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a b s t r a c t

This paper, for the first time, provides sub-predictors for networked control systems (NCSs) under
uncertain large communication delays. We use a time-delay approach to NCS and employ sub-
predictors to partially compensate large uncertain transmission delays in the sensor-to-controller and
controller-to-actuator channels by dividing the long delay into small pieces. We consider systems with
norm-bounded uncertainties, and take into account Round-Robin scheduling protocol in sensor-to-
controller channel. In comparison with the traditional reduction-based classical predictor involving
distributed input, the sub-predictor-based feedback is more friendly in the presence of norm-bounded
uncertainties and is simpler for implementation. The sub-predictor-based feedback is further extended
to decentralized control of interconnected systems provided that the couplings are not strong. The
stability analysis of the closed-loop system is based on the Lyapunov–Krasovskii method and the
stability conditions are given in terms of linear matrix inequalities.

© 2020 Elsevier Ltd. All rights reserved.
1. Introduction

Modern control makes use of digital and communication tech-
ology for implementation. Networked control systems (NCSs),
here the plant and the controller exchange data via communi-
ation network, become quite popular in practice. The actuator
nd sensor delays due to the transmission are among the most
ommon dynamic phenomena in NCSs, and have adverse impact
n stability and transient performance when disregarded.
In the state-of-the-art, the approaches to handle delays may

e generally classified into two categories:

• The first method is the predictor-free feedback where the
robustness with respect to small enough delays is stud-
ied (Freirich & Fridman, 2016; Fridman, 2014; Liu, Selivanov,
& Fridman, 2019). The benefit of this method is that the con-
trol algorithm would be quite simple, whereas the potential
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shortcoming is that the delay value tolerated by the control
system may be small.

• The second method is the predictor-based feedback via de-
lay compensation to handle large delays.
There are two main approaches to the predictor control. The
first one is the reduction-based predictor feedback which
was initiated in Artstein (1982) and then extended to time-
varying delays (Bekiaris-Liberis & Krstic, 2013; Karafyllis &
Krstic, 2013; Yue & Han, 2005; Zhou, Lin, & Duan, 2012),
sampled-data control (Selivanov & Fridman, 2016, 2016a,
2016b; Zhang, Branicky, & Phillips, 2001; Zhu & Fridman,
2020a, 2020b) and delay-adaptive control (Zhu & Krstic,
2020; Zhu, Krstic, & Su, 2017). In such a predictor-based
framework, the controller employs the prediction of the
future values of the state. The resulting closed-loop system
evolves like a reduced system (as emphasized by the name
reduction) as if there were no delay at all after an initial tran-
sient period of the delay time units. The predictor feedback
is able to deal with large delays, but it may be non-trivial
to numerically compute the integration of the distributed
input signals over a historical time interval in the control
laws (Furtat, Fridman, & Fradkov, 2018; Karafyllis & Krstic,
2017; Mondie & Michiels, 2003).
The second one is the sub-predictors via a chain of ob-
servers. The latter was initiated to handle constant output
delays in Ahmed-Ali, Cherrier, and Lamnabhi-Lagarrigue
(2012) and Germani, Manes, and Pepe (2001, 2002), and
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Fig. 1. Sub-predictors feedback for NCSs with large Delays.

further developed to address constant input delays by
Najafia, Hosseinnia, Sheikholeslam, and Karimadini (2013).
See also some recent extensions: parabolic systems with
constant output delays (Ahmed-Ali et al., 2020), linear sto-
chastic systems with time-varying input delays (Cacace,
Germani, Manes, & Papi, 2020), deterministic systems with
time-varying input delays (Mazenc & Malisoff, 2017; Sanz,
Garcia, Fridman, & Albertos, 2018, 2020), and linear time-
varying systems with both constant input and output de-
lays (Mazenc & Malisoff, 2020). By dividing a large delay
into small pieces, the basic idea of the sub-predictors is
to use a chain of observers to sequentially estimate the
future state in terms of the time units of the divided delay.
The references Mazenc and Malisoff (2017) and Sanz et al.
(2018, 2020) studied the continuous-time control with time-
varying delays. As clarified in Remark 2 of Mazenc and
Malisoff (2017), the results for time-varying delays cannot
be trivially applicable to arbitrary sawtooth shaped delays
arising from sampling. The sub-predictors feedback was
extended to sampled-data control with discrete-time out-
put in Mazenc and Malisoff (2020). However, the
measurement sampling in Mazenc and Malisoff (2020) was
periodic, the actuator delay was constant, and the
continuous-discrete sequential observers were employed.
Extension of such method to additional time-varying delays
and system uncertainties may be problematic.

In this paper, building on the chain-observer-based
ontinuous-time control concept in Ahmed-Ali et al. (2012), Ger-
ani et al. (2002) and Najafia et al. (2013), we provide a
ub-predictor-based control for NCSs with uncertain large time-
arying communication delays. Here, for the first time, we extend
he sequential sub-predictors to the stabilization of NCSs with
orm-bounded uncertainty, multi-sensors under Round-Robin
cheduling protocol, and to the interconnected systems when
he interactions among subsystems are not strong (i.e. Euclidean
orms of coupling matrices are small enough as explained in
emarks 2 and 3 of Zhu & Fridman, 2020a, 2020b). The analysis
n our paper is based on the time-delay approach to NCSs and
he results are formulated in terms of linear matrix inequal-
ties (LMIs) (Fridman, 2014; Liu, Fridman, & Hetel, 2012; Liu
t al., 2019). Moreover, the samplings in input and output of
his paper are aperiodic and the control system is robust to a
ime-varying input delay uncertainty. In comparison with the
lassical reduction-based predictor (Selivanov & Fridman, 2016,
016a, 2016b; Zhang et al., 2001) employing an integral formula
f distributed input, the sub-predictor-based feedback is more
riendly and simpler for implementation in the presence of norm-
ounded uncertainties and for interconnected systems. Some
reliminary results of the paper (confined to the single plant) will
e presented in Zhu and Fridman (2020c).

