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Abstract

For continuous-time, linear descriptor system with state-del&sacontrol problem is
solved. Sufficient conditions for delay-dependent/delay-independent stability. giggin
analysis are obtained in terms of linear matrix inequalities (LMIs). A bounded real lemma
and state-feedback solutions are derived for systems which may contain polytopic parameter
uncertainties. The filtering problem is also solved and an output-feedback controller is then
found by solving two LMIs. The first LMI is associated with a proportional-derivative state-
feedback control. The second LMl is derived in two different forms, the first one corresponds
to the adjoint of the system that describes the estimation error and the other stems from the
original system. These two forms lead to different results. Numerical examples are given
which illustrate the effectiveness of the new theory. © 2002 Elsevier Science Inc. All rights
reserved.
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1. Introduction

Delay differential-algebraic equations, which have both delay and algebraic con-
straints, often appear in various engineering systems, including aircraft stabilization,
chemical engineering systems, lossless transition lines, etc. (see e.g. [4,13,14,22,28],

“This work was supported by the Ministry of Absorption of Israel and by C&M Maus Chair at Tel Aviv
University.
* Corresponding author. Tel.: +972-3640-5313; fax: +972-3640-7095.
E-mail addressemilia@eng.tau.ac.il (E. Fridman).

0024-3795/02/$ - see front matter2002 Elsevier Science Inc. All rights reserved.
PIl: S0024-3795(01)00563-8



272 E. Fridman, U. Shaked / Linear Algebra and its Applications 351-352 (2002) 271-302

and the references therein). Depending on the area of application, these models are
called singular or implicit or descriptor systems with delay. As has been pointed out
in [6,7], descriptor systems with delay may in fact be systems of advanced type.
Descriptor systems may be destabilized by small delay in the feedback [20].

There are only few papers on descriptor systems with delay [6,7,10,15,22,23,28].
A particular case of these systems (the so-called lossless propagation models), de-
scribed by

x1(t) = Ax1(t) + Bxa(t — h),  x2(t) = Cxa(t) + Dxa(t — h), 1)

has been treated as a special class of neutral systems either byietting: y-(r)
[23] or by writing the second equation as [15,22]

d
E[xz(t) — Cx1(t) — Dxa(t —h)] = 0. )

The stability of a general neutral type descriptor system with a single delay de-
scribed by

Ex(t) + Ax(t) + Bi(t —h) + Cx(t —h) =0 (3)

with a singular matrixE has been studied in [28] by analyzing its characteristic
equation

de{sE+ A + (sB+ C) exp(—hs)] = 0

and finding frequency domain conditions which guarantee that all roots of the latter
equation have negative real parts bounded away from 0. A Lyapunov-based approach
to stability analysis of descriptor system with delay has been introduced in [10],
where delay-independent and delay-dependent linear matrix inequalities (LMIs) con-
ditions have been derived. For information on LMI approach to control, see [3].

All the above-mentioned results only analyze the existence and the stability of so-
lutions of descriptor systems with delay. To the best of our knowledge no
control problem solution has been derived for this class of systems. For descriptor
systems without delayH,-control problems have been treated in the frequency
domain [19,27] and in the time-domain [21,26,29]. In [21,26] an LMI approach has
been proposed. For nondescriptor systems with state-delay, LMI delay-dependent
and delay-independeik,-controllers were derived in [12,16,24] (see also the refer-
ences therein). These finite-dimensional LMIs provide sufficient conditions only for
infinite-dimensional systems with state-delay. Unlike infinite-dimensional methods
(see e.g. [1,11]) they lead to effective numerical algorithms and may be applied for
systems with polytopic uncertainties.

In the present paper, we adopt the finite-dimensional LMI approaé¢hdecon-
trol of descriptor system with delay. Our objective is to obtain delay-dependent so-
lutions which are less conservative than the delay-independent ones. We apply the
descriptor model transformation that has been introduced recently for delay-depen-
dent stability andH..-control of nondescriptor systems [9,12]. We derive bounded
real lemmas (BRLs) and find solutions to thg, filtering, the state-feedback and
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the output-feedback . -control problems. The solutions are delay-dependent with
respect to the ‘slow’ variable and delay-independent with respect to the ‘fast’ one.
The latter guarantees the robustness of the system behavior with respect to the small
changes in the delay.

Notation. Throughout the paper the superscript ‘T’ stands for matrix transposi-
tion, R" denotes the-dimensional Euclidean space with vector ngrny, R"*™ is
the set of alli x m real matrices, and the notatigh> 0 for P € R**" means that
P is symmetric and positive definite. The space of functionR4rthat are square in-
tegrable ovef0 o0) is denoted bﬂg [0, oo) with norm|| - ||.,. LetC,[a, b] denote
the space of continuous functiogs [a, b] — R" with the supremum norm: |. We
also denote, (0) = x(t +6) (8 € [—h, 0]) and j= /1.

2. Problem formulation

Given the following system:
2

Ei(t) =Y Aix(t —hi) + Buw(t) + Bou(r), x(1)=0, Vt <0, (4)
i=0

3(t) = Cax(1) + Dagw(1), (5a)

z(t) = col{ C1x(1); D1au(1)}, (5b)

wherex(¢) = col{x1(2), x2()}, x1(¢) € R", x2(t) € R"2 is the system state vector,
u(t) € Rt isthe control inputw(r) € fg [0, oo] is the exogenous disturbance signal,
y(T) € R is the measurement vector and) € R” is the state combination (objec-
tive function signal) to be attenuated. The time delays= 0, #; > 0,i = 1, 2, are
assumed to be known. We took for simplicity two delays, but all the results are easily
generalized for the case of any finite number of delays. .., k,,. The singular
matrix E and the matrices\;, B; are constant matrices of appropriate dimensions.
Denoten £ nq + no.

Following [21,26], we assume for simplicity that

Iy, O
E:[O 0] (©)

Every descriptor system can be represented in a form satisfying this assumption.
Note that in [21] there i€ = XT > 0 instead ofl,,, but from such a system, the
system withE of (6) follows immediately. The matrices in (4), (5a) and (5b) have the
following structure:
A A .
Al - [A[S AlA} ’ 1= O’ 17 27
5 @)
B, = |:B§;:| , Ci = [Cil Ciz] , =12
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A descriptor system without delay
Ex(t) = Aox(1) + Biw(r) 8

is regular if the characteristic polynomial d&tE — Ap) does not vanish identically

ins € C. Itis well known that descriptor system may have impulsive solutions. The
existence of the latter solutions is usually studied in terms of the Weierstrass canon-
ical form and thendexof the system which are defined as follows [5,8,20]: there
exist nonsingular matriceB, Q € R"*" such that

In O J 0
w-[s 3] o= 1]

whereN € R"2*"2 andJ € R"*"™ are in Jordan form. The matriX is nilpotent of
indexv, i.e. N¥ = 0, NV~1 = 0. The index of (8) is the index of nilpoteneeof N.
The index of the system with delay

2
Ei(t) =Y Aix(t — h;) + Buw(t) (10)
i=0
is defined in [10] to be equal to the index of (8). The descriptor system (10) admits
impulsive solutions iffy > 1 [10].

