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a b s t r a c t

Recently the problem of estimating the initial state of some linear infinite-dimensional systems from
measurements on a finite interval was solved by using the sequence of forward and backward ob-
servers Ramdani, Tucsnak, and Weiss (2010). In the present paper, we introduce a direct Lyapunov ap-
proach to the problem and extend the results to the class of semilinear systems governed by wave and
beam equations with boundary measurements from a finite interval. We first design forward observers
and derive Linear Matrix Inequalities (LMIs) for the exponential stability of the estimation errors. Further
we obtain simple finite-dimensional conditions in terms of LMIs for an upper bound T ∗ on the minimal
time, that guarantees the convergence of the sequence of forward and backward observers on [0, T ∗

] for
the initial state recovering. This T ∗ represents also an upper bound on the observability time. For observa-
tion times bigger than T ∗, these LMIs give upper bounds on the convergence rate of the iterative algorithm
in the norm defined by the Lyapunov functions. In our approach, T ∗ is found as theminimal dwelling time
for the switched exponentially stable (forward and backward estimation error) systemswith the different
Lyapunov functions (Liberzon, 2003). The efficiency of the results is illustrated by numerical examples.

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Estimation of the initial state of a distributed parameter sys-
tem from its input and output functionsmeasured over some finite
time interval is an important problem in engineering, oceanogra-
phy, meteorology and medical imaging (see e.g. Ramdani et al.,
2010, and the references therein). For the linear exactly observ-
able distributed parameter system, the initial state can be re-
covered from the measured segment of the input and output
functions by inverting the Gramian operator of the system (see, for
instance Tucsnak & Weiss, 2009, Section 6.1), and this may be nu-
merically very challenging. However, this is not applicable to non-
linear systems.

Recently the problem of estimating the initial state of some
infinite-dimensional systems frommeasurements on a finite inter-
val has been solved by using a sequence of forward and backward
observers (Auroux & Nodet, 2012; Ramdani et al., 2010). For finite-
dimensional systems this idea has appeared in Auroux and Blum
(2005). In Ramdani et al. (2010) the condition on the convergence
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of the iterative procedure is given in terms of the bounds on the
norms of the semigroups generated by the operators of the forward
and backward estimation error equations. It is not easy to find the
latter bounds. Moreover, the results of Ramdani et al. (2010) (and
the convergence results of Auroux & Nodet, 2012) are confined to
the linear time-invariant case.

It is of interest to develop consistentmethods that are capable of
utilizing nonlinear distributed parameter models and of providing
simple conditions for the convergence of forward and backward
observers. The LMI approach (Boyd, El Ghaoui, Feron, & Balakrish-
nan, 1994) is definitely among such methods. For time-delay sys-
tems, this approach allowed to solve various control problems in
terms of simple finite-dimensional conditions (see e.g. Fridman &
Shaked, 2002; Gu, Kharitonov, & Chen, 2003; Richard, 2003, and
the references therein). Its extension to distributed parameter sys-
tems has been started in Fridman and Orlov (2009a,b).

The LMI approach to observers and initial state recovering
of distributed parameter systems is the primary concern of the
present paper, where we consider semilinear 1-d wave and beam
equations. We start with the design of forward observers and de-
rive LMIs for the exponential stability of the estimation errors.
Though the stability of the beam equation has been studied in
the literature via direct Lyapunov method (see e.g. Guo & Yang,
2009; Krstic, Guo, Balogh, & Smyshlyaev, 2008), these are the first
LMIs for the exponential stability. Their derivation is based on
Wirtinger’s inequality (Hardy, Littlewood, & Polya, 1934) and on
the application of the S-procedure (Yakubovich, 1977).

0005-1098/$ – see front matter© 2013 Elsevier Ltd. All rights reserved.
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Further we find LMIs that give an upper bound T ∗ on the mini-
mal time, that guarantees the convergence of the sequence of for-
ward and backward observers on [0, T ∗

] for the recovery of the
initial state. This T ∗ represents also an upper bound on the exact
observability time. The continuous dependence of the recon-
structed initial state on the measurements follows from the in-
tegral input-to-state stability of the corresponding error system
(see Angeli, Sontag, & Wang, 2000), which is guaranteed by the
LMIs for the exponential stability. For observation times larger than
T ∗, these LMIs give upper bounds on the convergence rate of the
iterative algorithm in the norm defined by the Lyapunov func-
tions. Finding T ∗ is similar to finding theminimal dwelling time for
the switched exponentially stable systemswith different Lyapunov
functions (Liberzon, 2003). It appears that the LMIs are not conser-
vative for the linear homogeneous wave equation recovering the
analytical value of the minimal observability time. Some prelimi-
nary results for wave equations were presented in Fridman (2013).

1.1. Notation and preliminaries

Throughout the paper Rn denotes the n dimensional Euclidean
space with the norm | · |, the notation P > 0 with P ∈ Rn×n means
that P is symmetric and positive definite. The symmetric elements
of the symmetric matrix will be denoted by ∗. Functions, continu-
ous (continuously differentiable) in all arguments, are referred to
as of class C (of class C1). L2(0, 1) is the Hilbert space of square in-
tegrable functions z(ξ), ξ ∈ [0, 1] with the corresponding norm

∥z∥L2 =

 1
0 z2(ξ)dξ . H 1(0, 1) is the Sobolev space of absolutely

continuous scalar functions z : [0, 1] → R with dz
dξ ∈ L2(0, 1).

H 2(0, 1) is the Sobolev space of scalar functions z : [0, 1] → R
with absolutely continuous dz

dξ and with d2z
dξ2

∈ L2(0, 1).
The following inequalities will be useful:

Lemma 1.1. Let z ∈ H 1(0, 1) be a scalar function with z(0) = 0 or
z(1) = 0. Then Wirtinger’s inequality holds (Hardy et al., 1934) 1

0
z2(x)dx ≤

4
π2

 1

0
z2x (x)dx. (1.1)

Moreover,

max
x∈[0,1]

z2(x) ≤

 1

0
z2x (x)dx. (1.2)

2. Observers and initial state recovering: wave equation

2.1. Observers for semilinear wave equations

Consider the following one-dimensional semilinearwave equa-
tion

ztt(x, t) =
∂

∂x
[a(x)zx(x, t)] + f (zx(x, t), x, t),

t ≥ t0, x ∈ (0, 1), (2.1)

under the boundary conditions

z(0, t) = 0, zx(1, t) = 0. (2.2)

Here subscripts denote the corresponding partial derivatives, f is a
C2 function with uniformly bounded first partial derivatives in the
two first variables.

The initial conditions are given by

z(x, t0) = z1(x), z1(0) = 0, z1x(1) = 0,
zt(x, t0) = z2(x).

