absolute value of x ∈ R, ∥ · ∥ is the Euclidean

norm of a vector or induced norm of a matrix;
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• for a Lebesgue measurable and locally essentially bounded
input u : R+ → Rp the symbol ∥u∥[t0,t1] denotes its L∞ norm
∥u∥[t0,t1) = ess supt∈[t0,t1) ∥u(t)∥, or simply ∥u∥ if t0 = 0 and
t1 = +∞, the set of all such inputs with the property ∥u∥ < ∞

will be denoted as L
p
∞;

• for a matrix A ∈ Rn×n the vector of its eigenvalues is denoted as
λ(A);

• In and 0n×m denote the identity and zeromatrices of dimensions
n × n and n × m respectively;

• aR b corresponds to an elementwise relation R (a and b are
vectors or matrices): for example a < b (vectors) means ∀i :

ai < bi;
• for a symmetric matrix Υ , the relation Υ ≺ 0 (Υ ≼ 0) means

that the matrix is negative (semi) definite.

2.1. Interval bounds

Given a matrix A ∈ Rm×n define A+
= max{0, A}, A−

= A+
− A

and |A| = A+
+ A−. Let x ∈ Rn be a vector variable, x ≤ x ≤ x for

some x, x ∈ Rn, and A ∈ Rm×n be a constant matrix, then [24]:

A+x − A−x ≤ Ax ≤ A+x − A−x. (1)
A matrix A ∈ Rn×n is called Metzler if Ai,j ≥ 0 for all 1 ≤ i ≠ j ≤ n.

2.2. Delay-dependent positivity

Consider a scalar time-varying linear systemwith time-varying
delays [18]:
ẋ(t) = a0(t)x[g(t)] − a1(t)x[h(t)] + b(t), (2)
x(θ) = 0 for θ < 0, x(0) ∈ R, (3)
where a0 ∈ L∞, a1 ∈ L∞, b ∈ L∞, h(t)− t ∈ L∞, g(t)− t ∈ L∞

and h(t) ≤ g(t) ≤ t for all t ≥ 0. For the system (2) the initial con-
dition in (3) is, in general, not a continuous function (if x(0) ≠ 0).

The following result proposes delay-independent positivity
conditions.

Lemma 1 ([18, Corollary 15.7]). Let 0 ≤ a1(t) ≤ a0(t) for all t ≥ 0.
If x(0) ≥ 0 and b(t) ≥ 0 for all t ≥ 0, then the corresponding
solution of (2), (3) x(t) ≥ 0 for all t ≥ 0.

Recall that in this case positivity is guaranteed for ‘‘discontinuous’’
initial conditions. The peculiarity of the condition 0 ≤ a1(t) ≤

a0(t) is that it may correspond to an unstable system (2). In
order to overcome this issue, delay-dependent conditions can be
introduced.

Lemma 2 ([18, Corollary 15.9]). Let 0 ≤
1
e a0(t) ≤ a1(t) for all t ≥ 0

and

sup
t∈R+

 t

h(t)


a1(ξ) −

1
e
a0(ξ)


dξ <

1
e
,

where e = exp(1). If x(0) ≥ 0 and b(t) ≥ 0 for all t ≥ 0, then
x(t) ≥ 0 for all t ≥ 0 in (2), (3).

These lemmas describe positivity conditions for a scalar system,
they can also be extended to a n-dimensional system.

Corollary 1 ([20]). The system

ẋ(t) = A0x(t) − A1x(t − τ(t)) + b(t), t ≥ 0,

where x(t) ∈ Rn, τ : R+ → [−τ , 0] and b : R+ → Rn
+
are Lebesgue

measurable functions of time, τ ∈ R+, with initial conditions

x(θ) = 0 for − τ ≤ θ < 0, x(0) ∈ Rn
+
,

is positive (i.e. x(t) ≥ 0 for all t ≥ 0) if −A1 is Metzler, A0 ≥ 0, and

0 ≤ (A0)i,i ≤ e(A1)i,i < (A0)i,i + τ−1

for all 1 ≤ i ≤ n.
3. Positivity of sampled systems

Consider a time-invariant version of (2):

a0(t) = a0, a1(t) = a1, g(t) = t, (4)

h(t) = tk ∀t ∈ [tk, tk+1),
tk+1 = tk + Tk, k ≥ 0, t0 = 0, (5)

where 0 < Tk ≤ T is a time-varying sampling rate. Then Lemma 2
admits the following corollary.

