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Static sliding mode control of systems with
arbitrary relative degree by using artificial delay
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Abstract—Static output-feedback stabilization of systems with
relative degree n with matched disturbances is considered.
Assuming that the system is controllable, a static output-feedback
sliding mode controller (SMC) is designed, where the output
derivatives up to the order (n − 1) are approximated by using
the current and the delayed values of the output. Numerical
examples illustrate the efficiency of the method.

Index Terms—Sliding mode control, static feedback, time-delay
systems.

I. INTRODUCTION

State-Of-Art. Sliding mode control(SMC) has attractive fea-
tures for the theoretically exact compensation of the matched
uncertainties and disturbances, and finite-time convergence
of the system’s trajectory to the sliding surface [1]. The
static output-feedback SMC paradigm for systems with relative
degree one was introduced in [2], where only the measured
output (and not its derivatives) was used as SMC surface.
For systems with state delays, state-feedback SMC and static
output-feedback SMC were suggested [3] and [4] respectively
by using the descriptor approach [6].

Note that the presence of input delays destroy the conver-
gence to the sliding motions, or even lead to the instability
of the closed-loop system [7]. Practical stabilization of sys-
tems with input delays by static output-feedback SMC was
suggested in [5] by using a singular perturbation approach.

In [8] using of artificial delay for static output-feedback
SMC of systems with relative degree one was introduced.
LMI-based conditions were proposed for the stability analysis
of the resulting delayed closed-loop system.

A new approach to stabilization of the wide class of
systems introducing artificial delay and estimation of the upper
bound of such delay was proposed in [9],[10],[11] using the
Taylor expansion with the integral remainder and appropriate
Lyapunov-Krasovskii funbctionals.

In this paper we propose a static output-feedback SM-
C design for systems with relative degree n with matched
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Ciudad Universitaria, Coyoacán, CP 04510, Mexico City, Mexico (e-mail:
lfridman@unam.mx).

This work is partially supported by the National Natural Science Foun-
dation of China (61803156), the China Postdoctoral Science Foundation
(2017M620136), and the Fundamental Research Funds for the Central U-
niversities (222201814044).

perturbations. For the design of sliding surface for such
systems, the complete information about the system state
is usually required. For the output-based sliding mode con-
trollers, the estimation of the states has been based on
Luenberger observers [12], addictive filters [13], and robust
exact differentiators/observers with finite-time convergence
[14],[15],[16],[22].

Paper Novelty. In this paper we consider stabilization of
systems with relative degree n and matched disturbances. The
objective is to design a static output-feedback sliding mode
controller that for the estimation of the states employs the
delayed values of the output. With this aim:

• the delayed sliding surface is proposed using estimation
of the system states based on the artificial delay;

• finite-time attractivity of the proposed delayed sliding
surface is proved (Theorem 2);

• Lyapunov-Krasovskii functional is employed to achieve
the convergence of system states to the neighborhood of
zero (Thereom 1);

• the design parameters are chosen for a good trade-off
between the approximation accuracy and the reduction
of controller gain.

Notations. For a real symmetric matrix X , X ≤ 0 (re-
spectively, X < 0) means that the matrix X is negative
semidefinite (respectively, negative definite). B(., .) is Euler,s
beta function. Define a symmetric matrix as He(M) = M +
MT , and the symmetric elements of a symmetric matrix is
represented by ⋆. The notations ∥ · ∥ and | · | stand for the
Euclidean norm and 1-norm of a vector, respectively. By using
O(h), a matrix/scalar function of h ∈ R+ is defined to satisfy
lim

h→0+
| 1hO(h)| = m, where m > 0.

II. PROBLEM FORMULATION AND PRELIMINARIES

Consider the following n-th order relay system:

z(n)(t) =
n∑

i=1

Aiz
(i−1)(t) +B1[u(t) + d(z, · · · , z(n−1), t)],

(1)
where n ≥ 2, z(t) = z(0)(t) ∈ Rk is the measurement, z(i)(t)
is the ith derivative of z(t), u(t) ∈ Rm is the control input, and
d(z, z(1), · · · , z(n), t) is the matched perturbation. Model (1)
represents the linearized nonlinear system of relative degree n
with matched state-dependent uncertainties, which represents
the local behavior of any Lipschitz system linearized in the
vicinity of the equilibrium.
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For the convenience of representation, we define

x(t) = col{z(t), z(1)(t), · · · , z(n−1)(t)}
, col{x1(t), x2(t), · · · , xn(t)}.

System (1) is equivalent to

ẋ(t) = Ax(t) +B(u(t) + d(x, t)) (2)

which arrives at

xn+1(t) , ẋn(t) = Āx(t) +B1[u(t) + d(x, t)] (3)

where

A =


0 Ik 0 · · · 0
0 0 Ik · · · 0
· · · · · · · · · · · · · · ·
0 0 0 · · · Ik
A1 A2 A3 · · · An

 , B =


0
0
· · ·
0
B1


Ā =

[
A1 A2 A3 · · · An

]
.

