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ABSTRACT
We investigate the exact controllability of a nonlinear plant describedby the equation ẋ(t ) = Ax(t ) +
Bu(t ) + BNN (x(t ), t ), where t � 0. Here A is the infinitesimal generator of a strongly continuous
group T on a Hilbert space X, B and BN , defined on Hilbert spaces U andUN , respectively, are admis-
sible control operators for T and the functionN : X × [0,∞) �→ UN is continuous in t and Lipschitz
in x, with Lipschitz constant LN independent of t. Thus, B and BN can be unbounded as operators
from U andUN to X, in which case the nonlinear term BNN (x(t ), t ) in the plant is in general not Lip-
schitz in x. We assume that there exist linear operators F and Fb such that the triples (A, [B BN ], F )
and (−A, [B BN ], Fb) are regular and A + BF

�
and −A + BFb, � are generators of operator semigroups

T
f and T

b on X such that ‖T
f
t‖ · ‖T

b
t ‖ decays to zero exponentially. We prove that if LN is sufficiently

small, then the nonlinear plant is exactly controllable in some time τ > 0. Our proof is constructive,
i.e. given an initial state x0 � X and a final state x

τ
� X, we propose an approach for constructing a

control signal u of class L2 for the nonlinear plant which ensures that if x(0) = x0, then x(τ ) = x
τ
. We

illustrate our approach using two examples: a sine-Gordon equation and a nonlinear wave equation.
Our main result can be regarded as an extension of Russell’s principle on exact controllability to a
class of nonlinear plants.

1. Introduction

Let X, U and UN be Hilbert spaces, let T be a strongly
continuous group of operators onXwith generatorA and
let X−1 be the completion of X with respect to the norm
‖x‖−1 = ‖(βI − A)−1x‖, where β is an arbitrary (but
fixed) element in the resolvent set ρ(A). In this paper we
study the exact controllability of a nonlinear distributed
parameter system described by the state equation

ẋ(t ) = Ax(t ) + Bu(t ) + BNN (x(t ), t ) + f (t ), (1.1)

where B ∈ L(U,X−1) and BN ∈ L(UN ,X−1) are admis-
sible control operators for T, the input signal u takes val-
ues in U and the nonlinear function N : X × [0, ∞) �→
UN is continuous in the second argument t (the time) and
Lipschitz in the first argument x with Lipschitz constant
LN independent of t, i.e.

‖N (x1, t ) − N (x2, t )‖ ≤ LN ‖x1 − x2‖
∀ x1, x2 ∈ X, ∀ t ≥ 0. (1.2)

CONTACT Vivek Natarajan vivekn@sc.iitb.ac.in

The function f (the drift term in (1.1)) is anX−1-valued
function such that

f ∈ H1
loc((0, ∞);X−1),

which means that the function t �→ f (t ) − f (0) can be
written as the integral of a function in L2loc([0, ∞);X−1).
In the Abstract we took f = 0 for simplicity.

By exact controllability in time τ > 0 of the plant (1.1),
we mean the following: For any initial state x(0) � X we
can steer the final state x(τ ) of the plant to any desired
point in X, by using an input function u � L2([0, τ ]; U).
By exact controllability we mean exact controllability in
some time τ > 0. Exact controllability of nonlinear partial
differential equations is a classical research area, see for
instance Balachandran and Dauer (2002), Chen (1979),
Dehman and Lebeau (2009), Zuazua (1993) and the refer-
ences therein. The plants considered in the present work
differ from those in the above, and many other, works in
that (i) B can be unbounded, so that the control signal
may drive the PDE while acting on a measure zero subset
of its domain, like in the case of boundary control, (ii) BN
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can be unbounded as well, so that the nonlinear pertur-
bation term BNN (x(t ), t ) is not Lipschitz continuous on
the state space X.

We assume that the pairs (A, B) and (−A, B) are
jointly exponentially stabilisable in a certain sense which
is inspired by the definition of stabilisability in Weiss and
Curtain (1997). Using terminology that will be recalled in
Section 3, the requirements of joint exponential stabilis-
ability are that there exist linear operators F and Fb such
that the triples (A, B, F) and (−A, B, Fb) are regular, I is an
admissible feedback operator for both of the regular sys-
tems with generating operators (A, B, F, 0) and (−A, B,
Fb, 0) and the corresponding closed-loop semigroups T

f

(whose generator is A + BF�) and T
b (whose generator is

−A + BFb, �) satisfy, for someM � 1 and μ > 0,

‖T
f
t ‖ · ‖T

b
t ‖ ≤ Me−μt ∀ t ≥ 0. (1.3)

Here, the subscript�denotes the�-extension of an oper-
ator, see Section 3. In addition, we assume that the triples
(A,BN , F ) and (−A,BN , Fb) are regular. These assump-
tions will be explained in more detail in Section 4.

In the linear case (whenN = 0) our assumptions onA
and B imply that the system (A, B) is exactly controllable:
this is the well-known Russell’s principle for controlla-
bility, for which we refer to Russell (1974, 1978), Chen
(1979), Komornik (1992), Rebarber and Weiss (1997).
This principle (which can be stated inmany different ver-
sions, of varying generality) states that if the pairs (A,
B) and (−A, B) are jointly exponentially stabilisable (in
the sense explained above), then (A, B) is exactly control-
lable. For the dual version (which concerns exact observ-
ability) we refer to Ramdani, Tucsnak, and Weiss (2010)
(specifically, Proposition 3.3 and the comments after it).
The latter paper studied exact observability via a sequence
of forward and backward observers. This approach was
extended to some nonlinear wave and beam equations
in Fridman (2013), Fridman and Terushkin (2016). The
most general statement of Russell’s principle (the linear
exact controllability question) known to us is in the con-
ference paper (Natarajan & Weiss, 2013b), where it is
stated informally in the comments after Theorem 4.1. In
that referenceT is not assumed to be invertible, the stabil-
isability concept is weaker than what we use in this work
and the conclusion is the null-controllability of the system
(A, B) in some time.

Our assumptions on A, B and BN allow us to regard
the nonlinear system (1.1) as a perturbation of the cor-
responding linear system (whereN = 0) if the Lipschitz
constant LN is small enough. The fact that exact con-
trollability of a linear system is preserved under small
bounded linear perturbations has been proved in Hadd

(2005). A more general result (in dual form) is in Sec-
tion 6.3 of Tucsnak and Weiss (2009). It concerns a class
of unbounded perturbations, similar to what we have in
this paper, but linear. A further generalisation (again in
dual form) is in the recent work (Jiang, Liu, & Zhang,
2015) which considers nonlinear unbounded perturba-
tions. However, our results are not a simple extension of
the results in these works, because the approach we use
here is entirely different. Our main result can be regarded
as an extension of Russell’s principle to a class of non-
linear plants. We remark that the idea of extending Rus-
sell’s principle to nonlinear systems was raised (but not
addressed) in Chen (1979).

We show that for each sufficiently small Lipschitz con-
stant LN there exists τ ∗ � 0 such that the plant (1.1) is
exactly controllable in each time τ > τ ∗. Our proof is
novel and constructive, i.e. we present an algorithm for
constructing the required control signal u that takes x
from a given x(0) to a desired x(τ ). Briefly, we define a
sequence of forward and backward state equations that
have the same structure as (1.1), but without drift terms
and with different functions in place of N . Using solu-
tions of this sequence of systems on the time interval
[0, τ ], that satisfy suitable boundary conditions, we con-
struct the required control signal u. When the plant is
linear, our approach for determining u reduces to solv-
ing the plant with linear feedback, back and forth in
time on the interval [0, τ ], with different initial condi-
tions. For simplicity, we explain our approach when X is
finite-dimensional in Section 2. The details for infinite-
dimensionalX are in Section 4. Section 5 contains numer-
ical examples.

We simplify our notation by adopting the following
convention: if in a sum the summation index runs from
m ∈ Z to n ∈ Z and n < m, then the sum is zero.

2. Discussion in finite dimensions

To make our ideas easily understood, we first present
them in the simpler context of finite-dimensional control
theory. Thus in this section X = C

p, U = C
q, UN = C

r

and A, B, BN , F and Fb are matrices of suitable dimen-
sions such that (1.3) holds (note that T

f
t = e(A+BF )t and

T
b
t = e(−A+BFb)t). We shall see later (see Remark 2.2) that

in this finite-dimensional context, the existence of F and
Fb such that (1.3) holds is equivalent to the fact that (A,
B) is controllable.

We assume thatN is a nonlinear function as in the text
before (1.2), N satisfies the Lipschitz assumption (1.2)
and the plant is described by (1.1). The drift function
f : [0, ∞) →X is now only assumed to be continuous.
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In this setting, it follows from the standard theory for
the existence and uniqueness of solutions to ordinary dif-
ferential equations (ODEs) that for any input u � C([0,
�); U) and every initial condition x0 � X, there exists
a unique solution x � C1([0, �); X) for (1.1) such that
x(0) = x0. In the theorem below we assume, for the sake
of simplicity, that the desired final state is 0 (i.e. we study
the null controllability of (1.1)). This simplifying assump-
tion can be eliminated, see Remark 2.1.

Theorem 2.1: Under the above assumptions, if LN is suf-
ficiently small, then there exists τ ∗ � 0 such that the fol-
lowing holds: For any τ > τ ∗ and any x0 � X there exists
an input function u � C([0, τ ]; U) such that the solution
x of (1.1) corresponding to x(0) = x0 and this u satisfies
x(τ ) = 0.