We do not requiredgs in (4) to be nonsingular. g4 is singular, then (8) has
index greater than 1 (see e.g. [5,8]). Hence, the index of the open loop system (4)
with delay is higher than one. Such a system may have an impulsive solution. The
nonsingularity ofAg4 guarantees the existence and the uniqueness of solution to (4)
with u = 0 (see Proposition 3.1).

The following class of neutral descriptor systems

. 2 . _ 2

[Xl(f) " Ly Fihate - hz)] =" Ax(t — h) + Buw(®) + Bau(t),  (11)
i=0

can be reduced to the form of (4) and (6). This follows from the fact that the aug-

mented system

x1(1) =y,

2 2
[y(’) - Ziztl)FiY(’ - hl’)} =Y Aux(t — hy) + Byw(t) + Bou(?),
i=0

(12)

is a particular case of (4) and (6).
For a prescribed scalar > 0, we define the performance index

J(w) = /oo (z"z — y?wTw) dr. (13)
0

The problem is to find a controller such that the resulting closed loop system has in-
dex at most one is internally stable (i.e. asymptotically stablefer 0) andJ (w) <
0 for all disturbances (r) € Z3[0, oo].



E. Fridman, U. Shaked / Linear Algebra and its Applications 351-352 (2002) 271-302275

3. Stability and L,-gain analysis of a descriptor system with delay

BRLs will be obtained for systems with discrete and distributed delays. Given the
following system:

2 0
Ex(t) = Z Aix(t — h;) + / Ag(s)x(t + s)ds + Biw(t), (14a)
i=0 —d
x() =0 Vr <0, (14b)
z(1) = col{ Cox (1), C1x(t — h1), Cax(t — h2)}, (15)

whereE is defined in (6)x(z) = col{x1(¢), x2(¢)}, x1(t) € R™, x2(¢) € R"2, is the
system state vecta(r) € g‘é [0, oo] is the exogenous disturbance signal atgl

R? is objective function signalAd,(s) is a piecewise-continuous and uniformly
bounded(ny + n2) x (n1 + n)-matrix-function. We assume that the matrices in
(14a) and (14b) have the structure of (7) and

_Tc. . L _|Ada1  Aa2
Ci=[Ci1 Ci2], i=0,12 Az= [Ads Ad4] .

Denoteh = max{h1, ho, d}. By solutionof (14a) and (14b) on the segm¢at 1]
(r1 > 0) we understand a pair of functiofis; (z), x2(¢)}, such thatr; is absolutely
continuous and; is integrable orf0, #1], these functions satisfy system (14a) almost
forall z € [0, #1] and the initial conditions (14b).

Proposition 3.1. Assume thatig4 is nonsingular. Forw(t) € LPZ[O, o) the solu-
tion to (14a)and(14b)exists and is unique o, 71] for all #; > 0.

Proof. By denotingy, = x» we obtain from (14a) a neutral type system with the ze-
ro initial conditionsx1(¢) = 0, y2(t) = 0Vr < 0. Henceyz(t) = ¢ Vi < 0, ¢ € R"2.

This initial value problem for neutral system has a piecewise absolutely continuous
solutionxy (), y2(z) on [0, #1] such thate1(¢) is absolutely continuous dm, 1] (see

[17, p. 143]). Thereforey,(¢) is integrable and solution of (14a) and (14b) exists.

To prove the uniqueness we assume that there are two solutions of (14a) and
(14b). Then their difference satisfies the homogeneous equations (14a) and (14b)
with w = 0, which has a unique solution= 0 [10]. Hence, solution of (14a) and
(14b) is unique. O

3.1. Stability of the difference operator and of the descriptor system

We assume:

Al. The matrixAo4 is nonsingular and the difference operator C,,[—A, 0] —
R”" given by
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2 0
D (xa) = x2(t) + Y Agg Aiaxa(t — hi) + / Aga Ada(s)xa(t + 5) ds
i=1 —d
is stable for all delays; andha (i.e. equatiorZxy, = 0 is asymptotically stable for
all k1 andhy).

A sufficient condition forAl is the following inequality:

2 0
> |AgiAial + /d |AgiAaa(s)|ds < 1,
i=1 -
where| - | is any matrix norm.
In the case of single delay (e.) in the fast variabler; we assume instead of
A1l the following:

Al. Allthe eigenvalues 01'4541A14 are inside of the unit circle.

In the case of multiple discrete delaysdn whereA 4 = 0, Al is equivalent to
the following one (see [14, Theorem 6.1, p. 286]):

Al”. If o(B) is the spectral radius of matrB, thenog < 1, where

2
o0 sup{o (Z Aa41A,-4ei9k> O e[0,2n], k=1,2}. (16)
k=1

Evidently A1 is equivalent toA1” in the case of single delays. A sufficient
LMI condition for A1” is given by the following:

Lemma 3.2 [10]. If there existn, x np-matricesPy, U1y, Uz that satisfy the fol-
lowing LMI:
P}A04 + AL P+ Y2 Us PfT»A14 PfT-A24
* Uy 0 <0, (17)
* * —Uzy
thenAg4 is nonsingular and
(i) A1” holds
(i) the difference operator
2
D(xa) = x2(t) + Y Agy Aiaxa(t — hy)
i=1
is stable for alli, ho;
(iii) under additional assumption th&, > 0 the“fast systerh
2
Ka(t) = Aoaxa(t) + Y Aiaxa(t — hy) (18)
i=1
is asymptotically stable for alt1, h>.
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The following result on stability of (14a) and (14b) with= 0 has been obtained
recently [10].

Lemma3.3. Under Al if there exist positive numbets 8, y and a continuous
functionalV : C,[—h, 0] — R such that

Blor(0))? < V() < yIol?, (19a)

V(p) < —alp(0)?, (19b)

and the functior¥ (1) = V (x;) is absolutely continuous for; satisfying(14a)and
(14b)with w = 0, then(14a), (14bwith w = O is asymptotically stable.
3.2. Delay-independent BRlith respect to discrete delays

Descriptor type Lyapunov—Krasovskii functional for system (14a), (14b) has the
following form:

V(x) = xT(EPX?) + V1 + V2, (20)
where
A0 S
P = [PZ PJ, P1=P] >0, (21)
2 t
Vi= Z/ xT(s)Uix(s)ds, U; > 0, (22)
i—1 t—h;
and
0 t
Vo= / / xT(s)AT(0)RA;(0)x(s)ds dd, R > 0. (23)
—d Jt+0

The first term of (20) corresponds to the descriptor systéngorresponds to the
delay-independent stability with respect to the discrete delaysVaneto delay-
dependent stability with respect to the distributed delays [18]. The functional (20) is
degeneratedi.e. nonpositive-definite) as it is usual for descriptor systems.