Inspired from [1], the following linear sliding motion is
always used for system (1):

s∗(t) = C̄x(t) (4)

and the design matrix is given as

C̄ =
[
C1 C2 · · · Cn

]
with Cl ∈ Rm×k, l = 1, 2, · · · , n− 1.

Since only z(t) is accessible to the controller, we approxi-
mate the derivatives by a few past measurements:

x̂(t, h) ≈ N−1(h)x(t) (5)

which becomes
x(t) ≈ N(h)x̂(t, h) (6)

where N(h) = (MF (h))−1, x̂(t, h) = Mx̄(t, h), x̄(t, h) =
F (h)x(t), and

x̂(t, h) = col{x1(t), x1(t− h), · · · , x1(t− (n− 1)h)}
F (h) = diag{Ik, − hIk, · · · , (−h)n−1Ik}

M =



Ik 0 0 · · · 0
Ik Ik

1
2!Ik · · · 1

(n−1)!Ik
· · · · · · · · · · · · · · ·
Ik jIk

j2

2! Ik · · · jn−1

(n−1)!Ik
· · · · · · · · · · · · · · ·
Ik (n− 1)Ik

(n−1)2

2! Ik · · · (n−1)n−1

(n−1)! Ik


.

Matrix M is a Vandermonde-type matrix. Equation (5) indi-
cates that the states of system (5) can be estimated by using the
past measurements at the time instant j (j = 0, 1, · · · , n− 1).

To this end, the following delay-dependent sliding variable
is adopted:

s(t) = C̄N(h)x̂(t, h)

where h is the artificial time delay.
Our objective is to design the artificial time-delay estimator

(5) in sliding mode control, which avoid introducing additional
dynamics for estimation and enhancing the robustness to mea-
surement noises. Then, we present the problem formulation of
this work:

right) a delay-dependent sliding surface s(t) = 0 and an SMC
law u(t) will be designed such that the sliding motion s(t) is
quadratically stable in finite time.

To this end, the following lemmas are necessary.

Lemma 1. (Jensen’s Inequality [10]) Define G =∫ b

a
f(s)x(s)ds, where a ≤ b, f : [a, b] → [0,∞), x(s) ∈ Rn,

and the integration concerned is well defined. Then, for any
n× n matrix R > 0, the following inequality holds:

GTRG ≤
∫ b

a

f(θ)dθ

∫ b

a

f(s)xT (s)Rx(s)ds. (7)

Lemma 2. [20, 23] Given a positive scalar ϵ̄, and symmetric
matrices M1, M2 and M3 with the same dimensions, the
inequality holds for any ϵ ∈ (0, ϵ̄]: M1 + ϵM2 + ϵ2M3 ≤ 0, if
and only if M1 ≤ 0, M1+ ϵ̄M2 ≤ 0, M1+ ϵ̄M2+ ϵ̄

2M3 ≤ 0.

A. Taylor,s formula with the integral remainder

For n-times continuously differentiable function x1(t) with
absolutely continuous xn(t) over the time interval [t− jh, t],
the Taylor expansion is written as

x1(t− jh) = x1(t) + j(−h)x2(t) +
j2(−h)2

2!
x3(t)

+ · · ·+ jn−1(−h)n−1

(n− 1)!
xn(t) + δj(t, h)

=M(j)F (h)x(t) + δj(t, h)

(8)

where j = 0, 1, · · · , n− 1, and

M(j) =
[
Ik jIk

j2

2! Ik · · · jn−1

(n−1)!Ik

]
.

Wherein, the remainder δj(t, h) has two equivalent forms:

δj(t, h) =
(−1)n

(n− 1)!

∫ t

t−jh

(s− t+ jh)n−1xn+1(s) ds (9)

δj(t, h) =
(−1)n−1

(n− 2)!

∫ t

t−jh

(s− t+ jh)n−2µ(s, t) ds (10)

with µ(s, t) = xn(s)− xn(t).

Remark 1. The form of the integral terms of Lyapunov
functionals is constructed based on (9) (as in [10]). Here, the
representation of (10) is used for estimating the bound of the
remainder δj(t, h).

Then, we have

x̂(t, h) = N−1(h)x(t) + ∆1(t, h) (11)

where ∆1(t, h) = col{δ0(t, h), δ1(t, h), · · · , δn−1(t, h)}.
It is easy to verify that, if lim

h→0
|δi(t, h)| = 0,

lim
h→0

1
hn+1 |δi(t, h)| = 0, then we have

∆1(t) = O(hn). (12)

The approximation error is given by ∆1(t), which is used to
verify the approximation accuracy of the artificial time-delay
method. Hence, we obtain s(t) = s∗(t) + C̄N(h)∆1(t, h)
es(t) = s(t)− s∗(t) = C̄N(h)∆1(t, h) = O(hn).