Proof: In the first step, we consider the systems

ẋ f (t ) = (A + BF )x f (t ) + BNh(x f (t ), t ) ∀ t ≥ 0,
(2.1)

ẋb(t ) = (−A + BFb)xb(t ) + BNhb(xb(t ), t ) ∀ t ≥ 0,
(2.2)

and each ODE (except the first) in the sequence of ODEs
that we will associate with the plant (1.1) in the next step
resembles one of the above two systems. Here the func-
tions h and hb are continuous in their second argument t
and Lipschitz in their first argument, with the same Lip-
schitz constant LN as for N . In other words, for all x1,
x2 � X and each t � 0,

‖h(x1, t ) − h(x2, t )‖ ≤ LN ‖x1 − x2‖,
‖hb(x1, t ) − hb(x2, t )‖ ≤ LN ‖x1 − x2‖.

Furthermore, these functions satisfy h(0, t) = hb(0, t) =
0 for all t � 0. It follows from the standard theory on the
solutions to ODEs that for each x0 � X there exist unique
C1 solutions xf for (2.1) and xb for (2.2), on the time inter-
val [0,�), such that xf(0)= x0 and xb(0)= x0. In addition,
since (1.3) holds, if LN is sufficiently small (as discussed
inmore detail in Section 4), then there exist constantsMf,
Mb � 1 and ω f , ωb ∈ R (independent of x0 and the spe-
cific forms of h and hb) such that

‖x f (t )‖ ≤ Mf e−ω f t‖x0‖,
‖xb(t )‖ ≤ Mbe−ωbt‖x0‖ ∀ t ≥ 0 (2.3)

and ωf + ωb > 0. The above estimates are estab-
lished in Section 4 when X is infinite-dimensional (see
Lemma 4.1 and Lemma 4.2). Let τ ∗ � 0 be such that

MfMbe−(ω f +ωb)τ
∗ = 1. Fix τ > τ ∗, then clearly

� := MfMbe−(ω f +ωb)τ < 1. (2.4)

The second step is to introduce a sequence of ODEs
defined recursively, meaning that each ODE in the
sequence (except the first) is defined using the solutions
of the previous ODEs in the sequence. Fix x0 � X. The
first ODE is

ẋ0(t ) = Ax0(t ) + BNN (x0(t ), t ) + f (t ) ∀ t ∈ [0, τ ],
x0(0) = x0. (2.5)

For each n ∈ N and all t � [0, τ ] we consider the ‘back-
ward’ ODE

ẋnb (t ) = (A − BFb)xnb (t ) + BNhnb(x
n
b (t ), t ),

xnb (τ ) = xn−1(τ ), (2.6)

where hnb is defined using the solutions of the previous
ODEs: for all x � X and t � [0, τ ],

hnb(x, t ) = N
(n−1∑

k=0

xk(t ) −
n−1∑
k=1

xkb(t ), t

)

−N
(n−1∑

k=0

xk(t ) −
n−1∑
k=1

xkb(t ) − x, t

)
. (2.7)

For each n ∈ N and all t� [0, τ ] we consider the ‘forward’
ODE

ẋn(t ) = (A + BF )xn(t ) + BNhn(xn(t ), t ),
xn(0) = xnb (0), (2.8)

where hn is defined using the solutions of the previous
ODEs: �x � X and �t � [0, τ ]

hn(x, t ) = N
(
x +

n−1∑
k=0

xk(t ) −
n∑

k=1

xkb(t ), t

)

−N
(n−1∑

k=0

xk(t ) −
n∑

k=1

xkb(t ), t

)
. (2.9)

The structure of hnb and hn implies that these ODEs must
be solved sequentially on [0, τ ], i.e. we must find x0, x1b,
x1, x2b, x

2 and so on, in this order. For example,

ẋ1b(t ) = (A − BFb)x1b(t ) + BN
[N (x0(t ), t )

−N (x0(t ) − x1b(t ), t )
]
,
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Figure . Illustration of the back-and-forth algorithm used to con-
struct a null control signal u for the nonlinear plant (.) with ini-
tial state x() = x. While x is a state trajectory of (.), xnb and xn

(for n� ) are state trajectories of (.) and (.). The dashed curve
xn (see (.)) is a state trajectory of (.) when u = un. We have
limn→ �xn(τ )= .

which is solved backwards on [0, τ ] starting from x1b(τ ) =
x0(τ ), and

ẋ1(t ) = (A + BF )x1(t ) + BN
[N (x1(t ) − x1b(t )

+x0(t ), t ) − N (x0(t ) − x1b(t ), t )
]
,

which is solved forwards on [0, τ ] starting from x1(0) =
x1b(0). This sequence of back-and-forth state trajectories
is illustrated in Figure 1.

The third step is to obtain estimates for the solutions
of this sequence of ODEs. For this, notice that for t � [0,
τ ], (2.8) is an equation of the form (2.1), with h = hn.
It is clear that (2.6) can be rewritten, using the notation
z(t ) = xnb (τ − t ), as

ż(t ) = (−A + BFb)z(t ) − BNhnb(z(t ), τ − t ),
z(0) = xn−1(τ ),

which for t� [0, τ ] is an equation of the form (2.2), with

hb(x, t ) = −hnb(x, τ − t ) ∀ x ∈ X.

It is easy to see that the nonlinear functions h and hb just
defined possess all the properties assumed after Equa-
tions (2.1) and (2.2). Therefore, the estimates (2.3) hold,
meaning that for every n ∈ N and t � [0, τ ],

‖xnb (τ − t )‖ ≤ Mbe−ωbt‖xn−1(τ )‖,

‖xn(t )‖ ≤ Mf e−ω f t‖xnb (0)‖. (2.10)

Combining the above estimates for n = 1 and t = τ and
using the notation � from (2.4), we obtain ‖x1(τ )‖ �
�‖x0(τ )‖. By iterating this process, we get

‖xn(τ )‖ ≤ �n‖x0(τ )‖ ∀ n ∈ N (2.11)

which, along with the first inequality in (2.10), implies
that

‖xnb (t )‖ ≤ Mbe−ωb(τ−t )�n−1‖x0(τ )‖
∀ t ∈ [0, τ ], n ∈ N. (2.12)

From here and (2.10) it follows that

‖xn(t )‖ ≤ Mf e−ω f tMbe−ωbτ�n−1‖x0(τ )‖
∀ t ∈ [0, τ ], n ∈ N. (2.13)

The fourth step is to find the desired input function
u for the plant (1.1). For each n ∈ N and t � [0, τ ], we
define

xn(t ) =
n∑

k=0

xk(t ) −
n∑

k=1

xkb(t ),

un(t ) = F
n∑

k=1

xk(t ) + Fb
n∑

k=1

xkb(t ). (2.14)

Then xn (shown in Figure 1 as a dashed line) is the unique
solution of (1.1) on the time interval [0, τ ] with xn(0) =
x0 and input u = un, i.e.

ẋn(t ) = Axn(t ) + Bun(t ) + BNN (xn(t ), t )
+ f (t ) ∀ t ∈ [0, τ ], (2.15)

and moreover xn(τ ) = xn(τ ). The functions hnb and hn

have been chosen precisely so that xn satisfies (2.15). This
can be shown by a simple computation based on (2.5)–
(2.9) (which involves many cancellations). We define u :
[0, τ ]→U by

u(t ) = F
∞∑
k=1

xk(t ) + Fb
∞∑
k=1

xkb(t ) ∀ t ∈ [0, τ ].

(2.16)

It follows using (2.12) and (2.13) that both series in (2.16)
converge to a finite sum for each t � [0, τ ], and more-
over limn→∞ ‖u − un‖L∞[0,τ ] = 0. The function u, being
the uniform limit of a sequence of continuous functions,
is continuous on [0, τ ].

Let x be the unique solution of (1.1) on [0, τ ] when
x(0) = x0 and u is as in (2.16). From the continuous
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dependence of the state trajectories of systems described
by ODEs on their inputs (see, for instance, Khalil, 2002,
Theorem 3.4), we get that

x(t ) = lim
n→∞ xn(t ) ∀ t ∈ [0, τ ].

This, together with the fact that xn(τ ) = xn(τ ) and the
estimate in (2.11), implies that x(τ ) = 0 as desired. �

We remark that when N = 0 and f = 0, if we replace
A with A + BF in (2.5) and add Fx0(t) to the right side
of (2.16), then the above construction of the null control
signal u reduces to the one described in Natarajan and
Weiss (2013b).

As promised at the beginning of this section, in the
next remark we explain how the null controllability in
Theorem 2.1 can be replaced with controllability.

Remark 2.1: Suppose that for the plant (1.1), with N as
in (1.2), the initial state is x(0) = x0 and the desired final
state is x(τ ) = xτ � X. Define M(z, t ) = N (z + xτ , t )
for each z�X and t� 0. Consider themodified nonlinear
plant

ż(t ) = Az(t ) + Bu(t ) + BNM(z(t ), t )
+ f (t ) + Axτ ∀ t ≥ 0. (2.17)

It is easy to verify that if z(0) = x0 − xτ and u � C([0, τ ];
U) is a null control signal for (2.17) in time τ , so that the
corresponding solution z�C1([0, τ ];X) of (2.17) satisfies
z(τ )= 0, then x defined by x(t)= z(t) + xτ for each t� [0,
τ ] solves (1.1) for the same u and satisfies x(0) = x0 and
x(τ ) = xτ . Hence, this control signal u takes (1.1) from
x0 to xτ in time τ (which is our control objective). If we
introduce the new drift function g(t) = f(t) + Axτ , then
the problem of finding a null control signal for (2.17) for
any given initial state fits into the framework of Theorem
2.1 (withM in place ofN and g in place of f ) and hence
it can be solved under the assumptions of that theorem.
Thus, Theorem 2.1 can be strengthened by replacing the
conclusion of null controllability in time τ with control-
lability in time τ .

