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Abstract

For continuous-time, linear descriptor system with state-delay aH∞-control problem is
solved. Sufficient conditions for delay-dependent/delay-independent stability andL2-gain
analysis are obtained in terms of linear matrix inequalities (LMIs). A bounded real lemma
and state-feedback solutions are derived for systems which may contain polytopic parameter
uncertainties. The filtering problem is also solved and an output-feedback controller is then
found by solving two LMIs. The first LMI is associated with a proportional-derivative state-
feedback control. The second LMI is derived in two different forms, the first one corresponds
to the adjoint of the system that describes the estimation error and the other stems from the
original system. These two forms lead to different results. Numerical examples are given
which illustrate the effectiveness of the new theory. © 2002 Elsevier Science Inc. All rights
reserved.
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1. Introduction

Delay differential–algebraic equations, which have both delay and algebraic con-
straints, often appear in various engineering systems, including aircraft stabilization,
chemical engineering systems, lossless transition lines, etc. (see e.g. [4,13,14,22,28],

� This work was supported by the Ministry of Absorption of Israel and by C&M Maus Chair at Tel Aviv
University.∗ Corresponding author. Tel.: +972-3640-5313; fax: +972-3640-7095.

E-mail address:emilia@eng.tau.ac.il (E. Fridman).

0024-3795/02/$ - see front matter� 2002 Elsevier Science Inc. All rights reserved.
PII: S0024-3795(01)00563-8



272 E. Fridman, U. Shaked / Linear Algebra and its Applications 351–352 (2002) 271–302

and the references therein). Depending on the area of application, these models are
called singular or implicit or descriptor systems with delay. As has been pointed out
in [6,7], descriptor systems with delay may in fact be systems of advanced type.
Descriptor systems may be destabilized by small delay in the feedback [20].

There are only few papers on descriptor systems with delay [6,7,10,15,22,23,28].
A particular case of these systems (the so-called lossless propagation models), de-
scribed by

ẋ1(t) = Ax1(t)+ Bx2(t − h), x2(t) = Cx1(t)+Dx2(t − h), (1)

has been treated as a special class of neutral systems either by lettingx2(t) = ẏ2(t)

[23] or by writing the second equation as [15,22]

d

dt

[
x2(t)− Cx1(t)−Dx2(t − h)

] = 0. (2)

The stability of a general neutral type descriptor system with a single delay de-
scribed by

Eẋ(t)+ Ax(t)+ Bẋ(t − h)+ Cx(t − h) = 0 (3)

with a singular matrixE has been studied in [28] by analyzing its characteristic
equation

det
[
sE+ A+ (sB+ C)exp(−hs)

] = 0

and finding frequency domain conditions which guarantee that all roots of the latter
equation have negative real parts bounded away from 0. A Lyapunov-based approach
to stability analysis of descriptor system with delay has been introduced in [10],
where delay-independent and delay-dependent linear matrix inequalities (LMIs) con-
ditions have been derived. For information on LMI approach to control, see [3].

All the above-mentioned results only analyze the existence and the stability of so-
lutions of descriptor systems with delay. To the best of our knowledge no
control problem solution has been derived for this class of systems. For descriptor
systems without delay,H∞-control problems have been treated in the frequency
domain [19,27] and in the time-domain [21,26,29]. In [21,26] an LMI approach has
been proposed. For nondescriptor systems with state-delay, LMI delay-dependent
and delay-independentH∞-controllers were derived in [12,16,24] (see also the refer-
ences therein). These finite-dimensional LMIs provide sufficient conditions only for
infinite-dimensional systems with state-delay. Unlike infinite-dimensional methods
(see e.g. [1,11]) they lead to effective numerical algorithms and may be applied for
systems with polytopic uncertainties.

In the present paper, we adopt the finite-dimensional LMI approach toH∞-con-
trol of descriptor system with delay. Our objective is to obtain delay-dependent so-
lutions which are less conservative than the delay-independent ones. We apply the
descriptor model transformation that has been introduced recently for delay-depen-
dent stability andH∞-control of nondescriptor systems [9,12]. We derive bounded
real lemmas (BRLs) and find solutions to theH∞ filtering, the state-feedback and
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the output-feedbackH∞-control problems. The solutions are delay-dependent with
respect to the ‘slow’ variable and delay-independent with respect to the ‘fast’ one.
The latter guarantees the robustness of the system behavior with respect to the small
changes in the delay.

Notation. Throughout the paper the superscript ‘T’ stands for matrix transposi-
tion, Rn denotes then-dimensional Euclidean space with vector norm| · |, Rn×m is
the set of alln×m real matrices, and the notationP > 0 for P ∈ Rn×n means that
P is symmetric and positive definite. The space of functions inRq that are square in-
tegrable over[0 ∞) is denoted byLq

2[0,∞) with norm‖ · ‖L2. LetCn[a, b] denote
the space of continuous functionsφ : [a, b] → Rn with the supremum norm| · |. We
also denotext (θ) = x(t + θ) (θ ∈ [−h, 0]) and j= √−1.

2. Problem formulation

Given the following system:

Eẋ(t) =
2∑
i=0

Aix(t − hi)+ B1w(t)+ B2u(t), x(t) = 0, ∀t � 0, (4)

ȳ(t) = C̄2x(t)+D21w(t), (5a)

z(t) = col
{
C̄1x(t);D12u(t)

}
, (5b)

wherex(t) = col{x1(t), x2(t)}, x1(t) ∈ Rn1, x2(t) ∈ Rn2 is the system state vector,
u(t) ∈ R� is the control input,w(t) ∈ L

q

2[0,∞] is the exogenous disturbance signal,
ȳ(T ) ∈ Rr is the measurement vector andz(t) ∈ Rp is the state combination (objec-
tive function signal) to be attenuated. The time delaysh0 = 0, hi > 0, i = 1, 2, are
assumed to be known. We took for simplicity two delays, but all the results are easily
generalized for the case of any finite number of delaysh1, . . . , hm. The singular
matrix E and the matricesAi, Bi are constant matrices of appropriate dimensions.
Denoten � n1 + n2.

Following [21,26], we assume for simplicity that

E =
[
In1 0
0 0

]
. (6)

Every descriptor system can be represented in a form satisfying this assumption.
Note that in [21] there is� = �T > 0 instead ofIn1, but from such a system, the
system withE of (6) follows immediately. The matrices in (4), (5a) and (5b) have the
following structure:

Ai =
[
Ai1 Ai2
Ai3 Ai4

]
, i = 0, 1, 2,

Bi =
[
Bi1
Bi2

]
, C̄i = [C̄i1 C̄i2

]
, i = 1, 2.

(7)
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A descriptor system without delay

Eẋ(t) = A0x(t)+ B1w(t) (8)

is regular if the characteristic polynomial det(sE− A0) does not vanish identically
in s ∈ C. It is well known that descriptor system may have impulsive solutions. The
existence of the latter solutions is usually studied in terms of the Weierstrass canon-
ical form and theindexof the system which are defined as follows [5,8,20]: there
exist nonsingular matricesP,Q ∈ Rn×n such that

QEP=
[
In1 0
0 N

]
, QA0P =

[
J 0
0 In2

]
, (9)

whereN ∈ Rn2×n2 andJ ∈ Rn1×n1 are in Jordan form. The matrixN is nilpotent of
indexν, i.e.Nν = 0, Nν−1 /= 0. The index of (8) is the index of nilpotenceν of N.
The index of the system with delay

Eẋ(t) =
2∑
i=0

Aix(t − hi)+ B1w(t) (10)

is defined in [10] to be equal to the index of (8). The descriptor system (10) admits
impulsive solutions iffν > 1 [10].

We do not requireA04 in (4) to be nonsingular. IfA04 is singular, then (8) has
index greater than 1 (see e.g. [5,8]). Hence, the index of the open loop system (4)
with delay is higher than one. Such a system may have an impulsive solution. The
nonsingularity ofA04 guarantees the existence and the uniqueness of solution to (4)
with u = 0 (see Proposition 3.1).