Remark 2. The sliding motion s(t) = 0 can imitate the
behavior of s∗(t) = 0 with the accuracy O(hn) such that
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the delayed output-feedback controller contains more system
information than the pure static one.

It is reasonable to assume that

|xn+1(t)| ≤ β (13)

where β is the upper bound of xn+1(t), and β is a scalar
defined by the domain in which model (1) is valid. The
following assumptions will be used:
A1) The perturbation term d(x, t) is bounded, i.e. | d(x, t) |≤

d∗, where d∗ is a positive scalar.
A2) The dynamic xn(t) is β-Lipschizian on the small time

interval [t− jh− δ, t+ δ]:

|µ(s, t)| ≤ β|t− s|, for all s ∈ [t− jh, t] (14)

where δ is a small positive scalar.

Remark 3. All system states xi(t) (i = 1, 2, · · · , n) are still

continuous, i.e. xi(t) = xi(t0) +
t∫

t0

xi+1(s)ds, lim
t→t−0

xi(t) =

lim
t→t+0

xi(t), which reveals the validity of Assumption A2).

For example, a mass-spring-damper system contains the states
of position and velocity. The acceleration can change the
directions by using forces with sgn(·), but the velocity and
position are still continuous.

III. MAIN RESULTS

A. Analysis of sliding motions

From (10), we have

∆̇1(t, h) = ∆2(t, h) + Y (h)xn+1(t) (15)

where Y (h) = (−1)n−2

(n−1)! col{0, h
n−1Ik, · · · , [(n− 1)h]n−1Ik}.

The form of ∆2(t, h) is written as

∆2(t, h) = col{ρ0(t), ρ1(t, h), · · · , ρn−1(t, h)}

where ρj(t, h) takes the following two forms:

ρj(t, h) =
(−1)n+1

(n− 2)!

∫ t

t−jh

(s− t+ jh)n−2xn+1(s)ds (16)

ρj(t, h) =


(−1)n

(n− 3)!

∫ t

t−jh

(s− t+ jh)n−3µ(s, t)ds, n ≥ 3

xn(t)− xn(t− jh), n = 2.

(17)

From (2) and (15), the derivative of s(t) is given as

ṡ(t) = C̄ẋ(t) + C̄H(h)xn+1(t) + C̄N(h)∆2(t, h) (18)

where H(h) = N(h)Y (h). By virtue of (1) and (2), we can
rewrite (18) as

ṡ(t) = J1(h)x(t) + J2(h)(u(t) + d(x, t)) + C̄N(h)∆2(t, h)

where J1(h) = C̄A+ C̄H(h)Ā, J2(h) = C̄B + C̄H(h)B1.
The equivalent control law is formulated as

u∗
eq(t) = −d(x, t)− J−1

2 (h)(J1(h)x(t) + C̄N(h)∆2(t, h)) (19)

which requires the full state information of x(t). By using the
estimation (6) in (19), we arrive at

ueq(t) = −d(x, t)− J−1
2 (h)[J1(h)N(h)x̂(t, h)

+ C̄N(h)∆2(t, h)]
(20)

which is equivalent to

ueq(t) = −d(x, t)− J−1
2 (h)[J1(h)x(t)

+ J1(h)N(h)∆1(t) + C̄N(h)∆2(t, h)].
(21)

Remark 4. In (20), the equivalent control law is implemented
without using the derivatives of the measurement output.

B. Stabilization of the closed-loop system

Based on the descriptor model transformation in [3, 5],
substituting (21) into system (2) yields

Eη̇(t) = Acη(t) +Ad1∆1(t) +Ad2∆2(t) (22)

where η(t) = col{x(t), xn+1}, and

E =

[
In̄ 0
0 0

]
, A =

[
Γ1 0
Ā −Ik

]
,

B =

[
0
B1

]
, Γ1 =

[
0 In̄−k

]
, n̄ = nk,

Ac = A+ BΓ2(h), Γ2(h) =
[
−J−1

2 (h)J1(h) 0
]

Ad1 = −BJ−1
2 (h)J1(h)N(h), Ad2 = −BJ−1

2 (h)C̄N(h).

Define Am =
[
Ā−B1J

−1
2 (h)J1(h) 0

]
, and

An1 = −B1J
−1
2 (h)J1(h)N(h), An2 = −B1J

−1
2 (h)C̄N(h).

With ueq(t), equation (1) can be further represented as

xn+1(t) = Amη(t) +An1∆1(t) +An2∆2(t). (23)

Then, we will derive the delay-dependent LMI conditions
for the stabilization of the closed-loop system (22).