Corollary 2. For (4), (5) let 0 ≤ a0 ≤ ea1 < a0 + T
−1

. If x(0) ≥ 0
and b(t) ≥ 0 for all t ≥ 0, then the corresponding solution of (2)–(5)
x(t) ≥ 0 for all t ≥ 0.

However, aswe can see from the result given below, the conditions
of Corollary 2 are very conservative:

Lemma 3. Consider the system (2), (4), (5)with x(0) ≥ 0 and b(t) ≥

0 for all t ≥ 0, then x(t) ≥ 0 for all t ≥ 0 provided that one of the
following conditions is satisfied:
(i) a1 ≤ 0;
(ii) a0 ≥ a1 > 0;
(iii) a1 > 0, a1 > a0, T ≤

1
a0

ln a1
a1−a0

.

Note that

lim
a0→0

1
a0

ln
a1

a1 − a0
=

1
a1

,

then condition (iii) for a0 = 0 reads: a1 > 0 and T ≤ a−1
1 .

Proof. Such a system for t ∈ [tk, tk+1) for any k ≥ 0 has solution:

x(t) = ea0(t−tk)x(tk) +

 t

tk
ea0(t−s)

[b(s) − a1x(tk)]ds

and for any b(t) ≥ 0 the integral
 t
tk
ea0(t−s)b(s)ds is always pos-

itive, then in order to identify the conditions of positivity of the
solutions the worst case b(t) = 0 for t ≥ 0 has to be analyzed. For
this case and for t ∈ [tk, tk+1), if a0 ≠ 0 we obtain

x(t) =


1 −

a1
a0


ea0(t−tk) +

a1
a0


x(tk),

and for a0 = 0,

x(t) = [1 − a1(t − tk)]x(tk).

Therefore, for x(tk) ≥ 0 the solutions are positive if

1−

a1
a0


ea0(t−tk)

+
a1
a0

≥ 0, which is true for (a0 ≠ 0)

a1 ≤ 0 or a0 ≥ a1 > 0 or a1 > 0, a1 > a0,

T ≤
1
a0

ln
a1

a1 − a0
,

or 1 − a1(t − tk) ≥ 0 that is satisfied for (a0 = 0)

a1 ≤ 0 or a1 > 0, T ≤ a−1
1 .

Using L’Hôpital’s rule we derive

lim
a0→0

1
a0

ln
a1

a1 − a0
= lim

a0→0

ln a1
a1−a0

a0
= lim

a0→0

1
a1−a0

1
=

1
a1

,

then the stated delay-dependent positivity conditions follow (the
case for a0 ≠ 0 includes a0 = 0). �

Note that the result of Lemma 3 deals only with positivity of
the solutions, but not with stability, and the case of Lemma 1
is completely covered. Lemma 2 deals (implicitly through non
oscillatory solution behavior) with stable positive systems, then
the following extension of Lemma 3 can be proposed.
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Fig. 1. Illustration for Lemmas 3 and 4.

Lemma 4. Consider the system (2), (4), (5)with x(0) ≥ 0 and b(t) ≥

0 for all t ≥ 0, b ∈ Ln
∞
, then x(t) ≥ 0 for all t ≥ 0 and x(t) ∈ Ln

∞

provided that one of the following conditions is satisfied:
(i) a0 < a1 ≤ 0;
(ii) a1 > 0, a1 > a0, T ≤

1
a0

ln a1
a1−a0

.

Proof. From the proof of Lemma 3, the system is stable and
positive provided that 0 ≤


1 −

a1
a0


ea0(t−tk) +

a1
a0

< 1 for a0 ≠ 0
and 0 ≤ 1 − a1(t − tk) < 1 for a0 = 0 (for t > tk). The
conditions of positivity for these coefficients are given in Lemma 3,
the conditions that they are less than 1 are as follows:

a1 > a0 ≠ 0 or a1 > a0 = 0, T ≤ a−1
1 .

Combination of these conditions gives the result. �

An illustration for conditions of Lemmas 3 and 4 is presented in
Fig. 1.