(2.3)

The smooth function a(x) satisfies the following inequalities:

0 < a(1) ≤ a(x), ax(x) ≤ 0, ∀x ∈ (0, 1). (2.4)

Let g1 > 0 be the known bound on the derivative of f (ξ , x, t)with
respect to the first argument:

|fξ (ξ , x, t)| ≤ g1 ∀(ξ , x, t) ∈ R3. (2.5)

The boundary measurements are given by y(t) = zt(1, t), t ≥ t0.
The boundary-value problem (2.1), (2.2) can be represented

as an abstract differential equation by defining the state ζ (t) =

[ζ1(t) ζ2(t)]T = [z(t) zt(t)]T and the operators

A =

 0 I
∂

∂x


a(x)

∂

∂x


0

 , F(ζ , t) =


0

F1(ζ1, t)


,

where F1 : H 1
× R → L2(0, 1) is defined as F1(ζ1, t) = f (ζ1x(x),

x, t) so that it is continuous in t for each ζ1 ∈ H 1. The differential
equation is

ζ̇ (t) = A ζ (t)+ F(ζ (t), t), t ≥ t0 (2.6)

in the Hilbert space H = H 1
L (0, 1)× L2(0, 1), where

H 1
L (0, 1) =


ζ1 ∈ H 1(0, 1)|ζ1(0) = 0


and ∥ζ∥2

H = ∥ζ1x∥
2
L2

+ ∥ζ2∥
2
L2
. The operator A with the dense

domain

D(A ) =


(ζ1, ζ2)

T
∈ H 2(0, 1)


H 1

L (0, 1)

× H 1
L (0, 1)

ζ1x(1) = 0


ism-dissipative and hence it generates a strongly continuous con-
traction semigroup T (Pazy, 1983). Due to (2.5) the following Lip-
schitz condition holds:

∥F1(ζ1, t)− F1(ζ̄1, t)∥L2 ≤ g1∥ζ1x − ζ̄1x∥L2 (2.7)

where ζ1, ζ̄1 ∈ H 1
L (0, 1), t ∈ R. Then by Theorem 6.1.2 of Pazy

(1983), a unique continuous mild solution ζ (·) of (2.6) in H ini-
tialized by

ζ1(t0) = z1 ∈ H 1
L (0, 1), ζ2(t0) = z2 ∈ L2(0, 1), (2.8)

i.e. a unique solution of the integral equation

ζ (t) = T(t − t0)ζ (t0)+

 t

t0
T(t − s)F(ζ (s), s)ds (2.9)

exists in C([t0,∞),H ). Moreover, this solution is locally Lipschitz
in the initial state (i.e. for all T > 0 themapping (z1, z2) → ζ is Lip-
schitz from H to C([t0, T ],H )). Note that F : H × [t0,∞) → H

is continuously differentiable. If ζ (t0) ∈ D(A ), then thismild solu-
tion is in C1([t0,∞),H ) and it is a classical solution of (2.1), (2.2)
with ζ (t) ∈ D(A ) (see Theorem 6.1.5 of Pazy, 1983).

We suggest a nonlinear Luenberger type observer of the form

ẑtt(x, t) =
∂

∂x
[a(x)ẑx(x, t)] + f (ẑx(x, t), x, t),

t ≥ t0, x ∈ (0, 1) (2.10)

under the boundary conditions

ẑ(0, t) = 0, ẑx(1, t) = k[y(t)− ẑt(1, t)], (2.11)

and the initial conditions [ẑ(·, t0), ẑt(·, t0)]T ∈ H , where k > 0
is the injection gain. The well-posedness of (2.10), (2.11) will be
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established by showing the well-posedness of the estimation error
e = z − ẑ, which satisfies the wave equation

ett(x, t) =
∂

∂x
[a(x)ex(x, t)] + gex(x, t),

t ≥ t0, x ∈ (0, 1). (2.12)

Here gex = f (zx, x, t)− f (zx − ex, x, t) and

g = g(zx, ex, x, t) =

 1

0
fzx(zx + (θ − 1)ex, x, t)dθ.

Note that (2.5) yields |g| ≤ g1. The boundary and the initial condi-
tions are given by

e(0, t) = 0, ex(1, t) = −ket(1, t) (2.13)

and

e(x, t0) = z1(x)− ẑ(x, t0), et(x, t0) = z2(x)− ẑt(x, t0). (2.14)

Let z be a mild solution of (2.1), (2.2). Then z : [t0,∞) → H 1 is
continuous and, thus, the function F2 : H 1

× [t0,∞) → L2(0, 1)
defined as

F2(ζ1, t) = f (zx, x, t)− f (zx − ζ1x, x, t)

satisfies the Lipschitz condition (2.7), where F1 is replaced by F2. By
the above arguments, the error system (2.12)–(2.14) has a unique
mild solution {e, et} ∈ C([t0,∞),H ) initialized by [e(·, t0), et(·,
t0)]T ∈ H . Therefore there exists a unique mild solution {x̂, x̂t} ∈

C([t0,∞),H ) to the observer system (2.10)–(2.11)with the initial
conditions [ẑ(·, t0), ẑt(·, t0)]T ∈ H . If [e(·, t0), et(·, t0)]T ∈ D(A ),
then {e, et} ∈ C1([t0,∞),H ) is a classical solution of (2.12)–
(2.14) with [e(·, t), et(·, t)] ∈ D(A ) for t ≥ t0. Hence, if [ẑ(·, t),
ẑt(·, t)]T ∈ D(A ) and [z1, z2]T ∈ D(A ), there exists a unique
classical solution {ẑ, ẑt} ∈ C1([t0,∞),H ) to the observer system
(2.10)–(2.11) with [ẑ(·, t), ẑt(·, t)]T ∈ D(A ) for t ≥ t0.

We will derive further sufficient conditions for the exponential
stability of the error wave equation (2.12) under the boundary
conditions (2.13). Consider the Lyapunov function (see e.g. Nicaise
& Pignotti, 2006)

V (t) =

 1

0
[ex(x, t) et(x, t)]


a(x)p χx

∗ p

 
ex(x, t)
et(x, t)


dx (2.15)

with some constants p > 0, χ > 0 defined on the mild solutions
of (2.12). Assume that
a(1)p χ

∗ p


> 0. (2.16)

Since a(1) ≤ a(x) ≤ a(0), the following holds

0 < αI ≤


a(1)p χx

∗ p


≤


a(x)p χx

∗ p


≤ βI

where

α = λmin


a(1)p χ

∗ p


, β = (χ + max{a(0), 1}p). (2.17)

Then

α

 1

0
[e2x(x, t)+ e2t (x, t)]dx ≤ V (t)

≤ β

 1

0
[e2x(x, t)+ e2t (x, t)]dx. (2.18)

We consider first [z1, z2]T , [ẑ(·, t0), ẑt(·, t0)]T ∈ D(A ). We are
looking for conditions that guarantee d

dt V (t) + 2δV (t) ≤ 0 along

the classical solutions of thewave equation. Then V (t) ≤ e−2δ(t−t0)

V (t0) and, thus, (2.18) yields 1

0
[e2x(x, t)+ e2t (x, t)]dx ≤

β

α
e−2δ(t−t0)

×

 1

0
[(z0x(x)− ẑx(x, t0))2 + (z1(x)− ẑt(x, t0))2]dx. (2.19)

Since D(A ) is dense in H the same estimate (2.19) remains true
(by continuous extension) for any initial conditions [z1, z2]T , [ẑ
(·, t0), ẑt(·, t0)]T ∈ H . For such initial conditions we have mild
solutions of (2.1), (2.2) and of (2.10), (2.11). Similar to Fridman and
Orlov (2009b) we arrive at the following conditions (see Appendix
for the proof):

Proposition 2.1. Given k > 0 and δ > 0, assume that exist positive
constants χ, p such that LMIs (2.16) and

ψ1 , −2a(1)kp + (1 + a(1)k2)χ < 0,

Ψ2 ,

−a(1)χ + 2δa(1)p + 2χg1 2χδ + pg1

∗ −χ + 2δp


< 0

(2.20)

are feasible. Then solutions of the boundary-value problem (2.12),
(2.13) satisfy (2.19), whereα and β are given by (2.17), i.e. the system
governed by (2.12), (2.13) is exponentially stable with the decay rate
δ > 0.