Remark 2.2: If we take N = 0 in Theorem 2.1, then we
get that the joint stabilisability of (A, B) and (−A, B) (i.e.
the estimate (1.3)) implies that (A, B) is controllable. The
converse statement is clearly also true. This equivalence
is the finite-dimensional version of Russell’s principle.

3. Background on regular systems

This section is a brief introduction to regular linear sys-
tems based on Staffans (2004), Staffans andWeiss (2004),
Weiss (1994a), Weiss (1994b), Weiss and Curtain (1997)

and Tucsnak andWeiss (2009). For a Hilbert space Y and
α ∈ R, we define the Hilbert space

L2α([0, ∞);Y ) =
{

φ ∈ L2loc([0, ∞);Y )

∣∣∣∣
∫ ∞

0
e−2αt‖φ(t )‖2 dt < ∞

}
,

with the norm being the square-root of the integral
appearing above. For each τ � 0, let Pτ be the projection
of L2([0, �); Y) onto L2([0, τ ]; Y) by truncation.

Let A be the generator of a strongly continuous opera-
tor semigroup T on a Hilbert space X. The growth bound
of T is denoted by ωT. This means that ωT is the small-
est real number with the following property: For each
ω > ωT there exists aMω > 0 such that

‖Tt‖ ≤ Mωeωt ∀ t ≥ 0.

We call T (or A) exponentially stable if ωT < 0. For β �
ρ(A), we define

X1 = D(A) with the norm ‖x‖1 = ‖(βI − A)x‖.

The spaceX−1 has been defined before (1.1). These spaces
are independent of the choice of β . The operators Tt
extend to X−1 and form an operator semigroup on it. The
generator of the extended operator semigroup is an exten-
sion of A to an operator in L(X,X−1). We use the same
notation Tt and A for these extended operators. If T is a
strongly continuous group on X, then so is its extension
to X−1. The space Xd

1 is defined similarly to X1, but with
A∗ in place of A. Then X−1 can be regarded as the dual
space of Xd

1 with respect to the pivot space X.
Let U be a Hilbert space. An operator B ∈ L(U,X−1)

is an admissible control operator for T if for some (hence,
for each) τ > 0 and for every u � L2([0, �); U),


τu =
∫ τ

0
Tτ−σBu(σ ) dσ ∈ X (3.1)

(the integral is computed inX−1). Then, this integral gives
the strong solution of ż(t ) = Az(t ) + Bu(t ) in the space
X−1, corresponding to z(0) = 0, evaluated at the time τ .
B is called bounded if B ∈ L(U,X ), and unbounded oth-
erwise. If B is admissible and α > ωT, then there exists
Mα � 0 such that

‖(sI − A)−1B‖L(U,X ) ≤ Mα√
Re s − α

for Re s > α.



150 V. NATARAJAN ET AL.

If the semigroup T is normal, or invertible, or contrac-
tive, then the above estimate is sufficient for the admissi-
bility of B. ForA and B as above (so that in particular, B is
admissible), for each τ � 0 we define the input map 
τ :
L2([0, �); U) → X by (3.1). It can be shown that these
operators are bounded. Since 
τu = 
τPτu, the opera-
tors
τ have an obvious extension to L2loc([0, ∞);U ). For
any u ∈ L2loc([0, ∞);U ), 
tu is a continuous X-valued
function of the time t. IfA is exponentially stable, then the
operators 
t are uniformly bounded. If we denote their
uniform bound by ‖
�‖, then obviously

‖
tu‖ ≤ ‖
∞‖ · ‖u‖L2 ∀ u ∈ L2([0, ∞);U ),

∀ t ≥ 0. (3.2)

For A and B as above, if Tt is invertible for some t > 0,
then it is invertible for every t > 0 and the inverses form
a new operator semigroup with generator −A. In this
case T can be extended to a strongly continuous group
of operators via T−t = T

−1
t and B is admissible also for

the inverse semigroup.
Let Y be a Hilbert space. An operator C ∈ L(X1,Y )

is an admissible observation operator for T if for some
(hence, for every) τ > 0 there existsmτ > 0 such that

∫ τ

0
‖CTt z‖2 dt ≤ mτ‖z‖2 ∀ z ∈ D(A). (3.3)

If B ∈ L(U,X−1), then B∗ ∈ L(Xd
1 ,U ). B is an admissi-

ble control operator for T iff B∗ is an admissible observa-
tion operator for the adjoint operator semigroup T

∗. The
�-extension of an operatorC ∈ L(X1,Y ) (with respect to
A), denoted C�, is defined as follows:

C�x = lim
λ →+∞

Cλ(λI − A)−1x (3.4)

and its domain D(C�) consists of those x � X for which
the above limit exists. If C is admissible for T, then
for every x � X the formula y(t ) = C�Tt x makes sense
for almost every t � 0 and it defines a function y ∈
L2α([0, ∞);Y ) for every α > ωT. We call C bounded if
it can be extended so that C ∈ L(X,Y ) and unbounded
otherwise.

Definition 3.1: Let U, X and Y be Hilbert spaces. Let A
be the generator of a strongly continuous semigroup T

on X and let B ∈ L(U,X−1) andC ∈ L(X1,Y ) be admis-
sible control and observation operators, respectively, for
T. Then the triple (A, B, C) is called regular if for some
(hence, for every) s � ρ(A), C�(sI − A)−1B exists and
the map s �→C�(sI − A)−1B is bounded on some right
half-plane.

For any regular triple (A, B, C) and any D ∈ L(U,Y ),
the equations

ẋ(t ) = Ax(t ) + Bu(t ), y(t ) = C�x(t ) + Du(t ),
(3.5)

define a regular linear system  with input space U, state
space X and output space Y. For any initial state x(0) =
x0 � X and any input u ∈ L2α([0, ∞);U ) (where α ∈ R)
there exists a unique state trajectory x� C([0,�); X) and
output y for  such that y ∈ L2γ ([0, ∞);Y ) for all γ � α

with γ > ωT and both equations in (3.5) hold for almost
every t � 0. The state trajectory x can be written as

x(t ) = Tt x0 + 
tu ∀ t ≥ 0,

where 
t is as in (3.1). The operators (A, B, C, D) are
called the generating operators of. The transfer function
of  is

G(s) = C�(sI − A)−1B + D,

which is an L(U,Y )-valued analytic function defined
on the right half-plane where Re s > ωT. Denoting the
Laplace transformation by a hat, for u, x0, y and γ as in
the text after (3.5), we have

ŷ(s) = C(sI − A)−1x0 + G(s)û(s) for Re s > γ

and lims → �G(s)v=Dv for any v�U, where s is positive.
For a system  as above, there exist linear maps �∞ :

X → L2loc([0, ∞);Y ) (called the extended output map)
and F∞ : L2loc([0, ∞);U )→ L2loc([0, ∞);Y ) (called the
extended input-output map) such that the output y
from (3.5) can be expressed as y = �∞x0 + F∞u. The
extended input-output map is causal, i.e. PτF∞ =
PτF∞Pτ for all τ � 0. This and the above expression for
the output y give

Pτy = Pτ�∞x0 + PτF∞Pτu ∀ τ ≥ 0. (3.6)

For every ω > ωT, �� is bounded from X to
L2ω([0, ∞);Y ) with norm ‖��‖ω and F∞ is bounded
from L2ω([0, ∞);U ) to L2ω([0, ∞);Y ) with norm
‖F∞‖ω. Moreover

‖F∞‖ω = sup
Re s>ω

‖G(s)‖.

Definition 3.2: With the notation from Definition 3.1,
let G be the transfer function of  and let K ∈ L(Y,U ).
We say that K is an admissible feedback operator for  if
[I − KG(s)]−1 exists and is uniformly bounded on some
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right half-plane (equivalently, [I − G(s)K]−1 exists and is
uniformly bounded on some right half-plane).
Proposition 3.1: We work under the assumptions of the
above definition, and moreover we assume that I − KD is
invertible (equivalently, I − DK is invertible). Then there
exists a unique regular linear system K with generating
operators (AK, BK, CK, DK) and transfer functionGK deter-
mined as follows:

AKx = [A + BK(I − DK)−1C�]x ∀ x ∈ D(AK ),

where D(AK ) consists precisely of those x ∈ D(C�) for
which the above expression for AKx is in X. For any x ∈
D(AK ) we have

BK = B(I − KD)−1, CKx = (I − DK)−1C�x,

DK = D(I − KD)−1 = (I − DK)−1D,

GK = G(I − KG)−1 = (I − GK)−1G.

With the notation and the assumptions of the above
proposition, let Ũ be a Hilbert space and B̃ ∈ L(Ũ ,X−1).
If (A, B̃,C) is a regular triple, then B̃ is an admissible
control operator for the semigroup generated by AK. (A
similar statement holds for admissible observation oper-
ators, we omit the details.) Furthermore, if D = 0, then
(AK, B̃, C̃) is a regular triple, where C̃ is the restriction
of C� from (3.4) to D(AK ). The �-extension of C̃ with
respect to AK is C� (the same as for C).

The following definition uses the above proposition
with D = 0.
Definition 3.3: Suppose that A and B are as in (3.1).
Then (A, B) is exponentially stabilisable if there exists
F ∈ L(X1,U ) such that:

(1) (A, B, F) is a regular triple,
(2) [I − F�(sI − A)−1B]−1 exists and is bounded on

some right half-plane,
(3) The operator semigroup generated by A + BF� is

exponentially stable.

In this case, we call F a stabilising state feedback operator
for (A, B).