Note that the case (i) of Lemma 4 corresponds to ‘‘delay-
independent’’ positivity and stability conditions, which have been
already investigated in the literature [21,22]. Thus, in the present
work we will be more interested in the case (ii) of Lemma 4,
then the following corollary can be formulated for a n-dimensional
linear system:

Corollary 3. The system

ẋ(t) = A0x(t) − A1x(tk) + b(t), t ∈ [tk, tk+1),

tk+1 = tk + Tk, k ≥ 0, t0 = 0; A0, A1 ∈ Rn×n,

where x(t) ∈ Rn, 0 < Tk ≤ T is a time-varying sampling rate
and b : R+ → Rn

+
is a Lebesgue measurable function, for an initial

condition x(0) ∈ Rn
+
admits x(t) ≥ 0 for all t ≥ 0 if −A1 is Metzler,

A0 ≥ 0, and

0 < (A1)i,i, (A0)i,i < (A1)i,i < (A0)i,i
e(A0)i,iT

e(A0)i,iT − 1
for all 1 ≤ i ≤ n.

Stability conditions for this n-dimensional case can be found
in [17].

Let us show how these conditions can be used for design of
interval observers.

4. Interval observer design under sampled measurements

In this section a statement of the problem is given. Next,
an interval observer design is presented. And, finally, a control
algorithm is synthesized based on interval estimates.
4.1. Problem statement

Consider a linear system with sampled measurements:

ẋ(t) = Ax(t) + Bu(t) + d(t), (6)
y(t) = Cx[h(t)] + v[h(t)],

where x(t) ∈ Rn, h(t) is defined in (5); y(t) ∈ Rp is the system
output available for sampled measurements with the noise v ∈

L
p
∞; u ∈ Rm is the control, u ∈ Lm

∞
; d ∈ Ln

∞
is the system

disturbing input; the constantmatrices A, B and C have appropriate
dimensions. It is assumed that for given u and d the system has a
unique solution defined at least locally.

Assumption 1. For given inputs u ∈ Lm
∞
, d ∈ Ln

∞
and initial

condition x(0) ∈ Rn, the corresponding solution of (6) x(t) is
bounded. In addition, there exist known vectors x0, x0 ∈ Rn such
that x0 ≤ x(0) ≤ x0.

Boundedness of the state x(t) is a usual assumption in the
estimation theory [1,2]. The assumption about a known set [x0, x0]
for the initial conditions x(0) is standard for the interval or set-
membership estimation theory [25,8–11].Wewill assume that the
values of matrices A, B and C are known, for the sampling h(t) the
bound T is given, the instant values of the signals d(t) and v(t) are
unavailable. In the last subsection this assumption will be relaxed
and a control will be designed ensuring boundedness of the state.

Assumption 2. There exist known signals d, d ∈ Ln
∞

and v, v ∈

L
p
∞ such that d(t) ≤ d(t) ≤ d(t) and v(t) ≤ v(t) ≤ v(t) for all

t ≥ 0.

Therefore, the uncertain inputs d(t) and v(t) in (6) belong to
known intervals [d(t), d(t)] and [v(t), v(t)], respectively, for all
t ≥ 0.

It is required to design an interval observer,

ξ̇ (t) = F [ξ(t), d(t), d(t), v(t), v(t), y(t)], ξ(0) ∈ Rs,

x(t) = G[ξ(t), d(t), d(t), v(t), v(t), y(t)],

x(t) = G[ξ(t), d(t), d(t), v(t), v(t), y(t)],

where F : Rs+2n+3p
→ Rs, G : Rs+2n+3p

→ Rn and G : Rs+2n+3p
→

Rn are nonlinear maps ensuring existence of solutions, s > 0,
such that x(t) ≤ x(t) ≤ x(t) for all t ≥ 0 and x, x ∈

Ln
∞
. A similar problem has been studied in [21,22] applying a

continuous–discrete observer. In the present work, a continuous
sampled-data observer is constructed and the time-delay approach
is used to sampled-data control design.