. Sub-predictors feedback for NCSs under delay and norm-
ounded uncertainty

Consider linear systems as follows:{
ẋ(t) = (A + ∆A)x(t) + (B + ∆B)u(t),

(1)

y(t) = (C + ∆C)x(t),

2

where x(t) ∈ Rn is the unmeasurable plant state, u(t) ∈ Rm is
the control input, and y(t) ∈ Rq is the measured output. The pair
(A, B) is stabilizable and (A, C) is detectable. The norm-bounded
uncertainties are of the forms

∆A = HA∆(t)EA, ∆B = HB∆(t)EB, ∆C = HC∆(t)EC

n which the matrices HA, EA, HB, EB, HC , EC are constant and
nown, whereas ∆(t) ∈ Rl1×l2 is a time-varying uncertain matrix
atisfying the following inequality:

(t)T∆(t) ≤ I (2)

As shown in Fig. 1, we consider network-based control of (1)
n the presence of two networks: from sensors to controller and
rom controller to actuators. We denote by {sk} sampling instants
n the sensors side and {tk} updating instants on the actuators

side with k ∈ Z+

0 , respectively, and they satisfy

0 = s0 < s1 < s2 < · · · , limk→∞ sk = ∞, sk+1 − sk ≤ h,
r = r0 + r1, tk = sk + r + ηk + µk, tk ≤ tk+1,

0 ≤ ηk ≤ ηM , 0 ≤ µk ≤ µM ,
(3)

where h is the maximum sampling interval, i.e., the Maximum
llowable Transmission Interval (MATI), r0 + r1 + ηk + µk is
he time-varying transmission delay from sensors to actuators,
n which r = r0 + r1 > 0 is the known constant delay which
ay be much larger than the sampling interval, whereas ηk is the

ime-varying sensor-to-controller delay upper bounded by ηM as
ell as µk is the time-varying controller-to-actuator delay upper
ounded by µM . In the controller design, the time stamp sk will
e transmitted with the sampled-data together, thus ηk could be
alculated by the controller. The delay uncertainty µk is unknown.
Under the above networked control (3), (1) becomes

˙(t) = (A + ∆A)x(t) + (B + ∆B)u(sk), t ∈ [tk, tk+1)
(sk) = (C + ∆C)x(sk)

(4)

ote that the notation u(sk) is defined to be the control input
mploying the information measured at sk. Using the time-stamp,
e assume both of y(sk) and sk are available on the controller side.
In order to deal with the large delay r , we divide r into M

M ∈ Z+) pieces like r
M and employ a chain of sub-predictors

to sequentially achieve the future state prediction such that
x̂1(t − r) → x̂2

(
t −

M−1
M r

)
→ · · · → x̂i

(
t −

M−i+1
M r

)
→

x̂i+1
(
t −

M−i
M r

)
→ · · · → x̂M−1

(
t −

2
M r

)
→ x̂M

(
t −

1
M r

)
→ x(t).

Define the estimation error⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

e1(t) = x̂1(t − r) − x̂2
(
t −

M−1
M r

)
e2(t) = x̂2

(
t −

M−1
M r

)
− x̂3

(
t −

M−2
M r

)
...

eM−1(t) = x̂M−1
(
t −

2
M r

)
− x̂M

(
t −

1
M r

)
eM (t) = x̂M

(
t −

1
M r

)
− x(t)

(5)

A chain of sub-predictor-based observers is designed as⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

˙̂x1(t) = Ax̂1(t) + LC
(
x̂1

(
t −

r
M

)
− x̂2(t)

)
+ Bu(t)

˙̂x2(t) = Ax̂2(t) + LC
(
x̂2

(
t −

r
M

)
− x̂3(t)

)
+ Bu

(
t −

1
M r

)
...

˙̂xM−1(t) = Ax̂M−1(t) + LC
(
x̂M−1

(
t −

r
M

)
− x̂M (t)

)
+Bu

(
t −

M−2
M r

)
˙̂xM (t) = Ax̂M (t) + LCx̂M

(
sk −

r
M

)
− L(C + ∆C)x(sk)

+Bu
(
t −

M−1 r
)
, t ∈ [s , s )

(6)
M k k+1
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ith x̂i(t) = 0 for t ≤ 0, and the controller is chosen as

(t) = Kx̂1(t) (7)

here L and K are selected to make A + LC and A + BK Hurwitz,
espectively. Note that, for conceptional and notational simplicity,
e employ an identical L in each observer. An improved selection

s to apply different observer gains Li with i = 1, . . . ,M to differ-
nt observers. The signal x̂1(sk) can be calculated by solving (6)
t the time instant sk on the controller side (Selivanov & Frid-
an, 2016b). Note that in our design (6)–(7), the sampled-data
easurement is employed only in the last chain observer of (6)

and not in every observer), which allows to avoid redundant
ampling-induced delayed terms in the closed-loop system.
For analysis, we have the following equations:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

˙̂x1(t − r) = Ax̂1(t − r) + LC
(
x̂1

(
t −

M+1
M r

)
− x̂2(t − r)

)
+Bu(t − r)

˙̂x2
(
t −

M−1
M r

)
= Ax̂2

(
t −

M−1
M r

)
+ LC

(
x̂2 (t − r)

−x̂3
(
t −

M−1
M r

) )
+Bu (t − r)

...

˙̂xM−1
(
t −

2
M r

)
= Ax̂M−1

(
t −

2
M r

)
+ LC

(
x̂M−1

(
t −

3
M r

)
−x̂M

(
t −

2
M r

) )
+Bu (t − r)

˙̂xM
(
t −

r
M

)
= Ax̂M (t −

r
M ) + LC

(
x̂M

(
sk −

r
M

)
− x(sk)

)
−L∆Cx(sk) + Bu (t − r) , t ∈

[
sk +

r
M , sk+1 +

r
M

)

(8)

Then the first equation of (8) and the dynamics of the estima-
tion error (5) take the following forms:⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

˙̂x1(t − r) = (A + BK )x̂1(t − r) + LCe1
(
t −

r
M

)
ė1(t) = Ae1(t) + LCe1

(
t −

r
M

)
− LCe2

(
t −

r
M

)
...