We obtain analogously to [10] the following:

Theorem 3.4. Under Al (14a)and (14b), (15)is internally asymptotically stable
and for a prechosem > 0 J(w) < O for all nonzerow(z) € 3‘5 [0, oo] and for all
h1 > 0, hy > 0 if there existn x n-matrix P of (21) with n1 x n1-matrix P, and
na x np-matrix P3 andn x n matricesU; = U/, i = 1,2, R = R that satisfy the
following LMI:
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PTAG+AJP + Y2 Ui + [° Al (s)RAq(s)ds  PTBy  PTA;  PTA; dpPT

* -2l 0 0 0

* * Uz 0 0 < 0.
* * * —-Us 0

* * * * —dR

Remark 1. From Theorem 3.4 it follows that the system
EXx(t) = Aox(t) + A1x(t — h) (25)
is asymptotically stable for all > 0 if the following LMI is feasible:

PTAo+AlP PTA1] U1 O

[ AIP o |tlo _u < 0. (26)

Multiplying (26) by Q from the left and by2* from the right, where
Cor_oay-1

the following frequency domain inequality is readily obtained

Q diag{Ul, —Ul}Q* <0
or

Al(—jwE — A)) M ULGWE — Ag)rA1 < Uy 27)

Therefore, if LMI (24) is feasible (and thus, (26) is feasible), then forealt R
the frequency domain inequality (27) holds. Hence thg-norm of Ull/z(ja)E —

Ao)—lAlul_l/2 is less than 1. This is a counterpart of the Kalman—Yakubovich—
Popov lemma for descriptor systems.

3.3. Delay-dependent BRL

We are looking for delay-dependent conditions with respect to slow variable
With respect to discrete delays in the fast variables the results will be delay-inde-
pendent. The latter guarantees robust stability with respect to small changes of delay
[10]. Following [9,10] we represent (14a) and (14b) in the equivalent form:

x1() = y(@),
2 An A ,
§]-[E s
YicoAiz  Aoa “ (28)

2 A 0 0
_Z[ ll}/ y(f+s)ds+/ Ag($)x(t +5)ds + Brw(r).
= LAs] o, —d
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The latter system can be represented in the form:

2
Ex(1) = Z t—h)+ZhH/ y(t +s)ds

i=0 i=1
0 —_ -
~|—/ Ag()x(t +s)ds + Byw(t), (29)
where
X1 _ In, 0 0
i = y k] E = O On1><n1 0 k]
X2 0 0 szxnz
Ao= Y2041 —ly An2|, A=|0 0 Ap|, i=12 (30)
Y2 .43 0 Ay 0 0 Ais
[0 ) 0 0 0 o
Hi=|A1|, As=|Asx 0 Agp|, B1= [BJ .
| Ai3 Agz 0 Aas

A Lyapunov—Krasovskii functional for system (28) has the form:

2 t
Viy=x (WEPX(t)+ Y f x] (1) Spxa(r) dr
i=1 1=hi
2 1
+Z/ x;(r)Uixz(r) dr
— Ji—h;
T1p. | Ail
'*‘Z/ / y (S) A Aj5)Ri3 [A,-g] y(s) ds do

+/ / T (s)AY Ry A g% (s) ds 06, (31)
—d Jt+6

whereP has the structure of (21) with; € R™*"1, P3 € R"*" and

0<S eR™W™M, 0<U e R,
O<Rize [Rnxn7 R, € R(ﬂ1+n)><(n1+n)'

The first term of (31) corresponds to the descriptor system, the second and the fourth
terms—to the delay-dependent conditions with respeat tand the third—to the
delay-independent conditions with respectiothe fifth term corresponds to delay-
dependent with respect to distributed delay.
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We obtain the following:

Theorem 3.5. UnderA1lthe system (fl4a), (14bxand(15) is internally asymptot-

ically stable and for a prechosen> 0, J(w) < 0for all nonzerow(t) g;’[o, 0]

if there exist matricesP € R"1tWxt14n) of (21), 0 < Py € R™*™M P, P3e

RS = ST e R y; = UT e R2Xm2 w; e RUtmWx(itm gndR; = RT e
’ 1 ’ 2 ’ 1

ROtmxmitn) - — 9 2 that satisfy the following LMI

[ 0 0 0 0 0 7
pT [BJ hiXy  hpXp —WI|A1n| —W]|Az| PT|Awz| PT|Az| dPT
A13 A23 A14 A24
=2y 0 0 0 0 0 0
* * —hiRy O 0 0 0 0 0
% * T 0 0 0 0 o | <0,
* * * * —S1 0 0 0 0
* * * * * —S2 0 0 0
* * * * * * Uy 0 0
* * * * * * * Uy 0
| * * * * * * * * —dRy
(32)
where
Xi =W +PT, i=12
2 [clCi1 0y 0 2 0 0 O
?’:'P—{-Z 0 0 0 +ZWI.T Aiir 0 O
i=0 0 0 CZT2C,-2 i=1 Ais 0 O
T T
2 10 A, Aj
+Y10 0 0|w
i=1|0 O 0
and
0 I, O 0 L, 07"
Y 2PN Y2 JAn —ly Aoc2|+|YZ%0An —ly Ac| P
Y20An 0 Ao YZ20Ain 0 Ap
5 S; 0 0
A.
+Y 10 m[A], AL]Ri3 [Alj 0
‘7 i
=0 0 Ui
O - -
+ f Al (s)RgAq(s)ds (33)
—d

and whereRr;3 € R"*" is the(2, 2) block ofR;.
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Proof. Since
() EPX(t) = x{ (t) Prx1 (1)

differentiating the first term of (31) with respectttave have

d _ x1(1)
E)ET(Z)EP)E(t)=2xI(t)P1)'c1(t)=2£T(t)PT o |. (34)

0

Substituting (28) into (34) we obtain

dv
% +2T (020 — y*uwT (Ow()
0 0 0
y pT PT|Ap| PT| A
B A4 A2 T 2
_ T .
=& .y, 0 0 §+z z+§m
* * —-Uz 0 =
% * * —-U>

2
-3 [x}(r — hi)Sixa(t — hi) + x5 (t — hi)Uixa(t — hi)
i=1

t .
+ / Yi®[AL AL]Ris [2’,1} y(s) ds}
t—h; i3

0
- / T+ AT ORI AO)F (1 +6) 8,
—d

(35)

where
£ £ col{x (1), w(t), x2(t — h1), x2(t — h2)},

¥ is defined by (33) and
0

t
ni(t) = —2 f NPT {Ail} y(s)ds, i=1,2,
t=hi Aj3

t
no(t) & — 2f T ()P Ay(s)X(r + 5) ds.
t—d
For any(ny + n) x (n1 + n)-matricesk; > 0 andM; the following inequality holds

[25]:

booT " Ta(s) T R; RiM; | [a(s)
_Z/thf prad < /thi [b(s)] |:MzTRi 2, 2)} [b(S)] & e9
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for a(s) € R™™ b(s) € R™™ given fors € [t — h;, t]. Here
(2.2) = (MR + DR (RiM; + 1),