4.2. Motivating example

Consider a motivating example introduced in [21], where the
above problem has been posed for a scalar system

ẋ(t) = x(t) + u(t), (7)
y(t) = x[h(t)]

with h(t) given in (5). This system is unstable for u(t) = 0. It has
been proven in [21] that this system has no interval observer of the
form

ẋ(t) = −x(t) + u(t) + 2y(t), (8)
ẋ(t) = −x(t) + u(t) + 2y(t)

(more precisely, the case u(t) = 0 has been studied in [21]).
Applying the result of Lemma 4, the following interval observer

can be proposed for (7) of a form similar to (8).
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Claim 1. For the system (7)with any initial condition x(0) ∈ [x0, x0],
the system

ẋ(t) = x(t) + u(t) + a{y(t) − x[h(t)]},

ẋ(t) = x(t) + u(t) + a{y(t) − x[h(t)]},
x(0) = x0, x(0) = x0

is an interval observer, i.e. x(t) ≤ x(t) ≤ x(t) for all t ≥ 0, provided

that 1 < a < eT

eT−1
.

Proof. Introducing the interval estimation errors e = x − x and
e = x − x, we obtain

ė(t) = e(t) − ae[h(t)],

ė(t) = e(t) − ae[h(t)].

Next, it is straightforward to check that all conditions of Lemma 4
are satisfied for the equations describing the error dynamics. �

Therefore, for any period of sampling T > 0 there exists a > 1
such that the conditions of Claim 1 are satisfied and interval
estimation is possible. Restricting value of themaximal sampling T
it is possible to ensure boundedness and asymptotic convergence
of errors e and e [15,16]. The results of simulation for this observer
are given in Section 6.

Let us extend this idea of interval observer design to a more
generic system (6).

4.3. Interval estimation with sampled measurements

Eq. (6) can be rewritten as follows:

ẋ(t) = Ax(t) + Bu(t) − LCx[h(t)] + Ly(t) + d(t) − Lv[h(t)],

where L ∈ Rn×p is an observer gain to be designed.
Any square matrix Q can be presented as Q = Q Ď

+ Q ≀, where
Q Ď is a diagonal matrix composed by all elements on the main
diagonal of Q , and Q ≀ is formed by the rest elements of Q out of
the main diagonal.

Assumption 3. There exists an invertible matrix S ∈ Rn×n such
that

−SLCS−1
= Q1 =


Q 1 0l×n−l

0n−l×l 0n−l×n−l


,

SAS−1
= Q0 =


Q0,1 Q0,2
Q0,3 Q0,4


,

Q0,1 ∈ Rl×l, Q0,2 ∈ Rl×n−l, Q0,3 ∈ Rn−l×l,

Q0,4 ∈ Rn−l×n−l, Q 1 = Q
Ď

1 + Q
≀

1, Q0,4 = Q Ď
0,4 + Q ≀

0,4,

where Q
Ď

1 = diag[−q1,1, . . . ,−q1,l] with q1,k > 0 for all k =

1, . . . , l, Q
≀

1 ≥ 0, and 0 < l ≤ n.

The matrices S and L can be found as a solution of Sylvester
equation [13]. In the new coordinates z = Sx = [zT1 zT2]

T, z1 ∈ Rl,
z2 ∈ Rn−l the system (6) takes the form:

ż1(t) = Q 0z(t) + Q 1z1[h(t)] + Σ1u(t) + Λ1y(t) + δ1(t),
ż2(t) = Q0,3z1(t) + Q0,4z2(t) + Σ2u(t) + Λ2y(t) + δ2(t), (9)

where Q 0 = [Q0,1 Q0,2], SB = [ΣT
1 ΣT

2 ]
T and SL = [ΛT

1 ΛT
2]

T

are the matrices of appropriate dimensions; and the input δ(t) =

[δT
1(t) δT

2(t)]
T

= S{d(t) − Lv[h(t)]} with the initial condition
z(0) = [z1(0)T z2(0)T]T = Sx(0) has interval bounds

z0 ≤ z(0) ≤ z0,

δ(t) ≤ δ(t) ≤ δ(t) ∀t ≥ 0,
where

z0 = S+x0 − S−x0, z0 = S+x0 − S−x0,

δ(t) = S+d(t) − S−d(t) − (SL)+v[h(t)] + (SL)−v[h(t)],

δ(t) = S+d(t) − S−d(t) − (SL)+v[h(t)] + (SL)−v[h(t)].