Theorem 1. For the given tuning scalar ϵ∗ > 0 and the pre-
scribed matrix C̄, the descriptor system (22) is asymptotically
stable, if there exist symmetric matrices P1 ∈ R(n̄−k)×(n̄−k),
P3 ∈ Rk×k, X ∈ Rk×k, and W ∈ Rk×k, and the matrix
P2 ∈ Rk×(n̄−k) such that the following inequalities hold: He(PTAc) PTAd1 PTAd2 0

⋆ −W 0 0
⋆ ⋆ −X 0
⋆ ⋆ ⋆ −Q̄

 ≤ 0 (24)

 He(PTAc) PTAd1 PTAd2

√
ϵ∗AT

mX̄
⋆ −W 0

√
ϵ∗AT

n1X̄
⋆ ⋆ −X

√
ϵ∗AT

n2X̄
⋆ ⋆ ⋆ −X̄

 ≤ 0 (25)

 He(PTAc) PTAd1 PTAd2

√
ϵ∗AT

mQ̄(h∗)
⋆ −W 0

√
ϵ∗AT

n1Q̄(h∗)
⋆ ⋆ −X

√
ϵ∗AT

n2Q̄(h∗)
⋆ ⋆ ⋆ −Q̄(h∗)

 ≤ 0 (26)

where h∗ = 2(n−1)
√
ϵ∗, and

X̄ =

n−1∑
j=0

X̄j+1, X̄j+1 = j2n−1Xj+1

Q̄ =

n−1∑
j=0

(j)2(n−1)Xj+1, Q̄(h∗) =

n−1∑
j=0

Qj+1(h
∗)

Qj+1(h
∗) = (j)2(n−1)[Xj+1 + (jh∗)2Wj+1].
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Proof. The following Lyapunov functional is used:

V (η, y, t) = V1(η, t) + V2(xn+1) + V3(xn+1)

where
V1(η, t) = ηT (t)EPη(t)

V2(xn+1) =

n−1∑
j=0

(jh)n
∫ t

t−jh

(s− t+ jh)nνj+1(s)ds

V3(xn+1) =

n−1∑
j=0

(jh)n−1

∫ t

t−jh

(s− t+ jh)n−1φj+1(s)ds

νj+1(s) = xTn+1(s)Wj+1xn+1(s), Wj+1 =WT
j+1 > 0

φj+1(s) = xTn+1(s)Xj+1xn+1, Xj+1 = XT
j+1 > 0.

Matrix P is specified as

P =

[
P1 0
P2 P3

]
, P1 = PT

1 > 0.

Differentiating V1(η, t) with respect to time t yields

V̇1(η, t) = ηT (t)He(PTAc)η(t) + 2ηT (t)PTAd1∆1(t, h)

+ 2ηT (t)PTAd2∆2(t, h).
(27)

To deal with the term with ∆1(t) in (27), the functional
V2(xn+1) is taken into account, with its derivative given as

V̇2(xn+1) =

n−1∑
j=0

(jh)2nxT
n+1(t)Wj+1xn+1(t)

− n

n−1∑
j=0

(jh)n
∫ t

t−jh

(s− t+ jh)n−1νj+1(s)ds.

(28)

It follows from Lemma 1 that

− n
n−1∑
j=0

(jh)n
∫ t

t−jh

(s− t+ jh)n−1νj+1(s) ds

≤ −∆T
1 (t, h)W∆1(t, h),

(29)

where W = (n!)2diag{W0, W1, · · · , Wn−1}.
From (28) and (29), we have

V̇2(xn+1) ≤ ζT (t)VT {
n−1∑
j=0

(jh)2nWj+1}Vζ(t)

−∆T
1 (t, h)W∆1(t, h),

(30)

where

V =
[
Am An1 An2

]
, ζ(t) = col{η(t), ∆1(t), ∆2(t)}.

Moreover, the time derivative of the delay-dependent func-
tion V3(xn+1) along the solution of (22) is written as

V̇3(xn+1) =

n−1∑
j=0

(jh)2(n−1)xT
n+1(t)Xj+1xn+1(t)

− (n− 1)

n−1∑
j=0

(jh)n−1

∫ t

t−jh

(s− t+ jh)n−2φj+1(s)ds.

By using the representation (16) and applying Lemma 1, we
find

− (n− 1)

n−1∑
j=0

(jh)n−1

∫ t

t−jh

(s− t+ jh)n−2φj+1(s) ds

≤ −∆T
2 (t, h)X∆2(t, h)

(31)

where

X = (n− 1)!2diag{X0, X1, · · · , Xn−1}.

Taking (31) into consideration, it is easy to obtain that

V̇3(xn+1) ≤ ζT (t)VT
n−1∑
j=0

[(jh)2(n−1)Xj+1]Vζ(t)

−∆T
2 (t, h)X∆2(t, h).