The following class of neutral descriptor systems[
ẋ1(t)−∑2

i=1Fiẋ1(t − hi)

0

]
=

2∑
i=0

Aix(t − hi)+ B1w(t)+ B2u(t), (11)

can be reduced to the form of (4) and (6). This follows from the fact that the aug-
mented system

ẋ1(t) = y,[
y(t)−∑2

i=1Fiy(t − hi)

0

]
=

2∑
i=0

Aix(t − hi)+ B1w(t)+ B2u(t),
(12)

is a particular case of (4) and (6).
For a prescribed scalarγ > 0, we define the performance index

J (w) =
∫ ∞

0

(
zTz− γ 2wTw

)
dτ. (13)

The problem is to find a controller such that the resulting closed loop system has in-
dex at most one is internally stable (i.e. asymptotically stable forw = 0) andJ (w) <
0 for all disturbancesw(t) ∈ L

q

2[0,∞].
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3. Stability and L2-gain analysis of a descriptor system with delay

BRLs will be obtained for systems with discrete and distributed delays. Given the
following system:

Eẋ(t) =
2∑
i=0

Aix(t − hi)+
∫ 0

−d
Ad(s)x(t + s) ds + B1w(t), (14a)

x(t) = 0 ∀t � 0, (14b)

z(t) = col
{
C0x(t), C1x(t − h1), C2x(t − h2)

}
, (15)

whereE is defined in (6),x(t) = col{x1(t), x2(t)}, x1(t) ∈ Rn1, x2(t) ∈ Rn2, is the
system state vector,w(t) ∈ L

q

2[0,∞] is the exogenous disturbance signal andz(t) ∈
Rp is objective function signal,Ad(s) is a piecewise-continuous and uniformly
bounded(n1 + n2)× (n1 + n2)-matrix-function. We assume that the matrices in
(14a) and (14b) have the structure of (7) and

Ci = [Ci1 Ci2
]
, i = 0, 1, 2, Ad =

[
Ad1 Ad2
Ad3 Ad4

]
.

Denoteh = max{h1, h2, d}. By solutionof (14a) and (14b) on the segment[0, t1]
(t1 > 0) we understand a pair of functions{x1(t), x2(t)}, such thatx1 is absolutely
continuous andx2 is integrable on[0, t1], these functions satisfy system (14a) almost
for all t ∈ [0, t1] and the initial conditions (14b).

Proposition 3.1. Assume thatA04 is nonsingular. Forw(t) ∈ L
q

2[0,∞) the solu-
tion to (14a)and(14b)exists and is unique on[0, t1] for all t1 > 0.

Proof. By denotingẏ2 = x2 we obtain from (14a) a neutral type system with the ze-
ro initial conditionsx1(t) = 0, ẏ2(t) = 0 ∀t � 0. Hence,y2(t) = c ∀t � 0, c ∈ Rn2.
This initial value problem for neutral system has a piecewise absolutely continuous
solutionx1(t), y2(t) on [0, t1] such thatx1(t) is absolutely continuous on[0, t1] (see
[17, p. 143]). Therefore,x2(t) is integrable and solution of (14a) and (14b) exists.

To prove the uniqueness we assume that there are two solutions of (14a) and
(14b). Then their difference satisfies the homogeneous equations (14a) and (14b)
with w = 0, which has a unique solutionx ≡ 0 [10]. Hence, solution of (14a) and
(14b) is unique. �

3.1. Stability of the difference operator and of the descriptor system

We assume:

A1. The matrixA04 is nonsingular and the difference operatorD : Cn2[−h, 0] →
Rn given by
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D(x2t ) = x2(t)+
2∑
i=1

A−1
04Ai4x2(t − hi)+

∫ 0

−d
A−1

04Ad4(s)x2(t + s) ds

is stable for all delaysh1 andh2 (i.e. equationDx2t = 0 is asymptotically stable for
all h1 andh2).

A sufficient condition forA1 is the following inequality:
2∑
i=1

∣∣A−1
04Ai4

∣∣+ ∫ 0

−d
∣∣A−1

04Ad4(s)
∣∣ds < 1,

where| · | is any matrix norm.
In the case of single delay (e.g.h1) in the fast variablex2 we assume instead of

A1 the following:

A1′. All the eigenvalues ofA−1
04A14 are inside of the unit circle.

In the case of multiple discrete delays inD, whereAd4 = 0, A1 is equivalent to
the following one (see [14, Theorem 6.1, p. 286]):

A1′′. If σ(B) is the spectral radius of matrixB, thenσ0 < 1, where

σ0 � sup

{
σ

(
2∑

k=1

A−1
04Ai4eiθk

)
: θk ∈ [0, 2π], k = 1, 2

}
. (16)

Evidently A1′ is equivalent toA1′′ in the case of single delayh1. A sufficient
LMI condition for A1′′ is given by the following:

Lemma 3.2 [10]. If there existn2 × n2-matricesPf ,U1f , U2f that satisfy the fol-
lowing LMI:

P T
f A04 + AT

04Pf +∑2
i=1Uif P T

f A14 P T
f A24

∗ −U1f 0
∗ ∗ −U2f


 < 0, (17)

thenA04 is nonsingular and
(i) A1′′ holds;
(ii) the difference operator

D(x2t ) = x2(t)+
2∑
i=1

A−1
04Ai4x2(t − hi)

is stable for allh1, h2;
(iii) under additional assumption thatPf > 0 the“ fast system”

ẋ2(t) = A04x2(t)+
2∑
i=1

Ai4x2(t − hi) (18)

is asymptotically stable for allh1, h2.
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The following result on stability of (14a) and (14b) withw = 0 has been obtained
recently [10].

Lemma 3.3. Under A1 if there exist positive numbersα, β, γ and a continuous
functionalV : Cn[−h, 0] → R such that

β|φ1(0)|2 � V (φ) � γ |φ|2, (19a)

V̇ (φ) � −α|φ(0)|2, (19b)

and the functionV̄ (t) = V (xt ) is absolutely continuous forxt satisfying(14a)and
(14b)withw = 0, then(14a), (14b)withw = 0 is asymptotically stable.

3.2. Delay-independent BRL(with respect to discrete delays)

Descriptor type Lyapunov–Krasovskii functional for system (14a), (14b) has the
following form:

V (xt ) = xT(t)EPx(t)+ V1 + V2, (20)

where

P =
[
P1 0
P2 P3

]
, P1 = P T

1 > 0, (21)

V1 =
2∑
i=1

∫ t

t−hi
xT(s)Uix(s)ds, Ui > 0, (22)

and

V2 =
∫ 0

−d

∫ t

t+θ
xT(s)AT

d (θ)RAd(θ)x(s) ds dθ, R > 0. (23)

The first term of (20) corresponds to the descriptor system,V1 corresponds to the
delay-independent stability with respect to the discrete delays andV2—to delay-
dependent stability with respect to the distributed delays [18]. The functional (20) is
degenerated(i.e. nonpositive-definite) as it is usual for descriptor systems.

We obtain analogously to [10] the following:

Theorem 3.4. Under A1 (14a)and (14b), (15)is internally asymptotically stable
and for a prechosenγ > 0 J (w) < 0 for all nonzerow(t) ∈ L

q

2[0,∞] and for all
h1 � 0, h2 � 0 if there existn× n-matrix P of (21) with n1 × n1-matrix P1 and
n2 × n2-matrixP3 andn× n matricesUi = UT

i , i = 1, 2, R = RT that satisfy the
following LMI:
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PTA0 + AT

0P +∑2
i=1Ui + ∫ 0

−d AT
d
(s)RAd(s)ds PTB1 PTA1 PTA2 dPT

∗ −γ 2Iq 0 0 0
∗ ∗ −U1 0 0
∗ ∗ ∗ −U2 0
∗ ∗ ∗ ∗ −dR


 < 0.

(24)

Remark 1. From Theorem 3.4 it follows that the system

Eẋ(t) = A0x(t)+ A1x(t − h) (25)

is asymptotically stable for allh � 0 if the following LMI is feasible:[
P TA0 + AT

0P P TA1

AT
1P 0

]
+
[
U1 0
0 −U1

]
< 0. (26)

Multiplying (26) by� from the left and by�∗ from the right, where

� =
[
AT

1(−jωE − AT
0)

−1 I
]
, �∗ =

[
(jωE − A0)

−1A1
I

]
, ω ∈ R,

the following frequency domain inequality is readily obtained

� diag
{
U1,−U1

}
�∗ < 0

or

AT
1

(− jωE − AT
0

)−1
U1(jωE − A0)

−1A1 < U1. (27)

Therefore, if LMI (24) is feasible (and thus, (26) is feasible), then for allω ∈ R

the frequency domain inequality (27) holds. Hence theH∞-norm ofU1/2
1 (jωE −

A0)
−1A1U

−1/2
1 is less than 1. This is a counterpart of the Kalman–Yakubovich–

Popov lemma for descriptor systems.