Then the following interval observer can be proposed for the
representation (9):

ż1(t) = Q
+

0 z(t) − Q
−

0 z(t) + Q 1z1[h(t)]
+ Σ1u(t) + Λ1y(t) + δ1(t),

ż1(t) = Q
+

0 z(t) − Q
−

0 z(t) + Q 1z1[h(t)]

+ Σ1u(t) + Λ1y(t) + δ1(t),

ż2(t) = Q+

0,3z1(t) − Q−

0,3z1(t) + Q Ď
0,4z2(t)

+ (Q ≀

0,4)
+z2(t) − (Q ≀

0,4)
−z2(t)

+ Σ2u(t) + Λ2y(t) + δ2(t), (10)

ż2(t) = Q+

0,3z1(t) − Q−

0,3z1(t) + Q Ď
0,4z2(t)

+ (Q ≀

0,4)
+z2(t) − (Q ≀

0,4)
−z2(t)

+ Σ2u(t) + Λ2y(t) + δ2(t),

with initial conditions z(0) = z0, z(0) = z0 for the variables
z(t) = [zT1(t) zT2(t)]

T, z(t) = [zT1(t) zT2(t)]
T respectively. Finally

interval estimates for the variable x(t) can be obtained using

x(t) = (S−1)+z(t) − (S−1)−z(t), (11)

x(t) = (S−1)+z(t) − (S−1)−z(t).

For all k = 1, . . . , l denote

q0,k = (Q
+

0 )k,k.

Theorem 1. Let Assumptions 1, 2 and Assumption 3 be satisfied and

q0,k ≤ q1,k < q0,k
eq0,kT

eq0,kT − 1
for all k = 1, . . . , l. Then the interval observer (10), (11) for the
system (6), (5) admits the relations

x(t) ≤ x(t) ≤ x(t) ∀t ≥ 0. (12)

If in addition there exist symmetric matrices P ∈ R2n×2n and U ∈

R2n×2n, and matrices X, X1, P2, P3, R, Y1, Y2 ∈ R2n×2n such that the
LMIsT

−1
P +

X + XT

2
X1 − X

∗
X + XT

2
− [X1 + XT

1 ]

 ≻ 0,

Ψ0 ≺ 0, Ψ1 ≺ 0, P ≻ 0, U ≻ 0,

Ψ0 =

Ω11 −
X + XT

2
Ω12 + T

X + XT

2
Ω13 + X − X1

∗ Ω22 + TU Ω23 − T (X − X1)
∗ ∗ Ω33 − Π

 ,

Ψ1 =


Ω11 −

X + XT

2
Ω12 Ω13 + X − X1 TY T

1

∗ Ω22 Ω23 TY T
2

∗ ∗ Ω33 − Π TRT

∗ ∗ ∗ −TU


Ω11 = ΦT

0P2 + PT
2Φ0 − Y1 − Y T

1 ,

Ω12 = P − PT
2 + ΦT

0P3 − Y2, Ω13 = Y T
1 + PT

2Φ1 − R,
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Ω22 = −P3 − PT
3 , Ω23 = Y T

2 + PT
3Φ1,

Ω33 = R + RT, Π =
X + XT

− 2(X1 + XT
1 )

2

are satisfied for

Φ0 =


Q+

01 −Q−

01 Q+

02 −Q−

02
−Q−

01 Q+

01 −Q−

02 Q+

02
Q+

0,3 −Q−

0,3 Q Ď
0,4 + (Q ≀

0,4)
+

−(Q ≀

0,4)
−

−Q−

0,3 Q+

0,3 −(Q ≀

0,4)
− Q Ď

0,4 + (Q ≀

0,4)
+

 ,

Φ1 =

 Q 1 0l×l 0l×n−l 0l×n−l

0l×l Q 1 0l×n−l 0l×n−l
0n−l×l 0n−l×l 0n−l×n−l 0n−l×n−l
0n−l×l 0n−l×l 0n−l×n−l 0n−l×n−l

 ,

then x, x ∈ Ln
∞
.

