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Control of Linear Uncertain Time-Delay Systems—A
Projection Approach

Vladimir Suplin, Emilia Fridman, and Uri Shaked

Abstract—The issues of stability and H control of linear systems with
time-varying delays are considered. Based on the Lyapunov–Krasovskii ap-
proach and on Finsler’s projection lemma, delay-dependent sufficient con-
ditions are obtained, in terms of linear matrix inequalities (LMIs), for the
stability of these systems. These conditions generalize previous results that
were derived using either the descriptor approach or the first and the third
model transformations. The obtained criteria are extended to deal with:
stabilizability, the bounded real lemma and the H state-feedback con-
trol.

Index Terms—Lyapunov–Krasovskii approach, neutral systems, robust
H control, time-delay systems.

I. INTRODUCTION

During the last decade, a considerable amount of attention has been
paid to stability and control of linear systems with uncertain delays
(either constant or time-varying) lying in the given segment [0; h] (see,
e.g., [1]–[6] and the references therein). The so-called delay-depen-
dent sufficient stability conditions in terms of linear matrix inequal-
ities (LMIs) have been derived by using Lyapunov–Krasovskii func-
tionals or Lyapunov–Razumikhin functions (the latter is usually more
conservative). Delay-dependent conditions via Lyapunov–Krasovskii
functionals are based on different model transformations. Each model
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transformation leads to a corresponding form of Lyapunov–Krasovskii
functional. The third model transformation (according to the classifi-
cation of [2]), which was applied in [7] and [8], and the most recent
and less conservative one, the descriptor representation of the system
[4]–[6], lead to the same Lyapunov–Krasovskii functional depending
on the derivatives of the state. The derivative of this functional is, how-
ever, different in the two approaches, where in the descriptor approach
both the state vector and its derivative appear in the expression for the
derivative of the Lyapunov–Krasovskii functional along the trajectories
of the system.
For systems without delays the LMI stability conditions are obtained

either by directly differentiating the quadratic Lyapunov function along
the system trajectory [9] or by applying Finsler’s lemma [10]. It turns
out that the LMIs that are obtained by the latter twomethods are equiva-
lent in the casewithout uncertainty, but since the LMIs that are based on
Finsler’s lemma possess more degrees of freedom they provide better
results in the case where parameter uncertainty is encountered [10].
It is shown in the present note that similar improvement is achieved

when applying Finsler’s lemma to the robust analysis and design of re-
tarded and neutral systems. The sufficient conditions that are obtained
for testing stability and for the bounded real lemma (BRL) are more
general than the results achieved based on the descriptor approach or
on the first and the thirdmodel transformations (see the classification of
[2]). The latter results are obtained as a special case of the new condi-
tions by taking few of the additional free matrix parameters to be zero.
Moreover, for the first time, it is theoretically proved that the descriptor
approach conditions are generalization of the conditions based on the
first and the third model transformations and, thus, less conservative.
Utilizing the geometric structure of the resulting inequalities, for these
special cases, the results of [4]–[6] are obtained by solving LMIs with
fewer decision variables, where there is no longer a need to find all the
matrix blocks of the Lyapunov’s kernel matrix explicitly.
A new effective method for state-feedback design is introduced. The

merit of the new results lies not only in the fact that it provides another
geometric approach to the analysis and the synthesis of retarded sys-
tems and that it reduces the complexity of the resulting LMIs. Themain
merit of the proposed method is the fact that it provides additional de-
grees of freedom which, similar to the case without delay, lead to less
conservative results when uncertainty of the polytopic type is encoun-
tered. Some effort of applying Finsler’s lemma to the case of systems
with time delay has been recently made. A generalization of [8] was
obtained in [11] where the elimination lemma was used to generalize
the results of [8] that are based on the third model transformation. A
delay-independent stability conditions via Finsler’s lemma have been
derived recently in [12].