3.3. Delay-dependent BRL

We are looking for delay-dependent conditions with respect to slow variablex1.
With respect to discrete delays in the fast variables the results will be delay-inde-
pendent. The latter guarantees robust stability with respect to small changes of delay
[10]. Following [9,10] we represent (14a) and (14b) in the equivalent form:

ẋ1(t) = y(t),[
y(t)

0

]
=
[∑2

i=0Ai1 A02∑2
i=0Ai3 A04

]
x(t)+∑2

i=1

[
Ai2
Ai4

]
x2(t − hi)

−
2∑
i=1

[
Ai1
Ai3

] ∫ 0

−hi
y(t + s) ds +

∫ 0

−d
Ad(s)x(t + s) ds + B1w(t).

(28)
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The latter system can be represented in the form:

Ē ˙̄x(t)=
2∑
i=0

Āi x̄(t − hi)+
2∑
i=1

hiHi

∫ 0

−hi
y(t + s) ds

+
∫ 0

−d
Ād(s)x̄(t + s) ds + B̄1w(t), (29)

where

x̄ =

x1
y

x2


 , Ē =


In1 0 0

0 0n1×n1 0
0 0 0n2×n2


 ,

Ā0 =



0 I 0∑2
i=0Ai1 −In1 A02∑2
i=0Ai3 0 A04


 , Āi =


0 0 0

0 0 Ai2
0 0 Ai4


 , i = 1, 2,

Hi =

 0
Ai1
Ai3


 , Ād =


 0 0 0
Ad1 0 Ad2
Ad3 0 Ad4


 , B̄1 =

[
0
B1

]
.

(30)

A Lyapunov–Krasovskii functional for system (28) has the form:

V (t)= x̄T(t)ĒP x̄(t)+
2∑
i=1

∫ t

t−hi
xT

1 (τ )Six1(τ ) dτ

+
2∑
i=1

∫ t

t−hi
xT

2 (τ )Uix2(τ ) dτ

+
2∑
i=1

∫ 0

−hi

∫ t

t+θ
yT(s)

[
AT
i1 AT

i3

]
Ri3

[
Ai1
Ai3

]
y(s)ds dθ

+
∫ 0

−d

∫ t

t+θ
x̄T(s)ĀT

dRdĀd x̄(s)ds dθ, (31)

whereP has the structure of (21) withP1 ∈ Rn1×n1, P3 ∈ Rn×n and

0< Si ∈ Rn1×n1, 0< Ui ∈ Rn2×n2,

0< Ri3 ∈ Rn×n, Rd ∈ R(n1+n)×(n1+n).

The first term of (31) corresponds to the descriptor system, the second and the fourth
terms—to the delay-dependent conditions with respect tox1 and the third—to the
delay-independent conditions with respect tox2, the fifth term corresponds to delay-
dependent with respect to distributed delay.
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We obtain the following:

Theorem 3.5. UnderA1 the system of(14a), (14b)and(15) is internally asymptot-
ically stable and for a prechosenγ > 0, J (w) < 0 for all nonzerow(t) ∈ L

q

2[0,∞]
if there exist matricesP ∈ R(n1+n)×(n1+n) of (21), 0< P1 ∈ Rn1×n1, P2, P3 ∈
Rn×n, Si = ST

i ∈ Rn1×n1, Ui = UT
i ∈ Rn2×n2,Wi ∈ R(n1+n)×(n1+n) andRi = RT

i ∈
R(n1+n)×(n1+n), i = 1, 2 that satisfy the following LMI:


�̄ PT
[

0
B1

]
h1X1 h2X2 −WT

1


 0
A11
A13


 −WT

2


 0
A21
A23


 PT


 0
A12
A14


 PT


 0
A22
A24


 dPT

∗ −γ 2Iq 0 0 0 0 0 0 0
∗ ∗ −h1R1 0 0 0 0 0 0
∗ ∗ ∗ −h2R2 0 0 0 0 0
∗ ∗ ∗ ∗ −S1 0 0 0 0
∗ ∗ ∗ ∗ ∗ −S2 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ −U1 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ −U2 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −dRd



< 0,

(32)

where

Xi = WT
i + P T, i = 1, 2,

�̄ = � +
2∑
i=0


CT

i1Ci1 0n1 0
0 0 0
0 0 CT

i2Ci2


+

2∑
i=1

WT
i


 0 0 0
Ai1 0 0
Ai3 0 0




+
2∑
i=1


0 AT

i1 AT
i3

0 0 0
0 0 0


Wi

and

� � P T




0 In1 0∑2
i=0Ai1 −In1 A02∑2
i=0Ai3 0 A04


+




0 In1 0∑2
i=0Ai1 −In1 A02∑2
i=0Ai3 0 A04




T

P

+
2∑
i=1



Si 0 0

0 hi
[
AT
i1 AT

i3

]
Ri3

[
Ai1
Ai3

]
0

0 0 Ui




+
∫ 0

−d
ĀT
d (s)RdĀd(s) ds (33)

and whereRi3 ∈ Rn×n is the(2, 2) block ofRi .
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Proof. Since

x̄T(t)ĒP x̄(t) = xT
1 (t)P1x1(t)

differentiating the first term of (31) with respect tot we have

d

dt
x̄T(t)ĒP x̄(t) = 2xT

1 (t)P1ẋ1(t) = 2x̄T(t)P T


ẋ1(t)

0
0


 . (34)

Substituting (28) into (34) we obtain

dV (xt )

dt
+ zT(t)z(t)− γ 2wT(t)w(t)

= ξT




� P T
[

0
B1

]
P T


 0
A12
A14


 P T


 0
A22
A24




∗ −γ 2Iq 0 0
∗ ∗ −U1 0
∗ ∗ ∗ −U2



ξ + zTz+

2∑
i=0

ηi

−
2∑
i=1

[
xT

1 (t − hi)Six1(t − hi)+ xT
2 (t − hi)Uix2(t − hi)

+
∫ t

t−hi
yT(s)

[
AT
i1 AT

i3

]
Ri3

[
Ai1
Ai3

]
y(s)ds

]

−
∫ 0

−d
x̄T(t + θ)ĀT

d (θ)RdAd(θ)x̄(t + θ)dθ, (35)

where

ξ � col
{
x̄(t), w(t), x2(t − h1), x2(t − h2)

}
,

� is defined by (33) and

ηi(t) � − 2
∫ t

t−hi
x̄T(t)P T


 0
Ai1
Ai3


 y(s)ds, i = 1, 2,

η0(t) � − 2
∫ t

t−d
x̄T(t)P TĀd(s)x̄(t + s) ds.

For any(n1 + n)× (n1 + n)-matricesRi > 0 andMi the following inequality holds
[25]:

−2
∫ t

t−hi
bT(s)a(s) ds �

∫ t

t−hi

[
a(s)

b(s)

]T [
Ri RiMi

MT
i Ri (2, 2)

] [
a(s)

b(s)

]
ds (36)
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for a(s) ∈ Rn1+n, b(s) ∈ Rn1+n given fors ∈ [t − hi, t]. Here

(2, 2) = (MT
i Ri + I )R−1

i (RiMi + I ).

DenotingWi = RiMiP and using this inequality fora(s) = col{0 Ai1 Ai3}y(s)
andb = P x̄(t) we obtain fori = 1, 2

ηi(t)� hix̄
T(t)(WT

i + P T)R−1
i (Wi + P)x̄(t)

+ 2
(
xT

1 (t)− xT
1 (t − hi)

) [
0 AT

i1 AT
i3

]
Wix̄(t)

+
∫ t

t−hi
yT(s)

[
AT
i1 AT

i3

]
Ri3

[
Ai1
Ai3

]
y(s)ds. (37)

Similarly

η0(t)� dx̄T(t)P TR−1
d P x̄(t)

+
∫ t

t−d
x̄T(t + s)ĀT

d (s)RdĀd(s)x̄(t + s) ds. (38)

We substitute (37), (38) into (35) and integrate the resulting inequality int from 0
to ∞. BecauseV (x0) = 0, V (x∞) � 0 and

∫ ∞

0
zTz dt =

2∑
i=0

∫ ∞

0
xT(t − hi)C

T
i Cix(t − hi) dt

=
2∑
i=0

∫ ∞

0
xT(t)CT

i Cix(t) dt,

we obtain (by Schur complements) that

‖z‖2
L2

− γ 2‖w‖2
L2

� ξ̄T�ξ̄ < −α‖x‖2
L2
, α > 0,

where� is the matrix in the left-hand side of (32) and

ξ̄ � col{x̄(t), w(t), x2(t − h1), x2(t − h2), η̄},
whereη̄ is vector of fictitious states. Hence, forw(t) ∈ L2[0,∞] we havex(t) ∈
L2[0,∞] andJ (w) < 0 if (32) holds. Moreover,V of (31) satisfies (19a), (19b) and
hence (14a) and (14b) are internally stable.�

3.4. Another delay-independent BRL(with respect to discrete delays)

For

Wi = −P, Ri = εI2n

hi
, i = 1, . . . , m, (39)
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LMI (32) implies for ε → 0+ the following delay-independent LMI:


� P T
[

0
B1

]
P T


 0
A11
A13


 P T


 0
A21
A23


 P T


 0
A12
A14


 P T


 0
A22
A24


 dP T

∗ −γ 2Iq 0 0 0 0 0
∗ ∗ −S1 0 0 0 0
∗ ∗ ∗ −S2 0 0 0
∗ ∗ ∗ ∗ −U1 0 0
∗ ∗ ∗ ∗ ∗ −U2 0
∗ ∗ ∗ ∗ ∗ ∗ −dRd



< 0,

(40)

where

� = P T


 0 I 0
A01 −In1 A02
A03 0 A04


+


 0 I 0
A01 −In1 A02
A03 0 A04




T

P

+
2∑
i=1


Si 0 0

0 0 0
0 0 Ui


+

∫ 0

−d
ĀT
d (s)RdĀd(s) ds.

If LMI (40) is feasible, then (32) is feasible for a small enoughε > 0 and forRi
andWi that are given by (39). Thus, from Theorem 2.1 the following corollary
holds:

Corollary 3.6. Under A1 the system of(14a), (14b),and (15) is stable for all
hi > 0, i = 1, 2 andJ < 0 if there exist0< P1 = P T

1 , P2, P3, Ui = UT
i andSi =

ST
i , i = 1, 2 that satisfy(40).

Remark 2. As we have seen above, the delay-dependent BRL of Theorem 2.1 is
most powerful in the sense that it provides sufficient conditions for both the delay-
dependent and the delay-independent cases (where (40) holds). In the latter case,
(32) is feasible forhi → ∞, i = 1, 2.

3.5. Delay-dependent BRL for systems with polytopic uncertainties

The BRL of Theorem 2.1 was derived for system (14a), (14b) where the system
matricesAi, Ci, i = 1, 2, B1, Ad are all known. However, since the LMI of (32) is
affine in the system matrices, the theorem can be used to derive a criterion that will
guarantee stability and the required attenuation level in the case where the system
matrices are not exactly known and they reside within a given polytope.
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Denoting

� = [Ai Ad B1 Ci i = 0, 1, 2
]

we assume that� ∈ Co{�j , j = 1, . . . , N}, namely,

� =
N∑
j=1

fj�j for some 0� fj � 1,
N∑
j=1

fj = 1,

where theN vertices of the polytope are described by

�j =
[
A
(j)
i A

(j)
d B

(j)

1 C
(j)
i i = 0, 1, 2

]
.

We readily obtain the following:

Corollary 3.7. Assume that for allj = 1, . . . , N, A1 holds. Consider the system
of (14a), (14b),where the system matrices reside within the polytope�. For a pre-
scribedγ > 0, the cost function(13) achievesJ (w) < 0 over � for all nonzero
w ∈ L

q

2[0,∞) if there existn× n-matrices0< P
(j)

1 ,W
(j)

i1 ,W
(j)

i2 ,Wi3,Wi4, j =
1, . . . , N, P2, P3, and 0< R

(j)
i , 0< R

(j)
d , 0< U

(j)
i , 0< S

(j)
i , i = 1, 2, j = 1,

. . . , N that satisfy(32) for j = 1, . . . , N, where the matrices

Ai, Ad, B1, Ci, P1,W1, W2, R1, R2, Rd, S1, S2, i = 0, 1, 2,

are taken with the upper index j.

3.6. On LMI conditions in the case of discrete delays

We considerAd = 0. Even in this simpler case conditionA1 is not easily verifi-
able. That is why instead ofA1 one can assume that the fast LMI (17) is feasible for
somePf ,Ukf , k = 1, 2. Another possibility is to look forP3 in Theorem 3.4 in the
diagonal form:

P3 = diag
{
P31, P32

}
, P32 ∈ Rn2×n2. (41)

In the latter case if the full-order LMI (24) holds forP3 of (41), then (17) holds for
Pf = P32, whereUkf are(2, 2) blocks ofUk.

Consider now a difference continuous system

0 = A04x2(t)+
2∑
i=1

Ai4x2(t − hi)+ B12w(t),

z(t) = col
{
C02x2, C12x2(t − h1), C22x2(t − h2)

}
.

(42)

From Theorem 3.4, the following (delay-independent) BRL follows:
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Corollary 3.8. Givenγ > 0, if there existn2 × n2-matricesPf ,U1f , U2f that sat-
isfy the following LMI:

P T
f A04 + AT

04Pf +∑2
i=1Uif +∑2

i=0C
T
i2Ci2 P T

f A14 P T
f A24 P T

f B12

∗ −U1f 0 0
∗ ∗ −U2f 0
∗ ∗ ∗ −γ 2I


< 0,

(43)

then for all h1 > 0, h2 > 0 the difference system(42) is internally stable and
J (w) < 0.

3.7. H∞-norm of the‘adjoint’ system

We begin by noting that theH∞-norm of the system�1 of (14a) and (14b), where

z = C0x(t), Ad = 0, (44)

is given by (see e.g. [2, vol. 2, p. 32]):

‖�1‖∞ = sup
ω∈R

σ̄


C0

(
jωE − A0 −

2∑
i=1

Aie
−jwhi

)−1

B1


 , (45)

whereσ̄ {D} denotes the largest singular value ofD. Since

σ̄
{
H(jω)

} = σ̄
{
HT(−jω)

}
for all the transfer function matricesH(s) with real coefficients, it follows that the
H∞-norm of�1 is equal to theH∞-norm of the following system:

−Eξ̇(t) =
2∑
i=0

AT
i ξ(t + hi)+ CT

0 z̃(t), w̃(t) = BT
1 ξ(t),

ξ = 0 ∀t ∈ [0 h]
(46)

whereξ(t) ∈ Rn, z̃(t) ∈ Rp andw̃(t) ∈ Rq . Note that the latter system represents the
backward adjoint of�1 (as defined for nondescriptor case in [2, vol. 1]). Its forward
representation,�2, is described by

Eξ̇(τ) =
2∑
i=0

AT
i ξ(τ − hi)+ CT

0 z̃(τ ), w̃(τ ) = BT
1 ξ(τ ),

ξ = 0 ∀τ ∈ [−h 0].
(47)

Since the characteristic equations of�2 and�1 are identical, the former system is
asymptotically stable iff�1 is.
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Sufficient conditions of Theorem 3.5 for (14a), (14b), (44) and for its ‘adjoint’
may lead to different results. Therefore, one can apply Theorem 3.5 for the original
system and for its ‘adjoint’ and then choose the less conservative result.

Example 1. We consider the following system[
ẋ1(t)

0

]
ẋ(t) =

[
0.5 0
0 −1

]
x(t)+

[−1 1
0 0.5

]
x(t − h)+

[
1

0.5

]
w(t),

z(t) = [0.5 1
]
x(t),

(48)

wherex(t) = col{x1(t), x2(t)} ∈ R2. Applying the LMI condition of Theorem 3.5
to (48) and its ‘adjoint’ we obtain in both cases that the system is internally stable
for h � 1.15. The minimum achievable value ofγ is however different in the two
cases. Forh = .1 we obtain for both systemsγ = 2.3, while for h = 1 we obtain
for (48) γ0 = 9 and for its ‘adjoint’γt = 6. Forh = 1.12 the corresponding results
areγ0 = 40 andγt = 28, respectively. We see that in this example the conditions of
Theorem 3.5 for the ‘adjoint’ system are less conservative than those obtained for the
original system. Note that the same results are obtained by choosing block-diagonal
P3 with P32 > 0.