ėM−2(t) = AeM−2(t) + LCeM−2
(
t −

r
M

)
− LCeM−1

(
t −

r
M

)
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ėM−1(t) = AeM−1(t) + LCeM−1
(
t −

r
M

)
− LCeM

(
t −

r
M

)
−LCveM (t) + L∆C

(
x̂1

(
t − r −

r
M

)
−

∑M
i=1 ei

(
t −

r
M

))
+L∆C

(
vx̂1 (t) −

∑M
i=1 vei (t)

)
ėM (t) = AeM (t) + LCeM

(
t −

r
M

)
+ LCveM (t)

−∆A
(
x̂1(t − r) −

∑M
i=1 ei(t)

)
−L∆C

(
x̂1

(
t − r −

r
M

)
−

∑M
i=1 ei

(
t −

r
M

))
−L∆C

(
vx̂1 (t) −

∑M
i=1 vei (t)

)
+BK

(
x̂1(t − r) − x̂1(t − r − τ (t))

)
− ∆BK x̂1(t − r − τ (t))

(9)

where τ (t) = t−r−sk, t ∈ [tk, tk+1), 0 ≤ τ (t) ≤ h+ηM+µM = τM ,
and vx̂1 (t) = x̂1(sk−r)−x̂1

(
t − r −

r
M

)
, vei (t) = ei(sk)−ei

(
t −

r
M

)
,

t ∈
[
sk +

r
M , sk+1 +

r
M

)
.

Defining ξ (t) = ( x̂1(t−r)T e1(t)T ... eM (t)T )T , the closed-loop (9) is
rewritten as follows:
ξ̇ (t) = Āξ (t) + L̄ξ

(
t −

r
M

)
+ H1vξ (t) + H2ξ (t − τ (t))

+∆Āξ (t) + ∆B̄ξ (t − τ (t)) + ∆C̄ξ
(
t −

r
M

)
+ ∆C̄vξ (t)

Āξ (t) + L̄ξ
(
t −

r
M

)
+ H1vξ (t) + H2ξ (t − τ (t))

+H̄A∆̄A(t)ĒAξ (t) + H̄B∆̄B(t)ĒBξ (t − τ (t))
¯ ¯ ¯

( r )
¯ ¯ ¯

(10)
+HC∆C (t)ECξ t − M + HC∆C (t)ECvξ (t)
3

where vξ (t) = ξ (sk) − ξ
(
t −

r
M

)
, t ∈

[
sk +

r
M , sk+1 +

r
M

)
, Ā =

A+BK 0 ··· 0 0
0 A ··· 0 0
...

...
...

...
...

0 0 ··· A 0
BK 0 ··· 0 A

⎞⎟⎠, L̄ =

⎛⎜⎜⎝
0 LC 0 ··· 0 0
0 LC −LC ··· 0 0
0 0 LC ··· 0 0
...

...
...

...
...

...
0 0 0 ··· LC −LC
0 0 0 ··· 0 LC

⎞⎟⎟⎠, H1 =

⎛⎜⎝
0 ··· 0 0
...
...

...
...

0 ··· 0 0
0 ··· 0 −LC
0 ··· 0 LC

⎞⎟⎠,

2 =

⎛⎝ 0 0 ··· 0 0
...

...
...

...
...

0 0 ··· 0 0
−BK 0 ··· 0 0

⎞⎠, ∆Ā =

⎛⎝ 0 0 ··· 0 0
...

...
...

...
...

0 0 ··· 0 0
−∆A ∆A ··· ∆A ∆A

⎞⎠,

∆B̄ =

⎛⎝ 0 0 ··· 0 0
...

...
...

...
...

0 0 ··· 0 0
−∆BK 0 ··· 0 0

⎞⎠, ∆C̄ =

⎛⎜⎝
0 0 ··· 0 0
...

...
...

...
...

0 0 ··· 0 0
L∆C −L∆C ··· −L∆C −L∆C

−L∆C L∆C ··· L∆C L∆C

⎞⎟⎠,

H̄A =

⎛⎝ 0 0 ··· 0 0
...
...
...

...
...

0 0 ··· 0 0
0 0 ··· 0 HA

⎞⎠, H̄B =

⎛⎝ 0 0 ··· 0 0
...

...
...

...
...

0 0 ··· 0 0
HB 0 ··· 0 0

⎞⎠, H̄C =

⎛⎜⎝
0 ··· 0 0
...
...

...
...

0 ··· 0 0
0 ··· 0 −LHC
0 ··· 0 LHC

⎞⎟⎠,

∆̄A(t) =

⎛⎝ 0
...
0

∆(t)

⎞⎠, ∆̄B(t) =

⎛⎝ ∆(t)
0
...
0

⎞⎠, ∆̄C (t) =

⎛⎝ 0
...
0

∆(t)

⎞⎠, ĒA =

( −EA EA ··· EA ), ĒB = ( −EBK 0 ··· 0 ), ĒC = ( −EC EC ··· EC ).

Theorem 1. Consider the closed-loop system consisting of the
plant (4) and sub-predictor-based controller (6)–(7). Given positive
tuning parameters r,M, h, τM = r + µM + ηM , α, let (M + 1)n ×

(M + 1)n matrices P, S0, R0,W , S1, R1 > 0, (M + 1)n × (M + 1)n
matrix G1, and a parameter λ > 0, satisfy the LMIs:(

Φ Ψ
∗ −Ξ

)
< 0,

(
R1 G1
∗ R1

)
> 0,

Ψ = ( ΞT Ā, ΞT L̄, ΞTH1, ΞTH2, 0, ΞT H̄A, ΞT H̄B, ΞT H̄C , ΞT H̄C )T ,

Ξ =
r2

M2 R0 + h2e2αhW + τ 2
MR1

(11)

here Φ is a symmetric matrix composed of

11 = ĀTP + PĀ + 2αP + S0 + S1 − e−2α r
M R0 − e−2ατMR1

+λĒT
A ĒA, Φ12 = PL̄ + e−2α r

M R0, Φ13 = PH1,

14 = PH2 + e−2ατM (R1 − G1), Φ15 = e−2ατMG1,

16 = PH̄A, Φ17 = PH̄B, Φ18 = Φ19 = PH̄C ,

22 = −e−2α r
M (S0 + R0) + λĒT

C ĒC ,

33 = −
π2

4 e−2α r
M W + λĒT

C ĒC ,

Φ44 = e−2ατM (GT
1 + G1 − 2R1) + λĒT

B ĒB,
Φ45 = e−2ατM (R1 − G1), Φ55 = −e−2ατM (S1 + R1),

66 = Φ77 = Φ88 = Φ99 = −λI.