Denoting W; = R; M; P and using this inequality foa(s) = col{0 A;1 A;3}y(s)
andb = Px(t) we obtain fori =1, 2

ni (1) < hix T (OW] + POREW; + P)x(1)
+2(x{ (1) —x{(t —h)) [0 AT, AL]Wx()
t .
+ f y$)[A]L Al]Ris [i{l} y(s) ds. (37)
t—h; i3
Similarly
no(r) < d&" () PTR; PR (1)

t
+/ Tt +9)AJ()RgA4 ()X (t + 5) ds. (38)
t—d

We substitute (37), (38) into (35) and integrate the resulting inequalttiram O
to 0co. Becausé/ (xg) = 0, V(xx) = 0 and

o0 2 o0
/ Zlzde= Z/ xT(t = hj)C] Cix(t — h;) dt
0 0’0

2 o0
:Z/ x'(1)C] Cix () o,
i=0 70

we obtain (by Schur complements) that
Izl7, — v2llwl?, <&'TE < —allx|7,. o>0,
wherer is the matrix in the left-hand side of (32) and
§ £ col{x (), w(t), x2(t — h), x2(t — h2), 7},

wherer is vector of fictitious states. Hence, far(r) € L»[0, oo] we havex(t) €
L2[0, oo] andJ (w) < 0if (32) holds. MoreoverVy of (31) satisfies (19a), (19b) and
hence (14a) and (14b) are internally stablé&l

3.4. Another delay-independent BRAith respect to discrete delays

For

Wi:_Pv Ri:—7 i:1,...,m, (39)



E. Fridman, U. Shaked / Linear Algebra and its Applications 351-352 (2002) 271-302283
LMI (32) implies fore — Ot the following delay-independent LMI:

0 0 0 0

& pT |:f(3):| pPT A11 PT A2 PT A12 PT A2o drT
1 A3 A23 Alq A2q
x  —y2, 0 0 0 0 0
* * —-S1 0 0 0 0 <0,
* * * -S> 0 0 0
* * * * -Uq 0 0
* * * * * —-U>z 0
| * * * * * * —de_
(40)
where
o I 0 o 1 o]
=P | Aox —I,, Ac2|+|Aor —Ly Ao2| P
Aoz 0 Aos Az 0 Ao
2 S; 0 0 0 _ _
+Z 0 0 O +f Al (s)RgA4(s) ds.
i=1| 0 0 U —d

If LMI (40) is feasible, then (32) is feasible for a small enouglk- 0 and for R;
and W; that are given by (39). Thus, from Theorem 2.1 the following corollary
holds:

Corollary 3.6. Under Al the system ofl4a), (14b),and (15) is stable for all
hi >0,i=12andJ < Oif there exist0 < P, = P, P>, P3, U; = U] and §; =
ST, i = 1, 2 that satisfy(40).

Remark 2. As we have seen above, the delay-dependent BRL of Theorem 2.1 is
most powerful in the sense that it provides sufficient conditions for both the delay-
dependent and the delay-independent cases (where (40) holds). In the latter case,
(32) is feasible foh; — o0, i =1, 2.

3.5. Delay-dependent BRL for systems with polytopic uncertainties

The BRL of Theorem 2.1 was derived for system (14a), (14b) where the system
matricesA;, C;, i =1, 2, B1, Ay are all known. However, since the LMI of (32) is
affine in the system matrices, the theorem can be used to derive a criterion that will
guarantee stability and the required attenuation level in the case where the system
matrices are not exactly known and they reside within a given polytope.
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Denoting
Q= [A,' Ay Bp C; i=0,1, 2]
we assume tha® € $o{Q;, j =1, ..., N}, namely,
N N
Q=Y fiQ; forsome0< f; <1, Y fi=1
j=1 Jj=1

where theN vertices of the polytope are described by
o =[a AY BY c? =012
We readily obtain the following:

Corollary 3.7. Assume that for alj = 1,..., N, Al holds. Consider the system
of (14a), (14b)where the system matrices reside within the polyt@p€or a pre-
scribedy > 0, the cost function13) achievesJ(w) < 0 over Q for all nonzero
w € 210, o0) if there existn x n-matricesO < Pl(’), Wl.(lf), Wl.(zj), Wiz, Wig, j =
1,...,N, P, Ps, and 0<R”, 0<RY 0<UP 0<sY i=12 j=1,
..., N that satisfy(32) for j = 1, ..., N, where the matrices

A;, Ag, By, C;, P1, W1, Wo, R1, Ro, Ry, S1, S2, i=0,1,2,

are taken with the upper index j.

3.6. On LMI conditions in the case of discrete delays

We considerd; = 0. Even in this simpler case conditié(l is not easily verifi-
able. That is why instead @1 one can assume that the fast LMI (17) is feasible for
somePy, Uyyr, k =1, 2. Another possibility is to look foPz in Theorem 3.4 in the
diagonal form:

P3 = d|ag{ P31, P32}, P3p € R"2%7"2, (41)

In the latter case if the full-order LMI (24) holds fdt; of (41), then (17) holds for
Py = P3p, whereUyy are(2, 2) blocks ofUy.
Consider now a difference continuous system

2

0= Aoava(t) + ) Aiaxa(t = hi) + Biaw(@), 42)
i=1

z2(1) = col{Cozxa, C12x2(t — h1), C2ox2(t — h2)}.

From Theorem 3.4, the following (delay-independent) BRL follows:
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Corollary 3.8. Giveny > 0, if there existiz x np-matricesPy, U1y, Uz that sat-
isfy the following LM

2 2
P}—Ao4 + A—(I)—4Pf + Zi:l Ui + Zi:() C,-TZCiZ P}A14 P}I—A24 P}—Blz

* —Uiy 0 0 <0
* * —Uyy 0 ’
* * * —yzl

(43)

then for all h1 > 0, hp > O the difference systend?) is internally stable and
J(w) < 0.

3.7. Hy-norm of the'adjoint system

We begin by noting that th&..-norm of the systenk; of (14a) and (14b), where
z==Cox(t), Agz=0, (44)
is given by (see e.g. [2, vol. 2, p. 32]):

2 -1
IZ1ll0c = SUpG | Co (wa —Ao—) A ) Bt (45)
w€eR i=1

wheres { D} denotes the largest singular valuebfSince
G{H(w)} =6{H (-jw)}

for all the transfer function matriced (s) with real coefficients, it follows that the
Hy-norm of 21 is equal to theH,-norm of the following system:

2
—EE(t) =Y ATE(t+hi) + Cz().  w(t) = B{&(®),
i=0
£=0 Vrel0 h]

whereg (1) € R",z(¢) € R? andw () € RY. Note that the latter system represents the
backward adjoint o1 (as defined for nondescriptor case in [2, vol. 1]). Its forward
representation’», is described by

(46)

2
Eé(t) =Y Ale(t —hy) + CJz(0), i(r) = BI&(v),
i=0
&§=0 Vrel[-h 0]
Since the characteristic equations23f and 21 are identical, the former system is
asymptotically stable iff; is.

(47)
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Sufficient conditions of Theorem 3.5 for (14a), (14b), (44) and for its ‘adjoint’
may lead to different results. Therefore, one can apply Theorem 3.5 for the original
system and for its ‘adjoint’ and then choose the less conservative result.

Example 1. We consider the following system

x1@®|. .. (05 0 -1 1 1
|: 0 i|x(t) = [ 0 _1i|x(t) + |: 0 0'5i| x(t—h)+ |:0.5i| w(t), 48)

z() =05 1]x@),

wherex (1) = col{x1(1), x2(1)} € R2. Applying the LMI condition of Theorem 3.5

to (48) and its ‘adjoint’ we obtain in both cases that the system is internally stable
for h < 1.15. The minimum achievable value pfis however different in the two
cases. Foh = .1 we obtain for both systemg = 2.3, while for» = 1 we obtain

for (48) yo = 9 and for its ‘adjoint’y, = 6. Forh = 1.12 the corresponding results
areyp = 40 andy, = 28, respectively. We see that in this example the conditions of
Theorem 3.5 for the ‘adjoint’ system are less conservative than those obtained for the
original system. Note that the same results are obtained by choosing block-diagonal
P3 with P3» > 0.