(32)

Adding (27), (30) to (32), we have

V̇ (t) ≤ ζT (t)Ξζ(t)

+ ζT (t)VT
n−1∑
j=0

[(jh)2(n−1)Xj+1 + (jh)2nWj+1]Vζ(t)

where

Ξ =

 He(PTAc) PTAd1 PTAd2

⋆ −W 0
⋆ ⋆ −X

 .
After some manipulation using the Schur Complement Lem-
ma, the inequality V̇ (t) ≤ 0 is equivalently represented as

Γ(ϵ, h) ≤ 0 (33)

where

ϵ = h2(n−1), Q̄(h) =

n−1∑
j=0

(j)2(n−1)[Xj+1 + (jh)2Wj+1]

Γ(ϵ, h) =


He(PTAc) PTAd1 PTAd2 ϵAT

mQ(h)
⋆ −W 0 ϵAT

n1Q(h)
⋆ ⋆ −X ϵAT

n2Q(h)
⋆ ⋆ ⋆ −ϵQ(h)

 .

Performing the congruent transformation given as

Ts = diag{I, I, I, 1√
ϵ
I}

to inequality (33) yields

Γ∗(ϵ, h) ≤ 0 (34)

where

Γ∗(ϵ, h) =

 He(PTAc) PTAd1 PTAd2

√
ϵAT

mQ(h)
⋆ −W 0

√
ϵAT

n1Q(h)
⋆ ⋆ −X

√
ϵAT

n2Q(h)
⋆ ⋆ ⋆ −Q(h)

 .
It follows from Lemma 2 that the sufficient conditions for

achieving (34) are given as

∃ h∗ > 0, s.t. Γ(0, 0) ≤ 0, Γ(ϵ∗, 0) ≤ 0, Γ(ϵ∗, h∗) ≤ 0,

for all h ∈ (0, h∗], with ϵ∗ = (h∗)2(n−1), which can be trans-
formed into LMIs (24)–(26). This completes the proof.

Remark 5. Theorem 1 can be used for investigating the upper
bound of the delay h. We can set any h satisfying 0 < h ≤ h∗

in the formulation of s(t) and u(t).

Remark 6. Consider n(t) as the measurement noises with a
frequency fn. The robustness to the high-frequency n(t) can
be concluded from the averaging theory, which requires

fn ≪ 1/h, 0 < h ≤ h∗ (35)
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For low-frequency noise n(t), the artificial time-delay estima-
tor will not work as a filter. Thus, using the results in Theorem
1, it is possible to choose the suitable time delay for the finite-
time convergence to the vicinity of origin.

C. Attractivity of the sliding surface

In this section, the attractivity of the delay-dependent sliding
surface s(t) = 0 will be analyzed. The physical SMC law is

u(t) = −kJ−1
2 (h)sgn(s(t))

− J−1
2 (h)J1(h)N(h)x̂(t, h)

(36)

where k is a positive scalar. Moreover, an equivalent form of
(36) can be represented as

u(t) = −kJ−1
2 (h)sgn(s(t))− J−1

2 (h)J1(h)x(t)

− J−1
2 (h)J1(h)N(h)∆1(t, h).

(37)

Next, we will estimate the upper bound of |∆1(t, h)| and
|∆2(t, h)|. With Assumption A2), it is easy to verify that

|∆1(t, h)| =
n−1∑
j=0

|δj(t, h)|

=
1

(n− 2)!

n−1∑
j=0

∫ t

t−jh

|(s− t+ jh)n−2 · µ(s, t)|ds

≤ 1

(n− 2)!

n−1∑
j=0

∫ t

t−jh

|(s− t+ jh)n−2| · |µ(s, t)|ds

≤ br1(β)

where

br1(β) =
β

(n− 2)!

n−1∑
j=0

∫ t

t−jh

|(s− t+ jh)n−2| · |t− s|ds.

Similarly, we obtain that |∆2(t, h)| ≤ br2(β), where

br2(β) =

{
g(β), n ≥ 3

|xn(t)− xn(t− jh)|, n = 2,

g(β) =
β

(n− 3)!

n−1∑
j=0

∫ t

t−jh

|(s− t+ jh)n−3| · |t− s|ds.

Using (37) in the representation of ṡ(t) yields

ṡ(t) = −ksgn(s(t))− J1N(h)∆1(t, h)

+ J2d(x, t) + C̄N(h)∆2(t, h).
(38)

The switching term −ksgn(s(t)) is used to compensate for
d(x, t), ∆1(t, h) and ∆2(t, h) to force the state trajectories to
be attractive to the sliding surface s(t) = 0.

The following theorem investigates the reachability of the
sliding motion in finite time.