2.2. Iterative forward and backward observer design

Our next objective is to recover (if possible) the unique initial
state (2.3) of the solution to (2.1)–(2.3) from the measurements on
the finite time interval

y(t) = zt(1, t), t ∈ [t0, t0 + T ], T > 0. (2.21)

Definition 2.1. The system (2.1), (2.2) with the measurements
(2.21) is called exactly observable in time T , if

(i) for any initial state ζ (t0) ∈ H , it is possible to find a sequence
of ζ n

0 ∈ H (n = 1, 2, . . .) from the measurements (2.21) such
that limn→∞ ∥ζ n

0 − ζ (t0)∥H = 0 (i.e. it is possible to recover
the unique initial state as ζ (t0) = limn→∞ ζ

n
0 );

(ii) there exists a constant C > 0 such that for any initial states
ζ (t0) ∈ H and ζ̄ (t0) ∈ H leading to the measurements y(t)
and ȳ(t) and to the corresponding sequences ζ n

0 and ζ̄ n
0 , the

following holds:

∥ lim
n→∞

ζ n
0 − lim

n→∞
ζ̄ n
0 ∥

2
H ≤ C

 t0+T

t0
|y(s)− ȳ(s)|2ds. (2.22)

The time T is called the observability time.

Note that (2.22) means the continuous in the measurements
recovery of the initial state. In order to recover the initial state we
use the iterative procedure as in Ramdani et al. (2010). Define the
sequences of forward z(n) and backward observers zb(n), n = 1,
2, . . .with the injection gain k:

z(n)tt (x, t) =
∂

∂x
[a(x)z(n)x (x, t)] + f (z(n)x (x, t), x, t),

z(n)(0, t) = 0, z(n)x (1, t) = k[y(t)− z(n)t (1, t)],
t ∈ [t0, t0 + T ],

z(n)(x, t0) = zb(n−1)(x, t0), z(n)t (x, t0) = zb(n−1)
t (x, t0),

(2.23)
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where zb(0)(x, t0) = zb(0)t (x, t0) ≡ 0, and

zb(n)tt (x, t) =
∂

∂x
[a(x)zb(n)x (x, t)] + f (zb(n)x (x, t), x, t),

zb(n)(0, t) = 0, zb(n)x (1, t) = −k[y(t)− zb(n)t (1, t)],
t ∈ [t0, t0 + T ],

zb(n)(x, t0 + T ) = z(n)(x, t0 + T ),

zb(n)t (x, t0 + T ) = z(n)t (x, t0 + T ).

(2.24)

This results in the sequence of the forward e(n) = z − z(n) and the
backward eb(n) = z − zb(n), n = 1, 2, . . . errors satisfying

e(n)tt (x, t) =
∂

∂x
[a(x)e(n)x (x, t)] + g(n)e(n)x (x, t),

e(n)(0, t) = 0, e(n)x (1, t) = −ke(n)t (1, t),
t ∈ [t0, t0 + T ],

e(n)(x, t0) = eb(n−1)(x, t0), e(n)t (x, t0) = eb(n−1)
t (x, t0),

(2.25)

where eb(0)(x, t0) = z1(x) − zb(0)(·, t0), e
b(0)
t (x, t0) = z2(x) −

zb(0)t (·, t0) and

eb(n)tt (x, t) =
∂

∂x
[a(x)eb(n)x (x, t)] + gb(n)eb(n)x (x, t),

eb(n)(0, t) = 0, eb(n)x (1, t) = keb(n)t (1, t),
t ∈ [t0, t0 + T ],

eb(n)(x, t0 + T ) = e(n)(x, t0 + T ),

eb(n)t (x, t0 + T ) = e(n)t (x, t0 + T ).

(2.26)

Here

g(n) = g(z(n)x , e(n)x , x, t) =

 1

0
fzx(z

(n)
x + θe(n)x , x, t)dθ,

gb(n)
= g(zb(n)x , eb(n)x , x, t) =

 1

0
fzx(z

b(n)
x + θeb(n)x , x, t)dθ.

2.3. Observability time and convergence rate

For (2.25) and (2.26) we consider for t ∈ [t0, t0 + T ] the Lya-
punov functions

V (n)(t) =

 1

0


a(x)p[e(n)x (x, t)]

2
+ p[e(n)t (x, t)]

2

+ 2χxe(n)x (x, t)e
(n)
t (x, t)


dx (2.27)

and

V b(n)(t) =

 1

0


a(x)p[eb(n)x (x, t)]2 + p[eb(n)t (x, t)]2

− 2χxeb(n)x (x, t)eb(n)t (x, t)

dx (2.28)

with constants p > 0 and χ > 0, satisfying (2.16). Then ∀t ≥ t0
(cf. (2.19))

β

 1

0


[e(n)x (x, t)]

2
+ [e(n)t (x, t)]

2

dx ≥ V (n)(t)

≥ α

 1

0


[e(n)x (x, t)]

2
+ [e(n)t (x, t)]

2

dx,

β

 1

0


[eb(n)x (x, t)]2 + [e(bn)t (x, t)]2


dx

≥ V b(n)(t) ≥ α

 1

0


[eb(n)x (x, t)]2 + [eb(n)t (x, t)]2


dx.

(2.29)

Lemma 2.1. Consider V (n) and V b(n) given by (2.27) and (2.28) re-
spectively with p > 0 andχ > 0 satisfying (2.16). Assume there exist
δ > 0 and T > 0 such that for all n = 1, 2, . . . and for all t ∈ [t0,
t0 + T ] the inequalities

V̇ (n)(t)+ 2δV (n)(t) ≤ 0 (2.30)

and

V̇ b(n)(t)− 2δV b(n)(t) ≥ 0 (2.31)

hold along (2.25) and (2.26) respectively. Assume additionally that for
some T ∗

∈ (0, T )

V (n)(t0)e−2δT∗

≤ V b(n−1)(t0),

V b(n)(t0 + T )e−2δT∗

≤ V (n)(t0 + T ).
(2.32)

Then the iterative algorithm converges on [t0, t0 + T ]:

V b(n)(t0) ≤ qV b(n−1)(t0) ≤ qnV b(0)(t0), (2.33)

where q = e−4δ(T−T∗) is the convergence rate.

Proof. Inequalities (2.30), (2.31) yield

V b(n)(t0) ≤ V b(n)(t0 + T )e−2δT , V (n)(t0 + T ) ≤ V (n)(t0)e−2δT .

Hence, (2.32) implies

V b(n)(t0) ≤ V b(n)(t0 + T )e−2δT
≤ V (n)(t0 + T )e−2δ(T−T∗)

≤ V (n)(t0)e−2δ(T−T∗)e−2δT
≤ V b(n−1)(t0)e−4δ(T−T∗). �

Remark 2.1. The forward and backward error estimation systems
(2.25) and (2.26) can be considered as the switched exponentially
stable systems with the dwelling time T and with the (different)
Lyapunov functionsV n andV b(n) respectively. Then the inequalities
(2.32) represent the minimal dwelling time condition that
preserves the stability of the switched systems (Liberzon, 2003).

2.4. LMIs for the observability time and the convergence rate

Taking into account that e(n)(x, t0 + T ) = eb(n)(x, t0 + T ) and
e(n)t (x, t0 + T ) = eb(n)t (x, t0 + T ), we have

V b(n)(t0 + T )e−2δT∗

− V (n)(t0 + T )

≤

 1

0


e(n)x (x, t0 + T )
e(n)t (x, t0 + T )

T

Φ(χ)


e(n)x (x, t0 + T )
e(n)t (x, t0 + T )


dx ≤ 0,

whereΦ(χ) =


a(x)p(e−2δT∗

− 1) −χ(e−2δT∗
+ 1)x

∗ p(e−2δT∗
− 1)


, if


a(1)p(e−2δT∗

− 1) −χ(e−2δT∗

+ 1)
∗ p(e−2δT∗

− 1)


< 0 (2.34)

Therefore, (2.34) implies the second inequality of (2.32)
By the same arguments, (2.34) implies the first inequality of

(2.32), where e(n)(x, t0) = eb(n−1)(x, t0) and e(n)t (x, t0) = eb(n−1)
t

(x, t0), since

V (n)(t0)e−2δT∗

− V b(n−1)(t0) ≤

 1

0


e(n)x (x, t0)
e(n)t (x, t0)

T

Φ(−χ)

×


e(n)x (x, t0)
e(n)t (x, t0)


dx ≤ 0.