4. Delay-dependent state-feedback control

We apply the results of the previous section to the infinite-horizonH∞-control
problem. Given system (4), (6) with the objective vector (5b). For a prescribed scalar
γ > 0, we consider the performance index of (13). We look for the state-feedback
gain matrixK which, via the control law

u(t) = Kx(t), K = [K1,K2] (49)

achievesJ (w) < 0 for all nonzerow ∈ L
q

2[0,∞). Substituting (49) into (4), we
obtain the structure of (14a) and (14b) withA0 + B2K instead ofA0 and

CT
0C0 = C̄T

1 C̄1 +KTDT
12D12K. (50)

Applying the BRL of Section 3 to the above matrices, results in a nonlinear matrix
inequality because of the termsP T

2 B2K andP T
3 B2K. We therefore consider another

version of the BRL which is derived from (32).
In order to obtain an LMI we have to restrict ourselves to the case of the diag-

onal matrixP3 of (41) and (as well as in the nondescriptor problem) to the case
of Wi = εiP , i = 1, 2, whereεi ∈ R is a scalar parameter. Note that forεi = −1
(32) yields the delay-independent condition of Corollary 3.6. It is obvious from the
requirement of 0< P1, and the fact that in (32)(P3A

T
04 + A04P

T
3 ) must be negative

definite, thatP is nonsingular. Defining

P−1 = Q =
[
Q1 0
Q2 Q3

]
, (51a)
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Q2 =
[
Q21
Q22

]
, (51b)

Q3 = diag
{
Q31,Q32

}
, Q32 ∈ Rn2×n2, (51c)

and� = diag{Q, Iq+4n+2n1} we multiply (32) by�T and�, on the left and on the
right, respectively. Applying the Schur formula to the quadratic term inQ, we obtain
the following inequality:


�1 + �2

[
0
B1

]
h1(ε1 + 1)In+n1 h2(ε2 + 1)In+n1 ε1


 0
A11
A13


 ε2


 0
A21
A23





 0
A12
A14





 0
A22
A24


 QT



CT

01
0

CT
02




∗ −γ 2Iq 0 0 0 0 0 0 0
∗ ∗ −h1R1 0 0 0 0 0 0
∗ ∗ ∗ −h2R2 0 0 0 0 0
∗ ∗ ∗ ∗ −S1 0 0 0 0
∗ ∗ ∗ ∗ ∗ −S2 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ −U1 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ −U2 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −Ip
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

QT
[
In1
0

]
QT

[
In1
0

]
QT

[
0
In2

]
QT

[
0
In2

]
h1Q

T




0n1×n1 0 0
0 AT

11 AT
13

0 0 0
0 0 0


 h2Q

T




0n1×n1 0 0
0 AT

21 AT
23

0 0 0
0 0 0




0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

−S−1
1 0 0 0 0 0

∗ −S−1
2 0 0 0 0

∗ ∗ −U−1
1 0 0 0

∗ ∗ ∗ −U−1
2 0 0

∗ ∗ ∗ ∗ −h1R
−1
1 0

∗ ∗ ∗ ∗ ∗ −h2R
−1
2




< 0,

(52)

whereC0 = [C01 C02],

�1 =



0 In1 0∑2
i=0Ai1 −In1 A02∑2
i=0Ai3 0 A04


Q+QT




0 In1 0∑2
i=0Ai1 −In1 A02∑2
i=0Ai3 0 A04




T

+
2∑
i=1

εi


 0 0 0
Ai1 0 0
Ai3 0 0


Q+

2∑
i=1

εiQ
T


0 AT

i1 AT
i3

0 0 0
0 0 0


 , (53)
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�2 =
[

0
B2

] [
K1 0n1 K2

]
Q+QT



KT

1

0n1

KT
2


[0 BT

2

]
.

We substitute (50) into (52), denote

K1Q1 +K2Q22 = Y1, K2Q32 = Y2, (54)

and obtain the following:

Theorem 4.1. Consider the system of(4), (6), (5b) and the cost function of(13).
For a prescribed0< γ, the state-feedback law of(49) achieves, J (w) < 0 for
all nonzerow ∈ L

q

2[0,∞) if for some prescribed scalarsε1, ε2 ∈ R, there exist

0< Q1 ∈ Rn1×n1, 0< S̄k = S−1
k ∈ Rn1×n1, 0< Ūk = U−1

k ∈ Rn2×n2, k=1, 2,Q2

∈ Rn×n1 and Q3 ∈ Rn×n of (51a)–(51c), 0< R̄1 = R−1
1 , 0< R̄2 = R−1

2 ∈
R(n+n1)×(n+n1), Y1 ∈ R�×n1 andY2 ∈ R�×n2 that satisfy the following LMI:


�1 + �̄
[

0
B1

]
h1(ε1 + 1)R̄1 h2(ε2 + 1)R̄2 ε1


 0
A11
A13


 S̄1 ε2


 0
A21
A23


 S̄2


 0
A12
A14


 Ū1


 0
A22
A24


 Ū2 QT



C̄T

11
0

C̄T
12




∗ −γ 2Iq 0 0 0 0 0 0 0
∗ ∗ −h1R̄1 0 0 0 0 0 0
∗ ∗ ∗ −h2R̄2 0 0 0 0 0
∗ ∗ ∗ ∗ −S̄1 0 0 0 0
∗ ∗ ∗ ∗ ∗ −S̄2 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ −Ū1 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ −Ū2 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −Ip
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗


YT

1
0

YT
2


DT

12

[
Q1
0

] [
Q1
0

] 

QT

22
0

QT
32






QT

22
0

QT
32


 h1



QT

21

QT
31
0


[0 AT

11 AT
13

]
h2



QT

21

QT
31
0


[0 AT

21 AT
23

]

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
Ip 0 0 0 0 0 0
∗ −S̄1 0 0 0 0 0
∗ ∗ −S̄2 0 0 0 0
∗ ∗ ∗ −Ū1 0 0 0
∗ ∗ ∗ ∗ −Ū2 0 0
∗ ∗ ∗ ∗ ∗ −h1R̄1 0
∗ ∗ ∗ ∗ ∗ ∗ −h2R̄2




< 0,

(55)
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where

�̄ =
[

0
B2

] [
Y1 0n1 Y2

]+


Y T

1

0n1

Y T
2


[0 BT

2

]
.

The state-feedback gain is then given by

K2 = Y2Q
−1
32 , K1 = (Y1 −K2Q22)Q

−1
1 . (56)

Example 2. We consider the system

Eẋ(t) = A1x(t − h)+ B1w(t)+ B2u(t), x0 = 0,

z(t) = C̄1x(t)+D12u(t),
(57)

where

E =
[
1 0
0 0

]
, A1 =

[−1 0
1 −1

]
,

B1 =
[
1
1

]
, B2 =

[−0.5
1

]
,

C1 = [1 0.2
]
, D12 = [0.1] .

Note that in this exampleA04 = 0. We first find the state-feedback solution. We
obtained a near minimum value ofγ = 21 forh = 1.2 andε1 = −0.255. The state-
feedback control law that achieves the later bound on theH∞-norm of the closed
loop isu = Kx, whereK = [175.62 − 430680].

The LMI in Theorem 4.1 is affine in the system matrices. It can thus be applied
also to the case where these matrices are uncertain and are known to reside within a
given polytope. Considering the system of (4) and denoting

� =
[
E A0 A1 A2

B1 B2 C̄1 D12

]
,

we assume that� ∈ Co{�j , j = 1, . . . , N}, where theN vertices of the polytope
are described by

�(j) =
[
E A

(j)

0 A
(j)

1 A
(j)

2

B
(j)

1 B
(j)

2 C̄
(j)

1 D
(j)

12

]
.

We obtain the following:

Theorem 4.2. Consider the system of(4), (6), (5b), where the system matrices
reside within the polytope� and the cost function of(13). For a prescribed0< γ,

the state-feedback law of(49) achieves, J (w) < 0 for all nonzerow ∈ L
q

2[0,∞)
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and for all the matrices in� if for some prescribed scalarsε1, ε2 ∈ R there
exist0< Q1 ∈ Rn1×n1, 0< S̄k = S−1

k ∈ Rn1×n1, 0< Ūk = U−1
k ∈ Rn2×n2, k = 1,

2, Q2 ∈ Rn×n1 and Q3 ∈ Rn×n of (51a)–(51c), 0< R̄1 = R−1
1 , 0< R̄2 = R−1

2 ∈
R(n+n1)×(n+n1), Y1 ∈ R�×n1 andY2 ∈ R�×n2 that satisfy LMIs(55) for j = 1, . . . , N,
where the matrices

Ai, i = 0, 1, 2, B1, B2, C̄1, D12, R̄1, R̄2

are taken with the upper index j. The state-feedback gain is then given by(56).