Theorem 2. Under Assumptions A1)–A2), the control input
(36) makes the sliding surface stable and globally attractive
in finite time, if the following condition holds:

k ≥ γ1β + ∥J2∥d∗ + k0 (39)
γ2β ≥ k∥B1J

−1
1 ∥+ ∥B1∥d∗ + k1 (40)

where k0 and k1 are positive scalars, and

γ1 = ∥J1N(h)∥b∗1 + ∥C̄N(h)∥b∗2,
γ2 = 1− ∥An1∥b∗1 − ∥An2∥b∗2,

b∗1 =

n−1∑
j=0

1

(n− 2)!
(jh)nB(2, n− 1),

b∗2 =


n−1∑
j=0

1

(n− 3)!
(jh)n−1B(2, n− 2), n ≥ 3

h, n = 2

(41)

and the reaching time is given as tr =
√
2V (0)/k0.

Proof. Consider the Lyapunov function as V (t) =
0.5sT (t)s(t). By differentiating V (t) with respect to
time t, we have

V̇ (t) = s(t)ṡ(t)

= s(t)[−ksgn(s(t))− J1(h)N(h)∆1(t, h)

+ J2(h)d(x, t) + C̄N(h)∆2(t, h)],

≤ −k|s(t)|+ ∥s(t)∥ · ∥J2(h)∥ · ∥d(x, t)∥
+ ∥s(t)∥ · ∥J1(h)N(h)∥ · ∥∆1(t, h)∥
+ ∥s(t)∥ · ∥C̄N(h)∥ · ∥∆2(t, h)∥.

N(h) (42)

Note that ∥s(t)∥ ≤ |s(t)|, ∥∆1(t, h)∥ ≤ |∆1(t, h)|, and
∥∆2(t, h)∥ ≤ |∆2(t, h)|. With Assumption A1) and A2),
inequality (42) becomes

V̇ (t) ≤ −|s(t)| · [k − ∥J1(h)N(h)∥ · br1(β)
− ∥J2(h)∥d∗ − ∥C̄N(h)∥ · br2(β)]

which indicates that (39). Finally, we obtain that V̇ (t) ≤
−k0|s| < 0, which guarantees the convergence of system (1)
towards the surface s(t) = 0, and

br1(β) =
β

(n− 2)!

n−1∑
j=0

∫ t

t−jh

|(s− t+ jh)n−2| · |t− s|ds

= β

n−1∑
j=0

(jh)n
∫ 1

0

|sn−1(1− s)|ds = b∗1β,

br2(β) =
β

(n− 3)!

n−1∑
j=0

∫ t

t−jh

|(s− t+ jh)n−3| · |t− s|ds

=

n−1∑
j=0

(jh)n−1

∫ 1

0

|sn−2(1− s)|ds · β = b∗2β, n ≥ 3,

br2(β) = hβ = b∗2β, n = 2.

Here, b∗1 and b∗2 are the linear coefficients.
Hence, the state trajectory is capable to reach the sliding

surface s(t) = 0 in finite time, and the reaching time given
below can be adjusted by changing k0:

tr = |s(0)|/k0 =
√
2V (0)/k0.

Moreover, with control law in (36), we obtain

xn+1(t) = Amη(t) +An1∆1(t, h) +An2∆2(t, h)

− kB1J
−1
2 (h)sgn(s(t)) +B1d(x, t)
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which implies that

∥xn+1(t)∥ ≤ ∥Amη(t)∥+ β∥An1∥b∗1
+ β∥An2∥b∗2 + k∥B1J

−1
2 (h)∥+ ∥B1∥d∗.

Considering that ∥xn+1(t)∥ < |xn+1(t)| < β, we arrive at

k1+β∥An1∥b∗1+β∥An2∥b∗2+k∥B1J
−1
1 (h)∥+∥B1∥d∗ < β. (43)

Note that in (40), the item k1 is added to (43) in order to
compensate the bounded item ∥Amη(t)∥, i.e. ∥Amη(t)∥ ≤
|(Ā−B1J

−1
2 (h)J1(h))x| < k1. This completes the proof.

Remark 7. The upper bounds of estimation errors are b∗1β =
O(hn) and b∗2β = O(hn), which are small scalars for small e-
nough delay h. Thus, γ1β ≈ 0, 1 ≥ γ2 > 0. First, we approxi-
mately choose k satisfying k ≥ ∥J2∥d∗+k0. Then, the value of
β is determined via β ≥ k∥B1J

−1
1 ∥/γ2+∥B1∥d∗/γ2+k1/γ2.

Design Steps. The model (1) is derived based on the lin-
earization around the equilibrium. Then, the matrices Ai and
B1 are obtained, where the domain for model (2) is defined
as |x(t)| ≤ ψ. Here ψ is a known scalar. The upper bound d∗

is known. With Assumptions A1)–A2), we will follow
1) Select k1 that satisfies

|(Ā−B1J
−1
2 J1)x| ≤ |(Ā−B1J

−1
2 J1)| · ψ ≤ k1.

2) Choose C̄, and formulate the ideal sliding surface s∗(t)
and the delay-dependent sliding surface s(t).