Note that by Schur complements (2.34) yields (2.16). We arrive to
the following:
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Theorem 2.1. Given positive tuning parameters T ∗ and δ, assume
positive constants p and χ exist such that LMIs (2.20) and (2.34) are
feasible. Then

(i) the iterative algorithm with T = T ∗ converges and the system
(2.1), (2.2) is exactly observable in time T ∗;

(ii) for all ∆T > 0 the iterative algorithm with T = T ∗
+ ∆T con-

verges: 1

0


[eb(n)x (x, t0)]2 + [eb(n)t (x, t0)]2


dx

≤
β

α
qn

 1

0


z21x(x)+ z22(x)


dx, (2.35)

where q = e−4δ∆T and where α and β are given by (2.17).

Proof. (i) Given δ > 0 and T ∗ > 0, if the strong LMIs (2.20) and
(2.34) are feasible for some p > 0 andχ > 0, then for small enough
δ0 > 0 the LMIs (2.20), where δ is changed by δ + δ0, are satisfied
with the same p andχ . Hence, LMIs (2.20) with δ changed by δ+δ0
and (2.34) lead to

V b(n)(t0) ≤ e−2(δ+δ0)T∗

V b(n)(t0 + T ∗) ≤ e−2δ0T∗

V (n)(t0 + T ∗)

≤ e−2(δ+δ0)T∗

e−2δ0T∗

V (n)(t0) ≤ e−4δ0T∗

V b(n−1)(t0),

which yields (2.33) with q = e−4δ0T∗

and T = T ∗.
To prove the exact observability in time T ∗, consider initial

states ζ (t0) ∈ H and ζ̄ (t0) ∈ H of (2.1), (2.2) that lead to the
measurements y(t) and ȳ(t) and to the corresponding forward and
backward observers zn, zb(n) and z̄n, z̄b(n). Note that z̄n, z̄b(n) satisfy
(2.23) and (2.24), where zn, zb(n) and y are replaced by z̄n, z̄b(n) and
ȳ. The resulting en = zn − z̄n, eb(n) = zb(n) − z̄b(n) satisfy (2.25),
(2.26) with the perturbed boundary conditions at x = 1:

e(n)x (1, t) = −ke(n)t (1, t)+ w(t), w(t) , k[y(t)− ȳ(t)],

eb(n)x (1, t) = keb(n)t (1, t)− w(t).
(2.36)

Let V (n) and V b(n) be defined by (2.27) and (2.28). LMI (2.34) implies
inequalities (2.32). By arguments of Proposition 2.1 (see also Frid-
man, Mondie, & Saldivar, 2010), we find that

V̇ (n)(t)+ 2δV (n)(t)− γ |w(t)|2 ≤ 0 (2.37)

for some γ > 0 if ψ1 < 0 and | −a(1)χk + a(1)p
Ψ2 | 0
− − −

∗ | −γ + χa(1)

 ≤ 0. (2.38)

By Schur complements, the latter inequality is feasible for large
enough γ if Ψ2 < 0, i.e. if LMIs (2.20) are satisfied. Then, by the
comparison principle (see e.g. Khalil, 1992),

V (n)(t) ≤ e−2δ(t−t0)V (n)(t0)+ γ

 t

t0
|w(s)|2ds. (2.39)

Similarly, LMIs (2.20) guarantee that V̇ b(n)(t) − 2δV b(n)(t) +

γ |w(t)|2 ≥ 0 for large enough γ > 0, i.e.

V b(n)(t) ≥ e2δ(t−t0)V b(n)(t0)− γ

 t

t0
e2δ(t−s)

|w(s)|2ds

and, thus,

V b(n)(t0) ≤ e−2δ(t−t0)V b(n)(t)+ γ

 t

t0
|w(s)|2ds. (2.40)

Therefore,

V b(n)(t0) ≤ e−2(δ+δ0)T∗

V b(n)(t0 + T ∗)+ γ

 t0+T∗

t0
|w(s)|2ds

≤ e−2δ0T∗

V (n)(t0 + T ∗)+ γ

 t0+T∗

t0
|w(s)|2ds

≤ e−2(δ+2δ0)T∗

V (n)(t0)

+ (e−2δ0T∗

+ 1)γ
 t0+T∗

t0
|w(s)|2ds

≤ e−4δ0T∗

V b(n−1)(t0)

+ (e−2δ0T∗

+ 1)γ
 t0+T∗

t0
|w(s)|2ds.

We arrive at

α

 1

0


[eb(n)x (x, t0)]2 + [eb(n)t (x, t0)]2


dx

≤ V b(n)(t0) ≤ e−4δ0T∗

e−4δ0T∗

V b(n−2)(t0)

+ (e−6δ0T∗

+ e−4δ0T∗

+ e−2δ0T∗

+ 1)γ
 t

t0
|w(s)|2ds

≤ (e−4δ0T∗

)nV b(0)(t0)+
γ

1 − e−2δ0T∗

 t0+T∗

t0
|w(s)|2ds

which implies (2.22), where ∥ limn→∞ ζ
n
0 − limn→∞ ζ̄

n
0 ∥H =

limn→∞ ∥ζ n
0 − ζ̄ n

0 ∥H and C =
γ

α[1−e−2δ0T∗
]
.

(ii) From Proposition 2.1 it follows that LMIs (2.20) yield (2.30).
By the similar derivations, LMIs (2.20) imply (2.31) for the back-
ward system. Moreover, (2.34) guarantees (2.32) and (2.16). Then
(ii) follows from Lemma 2.1 and (2.29). �

Remark 2.2. The proof of the exact observability is based on
the integral input-to-state stability of (2.25) with the perturbed
boundary condition (2.36) at x = 1: 1

0


[e(n)x (x, t)]

2
+ [e(n)t (x, t)]

2

dx

≤
β

α
e−2δ(t−t0)

 1

0


[e(n)x (x, t0)]

2
+ [e(n)t (x, t0)]

2

dx

+
γ

α

 t

t0
|w(s)|2ds, t ≥ t0.

The latter property is guaranteed by LMIs ψ1 < 0 and (2.38).

Remark 2.3. If f is linear in the state (e.g. f = g(x, t)zx + h(x, t))
subject to (2.5) the presented results are still new: they give
constructive finite-dimensional conditions for finding the observ-
ability time and the convergence rate, which is a non-trivial prob-
lem. Therefore, Theorem 2.1 completes the existing results (Auroux
& Nodet, 2012; Ramdani et al., 2010) (even in the linear time-
invariant case) and extend them to time-varying/semilinear systems.
We assume that the nonlinearities are globally Lipschitz, which
may be restrictive. For locally Lipschitz f , by the standard argu-
ments for the nonlinear systems (see e.g. Baroun, Jacob, Maniar, &
Schnaubelt, 2013; Khalil, 1992), the presented results hold locally.