5. Delay-dependent filtering

We consider system (4) with the measurement law of (5a). We seek a filter of the
following observer form:

E ˙̂x(t) =
2∑
i=0

Aix̂(t − hi)+Kf (ȳ(t)− C̄2x(t)) (58)

such that theH∞-norm of the resulting transference between the exogenous signal
w and the estimation errorz is less than a prescribed valueγ , where

z(t) � L(x(t)− x̂(t)). (59)

From (4), (5a) and (58) it follows that the estimation errore(t) = x(t)− x̂(t) is
described by the following model:

Eė(t) = (A0 −Kf C̄2)e(t)+
2∑
i=1

Aiē(t − hi)+ (B1 −KfD21)w,

z(t) = Le(t).

(60)

The problem then becomes one of finding the filter gainKf such thatJ (w) < 0.
We consider the ‘adjoint’ to (60) system described by

Eξ̇(τ) = (AT
0 − C̄T

2K
T
f

)
ξ(τ )+

2∑
i=1

AT
i ξ(τ − hi)+ LTz̃(τ ),

w̃(τ ) = (BT
1 −DT

21K
T
f

)
ξ(τ ), ξ = 0 ∀τ ∈ [−h 0].

(61)

Analogously to Theorem 4.1 (by applying BRL of Theorem 3.5 to (61)) we obtain:

Theorem 5.1. Consider the system of(4), (5a)and the cost functionJ (w). For a
prescribed0< γ, the filter gain achieves, J (w) < 0 for all nonzerow ∈ L

q

2[0,∞)

if for some prescribed scalarsε1, ε2 ∈ R, there exist0< Q1 ∈ Rn1×n1, 0< S̄k ∈
Rn1×n1, 0< Ūk ∈ Rn2×n2, k = 1, 2,Q2 ∈ Rn×n1 and Q3 ∈ Rn×n of (51a)–(51c),
0< R̄1, 0< R̄2 ∈ R(n+n1)×(n+n1), Y1 ∈ Rr×n1 andY2 ∈ Rr×n2 that satisfy the fol-
lowing LMI:
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�1 + �̄
[

0
LT

]
h1(ε1 + 1)R̄1 h2(ε2 + 1)R̄2 ε1




0

AT
11

AT
12


 S̄1 ε2




0

AT
21

AT
22


 S̄2




0

AT
13

AT
14


 Ū1

∗ −γ 2Ir 0 0 0 0 0

∗ ∗ −h1R̄1 0 0 0 0

∗ ∗ ∗ −h2R̄2 0 0 0

∗ ∗ ∗ ∗ −S̄1 0 0

∗ ∗ ∗ ∗ ∗ −S̄2 0

∗ ∗ ∗ ∗ ∗ ∗ −Ū1

∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗




0

AT
23

AT
24


 Ū2 QT



B11

0

B12


−



YT

1
0

YT
2


D21

[
Q1
0

] [
Q1
0

] 

QT

22
0

QT
32






QT

22
0

QT
32


 h1A1 h2A2

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

Ū2 0 0 0 0 0 0 0

∗ −Iq 0 0 0 0 0 0

∗ ∗ −S̄1 0 0 0 0 0

∗ ∗ ∗ −S̄2 0 0 0 0

∗ ∗ ∗ ∗ −Ū1 0 0 0

∗ ∗ ∗ ∗ ∗ −Ū2 0 0

∗ ∗ ∗ ∗ ∗ ∗ −h1R̄1 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ −h2R̄2




< 0,

(62)

where

�1 =




0 In1 0∑2
i=0A

T
i1 −In1 AT

03∑2
i=0A

T
i2 0 AT

04


Q+QT




0 In1 0∑2
i=0A

T
i1 −In1 AT

03∑2
i=0A

T
i2 0 AT

04




T

+
2∑
i=1

εi




0 0 0

AT
i1 0 0

AT
i2 0 0


Q+

2∑
i=1

εiQ
T


0 Ai1 Ai2

0 0 0
0 0 0
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�̄ = −
[

0
C̄T

2

] [
Y1 0n1 Y2

]−


Y T

1

0n1

Y T
2


[0 C̄2

]
,

Ai =


QT

21

QT
31

0


[0 Ai1 Ai2

]
, i = 1, 2.

The filter gain is then given by

KT
2 = Y2Q

−1
32 , KT

1 = (Y1 −KT
2Q22)Q

−1
1 , Kf = col

{
K1,K2

}
. (63)

The LMI in Theorem 5.1 is affine in the system matrices. Similarly to Theorem
4.2, it can thus be reformulated also to the case of matrices with polytopic uncertain-
ties.

6. Delay-dependent output-feedback control

We adopt in this section the dissipation approach to the solution of the output-
feedback problem. It applies a controller of a state-feedback—observer structure and
requires a solution of two LMIs. We assume:

A2. The matricesB1 andD21 are orthogonal, i.e.B1D
T
21 = 0, andR̃ = DT

12D12 is
not singular.

6.1. The first phase: a state-feedback controller design

Lemma 6.1. AssumeA2. Consider system(4), (5b).For a prescribedγ > 0, the
feedback law

u(t) = − [0 R̃−1BT
2

] [P1 0
P2 P3

]x1(t)

y(t)

x2(t)


 , (64a)

[
P1 0
P2 P3

]
=
[
Q1 0
Q2 Q3

]−1

(64b)

achievesJ (w) < 0 for all nonzerow ∈ L
q

2[0,∞) if for some prescribed scalars

ε1, ε2 ∈ R, there exist0< Q1 ∈ Rn1×n1, 0< S̄k = S−1
k ∈ Rn1×n1, 0< Ūk = U−1

k

∈ Rn2×n2, k = 1, 2, Q2 ∈ Rn×n1 and Q3 ∈ Rn×n of (51a)–(51c), 0< R̄1 = R−1
1

and0< R̄2 = R−1
2 ∈ R(n+n1)×(n+n1) that satisfy the following LMI:
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�1 + �̄
[

0
B1

]
h1(ε1 + 1)R̄1 h2(ε2 + 1)R̄2 ε1


 0
A11
A13


 S̄1 ε2


 0
A21
A23


 S̄2


 0
A12
A14


 Ū1


 0
A22
A24


 Ū2 QT


C̄T

11
0
C̄T

12




∗ −γ 2Iq 0 0 0 0 0 0 0
∗ ∗ −h1R̄1 0 0 0 0 0 0
∗ ∗ ∗ −h2R̄2 0 0 0 0 0
∗ ∗ ∗ ∗ −S̄1 0 0 0 0
∗ ∗ ∗ ∗ ∗ −S̄2 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ −Ū1 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ −Ū2 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −Ip
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

[
Q1
0

] [
Q1
0

] 
QT

22
0

QT
32





QT

22
0

QT
32


 h1



QT

21

QT
31
0


[0 AT

11 AT
13

]
h2



QT

21

QT
31
0


[0 AT

21 AT
23

]

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
S̄1 0 0 0 0 0
∗ −S̄2 0 0 0 0
∗ ∗ −Ū1 0 0 0
∗ ∗ ∗ −Ū2 0 0
∗ ∗ ∗ ∗ −h1R̄1 0
∗ ∗ ∗ ∗ ∗ −h2R̄2




< 0,

(65)

where�1 is given by(53) and where

�̂ = −
[

0
B2

]
R̃−1[0 BT

2

]
.

Proof. The proof readily follows by choosingV as in (31) and applying (36) for
RiMi = εiI, i = 1, 2. Denote by�u the matrix in the left-hand side of (65). We
obtain by integrating dV (t)/dt that

J �
∫ ∞

0
ξ̄T�pξ̄ dt +

∫ ∞

0
(uT − u∗T)R̃(u− u∗) dt

− γ 2
∫ ∞

0
(wT − w∗T)(w − w∗) dt, (66)
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where

�p = diag
{
P T, I8n+4n1+p+q

}
�u diag

{
P, I8n+4n1+p+q

}
,

w∗ = γ−2
[
0 BT

1

]
P


x1
y

x2


 ,

u∗ = −R̃−1
[
0 BT

2

]
P


x1
y

x2




(67)

and where the relation betweenP andQi, i = 1, . . . ,3, is given in (51a)–(51c) and
ξ̄ = col{x1, y, x2, w, η1}, with η1 representing the fictitious states that emerge when
applying Schur formula to construct�p. �

Unfortunately, the feedback law of (64a) and (64b) cannot be implemented even
when there exists a solution to (65), namely when the first term in the right-hand side
of (66) is negative for all̄ξ ∈ R8n+4n1+p+q .