3) Find h∗ = maxh, if the solution to (24)–(26) exists:

maxh, s.t. LMIs (24)–(26) hold;

4) Choose h, k, k0 and β to satisfy the constraints (39)–
(40), and 0 < h ≤ h∗;

5) Design the output SMC controller in the form of (36)
by using the values of C̄, k and h.

IV. SIMULATION EXAMPLE

In this section, a simulation example of a Magnetic Levi-
tation System (MLS) is used. The following nonlinear model
in [21] is considered:

ẋ1(t) = x2(t)

ẋ2(t) = − k

M
x2(t) +

aL0

2M

x2
3(t)

(a+ x1(t))2
− g

ẋ3(t) =
1

L(x1(t))
(−R0x3(t)− aL0

x2(t)x3(t)

(a+ x1(t))2
+ v(t))

(44)
where x1(t), x2 and x3(t) are, respectively, the plate’s position
in [m], velocity in [m/s] and coil current in [A], and v(t) is
the control input (voltage applied to coil). Moreover, M is
the mass of the plate, g is the gravity acceleration, k is a
viscous friction coefficient, R0 is the electric resistance, and
L(x1(t)) = L1 + aL0

a+x1(t)
is the coil inductance, and a, L0

and L1 are positive constants. In the simulation setup, these
parameters are given as M = 0.1203kg, g = 9.815m/s2,
k = 0.01N ·m/s, L1 = 0.1H, L0 = 0.245H, a = 0.0088m,
and R0 = 1.75Ω. By diffeomorphism, the following variables
are defined:

σ1(t) = x1(t), σ2(t) = x2(t),

σ3(t) = − k

M
x2(t) +

aL0

2M

x23(t)

(a+ x1(t))2
− g.
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Fig. 1. Comparison of the proposed method with the full-state-information
sliding mode controller(n(t) = 0).

Then, system (44) is equivalently represented as

σ̇1(t) = σ2(t), σ̇2(t) = σ3(t), σ̇3(t) = f(σ) + g(σ)v(t) (45)

where σ(t) = col{σ1(t), σ2(t), σ3(t)}, and

f(σ) =
k2

M2
σ1(t) +

kg

M
− 2(

R

L(σ1(t))
+

k

2M
+

σ2(t)

a+ σ1(t)

− aL0σ2(t)

L(σ1(t))(a+ σ1(t)
) · (σ3(t) +

k

M
σ2(t) + g),

g(σ) =
2aL0(σ3(t) +

k
M σ2(t) + g)

M
1
2L(σ1(t))(a+ σ1(t))

.

Applying v(t) = −g−1(σ(t))[f(σ(t)) + u(t)] to system (46)
yields the following perturbed triple integrator:

σ̇1(t) = σ2(t), σ̇2(t) = σ3(t), σ̇3(t) = u(t) + d(x, t) (46)

where v(t) is the virtual control input to be designed, and
d(x, t) is a perturbation caused by external signals or param-
eter or model uncertainties. The considered domain is defined
as |x(t)| ≤ |x1(t)|+ |x2(t)|+ |x3(t)| ≤ ψ, with ψ = 20. Then,
d(x, t) = 0.5 cos(t) + 0.5 sin(t), and d∗ = 1. Only the noisy
measurement of σ1(t) is available for control purpose, which
is denoted as f(t) = σ1(t) + n(t), where n(t) is the noises
satisfying |n(t)| ≤ ε, and ε is a positive scalar.

A. Design of output sliding mode controller via artificial time-
delay estimation

We characterize the initial values as x1(0) = 3, x2(0) =
−3, x3(0) = 3. The design steps are listed:

1) Based on the interested domain, we select k1 = 13.2 to
satisfy that |(A−B1J

−1
2 J1)x| ≤ |0.51| · ψ ≤ k1.

2) Choose C̄ =
[
c1 c2 c3

]
with c1 = 1.3, c2 =

2.45, c3 = 1. Then, sliding variables s∗(t) and s(t) are

s∗(t) = 1.3x1(t) + 2.45x2(t) + x3(t), s(t) = C̄dx̂(t, h),

where x̂(t, h) = col{x1(t), x1(t−h), x1(t−2h)}, cd1 =
c1 + 1.5c2/h+ c3/h

2, and

C̄d =
[
cd1 −2c2/h− 2c3/h

2 0.5c2/h+ c3/h
2
]
.
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3) By solving LMIs of Theorem 1, the feasible solutions are
obtained as P3 = 0.976, X = 0.568, W = 3.124, and

P1 =

[
0.876 0.622
∗ 1.456

]
, P2 =

[
−0.234 1.723

]
.