Remark 2.4. In this section, in order to present the new method
in a simpler form, we have not considered f that may depend on
z as well. However, our results can be extended to a more general
z, zx, x, t-dependent f , which is Lipschitz in z and zx. Modified LMIs
for this case can be derived by applying Wirtinger’s inequality
and S-procedure (as it is done in the next section for the beam
equation).
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Table 1
Minimum T ∗

m and q = e−4δ(T−T∗) for T ≥ T ∗
m .

g1 T ∗
m δm T T ∗ δ q

0 2.0000001 10−8 2.5 2.24 0.05 0.9493
0.1 4.67 0.1 5.5 4.67 0.1 0.7175
0.2 8.65 0.08 9.5 8.65 0.08 0.7619

2.5. Example

Consider (2.1)–(2.3) with a(x) ≥ 1, ax ≤ 0, k = 1 and with
the values of g1 as given in Table 1. By applying the LMI Toolbox
of Matlab and verifying the feasibility of (2.20) and (2.34), we find
first theminimal values of T ∗

m and the corresponding δm for the con-
vergence of the iterative algorithm and, thus, for the exact observ-
ability (see Table 1). Note that for g1 = 0 the observability time is
T ∗
m = 2.0000001, which is very close to the exact analytical value

2 (for the constant a ≡ 1). Thus, our results are not conservative
for this case.

Further given T > T ∗
m, we try to minimize the upper bound on

the convergence of the iterative algorithm with T that is guaran-
teed by (ii) of Theorem2.1. For this purposewe choose T ∗

∈ [T ∗
m, T )

andmaximize δwhich preserves the feasibility of (2.20) and (2.34).
The resulting convergence rate q = e−4δ(T−T∗) for different g1 is
given in Table 1. It is found that for g1 = 0 and T = 2.5 > T ∗

m = 2,
the fastest convergence ratewithminimal achievable q = 0.94933
corresponds to T ∗

= 2.24. For positive g1 the choice of T ∗
= T ∗

m
leads to smaller q. The observer gain k can also be optimized/tuned
from LMIs so as to minimize the resulting observability time and
the convergence rate. Here k = 1 leads to better results.

3. Observers and initial state recovery: beam equation

3.1. Problem formulation

We consider the following one-dimensional semilinear beam
equation

ztt(x, t)+
∂2

∂x2
[a(x)zxx(x, t)] + f (zxx(x, t), zx(x, t), x, t) = 0,

t ≥ t0, x ∈ (0, 1), (3.1)

under the boundary conditions

z(0, t) = zx(0, t) = 0,
zxx(1, t) = 0, zxxx(1, t) = 0,

(3.2)

where f is a smooth function with uniformly bounded partial
derivatives in the two first variables. The smooth function a(x)
satisfies (2.4). The initial conditions are given by

z(x, t0) = z1(x), z1xx(1) = z1xxx(1) = 0,
zt(x, t0) = z2(x).

(3.3)

Define

H 2
L (0, 1) = {z1 ∈ H 2(0, 1) : z1(0) = z1x(0) = 0}.

The boundary-value problem (3.1), (3.2) can be represented as the
differential equation (2.6) in the Hilbert space H = H 2

L (0, 1) ×

L2(0, 1). In the above equation, the infinitesimal operator A = 0 I

−
∂2

∂x2
[a(x)

∂2

∂x2
] 0


has the dense domain

D(A ) =


(ζ1, ζ2)

T
∈ H 4(0, 1)


H 2

L (0, 1)× H 2
L (0, 1) :

ζ1xx(1) = 0, ζ1xxx(1) = 0


and generates a strongly continuous contraction semigroup (see
e.g. Li & Xu, 2011).

The second component F1(ζ1, t) : H 2(0, 1)× H 1(0, 1)× R →

L2(0, 1) of the nonlinear term F = (0, F1)T is defined as F1(ζ1, t) =

f (ζ1xx(x, t), ζ1x(x, t), x, t). Since f has bounded derivatives, the
following Lipschitz condition

∥F1(ζ1, t)− F1(ζ̄1, t)∥L2 ≤ L∥ζ1xx − ζ̄1xx∥L2

holds for ζ1, ζ̄1 ∈ H 2(0, 1), t ∈ [t0, t0 + T ] with some constants
L > 0. Then a uniquemild solution of (2.6), initialized with ζ (t0) ∈

H exists in H (see, Theorem 6.1.2 of Pazy, 1983). Moreover, this
solution is locally Lipschitz in the initial condition (i.e. for all T > 0
the mapping ζ (t0) → ζ is Lipschitz from H to C([t0, T ],H )).
Note that F : H × [t0,∞) → H is continuously differentiable. If
ζ (t0) ∈ D(A ), then thismild solution is in C1([t0,∞),H ) and it is
a classical solution of (2.1), (2.2) with ζ (t) ∈ D(A ) (see Theorem
6.1.5 of Pazy, 1983).

The boundary measurements are given by y(t) = zt(1, t), t ≥

t0.We suggest a nonlinear observer of the form

ẑtt(x, t)+
∂2

∂x2
[a(x)ẑxx(x, t)] + f (ẑxx(x, t), ẑx(x, t), x, t) = 0,

t ≥ t0, x ∈ (0, 1) (3.4)

under the boundary conditions

ẑ(0, t) = ẑx(0, t) = 0,

ẑxx(1, t) = 0, ẑxxx(1, t) = −k[y(t)− ẑt(1, t)]
(3.5)

and the initial condition [ẑ(·, t0), ẑt(·, t0)]T ∈ H , where k > 0 is
the injection gain.

Then the estimation error e = z− ẑ satisfies the beam equation

ett(x, t)+
∂2

∂x2
[a(x)exx(x, t)] + gexx(x, t)+ cex(x, t) = 0,

t ≥ t0, x ∈ (0, 1), (3.6)

where
g = g(ẑxx, exx, ẑx, ex, x, t)

=

 1

0
fzxx(ẑxx + θexx, ẑx + θex, x, t)dθ,

c = c(ẑxx, exx, ẑx, ex, x, t)

=

 1

0
fzx(ẑxx + θexx, ẑx + θex, x, t)dθ,

and the boundary conditions

e(0, t) = ex(0, t) = 0, exx(1, t) = 0,
exxx(1, t) = ket(1, t),

(3.7)

whereas the initial conditions are given by e(x, t0) = z1(x) −

ẑ(x, t0), et(x, t0) = z2(x)− ẑt(x, t0), x ∈ (0, 1).
We further assume that |fzxx | ≤ g1, |fzx | ≤ c1 and, thus,

|g| ≤ g1, |c| ≤ c1. (3.8)

The existence and uniqueness of the mild/classical solutions to the
error and the observer equations can be proved similar to thewave
equations.

3.2. Exponential stability of the beam equation

Wewill derive further sufficient conditions for the exponential
stability of the error beam equation (3.6), (3.7). Consider the
Lyapunov function

V (t) =

 1

0
[a(x)pe2xx(x, t)

+ pe2t (x, t)+ 2χxex(x, t)et(x, t)]dx (3.9)
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with some constants p > 0, χ > 0. We will first derive the condi-
tion which guarantees that for some α > 0

V (t) ≥ α

 1

0
[e2xx(x, t)+ e2t (x, t)]dx. (3.10)

Since ex(0, t) = 0, we have by Wirtinger’s inequality (1.1) 1

0


e2x(x, t)−

4
π2

e2xx(x, t)

dx ≤ 0. (3.11)

By applying to (3.10) and (3.11) the S-procedure with λ0 > 0
(Yakubovich, 1977), we conclude that for some λ0 > 0 and α > 0
the following holds

V (t) ≥ V (t)+ λ0

 1

0
[e2x(x, t)− 4/π2e2xx(x, t)]dx

≥ (a(1)p − 4λ0/π2)

 1

0
e2xx(x, t)dx

+

 1

0
[ex(x, t) et(x, t)]