Proof. Introduce the interval estimation errors e = z − z =

[eT1 eT2]
T and e = z − z = [eT1 eT2]

T for the observer (10) and (9):

ė1(t) = Q
+

0 e(t) + Q
−

0 e(t) + Q 1e1[h(t)] + δ1(t) − δ1(t),

ė1(t) = Q
+

0 e(t) + Q
−

0 e(t) + Q 1e1[h(t)] + δ1(t) − δ1(t),

ė2(t) = Q+

0,3e1(t) + Q−

0,3e1(t) + [Q Ď
0,4 + (Q ≀

0,4)
+
]e2(t)

+ (Q ≀

0,4)
−e2(t) + δ2(t) − δ2(t),

ė2(t) = Q+

0,3e1(t) + Q−

0,3e1(t) + [Q Ď
0,4 + (Q ≀

0,4)
+
]e2(t)

+ (Q ≀

0,4)
−e2(t) + δ2(t) − δ2(t).

It is easy to see that positivity for the variables e1(t) and e1(t) is
guaranteed by Corollary 3, while for the variables e2(t) and e2(t)
the positivity follows the fact that the matrix Q Ď

0,4 + (Q ≀

0,4)
+ is

Metzler by construction and the rest terms on the right-hand side
of ė2, ė2 are nonnegative provided that e(t) ≥ 0 and e(t) ≥ 0.
By induction, if e(0) ≥ 0 and e(0) ≥ 0, then the relations e(t) ≥

0, e(t) ≥ 0 are preserved for all t ≥ 0 [26]. Therefore, from (11)
the inclusion (12) is valid.

In order to prove boundedness of x, x consider the system

ζ̇ (t) = Φ0ζ (t) + Φ1ζ [h(t)] + Λy(t) + δ(t) + Σu(t),
Λ = [ΛT

1 ΛT
1 ΛT

2 ΛT
2]

T,

δ = [δT
1 δ

T
1 δT

2 δ
T
2]

T,

Σ = [ΣT
1 ΣT

1 ΣT
2 ΣT

2 ]
T,

where ζ =

zT1 zT1 zT2 zT2

T and the matrices Φ0 and Φ1 are
defined in the theorem formulation. The introduced LMIs imply
stability of this system [15], and boundedness of solutions for any
bounded inputs. �

Contrarily (10), (11), the interval observer proposed in [22] has
hybrid dynamics and it is more complicated.

Remark 1. In order to evaluate the interval estimation accuracy,
the following variable can be introduced:

∆ = z − z,

which characterizes the interval width obtained by the observer,
and its dynamics is governed by differential equation:

∆̇(t) = Q0∆(t) + Q1∆1[h(t)] + δ(t) − δ(t).

The uncertainty interval width δ(t) − δ(t) serves as the external
input to this system, and its stability follows the conditions of
Theorem 1.
5. Dynamic output-feedback stabilization

Up to now we supposed that the state x(t) and the control u(t)
are already given and they are bounded. However, the interval
estimates x(t), x(t) canbe effectively used to stabilize theuncertain
system (6) [23]. Indeed, the interval observer (10), (11) guarantees
interval inclusion (12) for any input u(t). If a control u(t) is
designed such that both variables x(t), x(t) are bounded and
converge to zero, due to (12), x(t)will possess the same properties.
Therefore, it is possible to substitute the problem of dynamic
output stabilizing control design of uncertain system (6) by the
problem of stabilizing state feedback design for completely known
observer (10). In this case the observer gain L has to ensure
positivity of the estimation errors e, e only, and boundedness of all
variables can be provided by a proper control design. Therefore, the
gain Lhas to ensure validity of Assumption3 (solution of a Sylvester
equation), while stability LMIs are provided by control selection.

Let us restrict our attention to the case of sampled control,
i.e. u(t) = u[h(t)] where h(t) is defined in (5). According to
(11), stabilization of the system in x(t), x(t) coordinates follows
its stabilization in the coordinates z(t), z(t), then the following
feedback is appropriate due to the structure of (10):

u(t) = Kz[h(t)] + Kz[h(t)], (13)

where K ∈ Rm×n, K ∈ Rm×n are the control gains to be designed.
For K = [K 1 K 2] and K = [K 1 K 2], where K 1, K 2, K 1 and K 2 have
appropriate dimensions, (10) can be rewritten as follows:

ζ̇ (t) = Φ0ζ (t) + Φ2ζ [h(t)] + Λy(t) + δ(t), (14)

where ζ =

zT1 zT1 zT2 zT2

T and Φ0 are as before,

Φ2 = Φ1 + Σ[K 1 K 1 K 2 K 2].