4. Exact controllability of nonlinear DPS

In this section we study the exact controllability of the
possibly infinite-dimensional nonlinear plant (1.1) using
the approach described for finite-dimensional systems in
Section 2. In this section X, U,UN and Y denote Hilbert
spaces.

First, we define a solution concept for the nonlinear
systems encountered in this section, following Definition
4.1.1 in Tucsnak and Weiss (2009).
Definition 4.1: Consider the nonlinear differential
equation

ẋ(t ) = Ax(t ) + BGG(x(t ), t ) + f (t ) ∀ t ≥ 0, (4.1)

where A is the generator of a strongly continuous semi-
groupT onX,BG ∈ L(U,X−1),G : X × [0, ∞) → U is a
nonlinear function and f ∈ H1

loc((0, ∞);X−1). A strong
solution of (4.1) in X−1 is a function

x ∈ L1loc([0, ∞);X ) ∩C([0, ∞);X−1)

with the following properties:
(a) Gx ∈ L2loc([0, ∞);U ), where (Gx)(t ) = G(x(t ), t )

for almost all t � 0.
(b) The following equality holds for every t � 0:

x(t ) − x(0) =
∫ t

0

[
Ax(σ ) + BG (Gx)(σ ) + f (σ )

]
dσ.

It is easy to see that the strong solution x in the above
definition (if it exists) satisfies (4.1) pointwise in X−1 for
almost every t � 0.
Proposition 4.1: Suppose that T is a strongly continuous
semigroup of operators on X with infinitesimal generator
A, B ∈ L(U,X−1) and BN ∈ L(UN ,X−1) are admissible
control operators forT andN : X × [0, ∞) → UN is con-
tinuous in its second argument and satisfies the uniform
Lipschitz condition (1.2) for some LN > 0. Assume that
f ∈ H1

loc((0, ∞);X−1) and define

F (t ) =
∫ t

0
Tt−σ f (σ ) dσ ∀ t ≥ 0.

For each t � 0, recall the operator 
t from (3.1) and
define a similar operator 
N

t : L2([0, ∞);UN ) → X as
follows:


N
t z =

∫ t

0
Tt−σBN z(σ ) dσ ∀ z ∈ L2([0, ∞);UN ).

Then for every u ∈ L2loc([0, ∞);U ) and each x0 � X
there exists a unique function x � C([0, �); X) such that

x(t ) = Tt x0 + 
tu + 
N
t (N x)(t ) + F (t ) ∀ t ≥ 0,

(4.2)

where (N x)(t ) = N (x(t ), t ) for all t � 0. For every t >

0, x(t) depends continuously on x0 and on Pτu (the trunca-
tion of u to [0, τ ]). Moreover, the function x defined above



152 V. NATARAJAN ET AL.

is the unique strong solution of (1.1) in X−1 that satisfies
x(0) = x0.

Outline of the proof. First we notice that from The-
orem 4.1.6 in Tucsnak and Weiss (2009) we have F ∈
C([0, ∞);X ).

The existence of x and its continuous dependence on
x0 and on Pτu can be shown by a slight adaptation of
the proof of Theorem 3.1 in Natarajan andWeiss (2013a).
Indeed, in the cited reference,N is independent of time,
while hereN may depend on t, but this does not change
anything. In the cited reference, for our purpose, wemust
take the output y of the well-posed systemP to be equal
to its state x and replace
1

t u1 with
tu + F (t ) and F
1
t u1

with Pt (
u + F ) in Section 3 there. Here (
u)(t)= 
tu
for all t � 0. It follows from Remark 3.2 in the cited ref-
erence that this proposition holds without any restriction
on the Lipschitz constant LN . This is because our obser-
vation operator is the identity operator on X, which is
bounded. Theorem 3.1 fromNatarajan andWeiss (2013a)
is presented as Theorem 7.2 in the survey paper Tucsnak
and Weiss (2014).

To use the concept of strong solution for (1.1), we
have to fit (1.1) into the framework of (4.1). For this,
we define BG = [B BN ] and G(x, t ) = [u(t ) N (x, t )].
Adapting the proof of Proposition 4.2.5 in Tucsnak and
Weiss (2009) we can check that x is the unique strong
solution for (1.1) in X−1 that satisfies x(0) = x0. �

The function x in the above proposition is called the
state trajectory of (1.1) corresponding to the initial state
x0 and the input u.

Let A, B and T be as in Proposition 4.1. Then clearly
A − γ I is the generator of an operator semigroup S

γ

for each γ ∈ R, with S
γ
t = e−γ t

Tt for all t � 0, and B is
an admissible control operator for S

γ . Define 

γ
t analo-

gously to 
t by replacing T with S
γ in (3.1). If γ > ωT,

then S
γ is exponentially stable and from the discussion

above (3.2) we get that the operators 

γ
t are uniformly

bounded by a constant ‖
γ
∞‖.

Lemma 4.1: Suppose that A is the generator of a strongly
continuous semigroup T on X with growth bound ωT. Let
B ∈ L(U,X−1) be an admissible control operator forT and
let g: X× [0,�)→U be a function which is continuous in
its second argument, g(0, t) = 0 for all t � 0 and g satisfies
the Lipschitz condition

‖g(x1, t ) − g(x2, t )‖ ≤ L‖x1 − x2‖
∀ x1, x2 ∈ X, ∀ t ≥ 0, (4.3)

for some L > 0. Then for every γ > ωT there exists Mγ >

1 such that for each x0 � X, the state trajectory x of the

nonlinear system

ẋ(t ) = Ax(t ) + Bg(x(t ), t ) ∀ t ≥ 0, x(0) = x0
(4.4)

satisfies ‖x(t )‖ ≤ Mγ ‖x0‖e−ωγ t for all t� 0. Here−ωγ =
γ + ‖
γ

∞‖2L2, where ‖
γ
∞‖ is as introduced just before

the lemma.
Furthermore, if C ∈ L(X1,Y ) is an admissible observa-

tion operator forT and (A, B, C) is a regular triple, then for
every trajectory x of (4.4) x(t ) ∈ D(C�) for almost all t �
0 and for each γ > ωT and α > −ωγ there exist constants
cα , dα > 0 such that

‖PτC�x‖L2α ≤ cα‖x0‖ + dα‖Pτx‖L2α ∀ τ ≥ 0. (4.5)

Proof: For each x0 � X, it follows from Proposition 4.1
that there exists a unique state trajectory x�C([0,�);X)
for (4.4) which satisfies

x(t ) = Tt x0 +
∫ t

0
Tt−σBg(x(σ ), σ ) dσ ∀ t ≥ 0.

Fix γ > ωT and define z(t)= e−γ tx(t). Recall the notation
S

γ and

γ
t introduced just before this lemma. It is easy to

verify using the last equation that

z(t ) = S
γ
t x0 +

∫ t

0
S

γ
t−σBe

−γ σ g(eγ σ z(σ ), σ ) dσ

∀ t ≥ 0.

For any fixed t � 0, if we define u(σ ) = e−γ σ g(eγ σ z(σ ),
σ ) for σ � [0, t] and u(σ ) = 0 for σ > t, then the above
equation gives us that z(t ) = S

γ
t x0 + 


γ
t u. Using this and

(4.3) we get that for someM � 1

‖z(t )‖ ≤ M‖x0‖ + ‖
γ
∞‖ · ‖u‖L2,

‖u‖2L2 ≤ L2
∫ t

0
‖z(σ )‖2 dσ.

Therefore, for all t � 0,

‖z(t )‖2 ≤ 2M2‖x0‖2 + 2‖
γ
∞‖2L2

∫ t

0
‖z(σ )‖2 dσ.

Applying Gronwall’s inequality (see, for instance, (Cod-
dington & Levinson, 1955 ), (Khalil, 2002 )) to the above
expression, we get that

‖z(t )‖2 ≤ 2M2‖x0‖2e2‖

γ
∞‖2L2t ∀ t ≥ 0.

This and the definitions z(t) = e−γ tx(t), Mγ = √
2M

imply the estimate for ‖x(t)‖.
Let C be as in the theorem. Then we can regard (4.4)

along with the equation y(t) = C�x(t) as a regular linear
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system with input u given by u(t) = g(x(t), t) for all t �
0 and output y. The existence of cα and dα such that (4.5)
holds follows from (3.6) and the discussion below it, (4.3)
and the estimate for ‖x(t)‖. �
Remark 4.1: The constants Mγ , ωγ , cα and dα in the
above lemma do not depend on the specific form of the
nonlinear function g, as long as g satisfies (4.3). This is
evident from the proof of Lemma 4.1.

Assumption 4.1: The operators in (1.1) are such that (A,
B) and (−A, B) are jointly exponentially stabilisable, as
defined in Section 1. Thus, there exist F, Fb ∈ L(X1,U )

such that the triples (A, B, F) and (−A, B, Fb) are regular,
I is an admissible feedback operator for both of the regular
systems with generating operators (A, B, F, 0) and (−A, B,
Fb, 0) and the corresponding closed-loop generators

A f = A + BF� and Ab = −A + BFb,�

generate operator semigroups T
f and T

b on X that satisfy
(1.3) for some M � 1 and μ > 0. (That Af and Ab gen-
erate operator semigroups follows from Proposition 3.1.)
Furthermore, we assume that the triples (A,BN , F ) and
(−A,BN , Fb) are regular.

Remark 4.2: We discuss some immediate consequences
of Assumption 4.1.

First, from the statement after Proposition 3.1 it fol-
lows that BN is an admissible control operator forT

f and
T
b, the operator semigroups generated by Af and Ab.
Let ωT f and ωTb be the growth bounds for T

f and T
b,

respectively. According to (1.3) we have ‖T
f
t ‖ · ‖T

b
t ‖ ≤

Me−μt . Clearly this implies that

1
t
log ‖T

f
t ‖ + 1

t
log ‖T

b
t ‖ ≤ 1

t
logM − μ ∀ t > 0.