4. Delay-dependent state-feedback control

We apply the results of the previous section to the infinite-horiiggcontrol
problem. Given system (4), (6) with the objective vector (5b). For a prescribed scalar
y > 0, we consider the performance index of (13). We look for the state-feedback
gain matrixK which, via the control law

u(t) = Kx(@), K =[K1, K>] (49)

achieves/J (w) < 0 for all nonzerow € 3%[0, 00). Substituting (49) into (4), we
obtain the structure of (14a) and (14b) witlh + B2K instead ofAg and

C{Co=C{C1+ K"DL,D12K. (50)

Applying the BRL of Section 3 to the above matrices, results in a nonlinear matrix
inequality because of the term’ngK andPsTBgK. We therefore consider another
version of the BRL which is derived from (32).

In order to obtain an LMI we have to restrict ourselves to the case of the diag-
onal matrix P3 of (41) and (as well as in the nondescriptor problem) to the case
of W; =¢;P,i =12, whereg; € R is a scalar parameter. Note that for= —1
(32) yields the delay-independent condition of Corollary 3.6. It is obvious from the
requirement of O< P71, and the fact that in (32()P3A34 + A04P3T) must be negative
definite, thatP is nonsingular. Defining

1_,_101 O
P _Q_[Qz Q?J’ (>1a)



E. Fridman, U. Shaked / Linear Algebra and its Applications 351-352 (2002) 271-302287

o[

Q21]
022]’

Q3 = diag{ 031, 032},

032 € R"2*"2,

(51b)

(51c)

and4 = diag{Q, I;+4n+24,} We multiply (32) byAT and 4, on the left and on the
right, respectively. Applying the Schur formula to the quadratic ter@,iwe obtain

the following inequality:

_ o
0 0 0 0 0 01
51+ 52 [BJ h1(e1+ Dingny  ho(e2+Dilngny e1|A11| 2| A21 A12 Ap| Q7| ©
A13 A23 A14 A4 a,
* -2 0 0 0 0 0 0 0
* * —hiRy 0 0 0 0 0 0
* * * —hoRy 0 0 0 0 0
* * * * —S1 0 0 0 0
* * * * * —S2 0 0 0
* * * * * * Uy 0 0
* * * * * * * -Usp 0
* * * * * * * * —1[,
* * * * * * * * *
* * * * * * * * *
* * * * * * * * *
* * * * * * * * *
| * * * * * * * * *
Ougsng O O Ougxng O O
T[Ing| oT[Ina| oT[ 0O T[O0] oT| O AL Als| oT| O Ax Ak
Q [ } Q [ Q hy| @ |ty) M9 o o o] "¢ 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 <V,
0 0 0 0 0 0
—syt 0 0 0 0 0
* -s;t 0 0 0 0
* * -ut 0 0 0
* * * -uyt 0 0
* * * * 7h1Rfl 0
* * * * * —thz_l i
(52)
whereCo = [Co1 Cozl,
T
0 I, 0 0 Iy, 0
- 2 T 2
E1=|2i0Ain —ILy Ac2|Q+0Q |XioAin —ILy Ao
2 2
YioAiz 0 Ap YioAiz 0 Ap
2 0 0 O 2 0 Al A}
T
+ E &A1 0 00+ E &0 (0 O o[, (533)
i=1 Az 0 O i=1 0 0 0
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0 KlT
5y = [32} [K1 0., K2]0+0QT|0, |[0 B]]
KT
2
We substitute (50) into (52), denote
K101+ K2022=7Y1, K2Q3 =72, (54)

and obtain the following:

Theorem 4.1. Consider the system of), (6), (5b) and the cost function afL3).
For a prescribedO < y, the state-feedback law @#9) achieves J(w) < 0 for
all nonzerow € EZ[O, oo) if for some prescribed scalarsy, 2 € R, there exist

0< Q1 eR™M,0< 8 =87 eRM, 0< U = U e R'272, k=12, 0
e R and QzeR™ of (5laH51c), O0<Ri=R;'0<R=R;'e
ROFrD)x0Hn1) y, e REM and Y, € RE2 that satisfy the following LMI

~T

o I—‘Q
=

[83]

B 0 0 0 0
= [0 . . . < - -
1+E [B } h1(e1+ DRy ha(e2+ DRy &1 [An} ) |:A21} S2 |:A12} U [Azz} U, o7
1
A13 A23 A1q A2q

0
0

Hﬁw
[l

N
~
<

0 -
—hiRy
* —h

|
<
=
o
|

¥ X K K KX X ¥ X X ¥ 0y, O OO
[t

©ri© o
N

©Coooocoo

N
|
5

K OF X K K ¥ X K X X ¥ ¥ ¥ ¥
kX X K K ¥ X X ¥ X ¥ ¥ ¥
¥ OF X K K ¥ X X X % %
KK X K K K KK X X XN OO
* ¥ X K ¥ X X ¥ ¥
|
* %X X ¥ ¥ ¥ ¥ ¥ OO0 000
3
* ¥ X X ¥ ¥ ¥ OO0 00 0o

* X X X ¥ ¥

o vy

ocoocoocooocoooL— 1|

’_‘D
l\)_'
©
O
| I
|
[
—_

T T T T
Q22 Q22 Q21 Q21
T T T T
0 o | m|ol, [0 Al A13] n2| o, [0 AT A23]
T T

O3 ng 0

0

N

<0,

~
~
[i=NeNeoNeNeNeNoNe]

=

* K ¥ X HOOOOOOOOOo

N

¥ ¥ * OO0 00000000

iy

¥ ¥ OO0 o0Oo0o0o0o0o00O0O
CO0o0ooooocooocoocooo

N

|
=
¥*Pr OO0OO0Oooocoocococooo

fiey

* Ok X X ¥ ¥
EE

—haRp _

(59)
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where
o d
E:[BJ [Y1 0, Y2]+|0,|[0 Bj]
Yy

The state-feedback gain is then given by
K2 =Y203), Ki=(Y1—K202)07". (56)

Example 2. We consider the system
Ex(t) = Aix(t — h) + Biw(t) + Bou(t), xo0=0, (57)
2(1) = C1x (1) + D1au(1),

where

10 -1 0
R P

e[l e[37

C1= [1 0.2] , Dix= [O.l] .

Note that in this exampldgq = 0. We first find the state-feedback solution. We
obtained a near minimum value pf= 21 forh = 1.2 ande; = —0.255. The state-
feedback control law that achieves the later bound onHRenorm of the closed
loop isu = Kx, whereK = [17562 — 43068Q.