6.2. The second phase: filtering via the adjoint system

Denotingr̄ = w − w∗ we represent (4) and (5a) in the form:


ẋ1(t)

0
0


 =

2∑
i=0

Âi


x1(t − hi)

y(t − hi)

x2(t − hi)


+ B̂1r̄(t)+


B21
B21
B22


 u(t),

ȳ(t) = Ĉ2


x1(t)

y(t)

x2(t)


+D21r̄(t),

(68)

where

Â0 =

A01 0 A02
A01 −In1 A02
A03 0 A04


+ γ−2B̂1

[
0q×n1 BT

1

]
P,

Âi =

Ai1 0 Ai2
Ai1 0 Ai2
Ai3 0 Ai4


 , i = 1, 2, B̂1 =


B11
B11
B12


 ,

Ĉ2 = [C̄21 0r×n1 C̄22
]
.

(69)

and whereP solves (65). The objective function of (13) and (66) will then be negative
if there existx̂(t) andŷ(t) in Rn that satisfy
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Ja =
∫ ∞

0
(z̄Tz̄− γ 2r̄Tr̄) dt < 0 ∀r̄ ∈ L

q

2[0,∞),

z̄(t) = R̃−1/2[0 BT
2

]
P


x1(t)− x̂1(t)

y(t)− ŷ(t)

x2(t)− x̂2(t)


 . (70)

The problem of findinĝx(t) and ŷ(t) is, in fact, aH∞ filtering problem for the
descriptor system (68).

Consider the following ‘innovation’ filter
 ˙̂x1(t)

0
0


=

2∑
i=0

Âi


x̂1(t − hi)

ŷ(t − hi)

x̂2(t − hi)


+Kf ȳ(t)

−Kf Ĉ2


x̂1(t)

ŷ(t)

x̂2(t)


+


B21
B21
B22


 u(t). (71)

Denoting

e =

e1
e0
e2


 =


x1
y

x2


−


x̂1
ŷ

x̂2


 (72)

and using the assumption onD21 and the definition ofw∗ in (67) we find


ė1(t)

0
0


 = (Â0 −Kf Ĉ2)e(t)+

2∑
i=1

Âie(t − hi)+ (B̂1 −KfD21)r̄(t),

z̄(t) = R̃−1/2[0 BT
2

]
Pe(t).

(73)

The problem now becomes one of finding the gain matrixKf that will ensure the
stability of system (73) and that theH∞-norm of the transference from̄r to z̄ is less
thanγ . This problem was solved in Section 5. By applying Theorem 5.1 we obtain
the following result:

Theorem 6.2. AssumeA2. Consider the system of(4), (5a), (5b)and the cost
function of(13). For a prescribed0< γ, there exists an output-feedback controller
that achieves, J (w) < 0 for all nonzerow ∈ L

q

2[0,∞) if for some prescribed sca-
lars ε1, ε2 ∈ R, there exist0< Q1 ∈ Rn1×n1, 0< S̄k ∈ Rn1×n1, 0< Ūk ∈ Rn2×n2,

k = 1, 2,Q2 ∈ Rn×n1 and Q3 ∈ Rn×n of (51a)–(51c), 0< R̄1 and 0< R̄2 ∈
R(n+n1)×(n+n1) that satisfy(65) and for some prescribed scalarsε̂1, ε̂2 ∈ R, there ex-
ist0< Q̂1 ∈ Rn1×n1, 0< Ŝk ∈ Rn1×n1, 0< Ûk ∈ Rn×n, k = 1, 2, Q̂2 ∈ R(n+n1)×n1

andQ̂3 ∈ R(n+n1)×(n+n1) of the form
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Q̂2 =
[
Q̂21

Q̂22

]
, Q̂22 ∈ Rn×n1,

Q̂3 = diag
{
Q̂31, Q̂32

}
, Q̂31 ∈ Rn1×n1, Q̂32 ∈ Rn×n,

0< R̂1, 0< R̂2 ∈ R(2n1+n)×(2n1+n), Y1 ∈ Rr×n1, and Y2 ∈ Rr×n

that satisfy the following LMI:



�1 + �̄


 0n1×r

P

[
0
B2

]
R̃−1/2


 h1(ε̂1 + 1)R̂1 h2(ε̂2 + 1)R̂2 ε̂1




0

ÂT
11

ÂT
12


 Ŝ1 ε̂2




0

ÂT
21

ÂT
22


 Ŝ2




0

ÂT
13

ÂT
14


 Û1




0

ÂT
23

ÂT
24


 Û2

∗ −γ 2Ir 0 0 0 0 0 0
∗ ∗ −h1R̂1 0 0 0 0 0
∗ ∗ ∗ −h2R̂2 0 0 0 0
∗ ∗ ∗ ∗ −Ŝ1 0 0 0
∗ ∗ ∗ ∗ ∗ −Ŝ2 0 0
∗ ∗ ∗ ∗ ∗ ∗ −Û1 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ −Û2
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

Q̂T


 0
B11
B1






YT

1
0

YT
2


D21

[
Q̂1
0

] [
Q̂1
0

] 

Q̂T

22
0

Q̂T
32






Q̂T

22
0

Q̂T
32


 h1Â1 h2Â2

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
Iq 0 0 0 0 0 0 0
∗ −Iq 0 0 0 0 0 0
∗ ∗ −Ŝ1 0 0 0 0 0
∗ ∗ ∗ −Ŝ2 0 0 0 0
∗ ∗ ∗ ∗ −Û1 0 0 0
∗ ∗ ∗ ∗ ∗ −Û2 0 0
∗ ∗ ∗ ∗ ∗ ∗ −h1R̂1 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ −h2R̂2




< 0,

(74)

where

P1 = Q−1
1 , P2 = −Q−1

3 Q2Q
−1
1 ,

P3 = Q−1
3 = diag

{
Q−1

31 ,Q
−1
32

} = diag
{
P31, P32

}
,

P =
[
P1 0
P2 P3

]
,

(75)
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�1 =



0 I 0∑2
i=0 Â

T
i1 −In1 ÂT

03∑2
i=0 Â

T
i2 0 ÂT

04


 Q̂+ Q̂T




0 I 0∑2
i=0 Â

T
i1 −In1 ÂT

03∑2
i=0 Â

T
i2 0 ÂT

04




T

+
2∑
i=1

ε̂i




0 0 0

ÂT
i1 0 0

ÂT
i2 0 0


 Q̂+

2∑
i=1

ε̂iQ̂
T




0 Âi1 Âi2

0 0 0

0 0 0


 ,

�̄ = −
[

0
ĈT

2

] [
Y1 0n1 Y2

]−


Y T

1

0n1

Y T
2


[0 Ĉ2

]
,

Âi1 = Ai1, Âi2 = [0 Ai2
]
, Âi3 =

[
Ai1
Ai3

]
, Âi4 =

[
0 Ai2
0 Ai4

]
, i=1, 2,

Â01 = A01 + γ−2B11B
T
1P2,

Â02 = [0 A02
]+ γ−2[B11B

T
11P31 B11B

T
12P32

]
,

Â03 =
[
A01
A03

]
+ γ−2

[
B11B

T
1P2

B12B
T
1P2

]
,

Â04 =
[−In1 A02

0 A04

]
+ γ−2

[
B11B

T
11P31 B11B

T
12P32

B12B
T
11P31 B12B

T
12P32

]
,

Âi =


Q̂T

21

Q̂T
31

0


[0 Ai1 0 Ai2

]
, i = 1, 2.

The filter gain is then given by

KT
2 = Y2Q̂

−1
32 , KT

1 = (Y1 −KT
2 Q̂22)Q̂

−1
1 , Kf = col

{
K1,K2

}
. (76)

If a solution to(65) and (74) exists, then the output-feedback controller is ob-
tained by:

u(t) = −R̃−1BT
2

[
P2x̂1(t)+ P3 col{ŷ(t) x̂2(t)}

]
, (77)

wherex̂ and ŷ are obtained by(71).

Example 3. We consider the following system:

Eẋ(t) =
1∑
i=0

A1x(t − hi)+ B1w(t)+ B2u(t), x0 = 0,

z(t) = C̄1x(t)+D12u(t),

y(t) = C̄2x(t)+D21w(t),

(78)
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where

E =
[
1 0
0 0

]
, A0 =

[
0 0
0 2

]
, A1 =

[−1 0
1 −1

]
,

B1 =
[
1 0
1 0

]
, B2 =

[
0
1

]
, C1 = [1 0.2

]
, C2 = [1 0

]
,

D12 = 0.1, D21 = [0 0.1
]
.