II. STABILITY

Consider the following system (the system can be extended to in-
clude more delays):

_x(t)� F _x(t� g) =A0x(t) +A1x(t� � (t)); t � t0

x(�) =�(�); � 2 Et (1)

where x(t) 2 Rn is the system state, A0, A1 and F are constant n �
n-matrices, t0 is a given initial time, � is a continuously differentiable
initial function and Et = f� 2 R : � = � � � (�) � t0; � � t0g [
[t0� g; t0]. It is assumed that g is a known constant delay and that the
delay � (t) is a bounded differentiable function that satisfies

0 � � � h; _� (t) � d < 1: (2)

Moreover, it is assumed that all the eigenvalues of F are inside the unit
circle. The latter guarantees that the difference equation x(t)�Fx(t�
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g) = 0 is asymptotically stable for all g [13]. Similar to [3, Sec. 5.5.],
results will be delay-independent in g and dependent in h and d. For
g = � (usually such models appear in the applications), one can apply
the results with d = 0.
Consider also the Lyapunov–Krasovski functional

V (t) = x
T (t)P1x(t) + V2 + V3 + V4 (3)

where

V2 =
0

�h

t

t+�

_xT (s)R _x(s)dsd�; V3 =
t

t�g

_xT (s)U _x(s)ds

V4 =
t

t��

x
T (s)Sx(s)ds

and where P1; R; U; andS are positive–definite matrics. Differenti-
ating (3), with respect to t, we require

_V = [ xT (t) _xT (t) ]T
0 P1

P1 0

x(t)

_x(t)
+ _V2 + _V3 + _V4 < 0 (4)

for all x(t) that satisfy (1). If (4) holds, then (1) is asymptotically stable
(see [13, pp. 336–337]).We define: � = colfx(t); _x(t); x(t��); _x(t�
g)g and rewrite (4) in the following form:

_V = �
T

0 P1 0 0

P1 0 0 0

0 0 0 0

0 0 0 0

� + _V2 + _V3 + _V4 < 0

8 � 2 R
4n s:t: [A0;�I; A1; F ] � = 0: (5)

To (5), the following version of Finsler’s lemma is applied.
Lemma 1: [9] The following statement holds:
xTQx + f(x) < 0, 8 �Bx = 0, x 6= 0, where Q is a symmetric

matrix, �B 2 Rm�n and f(x) is a scalar function, if there exists X 2
Rn�m such that: xT [Q+X �B + �BTXT ]x + f(x) < 0, 8x 6= 0.
In the sequel, we also use the following bounding result [8].
Lemma 2: For any a 2 Rn, b 2 R2n, N 2 R2n�n, R 2 Rn�n,

Y 2 Rn�2n, Z 2 R2n�2n, the following holds:

�2bTNa �
a

b

T
R Y �N T

Y T �N Z

a

b
;

R Y

Y T Z
� 0: (6)

Lemma 1 can be used with

x = � Q =

0 P1 0 0

P1 0 0 0

0 0 0 0

0 0 0 0

�B = [A0;�I; A1; F ] X = [P2; P3; P4; P5]
T
:

Carrying out the multiplications and substituting for _V2, _V3, _V4 (7a),
as shown at the bottom of the page, is obtained, where

�(t) �
T

P T
2

P T
3

0

0

[ 0 0 A1 0 ]�

+�T

0

0

AT
1

0

[P2 P3 0 0 ] � �
t

t�h

_x(s)TR _x(s)ds: (7b)

Since

�
T

P T
2

P T
3

0

0

[ 0 0 A1 0 ]�

= �
T

P T
2

P T
3

0

0

A1x(t)�
t

t��

�(t)T

P T
2

P T
3

0

0

A1 _x(s)ds

we have that

�(t) = 2�T

P T
2

P T
3

0

0

A1x(t)� 2
t

t��

�(t)T

P T
2

P T
3

0

0

A1 _x(s)ds

�
t

t�h

_x(s)TR _x(s)ds: (8)

We apply Lemma 2 to the expression we have obtained above for
�(t). This is done by taking in (6) N = [P2 P3 ]

T
A1, a = _x(s)

and b = colfx(t); _x(t)g. We obtain

�(t) � 2xT (t)Y
x(t)

_x(t)
� 2xT (t� � ) Y �A

T
1 [P2 P3 ]

x(t)

_x(t)
+ h [ xT (t) _xT (t) ]Z

x(t)

_x(t)
: (9)