λ0 χx
∗ p

 
ex(x, t)
et(x, t)


dx

≥ α

 1

0
[e2xx(x, t)+ e2t (x, t)]dx (3.12)

if

a(1)p − 4λ0/π2 > 0,

λ0 χ
∗ p


> 0. (3.13)

Note that (3.13) is feasible for some λ0 > 0 if
a(1)pπ2/4 χ

∗ p


> 0. (3.14)

By the Cauchy–Schwarz inequality 1

0
2χxex(x, t)et(x, t)dx

 ≤ 2χ
 1

0
|ex(x, t)et(x, t)|dx

≤ χ

 1

0
[e2x(x, t)+ e2t (x, t)]dx

≤ χ

 1

0


4
π2

e2xx(x, t)+ e2t (x, t)

dx,

where we applied Wirtinger’s inequality (1.1). Hence,

α

 1

0
[e2xx(x, t)+ e2t (x, t)]dx ≤ V (t)

≤ β

 1

0
[e2xx(x, t)+ e2t (x, t)]dx, (3.15)

where

α = min

a(1)p − 4λ0/π2, λmin


λ0 χ
∗ p


,

β = χ + max{1, a(0)}p.
(3.16)

We are looking for conditions that guarantee d
dt V (t)+ 2δV (t) ≤ 0

along the beam equation and, thus, imply 1

0
[e2xx(x, t)+ e2t (x, t)]dx ≤

β

α
e−2δ(t−t0)

 1

0
[e2xx(x, t0)

+ e2t (x, t0)]dx. (3.17)

Differentiating V along (3.1) we have

d
dt

V (t)+ 2δV (t) = 2
 1

0
a(x)pexx(x, t)exxt(x, t)dx

+ 2
 1

0
pet(x, t)ett(x, t)dx

+ 2χ
d
dt

 1

0
[xex(x, t)et(x, t)]dx

+

 1

0
2δ[a(x)pe2xx(x, t)+ pe2t (x, t)

+ 2χxex(x, t)et(x, t)]dx (3.18)

Integrating by parts twice and taking into account the boundary
conditions (3.7) with exx(1, t) = ext(0, t) = et(0, t) = 0, exxx(1, t)
= ket(1, t), we have

2
 1

0
a(x)pexx(x, t)exxt(x, t)dx = 2a(x)pexx(x, t)ext(x, t) |10

− 2
 1

0
p
∂

∂x
[a(x)exx(x, t)]ext(x, t)dx

= −2a(1)pke2t (1, t)+ 2
 1

0
p
∂2

∂x2
[a(x)exx(x, t)]et(x, t)dx.

Therefore, substituting the right-hand side of (3.6) for ett we arrive
at

2
 1

0
p[a(x)exx(x, t)exxt(x, t)+ et(x, t)ett(x, t)]dx

= −2a(1)pke2t (1, t)− 2
 1

0
pet(x, t)

× [gexx(x, t)+ cex(x, t)]dx

≤ −2a(1)pke2t (1, t)+ pg1

 1

0
[re2t (x, t)

+ r−1e2xx(x, t)]dx − 2
 1

0
pcet(x, t)ex(x, t)dx, (3.19)

where we used Young’s inequality with r > 0.
Integration by parts leads to

2χ
d
dt

 1

0
[xex(x, t)et(x, t)]dx = 2χ

 1

0


xext(x, t)et(x, t)


dx

− 2χ
 1

0
xex(x, t)


∂2

∂x2
[a(x)exx(x, t)]

+ gexx(x, t)+ cex(x, t)


dx,

where

2χ
 1

0
xext(x, t)et(x, t)dx = χ

 1

0
x
∂

∂x
[e2t (x, t)]dx

= χe2t (1, t)− χ

 1

0
e2t (x, t)dx

and

2χ
 1

0
xex(x, t)

∂2

∂x2
[a(x)exx(x, t)]dx = 2χa(1)ex(1, t)exxx(1, t)

− 2χ
 1

0


[xexx(x, t)+ ex(x, t)]

∂

∂x
[a(x)exx(x, t)]


dx.
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Further integration by parts and substitution of the boundary con-
ditions (3.7) yield

2χ
 1

0
ex(x, t)

∂

∂x
[a(x)exx(x, t)]dx = 2χa(x)exx(x, t)ex(x, t) |10

− 2χ
 1

0
a(x)e2xx(x, t)dx ≤ −2χa(1)

 1

0
e2xx(x, t)dx

and due to ax(x) ≤ 0

2χ
 1

0
xexx(x, t)

∂

∂x
[a(x)exx(x, t)]dx

= χ

 1

0

x
a
∂

∂x
[(aexx(x, t))2]dx

= −χ

 1

0

a(x)− ax(x)x
a2

(aexx(x, t))2dx

≤ −χa(1)
 1

0
e2xx(x, t)dx. (3.20)

By using the boundary conditions, we find

2
d
dt

 1

0
[χxex(x, t)et(x, t)]dx ≤ −χ

 1

0
e2t (x, t)dx

+χe2t (1, t)− 3χa(1)
 1

0
e2xx(x, t)dx

− 2χa(1)kex(1, t)et(1, t)

− 2χ
 1

0
xex(x, t)


gexx(x, t)+ cex(x, t)


dx. (3.21)

Since ex(0, t) = 0, by (1.2) we have 1

0
e2xx(x, t)dx − e2x(1, t) ≥ 0. (3.22)

Inequalities (3.18)–(3.22) and (3.11) yield for λ1 > 0, λ2 > 0 the
following
d
dt

V (t)+ 2δV (t) ≤ pg1

 1

0
[re2t (x, t)+ r−1e2xx(x, t)]dx

− 2
 1

0
pcet(x, t)ex(x, t)dx − χ

 1

0
e2t (x, t)dx

+ (χ − 2a(1)kp)e2t (1, t)− 3χa(1)
 1

0
e2xx(x, t)dx

− 2χa(1)kex(1, t)et(1, t)− 2χ
 1

0
gxex(x, t)exx(x, t)dx

+ 2c1χ
 1

0
e2x(x, t)dx +

 1

0
2δ[a(1)pe2xx(x, t)

+ pe2t (x, t)+ 2χxex(x, t)et(x, t)]dx

+ λ1

 1

0
e2xx(x, t)dx − e2x(1, t)


+ λ2

 1

0


4
π2

e2xx(x, t)− e2x(x, t)

dx.

Set ηT1 = [et(1, t)ex(1, t)], ηT2 (t) = [et(x, t)ex(x, t)exx(x, t)]. Then

d
dt

V (t)+ 2δV (t) ≤ ηT1Ψ1η1 +

 1

0
ηT2Ψ2η2dx ≤ 0,

if the LMIs (3.23) (see Box I) are feasible.
By applying the Schur complements to the 2nd and the 3rd

columns and rows of Ψ2 and to pg1r−1 we find that Ψ2 < 0 if the
LMI (3.24) (see Box II) is feasible.

We have proved the following sufficient conditions for the
exponential stability of (3.6), (3.7) with the decay rate δ > 0:

Proposition 3.1. Given δ > 0, assume that exist positive constants
p, χ, r̄, λ0, λ1, λ2 such that LMIs (3.13), (3.23) and (3.24) are fea-
sible. Then solutions of the boundary-value problem (3.6), (3.7) sat-
isfy (3.17), where α and β are given by (3.15).