We first find the state-feedback solution. We obtained a near minimum value of
γ = 11 for h1 = 1.2 andε1 = −0.3. The state-feedback control law that achieves
the later bound on theH∞-norm of the closed loop isu = Kx, whereK = [42.6854
−0.3426]. Using (65) we find that the feedback lawu∗ does not applyy because
B21 = 0 andP3 is diagonal. We thus obtained the same near minimum value of
γ = 11 forh = 1.2 andε1 = −0.3. The feedback control law that achieves the later
bound on theH∞-norm of the closed loop is

u∗ = 9.72x1 + 3.22x2.

The output-feedback control is derived for the same values ofh, ε1 andε̂1 = −1. A
minimum value ofγ = 2.4 is obtained. The resulting output-feedback has the form
9.72x̂1 + 3.22x̂2, wherex̂ is obtained by (71) with

Kf = [6.1814 1.1882 −3.1710
]T
.

6.3. The second phase: direct filtering

The filtering of the previous section suffers from an additional overdesign that
stems from the use of the adjoint system which must be stable independently of the
delays in the variablee0. The advantage of the approach of Section 6.2 in comparison
with [12], where nondescriptor systems were considered, lies in the fact that it applies
the efficient bounds introduced by Park [25]. For smaller values ofh the method of
[12] may lead to less conservative results (see Example 4 below). In the present sec-
tion, we generalize the method of [12] to the case of descriptor systems with delay.

Denotingr̄ = w − w∗ we represent (4) in the form:
ẋ1(t)

0
0


= Â


x1(t)

y(t)

x2(t)


−

2∑
i=1


 0
Ai1
Ai3


∫ t

t−hi
y(s)ds

+
[

0
B1

]
r̄(t)+

[
0
B2

]
u(t), (79)

where

Â =



0 I 0∑2
i=0Ai1 −I A02∑2
i=0Ai3 0 A04


+ γ−2B̂1B̂

T
1P, B̂1 =

[
0
B1

]
,
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Ĉ2 = [C̄21 0 C̄22
]

and whereP solves (65). The objective function of (13) and (66) will then be negative
if there existx̂(t) andŷ(t) in Rn that satisfy (70).

Consider the following ‘innovation’ filter


 ˙̂x1(t)

0
0


= Â


x̂1(t)

ŷ(t)

x̂2(t)


−

2∑
i=1


 0
Ai1
Ai3


∫ t

t−hi
ŷ(s)ds

+Kf [ȳ(t)− Ĉ2x̂(t)] +
[

0
B2

]
u(t). (80)

Using the notation of (72), assumptionA2 and the definition ofw∗ in (67) we find


ė1(t)

0
0


 = [Â−Kf Ĉ2]e(t)−

2∑
i=1


 0
Ai1
Ai3


∫ t

t−hi
ê0(s) ds

+(B̂1 −KfD21)r̄(t),

z̄(t) = R̃−1/2[0 BT
2

]
Pe(t).

(81)

The problem now becomes one of finding the gain matrixKf that will ensure the
stability of system (81) and that theH∞-norm of the transference from̄r to z̄ is less
thanγ . Similarly to [12] we obtain the following result:

Theorem 6.3. Consider the system of(4), (5a), (5b)and the cost function of(13).
For a prescribed0< γ, there exists an output-feedback controller that achieves,

J (w) < 0 for all nonzerow ∈ L
q

2[0,∞) if for some prescribed scalarsε1, ε2 ∈ R,

there exist0< Q1 ∈ Rn1×n1, 0< S̄k ∈ Rn1×n1, 0< Ūk ∈ Rn2×n2, k = 1, 2,Q2 ∈
Rn×n1 andQ3 ∈ Rn×n of (51a)–(51c), 0< R̄1 and 0< R̄2 ∈ R(n+n1)×(n+n1) that
satisfy (65) and there exist0< P̂1 ∈ Rn1×n1, 0< Ûk ∈ Rn2×n2, k = 1, 2, P̂2 ∈
Rn×n1 andP̂3 ∈ Rn×n of the form

P̂2 =
[
P̂21

P̂22

]
, P̂22 ∈ Rn2×n1,

P̂3 = diag
{
P̂31, P̂32

}
, P̂31 ∈ Rn1×n1, P̂32 ∈ Rn2×n2,

0< R̂1, 0< R̂2 ∈ Rn1×n1, Y ∈ R(n+n1)×r

that satisfy the following LMI:
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�̄1 P̂T
[

0
B1

]
− YD21 h1P̂

T


 0
A11
A13


 h2P̂

T


 0
A11
A13


 [

PT
2

PT
3

]
B2 P̂T


 0
A12
A14


 P̂T


 0
A22
A24




∗ −γ 2Iq 0 0 0 0 0
∗ ∗ −h1R̂1 0 0 0 0
∗ ∗ 0 −h2R̂2 0 0 0
∗ ∗ ∗ ∗ −R̃ 0 0
∗ ∗ ∗ ∗ ∗ −Û1 0
∗ ∗ ∗ ∗ ∗ ∗ −Û2



< 0,

(82)

whereP, P1, P2, P3 are defined by(75) and

�̄1 = P̂ TÂ+ ÂTP̂ − Y Ĉ2 − ĈT
2Y

T +

0n1×n1 0 0

0
∑2

i=1 hiR̂i 0
0 0

∑2
i=1 Ûi


 .

If a solution to(65) and(82) exists, then the output-feedback controller is obtained
by (77), wherex̂ and ŷ are obtained by(80) withKf = P̂−TY .

Example 4. We consider the nondescriptor system of [12]

ẋ(t) = A0x(t)+ A1x(t − h)+ B1w(t)+ B2u(t),

z(t) = col
{
C1x(t),D12u(t)

}
,

ȳ(t) = C2x(t)+D21w(t),

(83)

where

A0 =
[
0 0
0 1

]
, A1 =

[−1 −1
0 −.9

]
, B1 =

[
1 0
1 0

]
, B2 =

[
0
1

]
,

C1 = [0 1
]
, D12 = 0.1, C2 = [0 1

]
, D21 = [0 0.1

]
.

(84)

We compare the output-feedback controller designs achieved by the two methods
presented in Sections 6.2 and 6.3. By the counterpart of Theorem 6.3 for the non-
descriptor case, the output-feedback control was derived in [12] forh = 0.999 and
ε1 = −0.29. A minimum value ofγ = 0.86 was obtained. By Theorem 6.2 a greater
value ofγ = 11 is found for the same value ofh andε1 = ε2 = −0.3.

Forh � 1 the LMI of Theorem 6.3 is not feasible for anyγ > 0. By Theorem 6.2,
the output-feedback control is obtained forh = 1.28, ε1 = ε̂1 = −.3. A minimum
value ofγ = 20 is then achieved.

This example shows that for greater values ofh Theorem 6.2 is less conservative
due to Park’s inequality [25] that is used for bounding the cross terms. For smaller
values ofh Theorem 6.2 leads to more conservative results owing to the fact that the
adjoint system forecontainse0 with delays and that the results are delay-independent
with respect to delays ine0.
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7. Conclusions

An LMI solution is proposed for the problem of stability andH∞-control of linear
time-invariant descriptor systems. This solution is based on the Lyapunov function
approach to descriptor systems with delay introduced in [10] and on the LMI ap-
proach toH∞ control of nondescriptor systems of [12]. The LMI sufficient condi-
tions that are obtained allow solutions to theH∞-control problem in the uncertain
case where the system parameters lie within an uncertainty polytope. As a byprod-
uct, new LMI conditions for stability andH∞-control of difference continuous time
equations are obtained.

The design of the output-feedback controller is achieved by two methods: one is
based on the BRL for the adjoint of the system that describes the estimation error;
the other applies the BRL directly to the system of the estimation error (and thus
generalizes the result of [12] to the descriptor case). Both methods suffer from an
additional overdesign that stems from the need to estimate the state and its derivative.
These methods lead to complementary results: for greater values of the delay the first
method is less conservative, while for smaller values of the delay—the second one
provides less conservative results. In the special case where a result is sought which
is delay-independent with respect to the process and delay-dependent with respect
to observer, the latter overdesign can be removed since the estimate of the state (and
not of its derivative) is needed.

One question that often arises when solving control and estimation problems for
systems with time-delay is whether the solution obtained for certain delayshi will
satisfy the design requirements for all delaysh̄i � hi . In the problems of state-feed-
back and filtering the answer is the affirmative since the LMIs in Theorems 4.1 and
5.1 are convex in the time delays. The situation in the output-feedback control case
is however different, in spite of the seemingly convexity of the LMI of Theorems
6.2 and 6.3 in the delay parameters. The fact that theP2 andP3 depend nonlinearly
on the delay implies that the output-feedback controller that is derived for a certain
delay will not necessarily satisfy the design specifications for smaller delays.
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