The LMI in Theorem 4.1 is affine in the system matrices. It can thus be applied
also to the case where these matrices are uncertain and are known to reside within a
given polytope. Considering the system of (4) and denoting

0— E Ag A1 A
~|B1 B2 C1 D12’

we assume tha® € o{Q;, j =1, ..., N}, where theN vertices of the polytope
are described by

() () ()
Qv = [ f') A?') A%') A%')]‘
J J ~U J
B” By Cp° Dy
We obtain the following:

Theorem 4.2. Consider the system @#), (6), (5b), where the system matrices
reside within the polytop€ and the cost function qfL3). For a prescribed) < y,
the state-feedback law ©#9) achieves J(w) < 0 for all nonzerow € 33[0, 00)
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and for all the matrices inQ if for some prescribed scalarss, 2 € R there
exist0 < 01 € R™*",0 < § = Syt e R, 0 < Uy = Ut e R"272 k= 1,
2, 02 € R and Q3 € R™" of (51a){51c), O< Ri = R; 5, 0< Ry =R, ' ¢
RO+nOx4n1) y, e REXM gndY, € RY¥"2 that satisfy LMIg55) for j = 1,..., N,
where the matrices

A;,i=0,1,2 B, By, Cl, D1, Rl, Rz

are taken with the upper index j. The state-feedback gain is then givéstpy

5. Delay-dependent filtering

We consider system (4) with the measurement law of (5a). We seek a filter of the
following observer form:

2
Ex(t) =Y Ai&(t —h) + K(5(t) — Cax(1)) (58)
i=0
such that theH,-norm of the resulting transference between the exogenous signal
w and the estimation erraris less than a prescribed valuewhere

Z(t) & L(x(t) — X(1)). (59)
From (4), (5a) and (58) it follows that the estimation ere@r) = x(r) — x(¢) is
described by the following model:
2

Eé(t) = (Ao — KsCoe(t) + Z Aje(t — h;i) + (B1 — KyDo)w,

i=1 (60)

z(t) = Le(t).
The problem then becomes one of finding the filter gdinsuch that/ (w) < 0.
We consider the ‘adjoint’ to (60) system described by
2
EE(r) = (Af — CIK[)E(r) + Y AJE(T —hi) + LTZ(v),
i=1
w(r) = (B — DyyK})s(x), £=0Vre[-h Ol

(61)

Analogously to Theorem 4.1 (by applying BRL of Theorem 3.5 to (61)) we obtain:

Theorem 5.1. Consider the system ¢4), (5a)and the cost functiod (w). For a
prescribed < y, the filter gain achieves/ (w) < 0 for all nonzerow € gg[o, o0)
if for some prescribed scalarsy, 2 € R, there exist0 < Q1 € R™*™ 0 < §; €
R 0 < Uy € R'2%"2 k = 1,2, 0 € R and Q3 € R of (51a)—(51c),
0 < R1,0 < Ry € RIHmIx(ntn1) 'y, ¢ RF¥11 and Y, € #"*"2 that satisfy the fol-
lowing LMI:
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B 0 0 0
E1+5 0 hi(e1 + DRy ho(eo+ DR Al |§ AL ]S Al o
1T e Al (€1 1 2(&2 2 €1 11 | °1 &2 21 | 92 13 1
T T T
A2 A2 Al
* —y2I, 0 0 0 0 0
* * —h1Ry 0 0 0 0
* * * 7h21§2 0 0 0
* * * * -5 0 0
* * * * * -5 0
* * * * * * 7l_/1
* * * * * * *
* * * * * * *
* * * * * * *
* * * * * * *
* * * * * * *
* * * * * * *
L * * * * * * *
T T 7
o1 B1a ¥y 0 0 92 ol,
Als|02 oT| 0 |[~]| 0 |Dy [01} [01} 0 0 hiet1  hoodly
T
al, Bip| |¥] ol, O3
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 o | <0,
U, 0 0 0 0 0 0 0
* —I 0 0 0 0 0 0
* * 75'1 0 0 0 0 0
* * * 772 0 0 0 0
* * * * 701 0 0 0
* * * * * ~Up 0 0
* * * * * * 7h11§1 0
* * * * * * * —hoRp
(62)
where
-
0 I, 0 0 I, 0
- 2 T T T 2 T T
1= |2icoAin —In Ap|Q0+0" | XicoAin —Im Ags
2 T T 2 T T
Yo A 0 Aga Yo Ajy 0 Aga
2 0 00 2 0 A1 Ap
+> & |A, 0 0|0+> &07[0 O O
i=1 AL 0 0 i=1 0O O 0
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0 H
E = — I:éT:| [Yl onl YZ] - Onl [O C-'2]’
2 Yél’
0,
Ai=|0L|[0 A1 A], i=12
0

The filter gain is then given by
K; =Y203;. K{=(1-K;02)0;" K;=col{Ki,K2}.  (63)

The LMI in Theorem 5.1 is affine in the system matrices. Similarly to Theorem
4.2, it can thus be reformulated also to the case of matrices with polytopic uncertain-
ties.

6. Delay-dependent output-feedback control

We adopt in this section the dissipation approach to the solution of the output-
feedback problem. It applies a controller of a state-feedback—observer structure and
requires a solution of two LMIs. We assume:

A2. The matricesB; and D1 are orthogonal, i.eB1DJ, = 0, andR = D],D12 is
not singular.

6.1. The first phase: a state-feedback controller design

Lemma6.1l. AssumeA2. Consider systerd), (5b).For a prescribedy > 0, the
feedback law

y P, 0 x1(1)
u(t) =—[0 R—lBZT] [Pz P } y@) |, (64a)
3 20
Py 0 01 0 -1
[Pz Ps} - [Qz Qs] (64b)

achieves/J (w) < 0 for all nonzerow € =.§£‘21’[0, oo) if for some prescribed scalars
e1, €2 € R, there exist0 < Q1 € R, 0 < § = §; 1 e R"™ 0 < Uy = U™

€ Rz | =1,2, 0 € R and Q3 € R"™" of (51a)-(51c), O< Ry = Ry *
and0 < Ry = Ry € RO (1411 that satisfy the following LMI
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r Cro ) ) 07 0. 07 07 cly
E1+E [BJ hi(e1 + DRy ha(ez+ DRy e1 | A1 |S1 ez | Ap1 |52 |A12| U1 |Az2| U2 Q7| O
A13 Az3 A1 Aga cl,
=2y 0 0 0 0 0 0
* * —h1Ry 0 0 0 0 0 0
* * * —hoRy 0 0 0 0 0
* * * * —81 0 0 0 0
* * * * * -85 0 0 0
* * * * * * _01 0 0
* * * * * * * —[/2 0
* * * * * * * * —lp
* * * * * * * * *
* * * * * * * * *
* * * * * * * * *
* * * * * * * * *
* * * * * * * * *
L % * * * * * * * *
ol 9k 03y (2
% [%) || [%] = [QL o AL AL ne|h|[o AL %)
Q3 Q32 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0 <0,
0 0 0 0 0 0
0 0 0 0 0 0
S1 0 0 0 0 0
* -5 0 0 0 0
* * —Uq 0 0 0
* * * —Us 0 0
* * * * —h1Ry 0
* * * * * 7h21§2 _
(65)

whereZ is given by(53) and where

2, 0| ~_

Proof. The proof readily follows by choosiny as in (31) and applying (36) for
RiM; =¢;1,i =1, 2. Denote byl', the matrix in the left-hand side of (65). We
obtain by integrating U (¢) /dr that