hen the closed-loop system (10) is exponentially stable with a decay
ate α. ■

roof. Consider the Lyapunov–Krasovskii functional (LKF) V (t) =

P (t) + VS0 (t) + VR0 (t) + VW (t) + VS1 (t) + VR1 (t), where

VP (t) = ξ (t)TPξ (t),

VS0 (t) =
∫ t
t− r

M
e2α(s−t)ξ (s)T S0ξ (s)ds,

R0 (t) =
r
M

∫ 0
−

r
M

∫ t
t+θ

e2α(s−t)ξ̇ (s)TR0ξ̇ (s)dsdθ,

W (t) = h2e2αh
∫ t
sk
e2α(s−t)ξ̇ (s)TW ξ̇ (s)ds

−
π2

4

∫ t− r
M

sk
e2α(s−t) (ξ (sk) − ξ (s))T W (ξ (sk) − ξ (s)) ds,

t ∈
[
sk +

r
M , sk+1 +

r
M

)
,

VS1 (t) =
∫ t
t−τM

e2α(s−t)ξ (s)T S1ξ (s)ds,

R1 (t) = τM
∫ 0 ∫ t e2α(s−t)ξ̇ (s)TR1ξ̇ (s)dsdθ.

(12)
−τM t+θ
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ote that the terms VS0 and VR0 in (12), which stem from Fridman
(2014, Ch. 3.6.2, p. 90), are used to deal with the constant delay
term ξ

(
t −

r
M

)
in (10). The terms VS1 and VR1 in (12), which

borrowed from Fridman (2014, Ch. 3.6.2, p. 91), are employed
to address the time-varying delay term ξ (t − τ (t)) in (10). The
term VW in (12), which came from Fridman (2014, Ch. 7.4.2,
pp. 302–304), is utilized to handle the term vξ (t) in (10). We
note that some advanced result by augmented LKF via Legen-
dre polynomial and Bessel–Legendre inequality was presented
in Seuret and Gouaisbaut (2015) to improve the upper bound
of the allowable constant delay. Here, for conceptional clearness,
we just employ the simplest LKF regardless of conservativeness.
Employing Jensen’s inequality (see Fridman, 2014, Ch. 3.5.5, p. 87)
and reciprocally convex approach (see Fridman, 2014, Ch. 3.6.3,
pp. 95–98), we have

V̇P (t) + 2αVP (t) = ξ (t)T
(
2PĀ + 2αP

)
ξ (t)

+2ξ (t)TP
(
L̄ξ

(
t −

r
M

)
+ H1vξ (t) + H2ξ (t − τ (t))

+H̄A∆̄A(t)ĒAξ (t) + H̄B∆̄B(t)ĒBξ (t − τ (t))

+H̄C∆̄C (t)ĒCξ
(
t −

r
M

)
+ H̄C∆̄C (t)ĒCvξ (t)

)
˙S0 (t) + 2αVS0 (t) = ξ (t)T S0ξ (t)

−e−2α r
M ξ

(
t −

r
M

)T S0ξ (
t −

r
M

)
V̇R0 (t) + 2αVR0 (t) ≤

r2

M2 ξ̇ (t)TR0ξ̇ (t)

−e−2α r
M

(
ξ (t) − ξ

(
t −

r
M

))T R0
(
ξ (t) − ξ

(
t −

r
M

))
˙W (t) + 2αVW (t) = h2e2αhξ̇ (t)T W ξ̇ (t)

−
π2

4 e−2α r
M vξ (t)T Wvξ (t)

V̇S1 (t) + 2αVS1 (t) = ξ (t)T S1ξ (t)

−e−2ατM ξ (t − τM)T S1ξ (t − τM)

˙R1 (t) + 2αVR1 (t) ≤ τ 2
M ξ̇ (t)TR1ξ̇ (t)

−e−2ατM

(
ξ (t) − ξ (t − τ (t))

ξ (t − τ (t)) − ξ (t − τM )

)T (
R1 G1

∗ R1

)
×

(
ξ (t) − ξ (t − τ (t))

ξ (t − τ (t)) − ξ (t − τM )

)

(13)

rom (2), we have the following inequalities:

(t)T ĒT
A ∆̄A(t)T ∆̄A(t)ĒAξ (t) ≤ ξ (t)T ĒT

A ĒAξ (t)

ξ (t − τ (t))T ĒT
B ∆̄B(t)T ∆̄B(t)ĒBξ (t − τ (t))

≤ ξ (t − τ (t))T ĒT
B ĒBξ (t − τ (t))

ξ
(
t −

r
M

)T ĒT
C ∆̄C (t)T ∆̄C (t)ĒCξ

(
t −

r
M

)
≤ ξ

(
t −

r
M

)T ĒT
C ĒCξ

(
t −

r
M

)
ξ (t)T ĒT

C ∆̄C (t)T ∆̄C (t)ĒCvξ (t)

≤ vξ (t)T ĒT
C ĒCvξ (t)

(14)

Applying S-procedure, we get

V̇ (t) + 2αV (t)

+λ
(
ξ (t)T ĒT

A ĒAξ (t) − ξ (t)T ĒT
A ∆̄A(t)T ∆̄A(t)ĒAξ (t)

)
+λ

(
ξ (t − τ (t))T ĒT

B ĒBξ (t − τ (t))

−ξ (t − τ (t))T ĒT
B ∆̄B(t)T ∆̄B(t)ĒBξ (t − τ (t))

)
+λ

(
ξ

(
t −

r
M

)T ĒT
C ĒCξ

(
t −

r
M

)
−ξ

(
t −

r
M

)T ĒT
C ∆̄C (t)T ∆̄C (t)ĒCξ

(
t −

r
M

))
+λ

(
vξ (t)T ĒT

C ĒCvξ (t) − vξ (t)T ĒT
C ∆̄C (t)T ∆̄C (t)ĒCvξ (t)