Taking limits as t → ∞, and using the expression for the
growth bound from Proposition 2.1.2 of Tucsnak and
Weiss (2009), we get

ωT f + ωTb ≤ −μ < 0. (4.6)

Lemma 4.2: Suppose that Assumption 4.1 holds for the
linear operators of the plant (1.1).We use the notation from
Remark 4.2. Consider the nonlinear systems

ẋ f (t ) = A f x f (t ) + BNh(x f (t ), t ) ∀ t ≥ 0, (4.7)

ẋb(t ) = Abxb(t ) + BNhb(xb(t ), t ) ∀ t ≥ 0, (4.8)

where h, hb : X × [0, ∞) → UN are continuous in the
second argument t and Lipschitz in the first argument with

Lipschitz constant LN , i.e. for all x1, x2 � X and t � 0

‖h(x1, t ) − h(x2, t )‖ ≤ LN ‖x1 − x2‖,
‖hb(x1, t ) − hb(x2, t )‖ ≤ LN ‖x1 − x2‖.

Moreover, assume that h(0, t) = hb(0, t) = 0 for all t � 0.
For each t � 0 and every γ ∈ R, let S

f ,γ
t =

e−γ t
T

f
t and S

b,γ
t = e−γ t

T
b
t and define the maps



f ,γ
t , 


b,γ
t : L2([0, ∞);UN ) → X as follows: for each

z ∈ L2([0, ∞);UN ),



f ,γ
t z =

∫ t

0
S
f ,γ
t−σBN z(σ ) dσ,



b,γ
t z =

∫ t

0
S
b,γ
t−σBN z(σ ) dσ.

For every γ ∈ R denote

‖
 f ,γ
∞ ‖ = sup

t≥0
‖
 f ,γ

t ‖, ‖
b,γ
∞ ‖ = sup

t≥0
‖
b,γ

t ‖.

Then for each γ f > ωT f and γb > ωTb , ‖
 f ,γ f
∞ ‖ < ∞ and

‖
b,γb∞ ‖ < ∞.

If LN is sufficiently small, then there exist constants
γ f > ωT f and γb > ωTb such that ωf + ωb > 0, where

− ω f = γ f + ‖
 f ,γ f
∞ ‖2L2N ,

−ωb = γb + ‖
b,γb∞ ‖2L2N , (4.9)

and there exist constants Mf, Mb � 1, which are indepen-
dent of the specific form of h and hb, such that the following
holds: For each x0 � X, there exist unique state trajectories
xf for (4.7) and xb for (4.8) such that xf(0)= x0, xb(0)= x0
and for all t ≥ 0 ,

‖x f (t )‖ ≤ Mf ‖x0‖e−ω f t ,

‖xb(t )‖ ≤ Mb‖x0‖e−ωbt . (4.10)

Proof: The facts that for any γ f > ωT f and γb > ωTb we
have ‖
 f ,γ f

∞ ‖ < ∞ and ‖
b,γb∞ ‖ < ∞ follow from the dis-
cussion before Lemma 4.1.

To see that it is possible to satisfyωf +ωb > 0 if LN > 0
is sufficiently small, notice that if we choose γ f sufficiently
close to ωT f and γ b sufficiently close to ωTb , then from
(4.6) we have γ f + γ b < 0. Now the claim follows easily
from (4.9).

The existence of unique state trajectories xf for (4.7)
and xb for (4.8) such that xf(0)= x0 and xb(0)= x0 follows
from Proposition 4.1.

Finally, the claims (4.10) follow by applying Lemma
4.1 to (4.7) with γ = γ f and (4.8) with γ = γ b and from
Remark 4.1. �
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Definition 4.2: The nonlinear plant (1.1) is exactly con-
trollable in time τ > 0 if for every x0, xτ � X, there exists
a u � L2([0, τ ]; U) such that the state trajectory x of (1.1)
corresponding to this input u and initial state x(0) = x0
satisfies x(τ ) = xτ .

The following is the main result of this paper.

Theorem 4.1: Suppose that Assumption 4.1 holds for the
linear operators of the plant (1.1). Then for each LN suf-
ficiently small, if N is continuous in the second argument
and satisfies (1.2), then there exists τ ∗ > 0 (independent of
N ) such that for every τ > τ ∗, the system (1.1) is exactly
controllable in time τ .
Proof: We follow the same four steps used to prove
Theorem 2.1 to establish the null controllability of the
nonlinear plant (1.1) in some time τ > 0 and then we
mimic Remark 2.1 to conclude the exact controllability
of the plant in the same time. We use the notation from
Assumption 4.1 and Remark 4.2.

In the first step, we consider the nonlinear differential
equations (4.7) and (4.8), where h and hb are as described
in Lemma 4.2. Each equation (except the first) in the
sequence of differential equations that we will associate
with the nonlinear plant (1.1) in the next step resembles
either (4.7) or (4.8). We know from Lemma 4.2 that if LN
is sufficiently small, then there exist constants Mf, Mb �
1 and ω f , ωb ∈ R (independent of the initial state x0 for
(4.7) and (4.8) and the specific forms of h and hb) such
that (4.10) holds and ωf + ωb > 0. For the remainder of
this proof, we suppose that LN is sufficiently small so that
(4.10) holds with ωf + ωb > 0.

Let τ ∗ � 0 be such thatMfMbe−(ω f +ωb)τ
∗ = 1. Fix τ >

τ ∗, then clearly (2.4) holds. We will show that (1.1) is null
controllable in time τ .

Next we derive some useful properties for the state tra-
jectories xf of (4.7) and xb of (4.8) that satisfy xf(0) =
xb(0) = x0. The discussion below Proposition 3.1 implies
that (A f ,BN , F�) and (Ab,BN , Fb,�) are regular triples
and the �-extensions of F� and Fb, � with respect to Af
andAb, respectively, are F� with domainD(F�) and Fb, �
with domainD(Fb,�). It now follows from the last part of
Lemma 4.1 that x f (t ) ∈ D(F�) and xb(t ) ∈ D(Fb,�) for
almost all t � 0 and there exist constants cf, df, cb, db > 0
(independent of x0 and the specific forms of h and hb, see
Remark 4.1) such that

‖PτF�x f ‖L2 ≤ c f ‖x0‖ + d f ‖Pτx f ‖L2, (4.11)

‖PτFb,�xb‖L2 ≤ cb‖x0‖ + db‖Pτxb‖L2 . (4.12)

Furthermore, using Theorem 6.1 in Weiss (1994b) (in
particular (6.1) there), we can show that xf is the unique

strong solution in X−1 to the equation

ẋ(t ) = Ax(t ) + BF�x f (t ) + BNh(x(t ), t )
∀ t ≥ 0, x(0) = x0,

and xb is the unique strong solution in X−1 to the equa-
tion

ẋ(t ) = −Ax(t ) + BFb,�xb(t ) + BNhb(x(t ), t )
∀ t ≥ 0, x(0) = x0.

We remark that all the claims in this paragraph hold triv-
ially whenX is finite-dimensional and hencewere not dis-
cussed in the proof of Theorem 2.1.

The second step is to introduce a sequence of non-
linear differential equations defined recursively, meaning
that each equation in the sequence (except the first) is
defined using the solutions of the previous equations in
the sequence. Fix x0 � X. The first equation is (2.5) (with
the current meaning of the symbols). For each n ∈ N and
all t � [0, τ ] we consider the ‘backward’ equation

ẋnb (t ) = −Abxnb (t ) + BNhnb(x
n
b (t ), t ),

xnb (τ ) = xn−1(τ ), (4.13)

where hnb is defined using the solutions of the previous
equations and is given by (2.7). For each n ∈ N and all t
� [0, τ ] we consider the ‘forward’ equation

ẋn(t ) = A f xn(t ) + BNhn(xn(t ), t ), xn(0) = xnb (0),
(4.14)

where hn is defined using the solutions of the previous
equations and is given by (2.9). The structure of hnb and h

n

implies that these equations must be solved sequentially.
Hence we solve the above equations for x0, x1b, x

1, x2b, x
2,

x3b, x
3 and so on, in this order, on the time interval [0, τ ].

Let X f
−1 and Xb

−1 be the extensions of X defined similarly
to X−1 but using Af and Ab, respectively, in place of A. By
solving the above equations, we mean finding the func-
tions in C([0, τ ]; X) which satisfy the differential equa-
tions in (2.5), (4.13) and (4.14) pointwise inX−1,Xb

−1 and
X f

−1, respectively, for almost all t � [0, τ ] and which also
satisfy the boundary conditions. Using these solutions we
will construct the required control signal.

The third step is to obtain estimates for the solutions
of this sequence of equations. From Proposition 4.1 we
get that there exists a unique strong solution x0 in X−1
for (2.5) such that x0 � C([0, τ ]; X) and x0(0) = x0. Next
notice that for t� [0, τ ], (4.14) is an equation of the form
(4.7), with h = hn. Also (4.13) can be formally rewritten,
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using the notation z(t ) = xnb (τ − t ), as

ż(t ) = Abz(t ) − BNhnb(z(t ), τ − t ), z(0) = xn−1(τ ),

(4.15)

which for t� [0, τ ] is an equation of the form (4.8), with

hb(x, t ) = −hnb(x, τ − t ) ∀ x ∈ X.