3.3. Iterative forward and backward observer design

In order to determine the initial state z(x, t0), zt(x, t0) of (3.1)
from the boundarymeasurements on the finite time interval (2.21),
we apply the iterative procedure of Ramdani et al. (2010). Define
on the finite interval t ∈ [t0, t0 + T ] the sequences of forward z(n)
and backward zb(n), n = 1, 2, . . . observers with the injection gain
k > 0:

z(n)tt (x, t)+
∂2

∂x2
[a(x)z(n)xx (x, t)]

+ f (z(n)xx (x, t), z
(n)
x (x, t), x, t) = 0,

z(n)(0, t) = z(n)x (0, t) = 0, t ∈ [t0, t0 + T ],

z(n)xx (1, t) = 0, z(n)xxx(1, t) = k[y(t)− z(n)t (1, t)],

z(n)(x, t0) = zb(n−1)(x, t0), z(n)t (x, t0) = zb(n−1)
t (x, t0),

(3.25)

where zb(0)(x, t0) = zb(0)t (x, t0) ≡ 0 and

zb(n)tt (x, t)+
∂2

∂x2
[a(x)zb(n)xx (x, t)]

+ f (zb(n)xx (x, t), zb(n)x (x, t), x, t) = 0, t ∈ [t0, t0 + T ],

zb(n)(0, t) = zb(n)x (0, t) = 0,

zb(n)xx (1, t) = 0, zb(n)xxx (1, t) = −k[y(t)− zb(n)t (1, t)]

zb(n)(x, t0 + T ) = z(n)(x, t0 + T ),

zb(n)t (x, t0 + T ) = z(n)t (x, t0 + T ).

(3.26)

This results in the sequence of the forward e(n) = z − z(n) and the
backward eb(n) = z − zb(n), n = 1, 2, . . . errors satisfying

e(n)tt (x, t)+
∂2

∂x2
[a(x)e(n)xx (x, t)]

+ g(n)e(n)xx (x, t)+ c(n)e(n)x (x, t) = 0 t ∈ [t0, t0 + T ],

e(n)(0, t) = e(n)x (0, t) = 0,

e(n)xx (1, t) = 0, e(n)xxx(1, t) = −ke(n)t (1, t),

e(n)(x, t0) = eb(n−1)(x, t0), e(n)t (x, t0) = eb(n−1)
t (x, t0),

(3.27)

where eb(0)(x, t0) = z1(x), e
b(0)
t (x, t0) = z2(x), x ∈ (0, 1) and

eb(n)tt (x, t)+
∂2

∂x2
[a(x)eb(n)xx (x, t)] + gb(n)eb(n)xx (x, t)

+ cb(n)eb(n)x (x, t) = 0, t ∈ [t0, t0 + T ],

eb(n)(0, t) = eb(n)x (0, t) = 0,

eb(n)xx (1, t) = 0, eb(n)xxx (1, t) = keb(n)t (1, t),

eb(n)(x, t0 + T ) = e(n)(x, t0 + T ),

eb(n)t (x, t0 + T ) = e(n)t (x, t0 + T ).

(3.28)

Here
g(n) = g(ẑ(n)xx , e

(n)
xx , ẑ

(n)
x , e(n)x , x, t)

=

 1

0
fzxx(ẑ

(n)
xx + θe(n)xx , ẑ

(n)
x + θe(n)x , x, t)dθ,

c(n) = c(ẑ(n)xx , e
(n)
xx , ẑ

(n)
x , e(n)x , x, t)

=

 1

0
fzx(ẑ

(n)
xx + θe(n)xx , ẑ

(n)
x + θe(n)x , x, t)dθ

and gb(n), cb(n) are defined similarly.
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Ψ1 ,

χ − 2a(1)kp −a(1)kχ

∗ −λ1


< 0, (3.23)

Ψ2 ,

2δp − χ + pg1r 2δχx − cp 0
∗ −λ2 + 2c1χ −xgχ

∗ ∗ 2δa(1)p + pg1r−1
− 3a(1)χ +

4
π2
λ2 + λ1

 < 0

Box I.


2δp − χ + g1 r̄ 2δχ + c1p 0 0

∗ −λ2 + 2c1χ g1χ 0

∗ ∗ 2δa(1)p − 3a(1)χ +
4
π2
λ2 + λ1 g1p

∗ ∗ ∗ −g1 r̄

 < 0, (3.24)

where r̄ = pr
Box II.

3.4. Observability time and convergence rate via LMIs

For (3.27) and (3.28) we consider the Lyapunov functions

V (n)(t) =

 1

0


a(x)p[e(n)xx (x, t)]

2
+ p[e(n)t (x, t)]

2

+ 2χxe(n)x (x, t)e
(n)
t (x, t)


dx (3.29)

and

V b(n)(t) =

 1

0


a(x)p[eb(n)xx (x, t)]2 + p[eb(n)t (x, t)]2

− 2χxeb(n)x (x, t)eb(n)t (x, t)

dx (3.30)

respectively with positive constants p and χ satisfying (3.13) for
some λ0 > 0. Then for all t ≥ t0

β

 1

0


[e(n)xx (x, t)]

2
+ [e(n)t (x, t)]

2

dx ≥ V (n)(t)

≥ α

 1

0


[e(n)xx (x, t)]

2
+ [e(n)t (x, t)]

2

dx,

β

 1

0


[eb(n)xx (x, t)]2 + [eb(n)t (x, t)]2


dx ≥ V b(n)(t)

≥ α

 1

0


[eb(n)xx (x, t)]2 + [eb(n)t (x, t)]2


dx

(3.31)

where α and β are given by (3.16). Similarly for Lemma 2.1, the
following can be proved:

Lemma 3.1. Consider V (n) and V b(n) given by (3.29) and (3.30) re-
spectively with p > 0 and χ > 0 satisfying (3.13). Assume δ > 0
and T > 0 exist such that for all n = 1, 2, . . . and t ∈ [t0, t0 + T ]

the inequalities (2.30) and (2.31) hold along (3.27) and (3.28) respec-
tively. Assume additionally that (2.32) is valid for some T ∗

∈ (0, T ).
Then the iterative algorithmwith T = T ∗

+∆T converges in the sense
of (2.33), where q = e−4δ(T−T∗) is the convergence rate.

By using arguments of Section 3.2 we find that (3.13), (3.23) and
(3.24) guarantee (3.31), (2.30) and (2.31).We are now looking for
conditions to satisfy (2.32). We start with the second inequality of
(2.32),wherewe take into account that e(n)(x, t0+T ) = eb(n)(x, t0+
T ) and e(n)t (x, t0 + T ) = eb(n)t (x, t0 + T ). Since e(n)x (0, t0 + T ) = 0,
we have by Wirtinger’s inequality (1.1) 1

0


[e(n)x (x, t0 + T )]2 −

4
π2

[e(n)xx (x, t0 + T )]2

dx ≤ 0.