)
T T −1 T

(15)
η (t)Φη(t) + η (t)Ψ Ξ Ψ η(t) ≤ 0
4

where η(t) = col{ξ (t), ξ
(
t −

r
M

)
, vξ (t), ξ (t − τ (t)), ξ (t − τM ),

∆̄A(t)ĒAξ (t), ∆̄B(t)ĒBξ (t − τ (t)), ∆̄C (t)ĒCξ
(
t −

r
M

)
,

∆̄C (t)ĒCvξ (t)}. Applying Schur complement, the inequality (15)
implies (11). ■

Remark 1. Note that the analysis LMIs (11) contain the control
gain K and observer gain L which are specified by the designers.
The analysis LMIs would be nonlinear when K and L are unknown.
Finding K and L is related to ‘‘linearization’’ of LMIs (e.g. via
the descriptor method in Fridman, 2014, Ch. 5.2, p. 209). Since
the design LMIs can be suggested based on our analysis LMIs,
we believe providing the analysis LMIs is the main problem of
interest. ■

Remark 2. If the delay uncertainty τ (t) and norm-bounded uncer-
tainty ∆(t) in (9) are zero, the closed-loop system (9) satisfies the
separation principle: the stability of eM (t) guarantees the stability
of eM−1(t) till e1(t), and x̂1(t−r). Due to the existences of τ (t) and
(t), there is no separation principle for (9). ■

emark 3. An alternative way to compensate large delays in the
ncertain NCS (4) is the classical predictor (Artstein, 1982), where
he observer is designed as
˙̂(t) = Ax̂(t) + LCx̂(sk) − L(C + ∆C)x(sk) + Bu(t − r),
t ∈ [sk, sk+1)

(16)

nd the predictor controller is selected as

(t) = K ẑ(t), ẑ(t) = eAr x̂(t) +
∫ t
t−r e

A(t−s)Bu(s)ds. (17)

aking the time-derivative of ẑ(t) along (16), we get the z-
ynamics such that

˙̂(t) = Aẑ(t) + Bu(t) − eArLC(x(sk) − x̂(sk)) − eArL∆Cx(sk)
(A + BK )ẑ(t) − eArLCe(sk) − eArLHC∆(t)EC
×

(
e(sk) + e−Ar ẑ(sk) − ζ (sk)

)
, t ∈ [sk, sk+1)

(18)

here e(t) = x(t) − x̂(t) is the estimation error and ζ (t) =
t
t−r e

A(t−s−r)Bu(s)ds =
∫ t
t−r e

A(t−s−r)BK ẑ(s)ds. Subtracting (16)
rom (4), we obtain the estimation error system as

˙(t) = Ae(t) + LCe(sk) + ∆Ax(t) + L∆Cx(sk)
+B(u(sk) − u(t − r)) + ∆Bu(sk), t ∈ [tk, tk+1) ∩ [sk, sk+1)
Ae(t) + LCe(sk) + HA∆(t)EA

(
e(t) + e−Ar ẑ(t) − ζ (t)

)
+LHC∆(t)EC

(
e(sk) + e−Ar ẑ(sk) − ζ (sk)

)
+BK (ẑ(t − r − τ (t)) − ẑ(t − r))
+HB∆(t)EBK ẑ(t − r − τ (t)), t ∈ [sk, sk+1)

(19)

where τ (t) = t−r−sk, t ∈ [tk, tk+1), 0 ≤ τ (t) ≤ h+µM+ηM = τM .
The distributed delay terms ζ (t) and ζ (sk) that stem from

the inverse Artstein’s transformation appear in (18)–(19), which
greatly complicates the stability analysis. ■

3. Sub-predictors feedback for NCSs under Round-Robin
Scheduling

In this section, we extend the sub-predictors feedback to NCSs
with multi-sensor nodes. For conceptional and notational sim-
plicity, we assume there is no norm-bounded uncertainty here.
As illustrated in Fig. 2 and under network-based control (3), we
consider the system equipped with distributed multiple sensors,
a controller and an actuator such that
ẋ(t) = Ax(t) + Bu(sk), t ∈ [tk, tk+1) (20)

yj(sk) = Cjx(sk), j = 1, . . . ,N
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Fig. 2. Sub-predictors feedback for NCSs under scheduling.

where yj(sk) ∈ Rqj ,
∑N

j=1 qj = q, y(sk) = ( y1(sk)T ... yN (sk)T )T =

CT
1 ... CT

N )
T x(sk) = Cx(sk).

Accordingly, we denote by ȳ(sk) = ( ȳ1(sk)T ... ȳN (sk)T )T the out-
ut of the scheduling protocol. At each sampling instant sk, one
f the sensor-to-controller channels j ∈ {1, . . . ,N} is active, that
s only one of ȳj(sk) values is updated with the recent measure-
ment yj(sk). Let j∗k ∈ {1, . . . ,N} denote the active channel at sk,
hich will be chosen by the scheduling protocol. Then ȳj(sk) =

yj(sk), j = j∗k
ȳj(sk−1), j ̸= j∗k

. In this paper, we consider the popular Round-

obin protocol where the channel is activated in a periodic order:
j∗k = j∗k+N , ∀k ∈ Z+

0
j∗m ̸= j∗n, 0 ≤ m < n ≤ N − 1

and N is the protocol period.

nder Round-Robin scheduling, when t ≥ sN−1 (i.e., when all the
easurements are transmitted at least once), the measurements
vailable to the controller satisfy ȳj(sk) = yj(sk−∆

j
k
) = Cjx(sk−∆

j
k
)

here ∆
j
k ∈ {0, 1, . . . ,N − 1}.

The chain of sub-predictor-based observers and the controller
nder scheduling is designed the same as (6) and (7), except for
he last equation in (6) changed by:⎧⎨⎩ ˙̂xM (t) = Ax̂M (t) +

∑N
j=1 LjCj

(
x̂M

(
sk−∆

j
k
−

r
M

)
− x(sk−∆

j
k
)
)

+Bu
(
t −

M−1
M r

)
, t ∈ [sk, sk+1)

(21)

here Lj for j = 1, . . . ,N is selected to let A+
∑N

j=1 LjCj Hurwitz.
The estimation error are defined the same as (5). Doing the

imilar calculation to (8), we get the closed-loop system below,

˙ (t) = Āξ (t) + L̄ξ
(
t −

r
M

)
+

N∑
j=1

H1,jξ
(
t − τ1,j(t)

)
,

+H2ξ (t − τ2(t)) ,

(22)

here ξ (t) = ( x̂1(t−r)T e1(t)T ... eM (t)T )T , Ā =

⎛⎜⎝
A+BK 0 ··· 0 0

0 A ··· 0 0
...

...
...