Denoting Y = [Y1 Y2 ] and Z =
Z1 Z2

ZT
2 Z3

the following is then

obtained.
Theorem 1: System (1) is uniformly (with respect to t0) asymptot-

ically stable for a delay that satisfies (2) if there exist n � n matrices
0 < P1, 0 < S, Pi, i = 2; . . . ; 5, Y1, Y2, Z1, Z2, Z3, 0 < U and
0 < R that satisfy the LMIs shown in (10a) at the bottom of the page,
and

R Y1 Y2

� Z1 Z2

� � Z3

>0: (10b)

�
T

P T
2 A0 + AT

0 P2 + S P1 � P T
2 +AT

0 P3 AT
0 P4 P T

2 F + AT
0 P5

� �PT
3 � P3 + U + hR �P4 P T

3 F � P5

� � �S(1� d) + AT
1 P4 + P T

4 A1 P T
4 F + AT

1 P5

� � � P T
5 F + F TP5 � U

� + � < 0 (7a)

P T
2 A0+AT

0 P2+Y1+Y T
1 +S+hZ1 P1�P

T
2 +AT

0 P3+Y2+hZ2 �Y T
1 +PT

2 A1+AT
0 P4 P T

2 F+AT
0 P5

� �PT
3 �P3+U+h(R+Z3) �Y T

2 +PT
3 A1�P4 P T

3 F�P5
� � �S(1� d)+AT

1 P4+PT
4 A1 P T

4 F+AT
1 P5

� � � P T
5 F+FTP5�U

< 0

(10a)
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Remark 1: The case where � (t) is a continuous arbitrarily time-
varying function, satisfying for all t � 0, 0 � � (t) � h ,is solved by
choosing, in Theorem 1, S ! 0.
Remark 2: The two stability conditions in Theorem 1 can be joined

into one LMI by applying Schur complements formula to (10b), re-
placing the term hZ1 in (10a) by h[Y1 Y2]

TR�1[Y1 Y2]. The latter
can then be transformed by Schur formula to additional column and
row in (10a) thus producing a single LMI.
Inequality (10a) can be written as

� +

AT

0

�I

AT

1

F T

[P2 P3 P4 P5]+

P T

2

P T

3

P T

4

P T

5

[A0 �I A1 F ]<0 (11)

where

�=

Y1+Y
T

1 +S+hZ1 P1+Y2+hZ2 �Y T

1 0

� U+h(R+ Z3) �Y T

2 0

� � �S(1�d) 0

� � � �U

:

Using Lemma 1 it is readily seen that there exist matrices
P2; P3; P4; P5 that solve (10a) iff the following LMI has a solu-
tion:

N T

A�NA < 0 (12)

where we denote the full-rank matrix representations of the right anni-
hilator of [A0 �I A1 F ] by NA. Since

NA =

I 0 0

A0 A1 F

0 I 0

0 0 I

we obtain the following.
Theorem 2: The conditions of Theorem 1 are satisfied iff there exist

n�n matrices 0 < P1, 0 < S, Y1, Y2, Z1, Z3, X , �U and R that
satisfy the LMIs shown in (13a)–(13b) at the bottom of the page, where
�U U + h(R+ Z3) and X P1 + Y2 + hZ2.
Remark 3: The LMIs of the latter theorem are independent of Pi,

i = 2; . . . ; 5. They thus involve a smaller number of decision variables.

A. Comparison With Other Methods

The above approach generalizes the main existing methods for
delay-dependent stability such as: model transformation 1 [1], model
transformation 3 [7], [8] and the descriptor approach [4]–[6]. In the
sequel we show that the results of the latter three approaches are
special cases of Theorems 1 and 2. We also discuss what are the extra
degrees of freedom offered by the new approach.
The Descriptor Model Transformation: It is readily seen that by

choosing P4 = P5 = 0, the LMIs of Theorem 1 are identical to those
obtained in [4]. The question arises, however, to what an extent the in-
troduction of the additional decision variables P4 and P5 in Theorem 1

lead to results that are less conservative than those obtained by the de-
scriptor approach (where P4 and P5 are zero). Rewriting the stability
condition of [4] in the following way:

� +

AT

0

�I

AT

1

F T

[P2 P3 P4 P5 ] diagfI; I; 0; 0g

+diagfI; I; 0; 0g

P T

2

P T

3

P T

4

P T

5

[A0 �I A1 F ] < 0 (14)

where� is as in (11), we use Lemma 1 and find that there exist matrices
P2; P3; P4; P5 that solve (14) iff (10b) and the following LMIs in Y1,
Y2, Zi, i = 1; . . . ; 3, U , and R have a solution

N T

A�NA < 0

0 0

0 0

I 0

0 I

T

�

0 0

0 0

I 0

0 I

< 0: (15ab)

Carrying out multiplication in (15b), we obtain

�(1� d)S 0

0 �U
< 0:

This inequality is redundant because it is a part of the LMI in (15a).
Since (15a) is equivalent to the LMI in Theorem 1 no improvement can
thus be obtained by the new method in the case where the parameters
of the system are all known. It is shown, however, in Example 1 below
that the new approach has a considerable advantage in the case where
polytopic type parameter uncertainty is encountered.
Model Transformations 1 and 3: We choose [8] to be one of the

recent publication that is based on the third model transformation. In
order to allow comparison with the results of [8], we consider retarded
system with constant unknown delay (namely, we take F = 0 and
d = 0 in (1)). Choosing Y2 = 0, Z2 = 0 , X = P1, U = hR and
Z3=0 in (13), we obtain the following LMI condition for stability that
is identical to the one that appears in [8, Th. 1]:

AT

0 P1+P1A0+Y1+Y
T

1 +S �Y1+P1A1 hAT

0 R hY T

1

� �S hAT

1 R 0

� � �hR 0

� � � �hR

<0 :

(16)
It is shown in [18] that the results of the first model transformation,

as expressed in [1], are a special case of the third model transformation
results of [7]. Since [8] is a generalization of [7], we conclude that
Theorem 1 and Theorem 2 of the present note are generalizations of
the results obtained by the first and the third model transformations.

III. THE BRL

We consider the following system:

_x�F _x(t�g)=A0x(t)+A1x(t��(t))+Bu(t)+B1w(t)

x(t) = 0; t � 0

z(t) =Cx(t) (17ab)

Y1 + Y T

1 + S + hZ1 +XA0 + AT

0X
T �Y T

1 +XA1 � AT

0 Y
T

2 XF AT

0
�U

� �S(1� d)� Y2A1 � AT

1 Y
T

2 �Y2F AT

1
�U

� � � �U + h(R+ Z3) F T �U

� � � � �U

< 0 (13a)

R Y1 hY2

� Z1 X � P1 � Y2

� � h2Z3

> 0 (13b)



IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 51, NO. 4, APRIL 2006 683

with � that satisfies (2), where u(t) 2 Rp is the control input, w(t) 2
Rq is an arbitrary disturbance vector in L2[0 1), z(t) 2 Rm is the
objective vector. We take B = 0. For a prescribed scalar  > 0, we
define the performance index

J =
1

0

(zT (s)z(s)� 
2
w
T (s)w(s))ds: (18)

Using the arguments of the previous section we apply the Lya-
punov–Krasovskii functional of (3) for � = colfx; _x; x(t� � ); _x(t�
g); w(t)g and require

_V + z
T (t)z(t)�2wT (t)w(t)

= �
T

CTC P1 0 0 0

P1 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 �2Iq

� + _V2 + _V3 + _V4 < 0

8� s:t: [A0;�I; A1; F; B1] � = 0: (19)

Similarly to the derivation of Theorem 1, we thus obtain the following.
Theorem 3: System (17) withB = 0 is asymptotically stable for all

delays that satisfy (2) and, for a prescribed scalar , J < 0 8 w(t) 2
L2[01) if there exist n�n matrices 0<P1, 0 < S, Pi, i = 2; . . . ; 5,
Y1, Y2, Z1, Z2, Z3, 0 < U , R and P6 of the appropriate dimensions
that satisfy (10b) and (20), as shown at the bottom of the page.