J</ §Tfp§dt+/ " —wHRw — u*)dr
0 0

—y2 fw(wT —wThy(w — w*) dr, (66)
0
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where

Fp = d|ag{ PT, 18n+4n1+p+q}ru diag{P, ]8n+4n1+p+q}’

X1
w* = y_Z[O BI]P vy,
X2 (67)
X1
u*=—R71 [O B;] Ply
X2

and where the relation betwe®andQ;,i =1, ..., 3, is given in (51a)—(51c) and
& = col{xy, y, x2, w, n1}, with n1 representing the fictitious states that emerge when
applying Schur formula to construgt,. [0

Unfortunately, the feedback law of (64a) and (64b) cannot be implemented even
when there exists a solution to (65), namely when the first term in the right-hand side
of (66) is negative for alf € R&T41tr+a,

6.2. The second phase: filtering via the adjoint system

Denotingr = w — w* we represent (4) and (5a) in the form:

x1(1) 2 [ x@—hi) . B2y
0 ZZAi y(t —hi) | + Bar(t) + | B2y | u(®),
0 i=0 x2(t — hy) Boo
(68)
[ x@
y(@) =Cz2| y@) | + Darr(v),
x2(t)
where
A (Ao 0 Aoz -
Ao=|Aor —In Ac2|+y 2B Oyxn, B{]P,
| Acz 0 Aog
) [Ai1 0 Ap R B11 (69)
Ai=|An 0 Ap|, i=12 Bi=|Bul|,
| Ais 0 A B2

Co=[Co1 Orxny Coa)-

and wherd® solves (65). The objective function of (13) and (66) will then be negative
if there existx () andy(r) in R" that satisfy
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o0
Jo = / @'z —y%TFdt <0 Vi e 240, 00),
0
) x1(1) — £1(0) (70)
20 =RY?0 BJ|P| y(t) -5
x2(t) — X2(1)
The problem of findinge () and y(¢) is, in fact, aH filtering problem for the

descriptor system (68).
Consider the following ‘innovation’ filter

21(1) 2 [Xat—hi)
0 [=D Ai| $t—h) | +Ks50)
0 i=0 | Xo(t —h;)
e Bo1
—KsCo y() | + | Bo1 | u(@). (71)
X2(1) B2
Denoting
e1 X1 X1
e=le|=|y|—|7) (72)
€2 X2 X2

and using the assumption @vp1 and the definition ofw* in (67) we find

e1(t) 2
0 | =(Ao—KCoe(t) + ) Aje(t — hi) + (By — K s Da1)i (1),
0 i=1 (73)

2(t) = R7Y2[0 B ]Pe(r).

The problem now becomes one of finding the gain makrjxthat will ensure the
stability of system (73) and that thé,.-norm of the transference fromto 7 is less
thany. This problem was solved in Section 5. By applying Theorem 5.1 we obtain
the following result:

Theorem 6.2. AssumeA2. Consider the system ¢#), (5a), (5b)and the cost
function of(13). For a prescribed < y, there exists an output-feedback controller
that achievesJ (w) < 0 for all nonzerow € =?‘é[o, o0) if for some prescribed sca-
lars €1, &2 € R, there existD < Q1 € R"X" 0 < §; € R"™*" 0 < Uy € R"2X"2,
k=12 02 R™™ and Q3 e R of (51a)—(51c), O< Ry and 0 < R, €
RO +n0x(n+11) that satisfy(65) and for some prescribed scalais, &> € R, there ex-
ist0 < 01 € R"M 0 < § € R™*M 0 < Uy € RV k= 1,2, 0p € ROT1Ixm
and Q3 € R x(14m1) of the form
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02 = [921] . Qe R,
022

03 = diag{ 031, 032}, Q31€ R, Q3 € R,

0< Ry, 0< RpeR@utmx@utn) vy cR*m  and Y, e R'*"

that satisfy the following LMI

Onyxr 0
E1+E |:P|:O}1§1/2:| h1(1+ DRy haGa+ DRy 21| Al |81 & A21 S A23 Uy
By AT
12
* —21, 0 0 o o
* * —h1Ry 0 0 0 0
* * * —hoRy 0 o 0 0
* * * * 73'1 0 0 0
* * * * * 752 0 0
* * * * * * 701 0
* * * * * * * —02
* * * 3k * * * *
* * * * * * * *
* * * * * * * *
* * * * * * * *
* * * * * * * *
* * * * * * * *
L * * * * * * * *
0 v . . 02 03,
QT |:B]_1:| 0 | Doy |:Q01:| |:Q1] 0 0 hlv(;/l /72&;/2
b1 Y] I %
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 < 0’
Iq 0 0 0 0 0 0 0
* —I 0 0 0 0 0 0
* * -5 0 0 0 0 0
* * * -3 0 0 0 0
* * * * —Ul 0 0 0
* * * * * —02 0 0
* * * * * * —hllél 0
* * * * * * * —h21§2_
(74)
where
PL=07" P=-03'0:07".
P3 = 03' = diag| 03}, 03} = diag{ P31, P32}
3 3 310 ¥32 31, 132§, (75)

|~ 0
P= [Pz PJ’
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0 I 0 0 I 07"
1= Y2 0AL Iy Al | O+ 0T | Y2 0Al L, Al
2 a7 AT 2 3T AT
YA 0 Ay YA 0 Ay
2 0 0 2 0 A Ap
+y &AL 0 0|0+) &0"|0 0 o0,
=1 AL, 0 o i=1 0 0 0
T
_ 0 1 .
s8] o na-faufeo
2 YT
2
N A A Aj1 A 0 Ap .
Al = A, A2 = [0 Aiz], Ajz = |:A;3i| , Aia= [0 A;4i| , i=1,2,

Aoy = Ao1+y ?Bu1B] P,
Aoz=[0 Aoz] +y ?[Bu1B{;Ps1 B11B{,P3],

- A | BuuB{ P>
Aogs = 01 +y 2 1 i
Ao3 B12B] P,

Aos = —I, Ao2 _, | BuB{Ps1  B1iB,P3»
0 Ao B12B] P31 B12BL,P3 |’
AT

. 07

of ;i = le [0 A1 O A,‘z] , =12
0

The filter gain is then given by
K3 =Y203, K{=01-K]02)07" K;=col|K1, K2} (76)

If a solution to(65) and (74) exists then the output-feedback controller is ob-
tained by

u(t) = —R™1BJ [Pa#1(t) + P3 col{H(t) #2(1)}] (77)
wherex and y are obtained by71).

Example 3. We consider the following system:
1
Ex(t) = ) A1x(t — hi) + Biw(t) + Bau(t), x0=0,

_i=0 (78)
z(t) = C1x(t) + D1ou(?),

y(t) = Cax(t) + Dayw(t),
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where

1 0 0 O -1 0
efo - w=fo o) =3 2
1 0 0
Bl:[l 0:|, Bz=|:1i|, C1=[1 0.2], C2=[l 0],

D12=0.1, Djy = [0 0.1].