...
...

0 0 ··· A 0
BK 0 ··· 0 A

⎞⎟⎠, L̄ =

⎛⎜⎜⎝
0 LC 0 ··· 0 0
0 LC −LC ··· 0 0
0 0 LC ··· 0 0
...

...
...

...
...

...
0 0 0 ··· LC 0

⎞⎟⎟⎠, H1,j =

⎛⎜⎝
0 ··· 0 0
...
...

...
...

0 ··· 0 0
0 ··· 0 −LjCj
0 ··· 0 LjCj

⎞⎟⎠, H2 =

⎛⎝ 0 0 ··· 0 0
...

...
...

...
...

0 0 ··· 0 0
−BK 0 ··· 0 0

⎞⎠,
0 0 0 ··· 0 0 V

5

and τ1,j(t) = t − sk−∆
j
k
, t ∈

[
sk +

r
M , sk+1 +

r
M

)
, r

M ≤ τ1,j(t) ≤

sk+1−sk−∆
j
k
+

r
M ≤ (∆j

k+1)·h+ r
M ≤ N ·h+ r

M = τ̄ , τ2(t) = t−r−sk,
t ∈ [tk, tk+1), 0 ≤ τ2(t) ≤ h + ηM + µM = τM .

Theorem 2. Consider the closed-loop system consisting of the plant

(20) and sub-predictor-based controller (6)–(7) and (21). Given

positive tuning parameters r,M, h, τ̄ , τM = h + ηM + µM , α, let

(M + 1)n × (M + 1)n matrices P, S0, R0, S1,j, R1,j, S2, R2 > 0, and

(M + 1)n × (M + 1)n matrices G1,j,G2 for j = 1, . . . ,N, satisfy the

LMIs:(
Φ Ψ
∗ −Ξ

)
< 0,

(
R1,j G1,j
∗ R1,j

)
> 0,

(
R2 G2
∗ R2

)
> 0,

Ψ = ( ΞT Ā, ΞT L̄, row{j=1,...,N}Ξ
TH1,j, 0, ΞTH2, 0 )

T ,

Ξ =
r2

M2 R0 + N2h2
N∑
j=1

R1,j + τ 2
MR2,

(23)

here Φ is a symmetric matrix composed of

11 = ĀTP + PĀ + 2αP + S0 + S2 − e−2α r
M R0 − e−2ατMR2,

12 = PL̄ + e−2α r
M R0, Φ13 = row{j=1,...,N}{PH1,j},

Φ15 = PH2 + e−2ατM (R2 − G2), Φ16 = e−2ατMG2,

22 = −e−2α r
M (S0 + R0) −

N∑
j=1

(
e−2ατ̄R1,j − e−2α r

M S1,j
)

,

23 = row{j=1,...,N}e−2ατ̄ (R1,j − G1,j),

24 =

N∑
j=1

e−2ατ̄G1,j,

33 = diag{j=1,...,N}e
−2ατ̄ (G1,j + GT

1,j − 2R1,j),

34 = col{j=1,...,N}e−2ατ̄ (R1,j − G1,j),

44 = −

N∑
j=1

e−2ατ̄ (S1,j + R1,j), Φ55 = e−2ατM (GT
2 + G2 − 2R2),

56 = e−2ατM (R2 − G2), Φ66 = −e−2ατM (S2 + R2).

hen the closed-loop system (22) is exponentially stable with a decay

ate α. ■

roof. Consider the Lyapunov candidate V (t) = VP (t) + VS0 (t) +

R0 (t) + VS1 (t) + VR1 (t) + VS2 (t) + VR2 (t), where

P (t) = ξ (t)TPξ (t),

S0 (t) =
∫ t
t− r

M
e2α(s−t)ξ (s)T S0ξ (s)ds,

R0 (t) =
r
M

∫ 0
−

r
M

∫ t
t+θ

e2α(s−t)ξ̇ (s)TR0ξ̇ (s)dsdθ,

S1 (t) =

N∑
j=1

[∫ t− r
M

t−τ̄ e2α(s−t)ξ (s)T S1,jξ (s)ds
]
,

R1 (t) =

N∑
j=1

[
Nh

∫ −
r
M

−τ̄

∫ t
t+θ

e2α(s−t)ξ̇ (s)TR1,jξ̇ (s)dsdθ
]
,

S2 (t) =
∫ t
t−τM

e2α(s−t)ξ (s)T S2ξ (s)ds,∫ 0 ∫ t 2α(s−t) ˙ T ˙

(24)
R2 (t) = τM −τM t+θ
e ξ (s) R2ξ (s)dsdθ.
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hus we have
˙P (t) + 2αVP (t) = ξ (t)T

(
2PĀ + 2αP

)
ξ (t)

+2ξ (t)TP
(
L̄ξ

(
t −

r
M

)
+

N∑
j=1

H1,jξ (t − τ1,j(t))

+H2ξ (t − τ2(t))
)

˙S0 (t) + 2αVS0 (t) = ξ (t)T S0ξ (t)

−e−2α r
M ξ

(
t −

r
M

)T S0ξ (
t −

r
M

)
V̇R0 (t) + 2αVR0 (t) ≤

r2

M2 ξ̇ (t)TR0ξ̇ (t)

−e−2α r
M

(
ξ (t) − ξ

(
t −

r
M

))T R0
(
ξ (t) − ξ

(
t −

r
M

))
˙S1 (t) + 2αVS1 (t) =

N∑
j=1

[
e−2α r

M ξ
(
t −

r
M

)T S1,jξ (
t −

r
M

)
−e−2ατ̄ ξ (t − τ̄ )T S1,jξ (t − τ̄ )

]
V̇S2 (t) + 2αVS2 (t) = ξ (t)T S2ξ (t)

−e−2ατM ξ (t − τM)T S2ξ (t − τM)

˙R1 (t) + 2αVR1 (t) ≤

N∑
j=1

[
N2h2ξ̇ (t)TR1,jξ̇ (t)