IV. H1 STATE-FEEDBACK CONTROL

The aforementioned results are most suitable for stability analysis.
In order to apply these results to synthesis problems where a state-
feedback is sought that stabilizes the system and achieves a prescribed
performance bound we consider the control problem for B 6= 0 where
the objective vector z is defined as

z(t) = Cx(t) +D12u(t): (21)

We apply the latter BRL, taking Pi = �i�2P2, i = 3; . . . ; 5, P6 =
�4B

T
1 , where �i, i = 1; 2; 3 are tuning scalar parameters. Note that P2

is nonsingular due to the fact that the only matrix which can be negative

definite in the second block on the diagonal of (20) is��1(P2 + P T
2 ).

Defining

�P =P
�1

2 ; [ �P1 �Y1 �Y2 �S �U �R �Z1
�Z2

�Z3 ] =

�P T [P1 �P Y1 �P Y2 �P S �P U �P R �P Z1
�P Z2

�P Z3
�P ]

and Ŷ =K �P , and multiplying (20) by diagf �P ; �P ; �P ; �P ; Iq; Img
and its transpose, from the right and the left, respectively, the following
is obtained:
Theorem 4: Under the feedback law u(t) = Kx(t), the system of

(17) and (21) is asymptotically stable for all delays that satisfy (2) and
for a prescribed scalar , J < 0 8 w(t) 2 L2[01) if for some tuning
scalar parameters �i, i = 1; . . . ; 4 there exist n�n matrices 0< �P1,
0 < �S, �P , �Y1, �Y2, �Z1, �Z2, �Z3, 0< �U , �R, and Ŷ 2 Rp�n that satisfy

	+	T
< 0 and

�R �Y1 �Y2
� �Z1

�Z2

� � �Z3

>0 (22ab)

where (22c), as shown at the bottom of the page, holds. The state-
feedback gain matrix is then given by

K = Ŷ �P�1: (22d)

In Theorem 4, the solution was obtained by applying the BRL to
the system (17). Another solution to the problem is obtained using the
adjoint system of (17), in the case where the delay does not vary in
time. We consider the following “forward adjoint” of (17) with B = 0
(see, e.g., [14] for the case of constant delays):

_� � F
T _�(t�g) =A

T
0 �(t)+A

T
1 �(t��)+C

T
v(t); t�0

x(t) = 0; t � 0

�(t) =B
T
1 �(t): (23)

By applying standard Laplace transform arguments, it is easily verified
that the H1 norms of (17), with B = 0, and of (23) are identical.
Theorem 3 can thus be applied to (23) to produce an alternative BRL.
Once the BRL is derived for the system (17) withB = 0we consider

the control problem for B 6= 0 where the objective vector z is defined
in (21). We apply the latter BRL, taking Pi = �i�2P2, i = 3; . . . ; 5,
P6 = �4P2C

T , where �i, i = 1; 2; 3 are tuning scalar parameters, and
defining �Y = KP2. We obtain the following.

P T
2 A0 +AT

0 P2 + Y1 + Y T
1 + S + hZ1 P1 � P T

2 +AT
0 P3 + Y2 + hZ2 �Y T

1 + P T
2 A1 +AT

0 P4

� �PT
3 � P3 + U + h(R+ Z3) �Y T

2 + P T
3 A1 � P4

� � �S(1� d) +AT
1 P4 + P T

4 A1

� � �

� � �

� � �

P T
2 F +AT

0 P5 P T
2 B1 + AT

0 P6 CT

P T
3 F � P5 P T

3 B1 � P6 0

P T
4 F +AT

1 P5 P T
4 B1 + AT

1 P6 0

P T
5 F + F TP5 � U P T

5 B1 + F TP6 0

� �2Iq + P T
6 B1 +BT

1 P6 0

� � �Im

< 0 (20)

	 =

A0
�P+BŶ + �Y1+

1

2

�S+ h

2

�Z1
�P1� �P+ �Y2+h �Z2

�1(A0
�P+BŶ ) ��1 �P+ 1

2

�U+ h

2
( �R+ �Z3)