Meanwhile, we find that h∗ = 0.87.
4) Choose k0 = 0.5, k = 2 and β = 9 such that the

constraints (39) and (40) simultaneously hold.
5) From (36), the output sliding mode controller via artificial

time-delay estimation is written as

u(t) = −2sgn(s(t)) + g1x1(t) +

3∑
i=2

gix1(t− (i− 1)h)

and g1 = (−10 − 10/h), g2 = 10/h + 10/h2, g3 =
−5/h2, and the value of h should satisfy condition (35).

Inspired from [1], the control law for the case of the differen-
tiator or sliding mode observer is written as

u∗(t) = − kc
2.7879

sgn(s∗(t))− Ccx̂(t)

where kc = 6, Cc =
[
0.7609 1.8913 1

]
, and x̂(t) =

col{f(t), x̂2(t), x̂3(t)}. States x2(t) and x3(t) are estimated
via a robust exact differentiator/sliding mode observer. Fig.1
reveals the trajectories of s∗(t), s(t), u(t) and u∗(t), which
shows that the artificial time-delay sliding surface can approx-
imate the linear sliding surface with the acceptable precision.

B. Comparison of the artificial time-delay estimation with the
robust differentiator/sliding mode observer

We use a robust exact differentiator (RED) [15]:
˙̂x1(t) = x̂2(t)− 3L

1
3

d e
2
3

d (t)sgn(ed(t))

˙̂x2(t) = x̂3(t)− 1.5L
1
2

d e
1
2

d (t)sgn(ed(t))

˙̂x3(t) = −1.1Ldsgn(ed(t))

where ed(t) = x̂1(t) − f(t), and Ld ≥ d∗ + sup |u| ([15]).
Moreover, a higher order sliding mode observer (HOSMO) is
used: 

˙̂z1(t) = ẑ2(t) + 3L
1
3
o e

2
3
o (t)sgn(eo(t))

˙̂z2(t) = ẑ3(t) + 1.5L
1
2
o e

1
2
o (t)sgn(eo(t))

˙̂z3(t) = 1.1Losgn(eo(t)) + u∗(t)

where eo(t) = ẑ1(t) − f(t), and Lo ≥ d∗ (see [22]). Here,
we choose Ld = 250 ([15]), and Lo = 50, because HOSMO
takes into account the known part of MLS dynamics ([22]).
When n(t) = 0, Fig. 2 reveals that RED and achieve the
better tracking precision of system dynamics than the artificial
time-delay estimator without measurement noises. Apparently,
RED/HOSMO have faster response rate than the proposed
one, because RED and HOSMO adopt the dynamic output-
feedback structure, while the artificial time-delay estimator is
of static structure.

Next, sinuous measurement noises will be imposed in x1(t)
for the the comparative simulations. They are assumed to
be in the form of n(t) = An sin(fnt), where An is the
amplitude of noises and fn is the noise frequency. Our method
is very flexible, because h will be chosen with respect to
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Fig. 2. Comparison of the proposed method with the RED and HOSMO
(n(t) = 0).
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Fig. 3. Comparison of the proposed method with the RED and HOSMO
(n(t) = 0.5 sin(50t)).

fn. Here, noises with different frequencies are, respectively,
imposed on the measurement x1(t): n(t) = 0.5 cos(50t) and
n(t) = 0.1 cos(1000t). For the selection of h, the trade-off will
be made between the approximation accuracy and filtration
against noises. According to condition (35), we choose h =
0.05 and h = 0.01, respectively, for n(t) = 0.5 cos(50t) and
n(t) = 0.5 cos(1000t). Figs. 3–4 illustrate that the artificial
time-delay estimator has certain filtering quantities against
the measurement noises and can achieve a better robustness
than the RED/HOSMO. Moreover, the proposed artificial time-
delay estimator is of static output-feedback structure, which

Authorized licensed use limited to: TEL AVIV UNIVERSITY. Downloaded on February 16,2020 at 09:53:41 UTC from IEEE Xplore.  Restrictions apply. 



0018-9286 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TAC.2020.2973598, IEEE
Transactions on Automatic Control

8

0 5 10 15
-5

0

5

10
x 1(t

)
n(t)=0.1sin1000t, h=0.01

0 5 10 15 20
-5

0

5

x 2(t
)

0 5 10 15 20

Time(sec)

-10

0

10

x 3(t
)

artificial time-delay estimator
differentiator
sliding mode observer

Fig. 4. Comparison of the proposed method with the RED and HOSMO
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does not require introducing additional dynamics for state
estimation.

V. CONCLUSION

In this paper, the static output-feedback sliding mode con-
troller for systems with relative degree n has been introduced,
where the output derivatives up to the order n − 1 are
approximated by using the current and the delayed values
of the output. First we design a delayed sliding surface,
and then prove its finite-time attractivity. Lyapunov-Krasovskii
functional is suggested to achieve the practical stabilization.
The design parameters are chosen for a good trade-off between
the approximation accuracy in the presence of measurement
noises and the reduction of controller gain. A simulation
example is given to show the merits of the proposed design
method.
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