It is easy to see that the nonlinear functions h and hb just
defined possess all the properties assumed after the equa-
tions (4.7) and (4.8). It now follows from Lemma 4.2 that
there exist unique state trajectories xn for (4.14) and z for
(4.15) for which the estimates in (4.10) hold. This, and the
relation z(t ) = xnb (τ − t ) for all t� [0, τ ], means that for
every n ∈ N and t � [0, τ ],

‖xnb (τ − t )‖ ≤ Mbe−ωbt‖xn−1(τ )‖,
‖xn(t )‖ ≤ Mf e−ω f t‖xnb (0)‖. (4.16)

It is easy to see using Proposition 4.1 that the functions x0,
xnb and xn mentioned above are solutions of (2.5), (4.13)
and (4.14) in the sense discussed earlier. From (4.16) we
can deduce (like in the proof of Theorem 2.1) that x0, xnb
and xn satisfy the estimates in (2.11), (2.12) and (2.13).

The fourth step is to find the desired control signal u
which will ensure that the state trajectory x of the plant
(1.1) corresponding to the initial state x(0) = x0 satis-
fies x(τ ) = 0. We will regard xn, xnb , F�xn and Fb,�xnb as
functions on the interval [0, τ ]. Applying (4.11) to (4.14)
and (4.12) to (4.15) (and recalling the notation z(t ) =
xnb (τ − t ) for all t � [0, τ ]), we get that for each n � 1

‖F�xn‖L2[0,τ ] ≤ c f ‖xnb (0)‖ + d f ‖xn‖L2[0,τ ], (4.17)

‖Fb,�xnb‖L2[0,τ ] ≤ cb‖xn−1(τ )‖ + db‖xnb‖L2[0,τ ]. (4.18)

For each n ∈ N, we define xn � C([0, τ ]; X) and un �
L2([0, τ ]; U) as follows:

xn =
n∑

k=0

xk −
n∑

k=1

xkb, un =
n∑

k=1

F�xk +
n∑

k=1

Fb,�xkb.

It can be verified using the structure of the nonlinear
terms in (2.5), (4.13) and (4.14) and the discussion below
(4.11)–(4.12) that xn is a strong solution in X−1 for (1.1)
on the time interval [0, τ ] with xn(0)= x0 and u= un, i.e.
for almost all t � [0, τ ],

ẋn(t ) = Axn(t ) + Bun(t ) + BNN (xn(t ), t )
+ f (t ) in X−1

and moreover xn(τ ) = xn(τ ). From Proposition 4.1 we
have

xn(t ) = Tt x0 + 
tun + 
N
t (N xn)(t ) + F (t )

∀ t ∈ [0, τ ]. (4.19)

Here (N xn)(t ) = N (xn(t ), t ) for all t � [0, τ ]. It fol-
lows from (2.12), (2.13), (4.17) and (4.18) that (un)∞n=1 is
a Cauchy sequence in L2([0, τ ]; U). Define u � L2([0, τ ];
U) to be its limit, i.e.

u =
∞∑
k=1

F�xk +
∞∑
k=1

Fb,�xkb. (4.20)

Let x be the strong solution of (1.1) on [0, τ ] for this u
when x(0)= x0. Then, according to Proposition 4.1, (4.2)
holds. From (4.19) and (4.2) we get that for all t� [0, τ ],

‖x(t ) − xn(t )‖ ≤ α‖u − un‖L2[0,t]
+βLN ‖x − xn‖L2[0,t],

where α = supt∈[0,τ ] ‖
t‖ = ‖
τ‖ and β =
supt∈[0,τ ] ‖
N

t ‖ = ‖
N
τ ‖. Hence for all t � [0, τ ],

‖x(t ) − xn(t )‖2 ≤ 2α2‖u − un‖2L2[0,τ ]
+ 2β2L2N

∫ t

0
‖x(σ ) − xn(σ )‖2 dσ.

Applying Gronwall’s inequality to the above estimate we
get that

‖x(τ ) − xn(τ )‖2 ≤ 2α2‖u − un‖2L2[0,τ ]e2β
2L2N τ .

Since ‖u − un‖L2[0,τ ] → 0 as n → �, xn(τ ) = xn(τ ) and
xn(τ )→ 0 asn→� (see (2.11)), it follows from the above
equation that x(τ ) = 0. Hence the control signal u takes
the nonlinear plant (1.1) from the given initial state x0 to
0 in time τ , i.e. we have established the null controllability
of the plant (1.1) in every time τ > τ ∗.

Next we show that (1.1) is exactly controllable in any
time τ > τ ∗. Suppose that for (1.1) the given initial state
is x(0)= x0 and the desired final state is x(τ )= xτ . Define
M(z, t ) = N (z + xτ , t ) for each z � X and t � 0. Then
M is continuous in its second argument and Lipschitz
in the first argument with the same Lipschitz constant as
N , i.e. ‖M(x1, t ) − M(x2, t )‖ ≤ LN ‖x1 − x2‖ for all x1,
x2 � X and each t � 0. Consider the modified nonlinear
plant

ż(t ) = Az(t ) + Bu(t ) + BNM(z(t ), t ) + f (t )
+Axτ ∀ t ≥ 0, (4.21)
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where f(t) + Axτ is the drift term. The proof described
above for (1.1) applies to (4.21) and hence we can con-
clude that (4.21) is null controllable in each time τ > τ ∗.
Following the algorithm in the proof above, construct u
� L2([0, τ ]; U) such that the state trajectory z of (4.21)
corresponding to z(0) = x0 − xτ satisfies z(τ ) = 0. It
is easy to verify that x defined by x(t) = z(t) + xτ for
each t � [0, τ ] solves (1.1) for the same u and satisfies
x(0) = x0 and x(τ ) = xτ . Hence this control signal u
takes (1.1) from x0 to xτ in time τ (which is our control
objective). �

5. Examples

In this section we present two numerical examples to
illustrate our main result. In the first example the plant is
described by a sine-Gordon equation on the interval [0, 1]
withNeumann boundary control at x= 1. In this example
B is unbounded and BN is bounded. We obtain estimates
relating the Lipschitz constant LN of the nonlinearity to
the controllability time τ (recall that we are interested in
the exact controllability of the plant in time τ ). For LN =
0.2 we verify analytically that the condition (2.4) for exact
controllability holds when τ = 14. Then we numerically
demonstrate the proof of Theorem 4.1 by constructing a
control signal u that takes the plant from an initial state to
a final state in 14 seconds. The second example is a wave
equation on the interval [0, 1] with Neumann boundary
control at x = 1 and the nonlinearity entering at x = 0 as
part of a Robin boundary condition. Hence in this case
both B and BN are unbounded. We verify Assumption
4.1 to show that the conclusions of Theorem 4.1 apply to
this plant. We then demonstrate the exact controllability
of the plant numerically for LN = 0.3.

Example 5.1: We consider the sine-Gordon equation on
the unit interval with Neumann boundary control u(t) at
the right end point (x = 1) and homogenous Dirichlet
boundary condition at the left end point (x = 0):

⎧⎪⎪⎨
⎪⎪⎩

wtt (x, t ) = wxx(x, t ) + σ sin(w(x, t )), x ∈ (0, 1),

w(x, 0) = w10(x), wt (x, 0) = w20(x),

w(0, t ) = 0, wx(1, t ) = u(t ).

(5.1)

Here w10 ∈ H1
L (0, 1) and w20 ∈ L2(0, 1) describe the

initial state, σ ∈ R is a constant and H1
L (0, 1) = { f ∈

H1(0, 1) | f (0) = 0}.
Let X = H1

L (0, 1) × L2(0, 1) be the state space with
the following inner product:

〈[
f1
g1

]
,

[
f2
g2

]〉
X

= 〈
f1,x, f2,x〉L2 + 〈

g1, g2
〉
L2 ∀

[
f1
g1

]
,

[
f2
g2

]
∈ X.

If we let z = [
w wt

], then the plant (5.1) can be written
as an abstract differential equation on X as follows:

ż(t ) = Az(t ) + Bu(t ) + BNσ sin(z1(t )),

z(0) = [
w10 w20

]
, (5.2)

where we use the notation z(t ) = [
z1(t ) z2(t )

] and A,
B and BN are defined by

D(A) =
{[

f
g

]
∈ H2(0, 1) × H1

L (0, 1)
∣∣∣ f (0) = 0,

f ′(1) = 0

}
,

A
[
f
g

]
=

[
g
d2 f
d2x

]
∀

[
f
g

]
∈ D(A),

B =
[
0
δ1

]
, BN =

[
0
I

]
.

Here δ1 is the Dirac pulse at x = 1 and I is the identity
operator on L2(0, 1). This follows from the material in
Section 10.2.2 of Tucsnak and Weiss (2009), where the
linear system corresponding to σ = 0 is shown to be
a well-posed boundary control system having the above
abstract description. We have added the nonlinear term
into the abstract description to obtain (5.2).

From the same reference we know that the operator
A is skew-adjoint and generates a strongly continuous
group T on X and B is an admissible control operator for
T. Moreover, if we denote the adjoint of B by B∗, then

B∗
[

ϕ

ψ

]
= ψ(1) ∀

[
ϕ

ψ

]
∈ D(A∗) = D(A).

The operator BN , being bounded, is also an admissi-
ble control operator for T. The nonlinearity σ sin(·) :
H1

L (0, 1) → L2(0, 1) is globally Lipschitz with Lipschitz
constant LN = |σ |.

The pairs (A, B) and (−A, B) are exponentially sta-
bilisable in the sense of Definition 3.3. In fact, for each
k> 0, the operator F=−kB∗ is a stabilising state feedback
operator both for (A, B) and for (−A, B). This follows
from Curtain and Weiss (2006). Moreover, since BN is
bounded, it is clear that (A,BN , F ) and (−A,BN , F ) are
regular. Thus, the system (5.2) satisfies Assumption 4.1.
It follows from Theorem 4.1 that if (2.4) holds for some
τ > 0, then (5.2) is exactly controllable in time τ . We can
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then use the algorithm described in the proof of that the-
orem to construct the control signal which takes the plant
from any given initial state to any final state in time τ .