From the relations x(t) ≤ x(t) ≤ x(t) we have

|xi(t)| ≤ max{|xi(t)|, |xi(t)|} ∀1 ≤ i ≤ n,

|xi(t)|2 ≤ |xi(t)|
2
+ |xi(t)|2 ∀1 ≤ i ≤ n,

∥x(t)∥ ≤


∥x(t)∥2 + ∥x(t)∥2

≤ µ


∥z(t)∥2 + ∥z(t)∥2

≤ µ∥ζ (t)∥,

where µ =

2[∥(S−1)+∥2 + ∥(S−1)−∥2], then

∥y(t)∥ ≤ ∥C∥µ∥ζ [h(t)]∥ + ∥v[h(t)]∥,

and for stabilization of x(t), x(t) (or ζ (t)) the signal y(t) is a kind
of functional perturbation, which is globally Lipschitz with respect
to ζ [h(t)] (with the Lipschitz gain ∥C∥µ).

Theorem 2. Let Assumptions 2 and 3 be satisfied, x0 ≤ x(0) ≤ x0
for some known vectors x0, x0 ∈ Rn, and

q0,k ≤ q1,k < q0,k
eq0,kT

eq0,kT − 1

for all k = 1, . . . , l. Then the interval observer (10), (11) for the
system (6), (5), (13) admits the relations (12). If in addition there
exist symmetric matrices P ∈ R2n×2n and U ∈ R2n×2n, and matrices
X, X1, P2, P3, R, Y1, Y2 ∈ R2n×2n such that the LMIsT

−1
P +

X + XT

2
X1 − X

∗
X + XT

2
− [X1 + XT

1 ]

 ≻ 0,
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Ψi

| PT
2Λ 02n×2n

| PT
3Λ 02n×2n

| 02n×2n 02n×2n
| 02n×2n I2n

_
∗

∗

_ _ _
| −γ 2I2n 02n×2n
| ∗ −I2n

 ≺ 0, i = 0, 1,

P ≻ 0, U ≻ 0,

where Ψ0, Ψ1 are given in the formulation of Theorem 1 (the same
for Ω11, Ω12, Ω22, Ω33 and Π , while Ω13 = Y T

1 + PT
2Φ2 − R and

Ω23 = Y T
2 + PT

3Φ2), are satisfied for γ < 1
∥C∥µ

, then x, x, x ∈ Ln
∞
.

Proof. The proof of (12) is similar to Theorem 1.
In order to prove boundedness of x, x note that the introduced

LMIs imply internal stability of the system (14) and that the L2
gain of the transfer y → ζ is less than γ [15]. Since γ < 1

∥C∥µ

and ∥y(t)∥ ≤ ∥C∥µ∥ζ [h(t)]∥ + ∥v[h(t)]∥ with v ∈ L
p
∞, then by

standard small-gain arguments the system (14) is asymptotically
stable for δ = 0 and it has bounded trajectories for any bounded
input δ. �

The main advantage of Theorem 2 with respect to Theorem 1
is that its conditions are decoupled: the observer gain L ensures
positivity of the estimation error dynamics, while the control gains
K , K guarantee stability.

Remark 2. Feasibility of LMIs presented in Theorems 1 and 2 is
discussed in [17], for instance, if the corresponding continuous-
time system is exponentially stable, then the LMIs are feasible for
small enough T̄ .

Remark 3. From the relation ∥x∥ ≤ µ∥ζ∥ and the fact that under
the conditions of Theorem 2 the L2 gain of the transfer y → ζ is
less than γ , we obtain that the L2 gain of the transfer y → x is less
than µγ < ∥C∥

−1. Thus, if there is an additive disturbance acting
in (6) through the gain L, then the control (13) ensures L2 gain with
respect to that disturbance less than ∥C∥

−1. Following the idea
of [17] (see Section 5.1), the controller gains K and K may be found
from the LMIs of Theorem 2 assuming P3 = εP2, and multiplying
by diag{P−1

2 , . . . , P−1
2 I2n, I2n} from the right and its transpose from

the left the second LMI of Theorem 2, and by diag{P−1
2 , P−1

2 } and its
transpose from the left the first LMI of the theorem.

Let us demonstrate efficiency of the developed approach for
interval control and output stabilization on examples.