−e−2ατ̄

(
ξ

(
t −

r
M

)
− ξ (t − τ1,j(t))

ξ
(
t − τ1,j(t)

)
− ξ (t − τ̄ )

)T (
R1,j G1,j
∗ R1,j

)
×

(
ξ

(
t −

r
M

)
− ξ (t − τ1,j(t))

ξ
(
t − τ1,j(t)

)
− ξ (t − τ̄ )

) ]
V̇R2 (t) + 2αVR2 (t) ≤ τ 2

M ξ̇ (t)TR2ξ̇ (t)

−e−2ατM

(
ξ (t) − ξ (t − τ2(t))

ξ (t − τ2(t)) − ξ (t − τM )

)T (
R2 G2
∗ R2

)
×

(
ξ (t) − ξ (t − τ2(t))

ξ (t − τ2(t)) − ξ (t − τM )

)

(25)

n the basis of (25), we get

˙ (t) + 2αV (t) ≤ λT (t)Φλ(t) + λT (t)Ψ Ξ−1Ψ Tλ(t) ≤ 0 (26)

where λ(t) = col{ξ (t), ξ
(
t −

r
M

)
, col{j=1,...,N}{ξ (t − τ1,j(t))}, ξ (t −

¯ ), ξ (t − τ2(t)), ξ (t − τM )}. Applying Schur complement, the in-
quality (26) implies (23). ■

. Decentralized sub-predictors feedback for large-scale inter-
onnected systems

If the uncertainty in (1) arises from the disturbance from
xo-system, the sub-predictors feedback for a single plant with
orm-bounded uncertainty can be straightforwardly extended to
ecentralized control for large-scale interconnected systems. For
implicity, assuming ∆A = 0, ∆B = 0, ∆C = 0 in (1), we consider
arge-scale coupled systems such that

˙j(t) = Ajxj(t) + Bjuj(t − r j) +

∑
l̸=j

F ljxl(t),

j(t) = C jxj(t),
(27)

here j = 1, . . . ,N is the subsystem index, xj(t) ∈ Rnj , uj(t) ∈

Rmj
and yj(t) ∈ Rqj is the unmeasurable state, the control

input with a constant delay r j > 0, and the measured output
of the jth subsystem, respectively, whereas xl(t) ∈ Rnl is the
unmeasurable state of the lth subsystem, as well as F lj denotes the
interaction between plants j and l, the pair (Aj, Bj) is stabilizable

j j
and (A , C ) is detectable. For conceptional clearness, we consider

6

continuous-time control. Under decentralized sub-predictor feed-
back, to compensate large delays in interconnected systems, the
coupling matrix F lj in (27) should have a small enough Euclidean
norm (see the analysis in Remarks 2 and 3 of Zhu & Fridman,
2020a, 2020b).

The estimation errors of the jth subsystem are defined by (5),
where ei, x̂i (i = 1, . . . ,M j) and x have the upper script j. The
chain of sub-predictor-based observers is designed as⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

˙̂xj1(t) = Ajx̂j1(t) + LjC j
(
x̂j1

(
t −

r j

M j

)
− x̂j2(t)

)
+ Bjuj(t)

˙̂xj2(t) = Ajx̂j2(t) + LjC j
(
x̂j2

(
t −

r j

M j

)
− x̂j3(t)

)
+Bjuj

(
t −

1
M j r j

)
...

˙̂xj
M j−1

(t) = Ajx̂j
M j−1

(t) + LjC j
(
x̂j
M j−1

(
t −

r j

M j

)
− x̂j

M j (t)
)

+Bjuj
(
t −

M j
−2

M j r j
)

˙̂xj
M j (t) = Ajx̂j

M j (t) + LjC j
(
x̂j
M j

(
t −

r j

M j

)
− xj(t)

)
+Bjuj

(
t −

M j
−1

M j r j
)

(28)

ith x̂ji(t) = 0, i = 1, . . . ,M j for t ≤ 0, and the controller is
chosen as

uj(t) = K jx̂j1(t) (29)

Taking the sum of all equations in (5) for the lth plant, we have
xl(t) = −x̂l1(t − r l) + el1(t) + · · · + el

M l (t). Employing a similar
alculation to (8), we arrive at the closed-loop system of the form

˙ j(t) = Ājξ j(t) + L̄jξ j
(
t −

r j

M j

)
+

∑
l̸=j F̄

ljξ l(t), (30)

here ξ j(t) =
(
x̂j1(t−r j)T ej1(t)

T ... ej
Mj (t)

T
)T ,

Āj
=

⎛⎜⎜⎝
Aj+BjK j 0 ··· 0 0

0 Aj ··· 0 0
...

...
...

...
...

0 0 ··· Aj 0
0 0 ··· 0 Aj

⎞⎟⎟⎠, L̄j =

⎛⎜⎜⎜⎝
0 LjC j 0 ··· 0 0
0 LjC j

−LjC j
··· 0 0

0 0 LjC j
··· 0 0

...
...

...
...

...
...

0 0 0 ··· LjC j
−LjC j

0 0 0 ··· 0 LjC j

⎞⎟⎟⎟⎠, F̄ lj
=

⎛⎝ 0 0 ··· 0 0
...

...
...

...
...

0 0 ··· 0 0
−F lj F lj ··· F lj F lj

⎞⎠.

Theorem 3. Consider the closed-loop system consisting of the
plant (27) and sub-predictor-based controller (28)–(29). Given posi-
tive tuning parameters r j,M j, α, ϵ with α > ϵ, let (M j

+1)nj
×(M j

+

1)nj matrices P j, S j, Rj > 0, and (M l
+ 1)nl

× (M l
+ 1)nl matrices

l > 0 for l = 1, . . . ,N and l ̸= j, satisfy the LMIs:

Φ j Ψ j

∗ −Ξ j

)
< 0, Ξ j

=
r j
2

M j2
Rj,

j
=

(
Ξ jT Āj, Ξ jT L̄j, rowl=1,...,N {Ξ jT F̄ lj,l̸=j}

)T
,

(31)

here Φ j is a symmetric matrix such that

j
11 = (Āj)TP j

+ P jĀj
+ 2αP j

+ S j − e−2α rj

Mj Rj,

j
12 = P jL̄j + e−2α rj

Mj Rj, Φ
j
13 = rowl=1,...,N{P jF̄ lj, l ̸= j},

Φ
j
22 = −e−2α rj

Mj (S j + Rj),
j
33 = diagl=1,...,N

{
−

2ϵ
N−1P

l, l ̸= j
}
.