In this example, it is possible to find explicit bounds
for τ . For this we consider differential equations (4.7) and
(4.8) (with minor changes) corresponding to the opera-
tors defined in this example and find expressions forMf,
Mb,ωf,ωb. Fix k> 0 such thatA − kBB∗

� and−A − kBB∗
�

are exponentially stable. Then (4.7) can be written as

⎧⎪⎪⎨
⎪⎪⎩

vtt (x, t ) = vxx(x, t ) + g(v(x, t ), t ), x ∈ (0, 1),

v(x, 0) = v10(x), vt (x, 0) = v20(x),

v(0, t ) = 0, vx(1, t ) = −kvt (1, t ),
(5.3)

where
[
v10 v20

] ∈ X and g : H1
L (0, 1) × [0, ∞) →

L2(0, 1) is continuous in its second argument and satis-
fies g(0, t) = 0 and ‖g(v1, t) − g(v2, t)‖ � |σ |‖v1 − v2‖
for all v1, v2 ∈ H1

L (0, 1) and each t � 0. Define V(t) =
E(t) + γ ρ(t), where γ � (0, 1) is a constant and

E(t ) = 1
2

∫ 1

0

[
v2
x (x, t ) + v2

t (x, t )
]
dx,

and

ρ(t ) =
∫ 1

0
xvx(x, t )vt (x, t )dx.

Clearly (1 − γ )E(t) � V(t) � (1 + γ )E(t) for all t � 0.
Differentiating V along a solution of (5.3), we get after a
simple calculation that if 2k > γ (k2 + 1), then

V̇ (t ) ≤ −(γ (1 − 2|σ |) − |σ |)E(t )
−(k − γ (k2 + 1)/2)v2

t (1, t )

≤ −
(

γ (1 − 2|σ |) − |σ |
1 + γ

)
V (t )

which implies that

V (t ) ≤ V (0) exp
(

−γ (1 − 2|σ |) − |σ |
1 + γ

t
)

∀ t ≥ 0.

(5.4)
Strictly speaking, we can differentiate V only along clas-
sical solutions of (5.3). But we can show using regularity
results (such as Theorem 1.5 in Chapter 6 of Pazy (1983
)) that the estimate in (5.4) is valid along all solutions of
(5.3). Hence from (5.4) we get that

E(t ) ≤ E(0)
(
1 + γ

1 − γ

)
exp

(
−γ (1 − 2|σ |) − |σ |

1 + γ
t
)

∀ t ≥ 0.

Therefore

Mf = 1 + γ

1 − γ
, ω f = γ (1 − 2|σ |) − |σ |

1 + γ
.

We can similarly show that Mb and ωb are also given by
the above expressions, i.e. Mb = Mf and ωb = ωf. So for
any τ > 0 the formula for � in (2.4) takes the form

� =
(
1 + γ

1 − γ

)2

exp
(

−γ (1 − 2|σ |) − |σ |
1 + γ

2τ
)

.

Clearly for � < 1 to hold, we require that

τ >
1 + γ

γ (1 − 2|σ |) − |σ | ln
1 + γ

1 − γ
> 0. (5.5)

The restrictions γ > 0 and 2k > γ (k2 + 1) imply that
if |σ | < 1/3, then there exist k, γ , τ > 0 (which can be
computed) such that � < 1, i.e. the plant (5.1) is exactly
controllable in time τ . Suppose σ = 0 and let k = 1, then
it is easy to see that for any τ > 2 there exists γ > 0 suffi-
ciently small such that � < 1. In other words, we recover
the well-known result that the 1Dwave equation on [0, 1]
with Neumann boundary control is exactly controllable
in any time τ > 2. For |σ | > 0, our estimate for τ based
on the above discussion is typically conservative.

To illustrate our results numerically we choose σ = 0.2
in (5.1). Then for k = 1, γ = 0.7 and τ = 14 we have � <

1. Let the initial and final states for the plant be

[
w10(x)
w20(x)

]
=

[
2x − x2

1 − 2x + x2

]
and[

w1τ (x)
w2τ (x)

]
=

[−2x + x2

2x

]
∀ x ∈ (0, 1), (5.6)

respectively. Using the algorithm in Theorem 4.1 we
numerically construct the control signal u that takes the
plant from this initial state to the final state in τ = 14
seconds (see Figure 2). To discretise the plant and the
associated sequence of forward and backward systems,
we use the backward Euler scheme for the time variable
with step size 0.002 and the Chebyshev spectral method
for the spatial variable with 20 grid points. Simulations
are performed in MATLAB and the results are shown in
Figures 2–6. As seen in Figures 5 and 6, the constructed
u ensures that the plant state at τ = 14 seconds is close
to the desired final state. To construct u we have taken n
= 1 (i.e. only one set of forward and backward systems),
which is enoughpartly due to the fact that our estimate for
τ is conservative. For smaller τ , larger n will be required
to get a good approximation for u.
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Figure . The control signal u that takes the plant (.) from the
initial state

[
w10 w20

]
to the final state

[
w1τ w2τ

]
defined in

(.).

Figure . The displacementw of the plant (.) under the control
signal shown in Figure .

Figure . The velocitywt of the plant (.) under the control signal
shown in Figure .

Remark 5.1: A less restrictive bound on τ than the
one given by (5.5) can be derived via Lyapunov func-
tions, as was suggested in Fridman (2013), Fridman and
Terushkin (2016). By using arguments from Lemma 3
of Fridman and Terushkin (2016), the following can be
proved. Let Vb(t) and Vf(t) be Lyapunov functions cor-
responding to (4.7) and (4.8), respectively. Assume that
there exist ωf � 0 and ωb � 0 such that along solutions of

0 0.2 0.4 0.6 0.8 1
x
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-0.5

0

w
1τ
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w(x,τ)

Figure . The actual and desired displacement w at τ = 
seconds.
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t
(x,τ)

Figure . The actual and desired velocitywt at τ =  seconds.

(4.7) and (4.8) the following conditions hold:

V̇ f + 2ω fVf ≤ 0, V̇b + 2ωbVb ≤ 0 ∀ t ≥ 0.
(5.7)

Assume additionally that ωf + ωb > 0, and for some
τ ∗ > 0 and all t ≥ 0

Vf (t )e−2ω f τ
∗ ≤ Vb(t ), Vb(t )e−2ωbτ

∗ ≤ Vf (t ).
(5.8)

Then (1.1) is exactly controllable in any time τ > τ ∗.
Thus, in Example 5.1 with σ = 0.1, by verifying lin-

ear matrix inequalities that guarantee (5.7) and (5.8) (see
Theorem 2 of Fridman & Terushkin, 2016) we arrive at
τ > τ ∗ = 3.78, which is less (i.e. gives a stronger result)
than the estimate τ > 6 that follows from (5.5) and guar-
antees (2.4).

Example 5.2: Consider the following wave equation on
[0, 1]withNeumannboundary control at x= 1 andRobin
boundary condition, with a nonlinear boundary term, at
x = 0:⎧⎪⎪⎨
⎪⎪⎩

wtt (x, t ) = wxx(x, t ), x ∈ (0, 1),

w(x, 0) = w10(x), wt (x, 0) = w20(x),

wx(0, t ) = w(0, t ) + σ sin(w(0, t )), wx(1, t ) = u(t ).
(5.9)
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The functions w10 ∈ H1(0, 1) and w20 ∈ L2(0, 1)
describe the initial state, σ ∈ R is a constant and u is the
control input.

Let X = H1(0, 1) × L2(0, 1) be the state space with the
following inner product:
〈[

f1
g1

]
,

[
f2
g2

]〉
X

= 〈
f1,x, f2,x〉L2 + 〈

g1, g2
〉
L2

+ f1(0) f2(0) ∀
[
f1
g1

]
,

[
f2
g2

]
∈ X.

Here a bar denotes a complex conjugate. Defining z =
[w wt]�, (5.9) can be written as an abstract differential
equation on X as follows:

ż(t ) = Az(t ) + Bu(t ) + BNσ sin(Q0z(t )), (5.10)

with initial state z(0) = [w10 w20]�. Here A and Q0 are
operators defined by

D(A) =
{[

f
g

]
∈ H2(0, 1) × H1(0, 1)

∣∣∣ f ′(0) = f (0),
f ′(1) = 0

}
,

A
[
f
g

]
=

[
g
d2 f
d2x

]
∀

[
f
g

]
∈ D(A),

Q0

[
f
g

]
= f (0) ∀

[
f
g

]
∈ X.

Denoting the adjoint of an operator using ∗, a simple
computation shows that D(A∗) = D(A) and A∗ = −A.
From Tucsnak and Weiss (2009, Theorem 3.8.6), A gen-
erates a unitary group T on X. The operators B and BN
can be computed using the theory of boundary control
systems in Tucsnak and Weiss (2009, Sect. 10.1). It is
more straightforward to compute [B∗ B∗

N ] first, using
formula (10.1.7) in Tucsnak and Weiss (2009), where
G [ f g] = [ f ′(1) f ′(0) − f (0)] . After some simple
integrations by parts, we obtain that

B∗
[

ϕ

ψ

]
= ψ(1), B∗

N

[
ϕ

ψ

]
= −ψ(0)

∀
[

ϕ

ψ

]
∈ D(A∗).