6. Examples

6.1. Observer and control for the motivating example

The system (7) is an example of (6) for n = 1

ẋ(t) = x(t) + u(t) + d(t), y(t) = x[h(t)] + v[h(t)],

where d(t) ∈ [−0.1, 0.1] (for simulation d(t) = 0.1 cos(3t)),
v(t) ∈ [−0.1, 0.1] (for simulation v(t) = 0.1 sin(5t)) and Tk =

T
2 (1 + sin2(0.5tk)) with T = 0.35. Then select:

L = 1.4, K = −3, K = −3

and assume that ∥x0∥ ≤ 5. The interval observer (10) takes a form
similar to one given in Claim 1

ẋ(t) = x(t) + u(t) + d(t) + L{y(t) − x[h(t)]},

ẋ(t) = x(t) + u(t) + d(t) + L{y(t) − x[h(t)]},
x(0) = x0, x(0) = x0.

(15)
Fig. 2. The results of simulation for the motivating example. (For interpretation of
the references to color in this figure legend, the reader is referred to theweb version
of this article.)

The results of simulation are shown in Fig. 2. The red solid curve
represents a trajectory of the system, the blue and green dash–dot
lines correspond to the interval estimates x(t) and x(t) generated
by the observer.

In order to evaluate accuracy of the proposed interval observer
and its relation with the maximum sampling period T , introduce
the variable δ(t) = x(t) − x(t), which represents the size of
the estimated interval and characterizes precision of the interval
observer. Then

δ̇(t) = δ(t) − Lδ[h(t)] + [d(t) − d(t)].

Using the condition (ii) of Lemma4weobtain for a0 = 1 and a1 = L
the following restrictions on values of L and T ensuring stability
of δ:

L > 1, T ≤ ln
L

L − 1
.

Increasing values of L enlarges stability margins of the system and,
at the same time, decreases the maximum admissible sampling
period T . Thus, for higher values of L a better accuracy ∥x − x∥
should be obtained with the price of a faster sampling. To confirm
this hypothesis the results of this system simulation are shown
in Fig. 3 for d(t) − d(t) = 1, three different values of sampling
(T ∈ {0.231, 0.347, 0.555}) and two values of L (solid lines for
L = 2 and dash lines for L = 1.5). According to results presented
in Fig. 3, the interval estimation accuracy is independent in T and
predefined by the value of L for (15).

6.2. A pendulum example

Consider an example of (6) for n = 2 from [22]

A =


0 1

−1 0


, B =


0
1


, d(t) = δ


sin(t)
cos(2t)


,

C =

1 0


, v(t) = V sin(5t), T = 0.1,

where δ > 0 and V > 0 are the upper bounds of d and v available
for designer. Thus, Assumption 2 is satisfied for:

d(t) = −


δ
δ


, d(t) = −d(t),

v(t) = −v(t) = V .

Take ∥x10∥ ≤ 10, ∥x20∥ ≤ 10. For L = [4 4]T and

S =

√
2 0

−1 1


the conditions of Assumption 3 are verified. The LMIs of Theorem 1
are satisfied for the given value of T , the conditions of Theorem 2
are also satisfied for

K = −
1
8
[1 1], K = −

1
16

[1 1].
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Fig. 3. The results of evaluation of interval accuracy and dependence on T and L
for (15).

Fig. 4. The results of simulation for the sampled pendulum.

The results of simulation are shown in Fig. 4 for

δ = 0.5, V = 0.1, Tk = T [0.5 + 0.4 sin(0.5tk)],

they confirm efficiency of interval estimation and validity of used
delay-dependent positivity conditions.

7. Conclusion

In the paper, new positivity conditions for linear sampled sys-
tems have been proposed. These conditions are related with non-
oscillatory behavior of solutions of the corresponding time-delay
representation [18]. These new conditions have been employed to
design interval observer for the systems with sampled measure-
ments extending the theory of [21,22], where a hybrid dynamics
interval observer has been proposed. The results have been applied
for an example from [21]. A dynamic output stabilizing control has
been proposed based on interval state estimates. The efficacy of
observers has been illustrated by numerical experiments, where
dependence of the interval estimation accuracy on the maximum
admissible sampling period and observer gains is also discussed.
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