Then the closed-loop system (30) is exponentially stable with a decay
rate α − ϵ. ■
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able 1
ub-predictors vs Classical Predictor.

h = 0.138, α = 0.001

Delay r Delay uncertainty

Classical predictor (Selivanov & Fridman, 2016) 2 0.2

Sub-predictors M = 5 0.45 × 5 0.28
Sub-predictors M = 7 0.40 × 7 0.26

Proof. The Lyapunov candidate of the jth plant and the calcu-
ation of its time-derivative are similar to those in the proof of
heorem 1. We get

˙ j(t) + 2αV j(t) −
2ϵ

N−1V
l(t)

λj(t)TΦ jλj(t) + λj(t)TΨ jΞ j−1
Ψ jTλj(t) ≤ 0

(32)

where λj(t) = col{ξ j(t), ξ j
(
t −

r j

M j

)
, coll=1,...,N{ξ l(t), l ̸= j}}.

pplying Schur complement, the inequality (32) implies (31).
ith (32), we have

˙ (t) + 2(α − ϵ)V (t) ≤ 0 (33)

here V (t) =
∑N

j=1 V
j(t), which ensures the exponential stability

f the whole system. ■

emark 4. Similar to Remark 3, applying the classical predictor
pproach to the interconnected systems (Zhu & Fridman, 2020a,
020b), the inverse Artstein’s transformation from the neighbors

l̸=j F
lj
(
el(t) + e−Alr l ẑ l(t) −

∫ t
t−r l e

Al(t−r l−s)Blul(s)ds
)

with el(t) =

l(t)− x̂l(t) appears in the jth closed-loop system (see (45) in Zhu
Fridman, 2020b), in which some special terms (see (49) in Zhu
Fridman, 2020b) should be added to the LKF to compensate

he distributed delay term of the coupling subsystems, and this
omplicates the analysis. ■

. Examples

.1. Example 1

For the case of a single NCS, we consider the example from Se-
ivanov and Fridman (2016) and Zhang et al. (2001), which is
f the form (1) where A =

(
0 1
0 −0.1

)
, B = ( 0 0.1 )T , C = ( 1 0 ),

A = ∆B = ∆C = 0, the controller and observer gains are
elected as K = ( −3.75 −11.5 ), L = ( −1.4 −0.36 )T . The simulation
f the sampled-data feedback with the sub-predictors is shown
n Table 1. It is seen that starting from M = 5, sub-predictor
llows larger constant delay r and delay uncertainty. Different
rom the classical predictor, the sub-predictors are also applicable
o norm-bounded uncertainty. The results of Table 1 in the case
f sub-predictors also hold for norm-bounded uncertainty ∆A =
0 0
g −g

)
with |g|≤ 0.000031. The maximum delay value r could

e improved by increasing the number of sub-predictors, namely,
ividing the large delay into smaller pieces.

.2. Example 2

Consider Example 2 in Liu et al. (2012), which is of the form

20) where A =

(
0 1 0 0
0 0 −0.512 0
0 0 0 1
0 0 44.838 0

)
, B = ( 0 6.446 0 −28.002 )T , C1 =

1 0 0 0
0 1 0 0

)
, C2 =

(
0 0 1 0
0 0 0 1

)
, and the controller gain is chosen as K =

5.825 5.883 24.941 5.140 ). The LMI-simulation of the sub-predictors
nder scheduling protocol is shown in Table 2. It is seen that
tarting from M = 2, sub-predictor allows larger delay r than
he controller without predictor.
7

able 2
ub-predictors with scheduling protocol.

h = 0.0028, α = 0.001

Delay r Delay uncertainty

Output feedback (Liu et al., 2012) 0.004 –

Sub-predictors M = 2 0.0034 × 2 0.0001
Sub-predictors M = 3 0.0031 × 3 0.0001

Table 3
Sub-predictors for coupled systems.

α − ϵ = 0.0001

Delay r Delay uncertainty

Classical predictor (PDE) (Zhu & Fridman, 2020b) 0.2 –

Classical predictor (ODE) (Zhu & Fridman, 2020b) 0.1 –

Sub-predictors M = 3 0.069 × 3 0.001
Sub-predictors M = 4 0.052 × 4 0.0005
Sub-predictors M = 4 0.027 × 4 0.016

5.3. Example 3

For the coupled systems, we consider an example of two
coupled inverted pendulums on two carts from Dolk, Borgers,
and Heemels (2017) and Freirich and Fridman (2016), which is

of the form (27) where N = 2, A1
= A2

=

(
0 1 0 0

2.9156 0 −0.0005 0
0 0 0 1

−1.6663 0 0.0002 0

)
,

1
= B2

= ( 0 −0.0042 0 0.0167 )T , C1
= C2

=
(
1 0 0 0
0 0 1 0

)
, F 21

= F 12
=

0 0 0 0
0.0011 0 0.0005 0

0 0 0 0
−0.0003 0 −0.0002 0

)
. The controller gains are selected as K 1

=

2
= ( 11396 7196.2 573.96 1199.0 ). The observer gains are selected as

L1 = L2 =
(

−11.7 −37 1.2 7.9
1.2 8.9 −11 −36

)T . As shown in Table 3, starting from
M = 3, the sub-predictors feedback in the decentralized manner
allows a relatively larger delay than the classical predictor.

6. Conclusion

In this paper, we developed a sub-predictor for NCSs with un-
certain large delays. Furthermore, we extended the sub-
predictors to Round-Robin scheduling from sensors to controller
and norm-bounded uncertainty, as well as interconnected sys-
tems. The sampling intervals may be variable, and the network-
induced delays are allowed to be time-varying. The design and
analysis of our paper are based on the time-delay approach
to NCSs with the LMIs technique. Comparative to the classical
reduction-based predictor involving an integral formula of dis-
tributed input, the sub-predictor-based feedback is more friendly
in the presence of norm-bounded uncertainties and for intercon-
nected systems, and is simpler for implementation.
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