��Y1+�2(A0
�P+BŶ ) ��2 �P � �Y2

�3(A0
�P+BŶ ) ��3 �P

�4B
T
1 (A0

�P+BŶ ) ��4B
T
1
�P

C �P+D12Ŷ 0

A1
�P F �P B1 0

�1A1
�P �1F �P �1B1 0

� 1

2
S(1�d)+�2A1

�P �2F �P �2B1 0

�3A1
�P �3F �P� 1

2

�U �3B1 0

�4B
T
1 A1

�P �4B
T
1 F �P � 1

2
2Iq+�4B

T
1 B1 0

C �P +D12Ŷ 0 0 � 1

2
Im

(22c)
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Theorem 5: Under the feedback law u(t) = Kx(t), the system
(17) is asymptotically stable for all constant 0 � � � h and for a
prescribed scalar , J1 < 0 8 w(t) 2 L2[0 1) if for some tuning
scalar parameters �i, i = 1; . . . ; 4 there exist n�n matrices 0< P1,
0 < S, P2, Y1, Y2, Z1, Z2, Z3, 0<U , R, and �Y 2 Rp�n that satisfy
(10b) and

	+	T
< 0 (24a)

where (24b), as shown at the bottom of the page, holds. The state-
feedback gain matrix is then given by:

K = �Y P�12 : (24c)

Remark 4: The matrix P2 is nonsingular due to the fact that the
only matrix which can be negative definite in the second block on the
diagonal of (24a) is ��1(P2 + P T

2 ).
In Example 2 bellow it is found that the adjoint based approach pro-

vided a significantly less conservative result. This approach is, how-
ever, limited to the case of constant delays.
Remark 5: Theorem 2 led us to new simplified and more efficient

(see Example 2) synthesis procedures of Theorems 4 and 5. The under-
standing that P2 and P3 are less important made it possible to assume
that thesematrices are proportional and to apply in the design procedure
only �P1 and �P = P�1

2
(see Theorem 4), or P1 and P2 in the adjoint

based results (Theorem 5). An alternative approach was suggested in
[5], where the LMIs that were derived from (20), were multiplied by
diagfP�1; Ig and its transpose, from the right and the left, respec-

tively, where P =
P1 0

P2 P3
.

Remark 6: The results of Theorems 4 and Theorem 5 apply the
tuning scalar parameters "i, i = 1; . . . ; 4. The question arises how
to find the optimal combination of these parameters. One way to ad-
dress the tuning issue is to choose for a cost function the parameter 
and to apply a numerical optimization algorithm, such as the program
fminsearch in the optimization toolbox of Matlab, to the latter cost
function. A locally convergent solution to the tuning problem is thus
obtained.
Remark 7: The above results assume that the parameters of the

system are all known. They are easily applicable, however, also to
the case where the system encounters a parameter uncertainty of the
polytopic type [9]. Since the LMIs of (22) and (24) are affine in the
system matrices, the results of Theorems 4 and 5 can be used to derive
a criterion that will guarantee the required attenuation level in the
case where the system matrices are not exactly known and they reside
within a given polytope.

Denoting: 
 =
A0 A1 F

B B1 C
we assume that


 2 Cof
j ; j = 1; . . .Ng

namely


 =

N

j=1

fj
j ; for some 0 � fj � 1;

N

j=1

fj = 1

where the N vertices of polytope are described by


j =
A
j
0

A
j
1

F j

Bj B1 Cj :

We readily obtain that considering (17), where the system matrices
reside within the polytope 
, the cost function (18) achieves J < 0
over 
 for all nonzero ! 2 L2[0 1) and for all positive delays � if
there exist n�n 0< �P j

1
, 0 < �Sj , �P , �Y j

1
, �Y j

2
, �Zj

1
, �Zj

2
, �Zj

3
, 0 < �U j , �Rj ,

and Ŷ 2 Rp�n-matrices that satisfy (10b) and (22) for j = 1; . . .N ,
where the matrices 0< �P1, 0 < �S, �Y1, �Y2, �Z1, �Z2, �Z3, �U , �R, A0, A1,
F , C , are taken with the superscript j.
In the case where alsoB1 in (17b) is uncertain, a problem may arise

in the LMI (22a) because of the special choice we made for P6. In such
a case, one may take P6 = �4 �B1 where �B1 is any constant matrix of
the dimensions of B1. Preferably, one may take �B1 to be one of the
matrices B1 in the uncertainty polytope.
A similar result can be readily derived that corresponds to the result

of Theorem 5.