This implies that we have

B =
[
0
δ1

]
, BN =

[
0

−δ0

]
,

where δa is the Dirac pulse at x = a, with a suitable inter-
pretation.

We now prove that B and BN are admissible control
operators forT. For this, it suffices to show thatB∗ andB∗

N

are admissible observation operators for the adjoint semi-
group T

∗ (Tucsnak and Weiss (2009, Theorem 4.4.3))
or equivalently that (i) B∗,B∗

N ∈ L(Xd
1 , C), where Xd

1 =
D(A∗)with the graph norm, and (ii) for each T> 0 there
existsMT > 0 such that for every initial state [v10 v20] ∈
D(A∗), the outputs v t(0, t) and v t(1, t) of the system⎧⎪⎪⎨

⎪⎪⎩
vtt (x, t ) = vxx(x, t ), x ∈ (0, 1),

v(x, 0) = v10(x), vt (x, 0) = v20(x),

vx(0, t ) = v(0, t ), vx(1, t ) = 0,

(5.11)

satisfy

∫ T

0
|vt (0, t )|2dt +

∫ T

0
|vt (1, t )|2dt ≤ MT

∥∥∥∥
[

v10
v20

]∥∥∥∥
2

X
.

(5.12)

From the definitions ofB∗,B∗
N andXd

1 , it is easy to see that
(i) holds. To establish (ii), we define the following func-
tions along the solution [v v t]� of (5.11):

E(t ) = 1
2

∫ 1

0

[
v2
x (x, t ) + v2

t (x, t )
]
dx + v2(0, t )

2
,

ρ(t ) =
∫ 1

0
(x − 0.5)vx(x, t )vt (x, t )dx.

Clearly |ρ(t)| � E(t) for all t � 0. It is easy to check that
Ė(t ) = 0 and therefore E(T)= E(0) for all T> 0. All this,
and the expression

ρ̇(t ) = 1
4

[
v2
t (0, t ) + v2

t (1, t ) + v2(0, t )
]

−1
2

∫ 1

0

[
v2
x (x, t ) + v2

t (x, t )
]
dx

implies that (5.12) holds withMT = 4(T + 2). This com-
pletes the proof of the claim that B and BN are admissi-
ble for T. Now the equivalence of (5.10) and (5.9) can be
shown using Tucsnak and Weiss (2009, Proposition 4.2.5
and Remark 4.2.6). ThemapN = σ sin(Q0(·)) : X → C

is Lipschitz with Lipschitz constant |σ |.
Define F = −kB∗ for some k > 0. From the dis-

cussion above, F is an admissible observation opera-
tor for T. Let Fb = −kB∗. We claim that (A, B, F),
(−A, B, Fb), (A,BN , F ) and (−A,BN , Fb) are all regu-
lar triples. We will now discuss the proof of the regular-
ity of (A,BN , F ) briefly, the regularity of the other three
triples can be established similarly. We will complete the
proof of regularity of (A,BN , F ) in two steps. In the first
step we will compute (sI − A)−1BN . In the second step
we will show that (sI − A)−1BN ∈ D(F�) and compute
F�(sI − A)−1BN . Consider the following system with
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input u,
⎧⎪⎪⎨
⎪⎪⎩

vtt (x, t ) = vxx(x, t ), x ∈ (0, 1),

v(x, 0) = 0, vt (x, 0) = 0,

vx(0, t ) = v(0, t ) + u(t ), vx(1, t ) = 0,

(5.13)

which can be written as an abstract differential equation
on X as follows:

ṗ(t ) = Ap(t ) + BNu(t ), p(0) = 0, (5.14)

where p = [v v t]�. For each α ∈ R and u ∈
L2α([0, ∞); R), we have

p̂(s) = (sI − A)−1BN û(s) (5.15)

for all s ∈ Cwith Re s sufficiently large.Here a hat denotes
the Laplace transform. It follows fromTucsnak andWeiss
(2009, Remark 4.2.6) that themild solution to (5.14) is the
unique solution to the weak formulation of (5.13) written
as

〈vt , ϕ〉L2 = −
∫ t

0
〈vx, ϕx〉dt

−
∫ t

0
(v(0, t ) + u(t ))ϕ(0)dt ∀ϕ ∈ H1(0, 1).

This means that for all swith Re s sufficiently large and all
ϕ � H1(0, 1),

∫ 1

0
s2v̂(x, s)ϕ(x)dx = −

∫ 1

0
v̂x(x, s)ϕx(x) dx

−(v̂(0, s) + û(s))ϕ(0). (5.16)

Taking the Laplace transform of the expressions in (5.13)
formally, we get that for each u ∈ L2α([0, ∞); R)

v̂(x, s) = [
H(s)

]
(x)û(s) ∀ x ∈ [0, 1],

∀ s ∈ {z ∈ C
∣∣Re z > α}.

Here

[
H(s)

]
(x) = esx−s + e−sx+s

(s − 1)e−s − (s + 1)es
.

It is now easy to check that v̂(x, s) defined above satisfies
(5.16) which, along with (5.15), implies that

(sI − A)−1BN =
[
H(s)
sH(s)

]
∀ s satisfying Re s > 0.

This completes the first step in the proof of regularity of
(A,BN , F ).We now proceedwith the second step. Define

V(x)= x2 − 2x − 3 for x � [0, 1]. It is easy to check that
[
H(s)
sH(s)

]
−

[
V
0

]
∈ D(A) ⊂ D(F�).

Hence to show that (sI − A)−1BN ∈ D(F�), it is suffi-
cient to check that [V 0] ∈ D(F�). For each λ > 0, it
follows from an elementary calculation that

(λI − A)−1
[
V
0

]
=

[
qλ

λqλ −V

]
, (5.17)

where qλ is defined as follows: For each x � [0, 1],

qλ(x) = eλx f1(λ) + e−λx f2(λ) + V (x)
λ

+ 2
λ3 ,

f1(λ) = qλ(0)
2

+ qλ(0)
2λ

+ 3
2λ

+ 1
λ2 − 1

λ3 ,

f2(λ) = qλ(0)
2

− qλ(0)
2λ

+ 3
2λ

− 1
λ2 − 1

λ3 ,

where qλ(0)must be found using the condition qλ
x (1) = 0

which can be equivalently written as

eλ f1(λ) = e−λ f2(λ). (5.18)

It is easy to check using (5.18) that as λ → �, qλ(0) → 0
and f1(λ)e2λ → 0. This, along with the expression

Fλ(λI − A)−1
[
V
0

]
= λ2eλ f1(λ) + λ2 f2(λ)e−λ + 2

λ

which follows from (5.17) and the definition of F, implies
that [V 0] ∈ D(F�) and F�[V 0]� = 0. We now get
from the discussion above (5.17) that (sI − A)−1BN ∈
D(F�) for all s with Re s > 0 and

F�(sI − A)−1BN = −ks
[
H(s)

]
(1)

= 2ks
(s + 1)es − (s − 1)e−s .

It now follows from Definition 3.1 that (A,BN , F ) is a
regular triple.

By computing F�(sI − A)−1B and Fb, �(sI
+ A)−1B, similarly to how we computed
F�(sI − A)−1BN above, we can check that both
[I − F�(sI − A)−1B]−1 and [I − Fb, �(sI + A)−1B]−1

exist and are bounded on some right half-plane. The
exponential stability of A + BF� and −A + BFb, � can
be inferred from Krstic, Guo, Balogh, and Smyshlyaev
(2008, Lemma 1). Thus F and Fb are stabilising feedback
operators for (A, B) and (−A, B), respectively. From all
the above discussions, we get that Assumption 4.1 holds
for (5.9). It now follows from Theorem 4.1 that if |σ |
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Figure . The control signal u that takes the plant (.) from the
initial state

[
w10 w20

]
to the final state

[
w1τ w2τ

]
defined in

(.).

Figure . The displacementw of the plant (.) under the control
signal shown in Figure .

is small and τ is large so that (2.4) holds, then we can
construct a control signal u which takes (5.9) from any
given initial state to any desired final state in time τ .

To illustrate our theory numerically, we let σ = 0.3,
k = 1, τ = 4. The initial and final states are

[
w10(x)
w20(x)

]
=

[
3x2 − 2x3

−3x2 + 2x3

]
and[

w1τ (x)
w2τ (x)

]
=

[
x
x2

]
∀ x ∈ (0, 1), (5.19)

respectively. We implement our algorithm for construct-
ing u in MATLAB. To approximate u we have taken
n= 5. To discretise the plant and the associated sequence
of forward and backward systems, we use the backward
Euler scheme for the time variable with step size 0.001
and the Chebyshev spectral method for the spatial vari-
able with 20 grid points. The simulation results are shown
in Figures 7–11. As seen in Figures 10 and 11, the con-
structed u ensures that the plant state at τ = 4 seconds is
close to the desired final state.

Figure. The velocitywt of theplant (.) under the control signal
shown in Figure .
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Figure . The actual and desired displacement w at τ = 
seconds.
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Figure . The actual and desired velocitywt at τ =  seconds.

6. Conclusions

In this work we have derived conditions for the exact
controllability of a class of nonlinear distributed param-
eter systems. In general, the control operator B for the
plants in this class are unbounded and the time-varying
nonlinear term BNN (x, t ) is not a Lipschitz in x map
from X × [0, �) to the state space X. Our proof of exact
controllability is constructive and can be regarded as an
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extension of Russell’s principle to a class of nonlinear sys-
tems. Future work could focus on relaxing the regular-
ity requirements in Assumption 4.1. Another interesting
direction to explore is the applicability of the techniques
in this paper to study the exact controllability of plants
in which the nonlinear functionN is only assumed to be
locally Lipschitz in the state, or it is a polynomial function
of the state.
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