We first find the state-feedback solution. We obtained a near minimum value of
y =11 for by = 1.2 ande; = —0.3. The state-feedback control law that achieves
the later bound on th&l,.-norm of the closed loop i8 = Kx, whereK = [42.6854
—0.3424. Using (65) we find that the feedback lawi does not apply because
B21 = 0 and P3 is diagonal. We thus obtained the same near minimum value of
y = 11forh = 1.2 ande1 = —0.3. The feedback control law that achieves the later
bound on thef,,-norm of the closed loop is

u* = 9.72x1 + 3.22x.

The output-feedback control is derived for the same valués of andg; = —1. A
minimum value ofy = 2.4 is obtained. The resulting output-feedback has the form
9.72x1 + 3.22%2, wherex is obtained by (71) with

K;=[6.1814 11882 -3.171( .
6.3. The second phase: direct filtering

The filtering of the previous section suffers from an additional overdesign that
stems from the use of the adjoint system which must be stable independently of the
delays in the variabley. The advantage of the approach of Section 6.2 in comparison
with [12], where nondescriptor systems were considered, lies in the fact that it applies
the efficient bounds introduced by Park [25]. For smaller valudstbe method of
[12] may lead to less conservative results (see Example 4 below). In the present sec-
tion, we generalize the method of [12] to the case of descriptor systems with delay.

Denotingr = w — w* we represent (4) in the form:

x1(t) | x@® 2 [0 ;
0 |=4|yn |- |4n / ¥(s) ds
0 x2(1) i=1 | Ajz | 7t

+ [;l] r(t) + [52] u(t), (79)

where
0 1 0
A=|Y20A1 —1 Ac|+y 2BiBlP, B1= [0}
Y2 A 0 Ao
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Co=[Ca1 0 C2]

and wherd® solves (65). The objective function of (13) and (66) will then be negative
if there existx (r) andy(¢) in R” that satisfy (70).
Consider the following ‘innovation’ filter

0] [ao] 207 x4
0 |=4|30 |- Ailf $(s)ds
0 x2(1) i=1 Ai3_ 1=hi
+K[5(1) — Co2 ()] + ;)2:|M(t)- (80)

Using the notation of (72), assumpti&? and the definition otw* in (67) we find

é1(t) 2 0

t
0 |=I[A—K;Colet) - ) | An / éo(s) ds
0 i=1 | Ajz | /i
X (81)
+(B1 — Ky D21)r (1),
Z2(t) = R7Y?[0 B]]Pe(r).

The problem now becomes one of finding the gain makrjxthat will ensure the
stability of system (81) and that thé..-norm of the transference fromto 7 is less
thany. Similarly to [12] we obtain the following result:

Theorem 6.3. Consider the system ¢4), (5a), (5b)and the cost function gfL3).

For a prescribed0 < y, there exists an output-feedback controller that achieves
J(w) < Ofor all nonzerow € 3‘2’[0, o0) if for some prescribed scalatg, ¢ € R,
there exist0 < Q1 € R"*" 0 < § € R"™™M 0 < Uy € R k=1,2, 05 €
R™" and Q3 € R"*" of (51a)—(51c), O< Ry and0 < Rz € R(-+n1)x (n-+ny) that
satisfy (65) and there existO < P; € R"™ 0 < Uy € R"™2%"2 k= 1,2, Py €
R and P3 € R"*" of the form

A

A

Py, = |:[:21:| , ﬁzz € R™2*m,
P2

ﬁg = dlag{ ﬁgl, ﬁ32}, ]331 e Rnlxnl’ ﬁ32 c anxnz’

O0< Ry, 0<RyeR™*M, y g ROT*r

that satisfy the following LMI
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. To [o Jo Pl [o [ o77
Y1 pT I:Bl:| — YDy h]_PT A11 h2PT Aqq |:PT:| By pT A1p pT Apo
A13 A13 3 A1g A24
* —y21, 0 0 0 0 0
* * —h1Ry 0 0 0 0 <0,
* * 0 —hoRy 0 0 0
* * * * —R 0 0
% * * * * -0 0
L * * * * * * —02 a
(82)
whereP, P1, P», P3 are defined by75) and
Oy xcny 0 0
Pr=PTA+ATP-YCo—CYT+| 0 Y2 R 0
2

If a solution to(65) and (82) exists then the output—feegback controller is obtained
by (77), wherez and§ are obtained by80) with Ky = P~TY.

Example 4. We consider the nondescriptor system of [12]

x(t) = Aox (1) + A1x(t — h) + Biw(t) + Bau(1),
z(1) = col{ C1x (1), D1ou(t)}, (83)
y() = Cax(t) + Da1w (1),

where

0 0 -1 -1 10 0
IR e N R
Cc1=[0 1], D12=01, C2=[0 1], Du=[0 01].

We compare the output-feedback controller designs achieved by the two methods
presented in Sections 6.2 and 6.3. By the counterpart of Theorem 6.3 for the non-
descriptor case, the output-feedback control was derived in [12] f010.999 and
g1 = —0.29. A minimum value ofy = 0.86 was obtained. By Theorem 6.2 a greater
value ofy = 11 is found for the same value bfande; = ¢o = —0.3.

Forh > 1 the LMI of Theorem 6.3 is not feasible for apy> 0. By Theorem 6.2,
the output-feedback control is obtained foe= 1.28, g1 = £ = —.3. A minimum
value ofy = 20 is then achieved.

This example shows that for greater valuefidheorem 6.2 is less conservative
due to Park’s inequality [25] that is used for bounding the cross terms. For smaller
values ofh Theorem 6.2 leads to more conservative results owing to the fact that the
adjoint system foe containszg with delays and that the results are delay-independent
with respect to delays ieg.
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7. Conclusions

An LMI solution is proposed for the problem of stability aftd,-control of linear
time-invariant descriptor systems. This solution is based on the Lyapunov function
approach to descriptor systems with delay introduced in [10] and on the LMI ap-
proach toH,, control of nondescriptor systems of [12]. The LMI sufficient condi-
tions that are obtained allow solutions to tHg,-control problem in the uncertain
case where the system parameters lie within an uncertainty polytope. As a byprod-
uct, new LMI conditions for stability and/.-control of difference continuous time
equations are obtained.

The design of the output-feedback controller is achieved by two methods: one is
based on the BRL for the adjoint of the system that describes the estimation error;
the other applies the BRL directly to the system of the estimation error (and thus
generalizes the result of [12] to the descriptor case). Both methods suffer from an
additional overdesign that stems from the need to estimate the state and its derivative.
These methods lead to complementary results: for greater values of the delay the first
method is less conservative, while for smaller values of the delay—the second one
provides less conservative results. In the special case where a result is sought which
is delay-independent with respect to the process and delay-dependent with respect
to observer, the latter overdesign can be removed since the estimate of the state (and
not of its derivative) is needed.

One question that often arises when solving control and estimation problems for
systems with time-delay is whether the solution obtained for certain dé}asl
satisfy the design requirements for all delays< #;. In the problems of state-feed-
back and filtering the answer is the affirmative since the LMIs in Theorems 4.1 and
5.1 are convex in the time delays. The situation in the output-feedback control case
is however different, in spite of the seemingly convexity of the LMI of Theorems
6.2 and 6.3 in the delay parameters. The fact thathhand P3 depend nonlinearly
on the delay implies that the output-feedback controller that is derived for a certain
delay will not necessarily satisfy the design specifications for smaller delays.
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