V. EXAMPLES

We bring two examples. The first considers the robust stability anal-
ysis problem that was treated in [17]. The second example solves the
robust H1 state-feedback control problem. In both example a com-
parison is made with the results that are obtained using the descriptor
approach ([5]).

A. Example 1 [17]

Consider (1), where

A0 =
0 �0:12 + 12�

1 �0:465� �
A1 =

�0:1 �0:35

0 0:3

and where j�j � 0:035.We consider first the case whereF = 0 and the
time-delay is constant bounded by h. In this case, applying Theorem
1, and following the arguments of Section V, a maximum value of h =
0:863 is obtained for which the asymptotic stability of the system is
assured over the uncertainty interval for �. Applying the method of [5],
the corresponding bound on the time-delay is found to be h = 0:782.
The improvement achieved by the results of this note stem from the
additional decision variable P5.
We consider next the case where F = 0:05I2. For a constant time

delay, bounded by h, a maximum value of h = 0:462 is obtained for
which the asymptotic stability of the system is assured over the un-
certainty interval. For a time-varying delay satisfying (2), maximum

	 =

A0P2 +B �Y + Y1 +
1

2
S + h

2
Z1 P1 + �1(A0P2 +B �Y ) + Y2 + hZ2

�P2 ��1P2 +
1

2
U + h

2
(R+ Z3)

�Y1 + A1P2 �Y2 + �1A1P2

FP2 �1FP2

CP2 +D12
�Y �1(CP2 +D12

�Y )

0 0

�2(A0P2 +B �Y ) �3(A0P2 +B �Y ) �4(A0P2 +B �Y )CT B1

��2P2 ��3P2 ��4P2C
T 0

� 1

2
S(1� d) + �2A1P2 �3A1P2 �4A1P2C

T 0

�2FP2 �3FP2 �
1

2
U �4FP2C

T 0

�2(CP2 +D12
�Y ) �3(CP2 +D12

�Y ) � 

2
Im + �4(CP2 +D12

�Y )CT 0

0 0 0 � 1

2
Iq

(24b)
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values of h = 0:408 and h = 0:263 are obtained for d = 0:1 and
d = 0:5, respectively.

B. Example 2

Given two systems that are described by (17). The matrices of the
first system are

A0 =
�1:3 0:2

0:2 �1
A1 =

�0:6 �0:5

�0:5 �0:6
F = 0

B =
0

1
B1 =

1

1
C =

0 1

0 0
D12 =

0

0:1
:

The matrices of the second system are identical to the first, except for
A1 that is given by

A1=
�2:3 0

0 �0:8
:

It is required to find a state-feedback controller u = Kx(t) that mini-
mizes an upper bound on the disturbance attenuation  over all convex
combinations of the two systems. Applying the descriptor method of
[5] to the above system a minimum value of  = 33:861 is obtained
for � = �0:9923. Using Theorem 4 with �2 = �4 = 0 (i.e., de-
scriptor method with a design procedure of Theorem 4, where P3 =
�1P2), a minimum bound of  = 8:2641 is obtained. On the other
hand, applying Theorem 4 with no restrictions on �2 and �4, a better
bound of  = 6:87 is obtained for �1 = 0:4153, �2 = 0:6068
and �4 = 0:0021. The corresponding state-feedback gain matrix is
K = [�754:41 �236:15 ].
Applying Theorem 5, for �1 = 0:3442, �2 = �0:1047 and �4 =

0:1788 a minimum value of  = 4:5157 is obtained with a corre-
sponding state-feedback gain matrix K = [�49:8490 �15:6345 ].
A clear advantage of the method that is based on the adjoint system is
evident.

VI. CONCLUSION

A generalization of the results obtained by using either the descriptor
approach or the conditions found by the first or the third model trans-
formation to the analysis and synthesis of time-delay systems is pre-
sented. Extra degrees of freedom are introduced which allow solutions
to problems with polytopic uncertainty that are less conservative than
those obtained in the past. The new approach also simplifies the in-
equalities that have to be solved by the descriptor approach in cases
with no uncertainty. It leads to new effective design procedures.
The LMIs that have to be solved by the new approach are of larger

size and their solution may require longer computation time. The ben-
efit of these LMIs will thus be in the robust control case where the im-
provement they introduce compensate for the larger computation com-
plexity.
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