Then for some λ0 > 0 the following holds:

V b(n)(t0 + T )e−2δT∗

− V (n)(t0 + T ) ≤ V b(n)(t0 + T )e−2δT∗

− V (n)(t0 + T )+ λ0

 1

0

 4
π2

[e(n)xx (x, t0 + T )]2

− [e(n)x (x, t0 + T )]2

dx

≤ [a1p(e−2δT∗

− 1)+ 4λ0/π2
]

 1

0
[e(n)xx (x, t0 + T )]2dx

+

 1

0


e(n)x (x, t0 + T )
e(n)t (x, t0 + T )

T

Ξ(T ∗)


e(n)x (x, t0 + T )
e(n)t (x, t0 + T )


dx ≤ 0

if

Ξ(T ∗) ,

−λ0 χ(e−2δT∗

+ 1)
∗ p(e−2δT∗

− 1)


< 0,

a(1)p(e−2δT∗

− 1)+ 4λ0/π2 < 0.
(3.32)

By the same arguments, inequalities (3.32) imply the first inequal-
ity of (2.32), where e(n)(x, t0) = eb(n−1)(x, t0) and e(n)t (x, t0) =

eb(n−1)
t (x, t0), because

V (n)(t0)e−2δT∗

− V b(n−1)(t0)

≤ [a(1)p(e−2δT∗

− 1)+ 4λ0/π2
]

 1

0
[e(n)xx (x, t0)]

2dx

+

 1

0
[e(n)x (x, t0) e

(n)
t (x, t0)]Ξ(T

∗)


e(n)x (x, t0)
e(n)t (x, t0)


dx ≤ 0

Since e−2δT < e−2δT∗

for T > T ∗, the feasibility of (3.32) with some
p, χ, λ0 implies the feasibility of a(1)p(e−2δT

− 1) + 4λ0/π2 < 0
and, by Schur complements, of Ξ(T ) < 0 for all T ≥ T ∗ with
the same p, χ, λ0. Particularly (for T = ∞), (3.32) yields (3.10).
Similarly to Theorem 2.1 we arrive at the following:

Theorem 3.1. Given positive tuning parameters T ∗ and δ, assume
that positive constants p, χ, r̄ and λi(i = 0, 1, 2) exist such that the
LMIs (3.23), (3.24) and (3.32) are feasible. Then
(i) the iterative algorithm with T = T ∗ converges and the system is

exactly observable in T ∗;
(ii) for all ∆T > 0 the iterative algorithm with T = T ∗

+ ∆T con-
verges: 1

0


[eb(n)xx (x, t0)]2 + [eb(n)t (x, t0)]2


dx

≤
β

α
(e−4δ∆T )n

 1

0


z21xx(x)+ z22(x)


dx, (3.33)

where α and β are given by (3.15).
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Table 2
Minimum T ∗

m and q = e−4δ(T−T∗) for T ∗
≥ T ∗

m .

g1 c1 T ∗
m δm T T ∗ δ q

0 0 1.28 0.06 1.6 1.4 0.24 0.8253
0 0.1 1.6 0.29 1.8 1.6 0.29 0.7929
0.1 0.1 1.8 0.32 2.2 1.8 0.32 0.7741
0.2 0.2 2.5 0.26 2.8 2.5 0.26 0.7320

3.5. Example

Consider (3.1)–(3.3) with a(x) ≥ 1, ax ≤ 0, k = 1 and with
the values of g1, c1 as given in Table 2. By verifying the feasibility
of (3.23), (3.24) and (3.32), we find first the minimal values of
T ∗
m and the corresponding δm for the convergence of the iterative

algorithm. Further given T > T ∗
m, we try to minimize the upper

bound on the convergence of the iterative algorithm with T that
is guaranteed by (ii) of Theorem 3.1. For this purpose we choose
T ∗

∈ [T ∗
m, T ) and maximize δ which preserves the feasibility of

(2.20) and (2.34). The resulting convergence rate q = e−4δ(T−T∗)

for different g1 is given in Table 2. It is found that for g1 = c1 = 0
and T = 1.6 > T ∗

m = 1.28, the fastest convergence rate with
the minimal achievable q = 0.8253 corresponds to T ∗

= 1.4.
For the positive g1 + c1 the choice of T ∗

= T ∗
m leads to the fastest

convergence rate q.

4. Conclusions

In the present paper an LMI approach is introduced for the ob-
server design and for the initial state recovering by iterative for-
ward and backward observers for a class of distributed parameter
systems. These are semilinear systems governed by 1-d wave or
beam equations with boundary measurements from a finite inter-
val. For the beam equation, these are the first LMI conditions for
the exponential stability (of the estimation errors). We have de-
rived LMIs for an upper bound on the observability time and on
the convergence rate of the iterative algorithm in the normdefined
by the Lyapunov functions. The continuous dependence of the re-
constructed initial state on themeasurements follows from the in-
tegral input-to-state stability of the corresponding error system,
which is guaranteed by the LMIs for the exponential stability.

Extension of the method to various classes of distributed pa-
rameter systems and its improvement may be topics for future re-
search. As it happenedwith time-delay systems, LMIs are expected
to provide effective constructive tools for analysis and control of
distributed parameter systems.

Appendix

Proof of Proposition 2.1. Note that

2
d
dt

 1

0
xet(x, t)ex(x, t)dx


= 2

 1

0
xett(x, t)ex(x, t)dx

+ 2
 1

0
xet(x, t)ext(x, t)dx = 2

 1

0
x
∂

∂x
[a(x)ex(x, t)]ex(x, t)dx

+ 2
 1

0
xet(x, t)ext(x, t)dx + 2

 1

0
xge2x(x, t)dx.

Integration by parts gives

2
 1

0
xet(x, t)ext(x, t)dx = 2e2t (1, t)− 2

 1

0
xextet(x, t)dx

− 2
 1

0
e2t (x, t)dx

i.e. 2
 1
0 xet(x, t)ext(x, t)dx = −

 1
0 e2t (x, t)dx + e2t (1, t). Similarly

2
 1

0
x
∂

∂x
[a(x)ex(x, t)]ex(x, t)dx = 2a(1)e2x(1, t)

− 2
 1

0
[xex(x, t)]xa(x)ex(x, t)dx = 2a(1)e2x(1, t)

− 2
 1

0
a(x)e2x(x, t)dx − 2

 1

0
x
∂

∂x
[a(x)ex(x, t)]ex(x, t)dx

+ 2
 1

0
xax(x)e2x(x, t)dx,

where the last term is not positive due to the assumption ax ≤ 0.
Then

2
 1

0
x
∂

∂x
[a(x)ex(x, t)]ex(x, t)dx ≤ a(1)e2x(1, t)

−

 1

0
a(x)e2x(x, t)dx.

Therefore, under (2.5)

2
d
dt

 1

0
xet(x, t)ex(x, t)dx


≤ −

 1

0
[e2t (x, t)+ a(x)e2x(x, t)]dx

+ e2t (1, t)+ a(1)e2x(1, t)+ 2g1

 1

0
e2x(x, t)dx. (A.1)

Differentiating V along (2.12), we obtain

d
dt

V = 2p
 1

0
a(x)ex(x, t)etx(x, t)dx + 2p

 1

0
et(x, t)

× ett(x, t)dx + 2χ
d
dt

 1

0
xet(x, t)ex(x, t)dx


≤ 2p

 1

0

∂

∂x
[a(x)ex(x, t)et(x, t)]dx + 2p

 1

0
et(x, t)

× gex(x, t)dx + 2χ
d
dt

 1

0
xet(x, t)ex(x, t)dx


.

Then due to (A.1) and (2.13) the following holds:

d
dt

V + 2δV ≤ −2a(1)kpe2t (1, t)+ 2p
 1

0
et(x, t)gex(x, t)dx

−χ

 1

0
(e2t (x, t)+ a(x)e2x(x, t))dx

− (1 + a(1)k2)e2t (1, t)− 2g1

 1

0
e2x(x, t)dx



+

 1

0
2δ[a(x)pe2x(x, t)

+ 2χxex(x, t)et(x, t)+ pe2t (x, t)]dx.

Setting ηT = [et(1, t) ex(x, t) et(x, t)] and using a ≥ a(1), we
conclude that d

dt V + 2δV ≤
 1
0 η

TΨ ηdx ≤ 0, if

Ψ =


ψ1 0 0
∗ −a(1)χ + 2δa(1)p + 2χxg 2χδx + pg
∗ ∗ −χ + 2δp


≤ 0.

By Schur complements LMIs (2.20) yield Ψ |x=0,g=±g1 ≤ 0,Ψ
|x=1,g=±g1 ≤ 0 and, thus, imply Ψ ≤ 0. �
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